
A Heuristic Search Algorithm for Solving First-Order MDPs

Eldar Karabaev
Institute for Theoretical Computer Science

Computer Science Department
Technische Universität Dresden
karabaev@tcs.inf.tu-dresden.de

Olga Skvortsova
International Center for Computational Logic

Technische Universität Dresden
skvortsova@iccl.tu-dresden.de

We present a heuristic search algorithm for solving
first-order MDPs (FOMDPs). Our approach com-
bines first-order state abstraction that avoids evaluat-
ing states individually, and heuristic search that avoids
evaluating all states. Firstly, we apply state abstrac-
tion directly on the FOMDP avoiding propositional-
ization. Such kind of abstraction is referred to as first-
order state abstraction. Secondly, guided by an admis-
sible heuristic, the search is restricted only to those
states that are reachable from the initial state. We
demonstrate the usefullness of the above techniques
for solving FOMDPs on a system, referred to as FC-
Planner, that entered the probabilistic track of the In-
ternational Planning Competition (IPC’2004).

1 INTRODUCTION

Markov decision processes (MDPs) have been adopted
as a representational and computational model for
decision-theoretic planning problems in much recent
work, e.g., (Barto et al., 1995). The basic solution
techniques for MDPs (Boutilier et al., 1999) rely on
the dynamic programming (DP) principle. Unfortu-
nately, classical dynamic programming algorithms re-
quire explicit enumeration of state space that grows
exponentially with the number of variables relevant to
the planning domain. Therefore, these algorithms do
not scale up to complex AI planning problems.

However, several methods that avoid the explicit state
enumeration have been recently developed. One tech-
nique, referred to as state abstraction, exploits the
structure of the factored MDP representation to solve
the problems efficiently, circumventing explicit state
space enumeration (Boutilier et al., 1999). Another
technique, referred to as heuristic search, restricts the
computation to states that are reachable from the ini-
tial state (e.g., RTDP (Barto et al., 1995), envelope
DP (Dean et al., 1995) and LAO∗ (Hansen and Zilber-
stein, 2001)). One existing approach that combines
these both techniques is the symbolic LAO∗ algorithm

which performs heuristic search symbolically for fac-
tored MDPs (Feng and Hansen, 2002). It exploits
state abstraction, i.e., manipulates with sets of states
instead of individual states. More precisely, following
the SPUDD approach (Hoey et al., 1999), all MDP
components, value functions, policies, and admissible
heuristic functions are compactly represented using al-
gebraic decision diagrams (ADDs). This allows to ef-
ficiently perform all computations of the LAO∗ algo-
rithm using ADDs.

Following ideas of symbolic LAO∗, given an initial
state, we use an admissible heuristic to restrict search
only to those states that are reachable from the initial
state. Moreover, we exploit state abstraction in or-
der to avoid evaluating states individually. Thus, our
work is very much in the spirit of symbolic LAO∗ but
extends it in an important way. Whereas the sym-
bolic LAO∗ algorithm starts with propositionalizing,
or grounding, the FOMDP and only after that per-
forms state abstraction on its propositionalized ver-
sion by means of propositional ADDs, we apply state
abstraction directly on the structure of the FOMDP
avoiding propositionalization. Such kind of abstrac-
tion is referred to as first-order state abstraction.

Recently, following (Boutilier et al., 2001), we have de-
veloped an algorithm, referred to as first-order value
iteration algorithm (FOVIA) that exploits first-order
state abstraction (Hölldobler and Skvortsova, 2004).
The dynamics of an MDP is specified in the Proba-
bilistic Fluent Calculus, that is a first-order language
for reasoning about states and actions (Hölldobler and
Schneeberger, 1990). More precisely, FOVIA produces
a logical representation of value functions and poli-
cies by constructing first-order formulae that partition
state space into clusters, referred to as abstract states.
In effect, it performs value iteration on top of these
clusters, obviating the need in the explicit state enu-
meration. This allows problems that are represented
in first-order terms to be solved without requiring ex-
plicit state enumeration or propositionalization.



Indeed, FOMDP’s propositionalization is very imprac-
tical: the number of propositions grows considerably
with the number of domain objects and relations. This
has a dramatic impact on the complexity of the algo-
rithms that depends directly on the number of propo-
sitions. Moreover, as soon as the universe of objects is
infinite, these algorithms cannot be made to work. Fi-
nally, systems for solving FOMDPs that rely on state
propositionalization also perform action proposition-
alization which is problematic in first-order domains,
because the number of ground actions also grows dra-
matically with domain size.

In this paper, we address these difficulties by propos-
ing an approach for solving FOMDPs that combines
first-order state abstraction and heuristic search in a
novel way exploiting the power of logical representa-
tions. Our algorithm can be viewed as a first-order
generalization of LAO∗, in which our contribution is
to show how to perform heuristic search for first-order
MDPs, circumventing their propositionalization. In
fact, we show how to improve the performance of sym-
bolic LAO∗ by providing a compact first-order MDP
representation using Probabilistic Fluent Calculus in-
stead of propositional ADDs. On the other hand, our
approach can be considered as a way to improve the
efficiency of the FOVIA algorithm by using heuristic
search together with the symbolic dynamic program-
ming.

2 FIRST-ORDER
REPRESENTATION OF MDPS

Recently, several representations for propositionally-
factored MDPs have been proposed, including dy-
namic Bayesian networks (Boutilier et al., 1999) and
ADDs (Hoey et al., 1999). For instance, the SPUDD
algorithm (Hoey et al., 1999) has been used to solve
MDPs with hundreds of millions of states optimally,
producing logical descriptions of value functions that
involve only hundreds of distinct values. This work
demonstrates that large MDPs, described in a logical
fashion, can often be solved optimally by exploiting
the logical structure of the problem. Meanwhile, many
realistic planning domains are best represented in first-
order terms. However, most existing implemented so-
lutions for first-order MDPs rely on propositionaliza-
tion, i.e., eliminate all variables at the outset of a so-
lution attempt by instantiating terms with all possi-
ble combinations of domain objects. This technique is
very impractical because the number of propositions
grows dramatically with the number of domain ob-
jects and relations. For example, the goal statement
∃X0 . . . X7. red(X0) ∧ green(X1) ∧ . . . ∧ blue(X7) ∧
Tower(X0, . . . , X7) in a colored Blocksworld problem

of only eight blocks and three colors (where along with
the unique identifier each block is assigned a specific
color) could result in up to 144 different combinations
of blocks, when grounded.

To address these difficulties, we propose a concise rep-
resentation of FOMDPs within Probabilistic Fluent
Calculus that is a logical approach to modelling dy-
namically changing systems based on first-order logic.

2.1 MDPs

A Markov decision process (MDP), is a tuple
(Z,A,P,R, C), where Z is a finite set of states, A
is a finite set of actions, and P : Z × Z × A → [0, 1],
written P(z′|z, a), specifies transition probabilities. In
particular, P(z′|z, a) denotes the probability of ending
up at state z′ given that the agent was in state z and
action a was executed. R : Z → < is a real-valued
reward function associating with each state z its im-
mediate utility R(z). C : A → < is a real-valued cost
function associating a cost C(a) to each action a. A
sequential decision problem consists of an MDP and is
the problem of finding a policy π : Z → A that max-
imizes the total expected discounted reward received
when executing the policy π over an infinite (or indef-
inite) horizon. The value of a state z with respect to
a policy π is defined recursively as:

Vπ(z) = R(z) + C(π(z)) + γ
∑
z′∈Z

P(z′|z, π(z))Vπ(z′),

where 0 ≤ γ ≤ 1 is a discount factor. We take γ equal
to 1 for indefinite-horizon problems only, i.e., when a
goal is reached the system enters an absorbing state
in which no further rewards or costs are accrued. The
optimal value function V ∗ satisfies:

V ∗(z) = R(z) + max
a∈A

{C(a) + γ
∑
z′∈Z

P(z′|z, a)V ∗(z′)} ,

for each z ∈ Z.

2.2 PROBABILISTIC FLUENT
CALCULUS

Fluent Calculus (FC) was originally set up as a
first-order logic program with equality using SLDE-
resolution as sole inference rule (Hölldobler and
Schneeberger, 1990). The Probabilistic Fluent Cal-
culus (PFC) is an extension of the original FC for ex-
pressing planning domains with probabilistic effects.

States: Formally, let Σ denote a set of function
symbols. We distinguish two function symbols in Σ,
namely ◦/2 which is associative, commutative, and ad-
mits the unit element, and a constant 1. Let Σ− =
Σ \ {◦, 1}. Non-variable Σ−-terms are called fluents.



{on(c,a),on(a,table),on(f,e),on(e,table)}

{on(f,a),on(a,table),on(e,table)}

{on(d,a),on(a,table),holding(c)} {on(d,a),on(a,table),on(e,d)}

{on(d,a),on(a,table)}

Figure 1: The interpretation of a CN-state Z =
(on(X, a) ◦ on(a, table), {holding(X ′), on(Y,X)}).

For example, on(X, table) is a fluent meaning that
some block X is on the table. Fluent terms are defined
inductively as follows: 1 is a fluent term; each fluent
is a fluent term; F ◦G is a fluent term, if F and G are
fluent terms. For example, on(b, table) ◦ holding(X)
is a fluent term denoting that the block b is on the
table and some block X is in the robot’s gripper. We
denote a set of fluents as F and a set of fluent terms
as LF , resp. A state is defined by a pair (P,N ), where
P ∈ LF and N ∈ 2L

F
. We refer to states in PFC

as CN-states, where C stands for conjunction and N
for negation as they are the only connectives that are
allowed in state descriptions. We denote CN-states by
Z, Z1, Z2 etc. and the set of CN-states by LCN .

Let ·M be a mapping from fluent terms to multisets of
fluents, which can be formally defined as follows: 1M =
{̇}̇ or FM = {̇F }̇, if F ∈ F , or (F ◦G)M = FM ∪̇ GM ,
where F,G ∈ LF and ∪̇ is a multiset union. The
interpretation over F , denoted as I, is the pair (∆, ·I),
where the domain ∆ is a set of all finite multisets of
ground fluents from F ; and an interpretation function
·I which assigns to each fluent term F a set F I ⊆ ∆
and to each CN-state Z = (P,N ) a set ZI ⊆ ∆ as
follows:

F I = {d ∈ ∆|∃θ.(Fθ)M ⊆̇d}
ZI = {d ∈ ∆|∃θ.(Pθ)M ⊆̇d ∧ ∀N ∈ N .d /∈ (Nθ)I},

where ⊆̇ is a submultiset relation and θ is a substitu-
tion. For example, the interpretation of a CN-state

Z = (on(X, a) ◦ on(a, table), {holding(X ′), on(Y, X)})

that can be read: There exists a block X that is on
the block a which is on the table and there exists no
such block X ′ that the robot holds and there is no such
block Y that is on X, is depicted on Figure 1.

Since ZI contains all such finite multisets of ground
fluents that satisfy the P -part and do not satisfy any
of the elements of the N -part, we subtract all multi-
sets that belong to each of Ni ∈ N from the set of
multisets that correspond to the P -part. Thus, the

bolded area on Figure 1 contains exactly those mul-
tisets that do satisfy the P -part of Z and none of
the elements of its N -part. For example, a real-world
state {̇on(d, a), on(a, table)}̇ belongs to ZI , whereas
{̇on(d, a), on(a, table), holding(c)}̇ does not. In other
words, CN-states are characterized by means of condi-
tions that must hold in each ground instance thereof
and, thus, they represent clusters of real-world, or in-
dividual, states. In this way, CN-states embody a form
of state space abstraction and, hence, can be treated
as abstract states. Such kind of abstraction is referred
to as first-order state abstraction.

Actions: Actions are first-order terms leading with
an action function symbol. For example, the action of
picking up some block X from another block Y might
be denoted as pickup (X, Y ). Formally, let Na denote a
set of action names disjoint with Σ. An action space is
a tuple A = (A,Pre ,Eff ), where A is a set of terms of
the form a(p1, . . . , pn), referred to as actions, with a ∈
Na and each pi being either a variable, or a constant;
Pre : A → LCN is a precondition of a; and Eff : A →
LCN is an effect of a.

So far, we have described deterministic actions only.
But actions in PFC may have probabilistic effects as
well. In order to model these, we decompose a stochas-
tic action into deterministic primitives under nature’s
control, referred to as nature’s choices. We use a rela-
tion symbol choice/2 to model nature’s choice. Con-
sider the action pickup (X, Y ):

choice (pickup (X, Y ), A) ↔
(A = pickupS (X, Y ) ∨A = pickupF (X, Y )) ,

where pickupS (X, Y ) and pickupF (X, Y ) define two
nature’s choices for action pickup (X, Y ), viz., that it
is successfully executed or fails. For example, the na-
ture’s choice pickupS can be defined as follows:

Pre (pickupS (X, Y )) := (on(X, Y ) ◦ e, {on(W,X)})
Eff (pickupS (X, Y )) := (holding(X), {on(X, Y )}) ,

where the fluent e denotes the empty robot’s gripper.
For simplicity, we denote the set of nature’s choices
of an action a as Ch (a) := {aj |choice (a, aj)}. Please
note that nowhere do these action descriptions restrict
the domain of discourse to some prespecified set of
blocks. Moreover, domains with infinitely many indi-
viduals can be effortlessly represented in this way as
well. For each of nature’s choices aj associated with an
action a we define the probability prob (aj , a, Z) denot-
ing the probability with which one of nature’s choices
aj is chosen in a state Z. For example,

prob (pickupS (X, Y ), pickup (X, Y ), Z) = .75

states that the probability for the successful execution
of the pickup action in state Z is .75.



In the next step, we define the reward function for each
state. We give a reward of 500 to all states in which
some block X is on block a and 0, otherwise:

reward (Z) = 500 ↔ Z v (on(X, a), ∅)
reward (Z) = 0 ↔ Z 6v (on(X, a), ∅) ,

where v denotes the subsumption relation: A
CN-state Z1 subsumes a CN-state Z2, written Z2 v
Z1, iff ZI

2 ⊆ ZI
1 . One should observe that we have

specified the reward function without explicit state
enumeration. Instead, the state space is divided into
two abstract states depending on whether or not, a
block X is on block a. Likewise, value functions can
be specified with respect to the abstract states only.
This is in contrast to classical DP algorithms, in which
the states are explicitly enumerated. Action costs can
be analogously defined as follows:

cost(pickup (X, Y )) = −3

penalizing the execution of the pickup -action with the
value of 3.

Inference Mechanism: In this section, we show
how to perform regression and progression directly
on abstract states avoiding propositionalization. Let
Z = (P,N ) ∈ LCN , a(p1, . . . , pn) be an action with pa-
rameters p1, . . . , pn, preconditions Pre (a) = (Pp,Np)
and effects Eff (a) = (Pe,Ne). Let θ and σ be substi-
tutions. An action a(p1, . . . , pn) is forward applicable,
or simply applicable, to Z with θ and σ, denoted as
forward (Z, a, θ, σ), if the following condition holds:

(Ppθ)M ⊆̇ PM∧
∀Np ∈ Np.∃N ∈ N .((P ◦N)σ)M ⊆̇((P ◦Np)θ)M .

In other words, the above statement guarantees that
Z contains both positive and negative preconditions
of the action a. Similarly, an action a(p1, . . . , pn) is
backward applicable to Z with θ and σ, denoted as
backward (Z, a, θ, σ), if Z contains both positive and
negative effects of a, i.e.:

(Peθ)M ⊆̇ PM∧
∀Ne ∈ Ne.∃N ∈ N .((P ◦N)σ)M ⊆̇((P ◦Ne)θ)M .

If an action a is forward applicable to Z with θ and σ
then Z ′ = ((P ′)−M ,N ′), where

P ′ := PM \̇(Ppθ)M ∪̇ (Peθ)M

N ′ := Nσ \ Npθ ∪ Neθ
(1)

is referred to as the a-successor of Z with θ and σ
and denoted as succ(Z, a, θ, σ). Similarly, if an action
a is backward applicable to Z with θ and σ then Z ′′ =
((P ′′)−M ,N ′′), where

P ′′ := PM \̇(Peθ)M ∪̇ (Ppθ)M

N ′′ := Nσ \ Neθ ∪ Npθ
(2)

is referred to as the a-predecessor of Z with θ and σ
and denoted as pred(Z, a, θ, σ). For example, consider
the action pickupS (X, Y ) as defined above, take Z =
(P,N ) = (on(b, table) ◦ on(X1, b) ◦ e, {on(X2, X1)}).
The action pickupS (X, Y ) is forward applicable to Z
with θ = {X 7→ X1, Y 7→ b} and σ = {X2 7→
W}. Thus, Z ′ = succ(Z, pickupS (X, Y ), θ, σ) =
((P ′)−M ,N ′) with

P ′ = {̇on(b, table), holding(X1)}̇ N ′ = {on(X1, b)} .

In effect, Equations 1 and 2 comprise the inference
mechanism for computing predecessor and successor
abstract states. This mechanism operates on abstract
states directly, instead of evaluating individual states.

3 FIRST-ORDER LAO*

We present a generalization of symbolic LAO∗ algo-
rithm (Feng and Hansen, 2002), referred to as first-
order LAO∗ (FOLAO∗), for solving FOMDPs. Sym-
bolic LAO∗ is a heuristic search algorithm that exploits
state abstraction for solving factored MDPs. Given an
initial state, symbolic LAO∗ uses an admissible heuris-
tic to focus computation on the parts of the state space
that are reachable from the initial state. Moreover, it
specifies MDP components, value functions, policies,
and admissible heuristics using propositional ADDs.
This allows symbolic LAO∗ to manipulate sets of states
instead of individual states.

Despite the fact that symbolic LAO∗ shows an ad-
vantageous behaviour in comparison to non-symbolic
LAO∗ that evaluates states individually, it suffers from
an important drawback. While solving FOMDPs sym-
bolic LAO∗ performs problem propositionalization.
This approach is impractical for large FOMDPs and
is hardly made to work when the domain becomes in-
finite. Our intention is to show how to improve the
performance of symbolic LAO∗ by providing a com-
pact first-order representation of MDPs so that the
heuristic search can be performed without proposition-
alization. More precisely, we propose to switch the
representational formalism for FOMDPs in symbolic
LAO∗ from propositional ADDs to Probabilistic Flu-
ent Calculus. The FOLAO∗ algorithm is presented on
Figure 2.

As symbolic LAO∗, FOLAO∗ has two phases that al-
ternate until a complete solution is found, which is
guaranteed to be optimal. First, it expands the best
partial policy and evaluates the states on its fringe us-
ing an admissible heuristic function. Then it performs
dynamic programming on the states visited by the best
partial policy, to update their values and possibly re-
vise the current best partial policy.

In the policy expansion step, we perform reachability



policyExpansion(π, S0, G)
E := F := ∅
from := S0

repeat
to :=

S
Z∈from

S
aj∈Ch(a)

{succ(Z, aj , θ)},

where (a, θ) := π(Z)
F := F ∪ (to−G)
E := E ∪ from
from := to ∩G− E
until (from = ∅)
E := E ∪ F
G := G ∪ F
return (E, F, G)

FOVIA(A, prob, reward, cost, γ, E, V )
repeat
V ′ := V
loop for each Z ∈ E
loop for each a ∈ A
loop for each θ such that forward (Z, a, θ)
Q(Z, a, θ) := reward(Z) + cost(a)+

γ
P

aj∈Ch(a)

prob(aj , a, Z) · V ′(succ(Z, aj , θ))

end loop
end loop
V (Z) := max

(a,θ)
Q(Z, a, θ)

end loop
r := ‖V − V ′‖
until stopping criterion
π := extractPolicy(V )
return (V, π, r)

FOLAO∗(A, prob, reward, cost, γ, S0, h, ε)
V := h
G := ∅
For each Z ∈ S0, initialize π with an arbitrary action
repeat

(E, F, G) := policyExpansion(π, S0, G)
(V, π, r) := FOVIA(A, prob, reward, cost, γ, E, V )

until (F = ∅) and r ≤ ε
return (π, V )

Figure 2: First-order LAO∗ algorithm.

analysis to find the set of states F that have not yet
been expanded, but are reachable from the set of ini-
tial states S0 by following the partial policy π. The set
of states G contains states that have been expanded
so far. By expanding a partial policy we mean that
it will be defined for a larger set of states in the dy-
namic programming step. In symbolic LAO∗, reach-
ability analysis on ADDs is performed by means of
the image operator, taken from the area of symbolic
model checking, that computes the set of successor
states to following the best current policy. Whereas,
in FOLAO∗, we apply the succ-operator, defined in
Equation 1. One should observe that since the reacha-
bility analysis in FOLAO∗ is performed on CN-states
that are defined as first-order entities, the reasoning

about successor states is kept on the first-order level.
Whereas the symbolic LAO∗ should first instantiate S0

with all possible combinations of objects, in order to
be able to perform computations using propositional
ADDs later on.

In contrast to symbolic LAO∗, where the dynamic pro-
gramming step is performed using a modified version
of SPUDD, we employ a modified first-order value iter-
ation algorithm (FOVIA) (Hölldobler and Skvortsova,
2004). The original FOVIA performs value iteration
over the entire state space. We modify it so that it
computes on states that are reachable from the ini-
tial states, more precisely, on the set of states E that
are visited by the best current partial policy. In this
way, we improve the efficiency of the original FOVIA
by using the reachability analysis together with the
symbolic dynamic programming. FOVIA produces a
PFC representation of value functions and policies by
constructing first-order formulae that partition state
space into abstract states specified as CN-states. In
effect, it performs value iteration on top of CN-states,
obviating the need in the explicit state enumeration.

Given a FOMDP and a value function represented in
PFC, FOVIA returns the best partial value function
V , the best partial policy π and the residual r. In
order to update the values of the states Z in E, we as-
sign the values from the current value function to the
successors of Z. We compute successors with respect
to all nature’s choices aj . The residual r is computed
as a largest absolute value of the difference between
the current and the newly computed value functions
V ′ and V , resp. Extraction of a best partial policy
π is straightforward: one simply needs to extract the
maximizing actions from the best partial value func-
tion V . The elegance of the first-order representation
of MDPs allows us to effortlessly restrict the set of
states to reachable ones, without the need to perform
anything similar to masking of ADDs, as in symbolic
LAO∗.

As symbolic LAO∗, FOLAO∗ converges to an ε-
optimal policy when three conditions are met: its
current policy does not have any unexpanded states,
the residual r is less than the predefined threshold ε,
and the value function is initialized with an admis-
sible heuristic. The convergence proofs for the sym-
bolic LAO∗ carry over in a straightforward way to
FOLAO∗ (Hansen and Zilberstein, 2001).

At the beginning of FOLAO∗, we initialize the value
function with an admissible heuristic function h that
focuses the search on a subset of reachable states. A
simple way to create admissible heuristic is to use dy-
namic programming to create an approximate value
function. Therefore, in order to create an admissible



heuristic h in FOLAO∗, we perform several iterations
of the original FOVIA. We started the algorithm on
an initial value function that is admissible. Since each
step of FOVIA preserves admissibility, the resulting
value function is admissible as well. The initial value
function assigns the goal reward to each state thereby
overestimating the optimal value since the goal reward
is the maximal possible reward.

Since all computations of FOLAO∗ are performed on
CN-states instead of individual states, FOMDPs are
solved avoiding explicit state and action enumeration
and propositionalization. The reasoning on first-order
level leads to better performance of FOLAO∗ in com-
parison to symbolic LAO∗, as shown in the next sec-
tion.

4 EXPERIMENTAL EVALUATION

We demonstrate the advantages of combining the
heuristic search together with first-order state abstrac-
tion on a system, referred to as FCPlanner, that has
successfully entered the probabilistic track of the com-
petition IPC’2004. The experimental results were
all obtained using Linux RedHat machine running at
3.4GHz Pentium IV with 3Gb of RAM.

In Table 1, we present the performance comparison
of FCPlanner (denoted as FCP) together with sym-
bolic LAO∗ (denoted as LAO*) on examples taken from
the colored Blocksworld (BW) scenario that was in-
troduced during IPC’2004. The results and the in-
put problems can be found at http://www.wv.inf.
tu-dresden.de/~olga/comparison/. Colored BW
problems were of our main interest since they were the
only ones represented in first-order terms and hence
the only ones that allowed us to make use of the first-
order state abstraction. These problems differ from
the classical BW ones in that, along with the unique
identifier, each block is assigned a specific color. A
goal formula, specified in first-order terms, provides
an arrangement of colors instead of an arrangement of
blocks.

At the outset of solving a colored BW problem, sym-
bolic LAO∗ starts with grounding its components,
namely, the goal statement and actions. Only after
that, the abstraction using propositional ADDs is ap-
plied. Whereas, FCPlanner performs first-order ab-
straction on a colored BW problem directly, avoiding
unnecessary grounding. In the following, we show how
an abstraction technique affects the computation of
a heuristic function. To create an admissible heuris-
tic, FCPlanner and symbolic LAO∗ perform twenty
iterations of FOVIA and an approximate value it-
eration algorithm similar to APRICODD (St-Aubin
et al., 2000), resp. The columns labelled H.time and

NAS show the time needed for computing a heuristic
function and the number of abstract states it covers,
resp. In comparison to FCPlanner, symbolic LAO∗

needs to evaluate less abstract states in the heuristic
function but takes considerably more time. One can
conclude that abstract states in symbolic LAO∗ enjoy
more complex structure than those in FCPlanner.

In order to compare the heuristic accuracy, we present
in column labelled NGS the number of ground states
that the heuristic assigns non-zero values to. One
can see that the heuristics returned by FCPlanner and
symbolic LAO∗ are of close accuracy. But FCPlanner
takes much less time to compute it. This reflects the
advantage of the plain first-order abstraction in com-
parison to the marriage of propositionalization with
abstraction using propositional ADDs. In some exam-
ples, we gain several orders of magnitude in H.time.

The column labelled Total time presents the time
needed to solve a problem. During this time, a planner
must execute 30 runs from an initial state to a goal
state. A one-hour block is allocated for each prob-
lem. We note that, in comparison to FCPlanner, the
time required by heuristic search in symbolic LAO∗

(i.e., difference between Total time and H.time) grows
considerably faster in the size of the problem. This re-
flects the potential in employing first-order abstraction
instead of abstraction based on propositional ADDs
during heuristic search.

The average reward obtained over 30 runs, shown in
column Total av. reward, is the planner’s evaluation
score. The reward value close to 500 simply indicates
that a planner found a reasonably good policy. As the
number of blocks B increases by 1, the running time for
symbolic LAO∗ increases in 10 times. Thus, it could
not scale to problems of the size greater than seven
blocks. This is in contrast to FCPlanner that could
solve problems of seventeen blocks. We could not ana-
lyze the behaviour of FCPlanner on larger problems
because these could not be loaded into the current
evaluation software that relies on propositionalization.
We note that the number of colors C in a problem af-
fects the efficiency of an abstraction technique. In FC-
Planner, as C decreases, the abstraction rate increases
which in turn is reflected by the dramatic decrease of
runtime. The opposite holds for symbolic LAO∗.

In addition, we compare FCPlanner with its two vari-
ants. The first one, denoted as FOVIA, performs no
heuristic search at all. But rather, it employs FOVIA
to compute the ε-optimal total value function from
which a policy is extracted. The second one, denoted
as FCP–, performs ‘trivial’ heuristic search starting
with an initial value function as an admissible heuris-
tic. As expected, FCPlanner that combines heuris-

http://www.wv.inf.tu-dresden.de/~olga/comparison/
http://www.wv.inf.tu-dresden.de/~olga/comparison/


Table 1: Performance comparison of FCPlanner (denoted as FCP) and symbolic LAO∗ (denoted as LAO*)

Problem Total av. reward, ≤500 Total time, sec. H.time, sec. NAS NGS, ×103

B C L
A
O

*

F
C
P

F
O

V
IA

F
C
P

–

L
A
O

*

F
C
P

F
O

V
IA

F
C
P

–

L
A
O

*

F
C
P

L
A
O

*

F
C
P

L
A
O

*

F
C
P

4 494 494 494 494 22.3 22.0 23.4 31.1 8.7 4.2 35 410 0.86 0.82
5 3 496 495 495 496 23.1 17.8 22.7 25.1 9.5 1.3 34 172 0.86 0.68

2 496 495 495 495 27.3 11.7 15.7 16.5 12.7 0.3 32 55 0.86 0.66

4 493 493 493 493 137.6 78.5 261.6 285.4 76.7 21.0 68 1061 7.05 4.24
6 3 493 492 493 492 150.5 33.0 119.1 128.5 85.0 9.3 82 539 7.05 6.50

2 495 494 495 496 221.3 16.6 56.4 63.3 135.0 1.2 46 130 7.05 6.24

4 492 491 491 491 1644 198.1 2776 n/a 757.0 171.3 143 2953 65.9 23.6
7 3 494 494 494 494 1265 161.6 1809 2813 718.3 143.6 112 2133 65.9 51.2

2 494 494 494 494 2210 27.3 317.7 443.6 1241 12.3 101 425 65.9 61.2

4 n/a 490 n/a n/a n/a 1212 n/a n/a n/a 804.1 n/a 8328 n/a 66.6
8 3 n/a 490 n/a n/a n/a 598.5 n/a n/a n/a 301.2 n/a 3956 n/a 379.7

2 n/a 492 n/a n/a n/a 215.3 1908 n/a n/a 153.2 n/a 2019 n/a 1121

15 3 n/a 486 n/a n/a n/a 1809 n/a n/a n/a 1733 n/a 7276 n/a 1.2 · 107

17 4 n/a 481 n/a n/a n/a 3548 n/a n/a n/a 1751 n/a 15225 n/a 2.5 · 107

tic search and FOVIA has demonstrated an advantage
over plain FOVIA and trivial heuristic search. These
results illustrate the significance of heuristic search in
general (FCP vs. FOVIA) and importance of heuristic
accuracy, in particular (FCP vs. FCP–). Even more,
FOVIA and FCP– do not scale to problems of the size
greater than seven blocks.

FCPlanner did not perform well on classical BW prob-
lems because these problems were propositional ones
and FCPlanner does not yet incorporate optimiza-
tion techniques applied in modern propositional plan-
ners. Table 2 concludes with competition results from
IPC’2004 where FCPlanner has shown an advantage
over other planners on colored BW problems. The
contestants are indicated by their origin. E.g., Dres-
den - FCPlanner, UMass - symbolic LAO∗. The gain
of five points in total reward means in average ten ac-
tions shorter plan.

5 RELATED WORK

We follow the symbolic DP (SDP) approach within Sit-
uation Calculus (SC) (Boutilier et al., 2001) in using
first-order state abstraction for FOMDPs. One differ-
ence is in the representation language: we use PFC in-
stead of SC. In course of the symbolic value iteration, a
state space may contain redundant abstract states that
dramatically affect the algorithm’s efficiency. In order
to achieve computational savings, normalization must
be performed to remove these redundancies. How-
ever, it was done by hand so far. To the best of
our knowledge, the preliminary implementation of the
SDP approach within SC uses human-provided rewrite

rules for logical simplification. Whereas in (Hölldobler
and Skvortsova, 2004), we have developed an auto-
mated normalization procedure for FOVIA that is in-
corporated in the competition version of FCPlanner
and brings the computational gain of several orders of
magnitude. Another crucial difference is that our al-
gorithm uses heuristic search to limit the number of
states for which a policy is computed.

ReBel (Kersting et al., 2004) algorithm relates to
FOLAO∗ in that it also uses a simpler logical lan-
guage than situation calculus which makes the state
space simplification computationally feasible.

In motivation, our approach is closely related to Re-
lational Envelope-based Planning (REBP) that repre-
sents MDPs dynamics by a compact set of relational
rules and extends the envelope method (Dean et al.,
1995) to use these structured dynamics (Gardiol and
Kaelbling, 2004). However, REBP performs action
groundization first and only after that employs ab-
straction using equivalence-class sampling. Whereas,
FOLAO∗ directly applies state and action abstrac-
tion on the first-order structure of an MDP. In that,
REBP is closer to symbolic LAO∗ than to FOLAO∗.
Moreover, in contrast to PFC, action descriptions in
REBP do not allow negation to appear neither in pre-
conditions nor in effects. In organization, FOLAO∗,
as symbolic LAO∗, is similar to real-time DP (Barto
et al., 1995) that is an online search algorithm for
MDPs, in contrast to FOLAO∗, that works offline.
There are several recent inductive approaches to solv-
ing FOMDPs (Gretton and Thiebaux, 2004; Fern
et al., 2003).



Table 2: Official competition results (total average reward) from IPC’2004 (May, 2004)
Problem Canberra Dresden UMass Michigan Purdue1 Purdue2 Purdue3 Caracas Toulouse

5 blocks 494.6 496.4 0 0 496.5 496.5 495.8 0 0
8 blocks 486.5 492.8 0 0 486.6 486.4 487.2 0 0
11 blocks 479.7 486.3 0 0 481.3 481.5 481.9 0 0

6 CONCLUSIONS

We have proposed an approach that combines heuris-
tic search and first-order state abstraction for solv-
ing FOMDPs more efficiently. Our work can be seen
as two-fold: First, we use dynamic programming to
compute an approximate value function that serves as
an admissible heuristic. Then heuristic search is per-
formed to find an exact solution for those states that
are reachable from the initial state. In both phases, we
exploit the power of first-order state abstraction in or-
der to avoid evaluating states individually. As results
show, our approach breaks new ground in exploring
the efficiency of first-order representations in solving
MDPs. In comparison to existing propositionalization-
based MDP planners, e.g., symbolic LAO∗, our solu-
tion scales better on larger FOMDPs.

However, there is plenty remaining to be done. We
are interested in the question to what extent the op-
timization techniques applied in modern propositional
planners can be combined with first-order state ab-
straction. In future competitions, we would like to
face problems where the goal and/or initial states are
only partially defined and where the underlying do-
main contains infinitely many objects.

The current version of FOLAO∗ is targeted at the
problems that allow for efficient first-order state ab-
straction. More precisely, these are the problems that
can be polynomially translated into PFC. E.g., in the
competition colored BW domain existentially-closed
goal descriptions were linearly translated into the
equivalent PFC representation. Whereas universally-
closed goal descriptions would require full groundiza-
tion. Thus, the current version of PFC is less first-
order expressive than, e.g., Situation Calculus. In
the future, it would be promising to study the exten-
sions of the PFC language, in particular, to find the
trade-off between the PFC’s expressive power and the
tractability of solution methods for FOMDPs based on
PFC.

Acknowledgements

We thank anonymous reviewers for useful comments.
Many thanks to Zhengzhu Feng for fruitful discussions.
Olga Skvortsova was supported by the grant from the
German Research Foundation.

References
Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995).

Learning to act using real-time dynamic program-
ming. AI, 72(1-2):81–138.

Boutilier, C., Dean, T., and Hanks, S. (1999).
Decision-theoretic planning: Structural assump-
tions and computational leverage. AI Research,
11:1–94.

Boutilier, C., Reiter, R., and Price, B. (2001). Sym-
bolic dynamic programming for first-order MDPs.
In IJCAI-01. 690–700.

Dean, T., Kaelbling, L., Kirman, J., and Nicholson,
A. (1995). Planning under time constraints in
stochastic domains. AI, 76:35–74.

Feng, Z. and Hansen, E. (2002). Symbolic heuristic
search for factored markov decision processes. In
AAAI-02. 455–460.

Fern, A., Yoon, S., and Givan, R. (2003). Approximate
policy iteration with a policy language bias. In
NIPS-03.

Gardiol, N. and Kaelbling, L. (2004). Envelope-based
planning in relational MDPs. In NIPS-03.

Gretton, C. and Thiebaux, S. (2004). Exploiting first-
order regression in inductive policy selection. In
UAI-04.

Hansen, E. and Zilberstein, S. (2001). LAO*: A
heuristic search algorithm that finds solutions
with loops. AI, 129:35–62.

Hoey, J., St-Aubin, R., Hu, A., and Boutilier, C.
(1999). SPUDD: Stochastic planning using de-
cision diagrams. In UAI-99. 279–288.

Hölldobler, S. and Schneeberger, J. (1990). A new
deductive approach to planning. New Generation
Computing, 8:225–244.

Hölldobler, S. and Skvortsova, O. (2004). A logic-
based approach to dynamic programming. In
AAAI-04 workshop: Learning and planning in
MDPs. 31–36.

Kersting, K., van Otterlo, M., and De Raedt, L.
(2004). Bellman goes relational. In ICML-04.

St-Aubin, R., Hoey, H., and Boutilier, C. (2000).
APRICODD: Approximate policy construction
using decision diagrams. In NIPS-00. 1089–1095.


