
Decomposing Finite Closure Operators by

Attribute Exploration

Daniel Borchmann

TU Dresden, Institut für Algebra
daniel.borchmann@mailbox.tu-dresden.de

http://www.math.tu-dresden.de/~borch/

Abstract. There are examples of algorithms which allow the e�cient
computation of the concepts of a given formal context. However, when
one wants to apply those algorithms to an arbitrary closure operator,
which might not be given by a formal context, those algorithms cannot
be applied directly. Therefore we want to discuss the problem of �nding
an appropriate formal context for a given closure operator, and present
an application of attribute exploration to achieve this goal.

The occurrence of high performance algorithms for the fast computation of con-
cepts of a formal context (as [1,8,9]) makes it possible to deal with large amounts
of data (if one is interested in its formal concepts). These algorithms are mostly
variants of Kuznetsov's well-known Close-by-One algorithm (as for example
described in [6]). In contrast to Ganter's NextClosure [3], which computes the
�xpoints of a given closure operator, Close-by-One computes the concepts of
a given formal context. But still both algorithms get a closure operator as input
and compute it's �xpoints. The only di�erence is in the representation of the
closure operator c: Close-by-One requires it to be given as a formal context,
whereas NextClosure does not place any restrictions on the representation of
c.
We want to take this asymmetry of representing a closure operator as motivation
to consider the following question: Can we e�ectively (and also maybe e�ciently)
compute for a given closure operator c on a setM a formal context whose intents
are precisely the closed sets of c? We shall formalise this idea as decomposing
closure operators and shall show a neat application of attribute exploration in
solving this problem. We also shall discuss some complexity aspects and show
some experimental evaluation.

1 Formal Concept Analysis and Closure Operators

To better understand the following discussion, we brie�y introduce the necessary
de�nitions from Formal Concept Analysis and the theory of closure operators.
The basic structure used by Formal Concept Analysis is the one of a formal
context. Let G and M be two sets and let I ⊆ G ×M . We will call the triple
(G,M, I) a formal context. Intuitively, the set G is the set of objects, the set M

http://www.math.tu-dresden.de/~borch/

2 Daniel Borchmann

is the set of attributes and I is an incidence relation, where for an object g ∈ G
and an attribute m ∈M , g I m if and only if �object g has attribute m�.
Now let A ⊆ G and B ⊆M . We de�ne the derivation in (G,M, I) by

A′ := {m ∈M | ∀g ∈ A : g I m }
B′ := { g ∈ G | ∀m ∈ B : g I m }.

We call the pair (A,B) a formal concept of the formal context (G,M, I) if and
only if A′ = B and B′ = A. In this case, the set A is called the extent and the
set B is called the intent of the formal concept (A,B). We denote with B(K) the
set of all formal concepts of the formal context K = (G,M, I) and with Int(K)
the set of all intents of the formal context K.
We call a formal context K = (G,M, I) object-clari�ed, if for every two objects
g, h ∈ G with { g }′ = {h }′ we already have g = h. That is, K is object-clari�ed if
no two objects with the same set of common attributes exist in K. Furthermore,
we call an object g ∈ G reducible if and only if the formal context K̃ obtained
from K by removing g has the same set of intents as K. It is well known [4] that
for �nite formal contexts K, i.e. where the sets G and M are both �nite, that
an object g ∈ G is reducible if and only if there exists H ⊆ G \ { g } such that

{ g }′ =
⋂
h∈H

{h }′.

Finally, a �nite formal context K is called object-reduced if it is object-clari�ed
and does not contain any reducible objects.
For a formal context K = (G,M, I) and two sets A,B ⊆M we will call the pair
(A,B) an implication of K and write A → B. The implication A → B is valid
in K (or holds in K) if and only if B ⊆ A′′. For a set L of implications of K
and a set C ⊆ M we say that C is closed under all implications from L if for
every implication A → B ∈ L we have A 6⊆ C or B ⊆ C. That is, whenever
A ⊆ C then B ⊆ C as well. We denote with L(C) the smallest set containing C
that is closed under all implications from L. This set always exists and can be
computed in time linear in |M | and |L|.
Let L be a set of implications of a given formal context K. We say that L is
sound for K if all implications in L are valid in K. We say that L is complete for
K if every valid implication of K follows from L. Thereby an implication A→ B
of K follows from L if and only if B ⊆ L(A). For every sound and complete set
L of implications of K it is well known that

N ′′ = L(N)

for all N ⊆M . Again, see [4] for details.
A famous algorithm we want to utilise in this paper is the one of attribute
exploration. This algorithm gets a formal context K as input and successively
generates implications A→ B of K. It then asks an external expert whether the
generated implication A→ B should hold in K. If it does, A→ B is added to the
set of valid implications. If it does not, the expert is asked for a counterexample

Decomposing Finite Closure Operators by Attribute Exploration 3

to falsify this implication. Thereby a counterexample is a new object g together
with its attributes N such that

A ⊆ N and B 6⊆ N.

The formal context K is then extended by this new object and its attributes and
the algorithm continues. It stops if no more implications can be generated.
Attribute exploration has some remarkable properties. The one we want to use
in this paper is that, after the exploration has �nished, we have constructed a
formal context K and a set L of implications of K, such that the set L is a sound
and complete set of implications for K. Additionally, L has minimal cardinality
among all sound and complete sets for K.
Besides the basic notions of Formal Concept Analysis, we brie�y mention closure
operators. A closure operator c on a set M is a mapping c : P(M) → P(M)
such that

� A ⊆ c(A) for every A ⊆M ,
� A ⊆ B =⇒ c(A) ⊆ c(B) for every A,B ⊆M and
� c(A) = c(c(A)) for every A ⊆M .

A set N ⊆M is closed under c if and only if c(N) = N . We call c a �nite closure
operator if M is a �nite set.
Finally, we brie�y mention the de�nition of meet-irreducible closed sets. Let c
be a closure operator on a set M . Then a closed set N ∈ c[P(M)] is called
meet-irreducible (in (c[P(M)],⊆)) if and only if

N 6=
⋂
{ Ñ ∈ c[P(M)] | Ñ) N },

or equivalently, N cannot be represented as an intersection of strictly greater
closed sets of c.

2 Problem Speci�cation

Now let c be a closure operator on M for some set M . To somehow represent c
by a formal context K we demand that its intents are exactly the �xpoints of c.

De�nition 1 Let c be a closure operator on a set M . We say that a formal
context K = (G,M, I) is a (contextual) decomposition of c if

Int(K) = c[P(M)]. ♦

Note that this means that for a decomposition of a closure operator c into the
formal context K = (G,M, I) it holds that

c(N) = N ′′

for all N ⊆ M . Note that this condition is also su�cient for K being a decom-
position of c.

4 Daniel Borchmann

The equality c = ·′′ also motivates the notion of decomposition, since we can
now represent the closure operator c as the composition of the two mappings
·′ : P(M)→ P(G) and ·′ : P(G)→ P(M).
In theory, the problem of �nding a decomposition of a given closure operator
has an easy solution, as for every closure operator c we can explicitly give a
decomposition of c.

Proposition 2 ([4]) Let c be a closure operator on a set M . Then the formal

context

Kc = (c[P(M)],M,3)

is a decomposition of c.

Proof We show that for every set N ⊆M the equality c(N) = N ′′ holds in Kc.
For this we observe that

N ′ = { c(A) | A ⊆M,N ⊆ c(A) }.

This yields

N ′′ = {x ∈M | ∀A ∈ N ′ : x ∈ A }

=
⋂
N ′

=
⋂
{ c(A) | A ⊆M,N ⊆ c(A) }

= c(N)

as required. �

Unfortunately, this solution is rather impractical, since the size ofKc is correlated
to the number of closed sets of c, which is often exponential in the size of M .
Luckily, an object-reduced subcontext of Kc can be given explicitly by removing
all non-meet-irreducible closures from the objects of Kc.

Proposition 3 Let c be a closure operator on a �nite set M and let C ⊆
c[P(M)] be the set of meet-irreducible sets in (c[P(M)],⊆). Then the formal

context

K = (C,M,3)

is an object-reduced decomposition of c.

Proof Recall that an object in Kc is reducible if its attributes can be represented
as an intersection of attributes of other objects. This immediately gives that a
closed set is reducible in Kc if it is not meet-irreducible. Therefore K is the
object-reduced subcontext of Kc and Int(K) = Int(Kc) = c[P(M)] as required.�

Note that the above proposition is not true for in�nite sets M . For this consider
the identity on the set N of natural numbers, which is a (trivial) closure operator.
Then (P(N),⊆) does not have meet-irreducible sets at all, but the formal context
(∅,N, ∅) is not a decomposition of the identity on N.

Decomposing Finite Closure Operators by Attribute Exploration 5

Note that, unfortunately (again), there is up to now no easy way to directly com-
pute those meet-irreducible closures and thus no easy way to directly compute
this object-reduced subcontext.
The formal context Kc is a very universal decomposition of the �nite closure
operator c, in the following sense: Whenever we have a formal context K which
is a decomposition of c, we can �nd a subcontext of Kc which is equal to K up
to object renaming. This observation is captured in the following result.

Proposition 4 Let c be a �nite closure operator on a set M and let K =
(G,M, I) be an object-clari�ed decomposition of c. Let Kc = (H,M, J). Then
there exists a set N ⊆ H and a bijective mapping α : G→ N such that

g I m ⇐⇒ α(g) J m

for all g ∈ G.

Proof Let g ∈ G. Then { g }′ is an intent of K and therefore { g }′ is closed with
respect to c, i.e. c({ g }′) = { g }′. Therefore, there exists an element h ∈ H such
that { g }′ = {h }′, whereby the �rst derivation is done in K and the second
is done in Kc. Now set α(g) := h. Then α is a bijective mapping from G to
N := α[G]. �

Since we know that for a given �nite formal context K its object-reduced sub-
context is uniquely determined, we immediately have the following result.

Proposition 5 For every �nite closure operator c all its object-reduced decom-

positions are equal up to object renaming.

3 Using Attribute Exploration to Decompose Closure

Operators

So, let us reconsider the problem statement: We have given the set of attributes of
the context K we are looking for. Additionally, we know whether an implication
in K holds or not. This is the case because with our closure operator c, we can
decide whether A→ B should hold in a decomposition of c by checking

B ⊆ c(A).

If this is not true, then c(A) is a set of attributes which is a counterexample to
the implication A → B (since we know that c(A) will be an intent of the �nal
context).
What we now see is that we can use c as the expert during attribute exploration
which is able to automatically verify whether an implication holds or not, and
in the case it doesn't can automatically provide a counterexample.
This immediately leads us to the pseudo code shown in Algorithm 1. It works
as follows:

6 Daniel Borchmann

Algorithm 1. Decomposing closure operators using attribute exploration

define context-for-closure-operator(M, c)
let (K = explore-attributes((∅,M, ∅) ,

function (A→ B)
i f B ⊆ c(A) then
return holds

else

return fails , (x, c(A))
end if

end function))
return object-reduce(K)

end let

end define

� Given a set M and a closure operator c on M we call explore-attributes,
which gets as arguments a starting context (which is (∅,M, ∅)) and a function
to call with a possible implication A→ B. This function returns either holds,
if A → B holds. Otherwise it returns fails together with a counterexample
of the form (x,N). Here x is a new object not already present in the current
formal context. The set N is the set of attributes the new object x should
have. This means that we add x as a new object and extend the incidence
relation by the set

{ (x, a) | a ∈ N }.

When explore-attributes has �nished, it returns the context it has con-
structed during exploration. This is the context K.

� Then we remove redundant objects from K and return the result.

Proposition 6 The function context-for-closure-operator computes for a

given �nite closure operator c on a given setM the object-reduced decomposition

of c.

Proof Denote with K = (G,M, I) the formal context computed by the call to
explore-attributes. It is clear that K is object-clari�ed, since in any iteration,
if A → B does not hold, the set c(A) is a counterexample, but no previously
given set is. Therefore c(A) cannot occur more then once and therefore there are
no two objects in K with the same set of common attributes.
We show c(N) = N ′′ for every set N ⊆ M . Since G ⊆ c[P(M)] the following
holds

N ′′ =
⋂
{ c(A) ∈ G | N ⊆ c(A) }

⊇
⋂
{ c(A) ∈ c[P(M)] | N ⊆ c(A) }

= c(N).

Decomposing Finite Closure Operators by Attribute Exploration 7

Conversely let L be the set of implications accepted during the attribute ex-
ploration. We then know that L is sound and complete for K and therefore
N ′′ = L(N) for every N ⊆ M . But for every implication A → B ∈ L holds
that B ⊆ c(A). Therefore, c(N) is closed under all implications from L, since
A ⊆ c(N) implies B ⊆ c(A) ⊆ c(N). Furthermore, c(N) ⊇ N . But N ′′ is the
smallest set that contains N and is closed under all implications from L. Thus
c(N) ⊇ N ′′.
In sum, we have c(N) = N ′′ for every N ⊆ M , hence the formal context K
computed by explore-attributes is a decomposition of c. After removing all
redundant objects from K, we get an object-reduced decomposition of c, as
required. �

Clearly, c(A) is a counterexample if A → B does not hold, but it is not the
only one. Instead of simply giving c(A) as a counterexample it would be much
better to search for a �stronger� counterexample, which also falsi�es A→ B, but
provides even some more information. This is the topic of the next section.

4 Maximal Counterexamples

We can tell a bit more about the objects in the object-reduced subcontext men-
tioned in Section 2. The meet-irreducible closures can be characterised as follows.

Proposition 7 Let c be a closure operator on a setM . Then a set N ∈ c[P(M)]
is meet-irreducible in (c[P(M)],⊆) if and only if there exists n ∈M with n /∈ N
and N is maximal among all closed sets of c with this property.

Proof Let N ∈ c[P(M)] be meet-irreducible in (c[P(M)],⊆) and let N = { Ñ ∈
c[P(M)] | Ñ) N }. Then

⋂
N 6= N , i.e.

⋂
N \ N 6= ∅. Fix one n ∈

⋂
N \ N .

Then n /∈ N and n ∈ Ñ for every Ñ) N with Ñ ∈ c[P(M)], as required.
Conversely, let n /∈ N such that n ∈ Ñ for every Ñ) N with Ñ ∈ c[P(M)].
Then

n ∈
⋂
{ Ñ ∈ c[P(M)] | Ñ ⊇ N }

and since n /∈ N if follows that

N 6=
⋂
{ Ñ ∈ c[P(M)] | Ñ ⊇ N }. �

With this proposition in mind it is easy to see what better counterexample for
A→ B we can give as simply returning c(A). If we have found that B 6⊆ c(A) we
choose n ∈ B \ c(A) and look for a set C ⊇ c(A) with n /∈ C which is maximal
with this property. This can be done in time O(|M |2), as the pseudo code in
Algorithm 2 shows.
However, we can do better than O(|M |2). For this we observe that an element
m ∈ R such that n ∈ c(C ∪ {m }) has not to be considered again. To see this,
consider an iteration of the main loop of Algorithm 2 and �x the current value of
C as C̄ and �x m ∈ R such that n ∈ c(C ∪ {m }). For any subsequent iteration

8 Daniel Borchmann

Algorithm 2. Computing maximal counterexamples

define maximal-counterexample(M, c,A→ B)
let (n = some element in B \ c(A))
loop (C = c(A) ,

R = M \ {n} \ c(A))
i f there exists some m ∈ R such that n /∈ c(C ∪ {m}) then
recur with (C = c(C ∪ {m}) , R = R \ {m})

else

return C
end if

end loop

end let

end define

let C̃ be the value of C of Algorithm 2 in that iteration. Then we know that
C̄ ∪ {m } ⊆ C̃ ∪ {m } and since n ∈ c(C̄ ∪ {m }) ⊆ c(C̃ ∪ {m }), we do not
have to consider the element m again. This leads us to the re�ned version of
computing maximal counterexamples as shown in Algorithm 3.

The following result is now apparent.

Proposition 8 The function maximal-counterexample as shown in Algorithm 3

computes for a given �nite closure operator c on a given setM a meet-irreducible

counterexample N for A → B, i.e. A ⊆ N , B 6⊆ N and N is a meet-irreducible

closed set of c.

Now the function given as the second argument to explore-attributes in
Algorithm 1 should return the new maximal counterexample instead of c(A).
Given this modi�cation we can make the following observation for an arbi-
trary closure operator c: Since the created counterexamples are objects of an
object-reduced subcontext of Kc they cannot be reducible in the �nal context
returned from the attribute exploration. This yields a new implementation of
context-for-closure-operator as shown in Algorithm 4.

Proposition 9 The function context-for-closure-operator as shown in Al-

gorithm 4 computes for every �nite closure operator c on a set M an object-

reduced decomposition of c.

Proof Denote with K the context computed by explore-attributes. By the
same argument as in Proposition 6 we see that K is an object-clari�ed decompo-
sition of c. It remains to show that K is object-reduced. But this is clear since the
only objects added during the attribute exploration are meet-irreducible closed
sets. �

Decomposing Finite Closure Operators by Attribute Exploration 9

Algorithm 3. Computing maximal counterexamples in time O(|M |).
define maximal-counterexample(M, c,A→ B)
let (n = some element in B \ c(A))
loop (C = c(A) ,

R = M \ {n} \ c(A))
i f R = ∅ then
return C

else

let (m be some element in R)
i f n /∈ c(C ∪ {m }) then
recur with (C = c(C ∪ {m }) , R = R \ {m })

else

recur with (C = C , R = R \ {m })
end if

end let

end if

end loop

end let

end define

Algorithm 4. Decomposing closure operators with attribute exploration

define context-for-closure-operator(M, c)
return explore-attributes(

(∅,M, ∅) ,
function (A→ B)
i f B ⊆ c(A) then
return holds

else

return fails , (x , maximal-counterexample(M, c,A→ B))
end if

end function)
end define

10 Daniel Borchmann

5 Complexity Considerations

We have seen that we can use attribute exploration to directly compute an
object-reduced decomposition of a given �nite closure operator c on a set M .
The question remains, however, if this approach really is better then the naive
computation of the formal context Kc and reducing it afterwards.
Firstly we observe that the size of the object-reduced decomposition of c can
be exponential in |M |. For this we recall that a relation R ⊆ M ×M on a set
M is an equivalence relation if R is symmetric, transitive and re�exive. For a
given set P ⊆M×M we denote with c(P) the smallest equivalence relation that
contains all elements of P . Then c is a �nite closure operator on M ×M . Now
the meet-irreducible equivalence relations are precisely those that are maximal
with respect to not containing a given pair (x, y) ∈M ×M with x 6= y. For each
such pair (x, y) we can choose a set S ⊆ M such that x ∈ S, y /∈ S. Then the
set {S,M \S } is a partition of such a meet-irreducible equivalence relation and
every such partition uniquely induces a meet-irreducible equivalence relation.
We call such a partition a split on M (c.f. [4]) and easily observe that there are
2|M |−1 − 1 such splits on M . Thus c has exponentially many meet-irreducible
closed sets and therefore every decomposition of c will be exponentially large in
|M ×M |.
Thus we cannot hope that Algorithm 4 can compute a decomposition of c in time
polynomial in |M |. However, we can ask whether we can compute a decomposi-
tion of c in time polynomial in the output, i.e. in the size of the decomposition
itself. The time needed to compute the decomposition as shown in Algorithm 4
corresponds to the number of calls to the expert during attribute exploration,
and to the time needed to compute the next implication. Unfortunately, it is
known that the number the expert is called can be exponential, since the min-
imal size of a sound and complete set of implications can be exponential in the
size of the formal context [5]. Unfortunately (again), it is also well known that
the time between the computation of two implications can also be exponential
in the size of the formal context [2]. Therefore our algorithm cannot compute a
decomposition of c in time polynomial in the size of the decomposition.
Another aspect we have not considered so far is the following. Up to now we
only asked for the complexity with respect to the size of M , but never with
respect to the size of c. This is because it is not clear in which way the closure
operator c should be encoded. If we would simply encode c as a table of argument-
value pairs, then the input would be exponentially large in |M |, and complexity
considerations would be trivial, since everything can be done in time polynomial
in the input. Other encodings may yield other results, but this is not clear by
now, and we will discuss this shortly in Section 7.

6 Experimental Evaluation

Since theoretical complexity considerations are out of the scope of this paper,
we at least want to give some experimental results.

Decomposing Finite Closure Operators by Attribute Exploration 11

For this, we have implemented three di�erent algorithms to compute the object-
reduced decomposition of a given �nite closure operator c. Those are

A) The direct computation of Kc with a subsequent object-reduction, using
NextClosure to compute all intents,

B) Algorithm 1,
C) Algorithm 4,

For our experiments we want to consider closure operators on an 11-elemental
set. To randomly (but not uniformly randomly) generate closure operators over
this set we simply generate formal contexts K = (G,M, I) withM = { 0, . . . , 10 }
and some arbitrary G ⊆ P(M) and I ⊆ G×M . Our closure operator then will
be ·′′ : P(M) → P(M). The randomly generated formal contexts have been
reduced before the experiments where conducted.
When examining the performance of the algorithms given above, we are not only
interested in the time they take to accomplish their task. We are also interested
in the number of times the closure operator is invoked. As it turns out, this
number somehow correlates to the number of concepts of K, which is equal to
the number of closed sets of ·′′, or it is correlated to the number of pseudo-intents
of K.
Pseudo-intents play an important role in attribute exploration, as any asked
implications A → B is such that the set A is a pseudo-intent of the currently
known formal context. It therefore seems reasonable that they will have a non-
trivial impact on the performance of the algorithms using attribute exploration.
In the following, we want to examine this conjuncture.
But before we do so, let us consider the actual speedups of our new algorithms.
For this we show in Figure 1 the performance improvements of the algorithms B
and C against algorithm A. All running times are given in seconds.

0 5 10 15
0

5

10

0 5 10 15
0

0.2

0.4

0.6

Fig. 1. Runtime of algorithm A compared to the other algorithms

As we can see, algorithm B allows for about 50% of speedup compared to algo-
rithm A, whereas algorithm C even shows performance improvements between
factors of 5 to 15, in extreme cases even factors up to 150.
What is surprising at the second picture is its very di�erent form, compared
to the �rst one. This is related to the number of pseudo-intents, as we already
have mentioned, and as also Figure 2 might suggest. In that picture we see a
correlation between the number of intents and the number of pseudo-intents of

12 Daniel Borchmann

our sample contexts. The overall appearance of this picture is very similar to the
second one in Figure 1, and as we will see shortly, the performance of algorithm C
is indeed dominated by the number of pseudo-intents.

0 1,000 2,000

0

100

200

Fig. 2. Number of intents against number of pseudo-intents

Now let us examine our algorithms in more depth. For this we show in Figures 3,
4 and 5 the performance of our algorithms drawn against the number of intents,
pseudo-intents and calls to the closure operator ·′′. The results for algorithms A,
B and C are given from left to right.
In Figure 3 we can see that the runtime of the algorithms A and B clearly
depends on the number of intents. Algorithm C, on the other hand, produces a
picture which is more like the one shown in Figure 2.
In contrast to this, Figure 4 reverses the roles. For algorithms A and B we can �nd
again the picture of Figure 2, with the roles of the axes reversed. For algorithm C
there seems to be a dependency between pseudo-intents and runtime, but it is
only very vague. At best, one might conjecture that the points distribute around
the graph of a linear function.
Finally, the last picture we want to consider is the one in Figure 5. We can see
that the time grows superlinear in the number of concepts for both algorithm A
and B, whereby the dependency is much clearer in the case for algorithm B.
Surprisingly, it seems that the runtime depends quadratically on the number of
calls to ·′′ in both cases. The case for algorithm B seems even more astonishing,
as the dependence seems to be functional, and not of statistical nature. It is not
clear to the author how this result can be explained thoroughly.
Unfortunately, the picture is not that clear anymore when we consider algo-
rithm C, and the results are quite hard to interpret. One can clearly spot a
linear dependency between the number of calls to ·′′ and the overall runtime.
However, not all sample contexts seem to obey this linear dependency, as they
seem to accumulate in other branches. Again, it is not clear to the author how
this distribution can be explained in a mathematically thorough way.

7 Conclusions

We have presented a small application of attribute exploration for the problem
of �nding a decomposition of an arbitrary �nite closure operator c. By using

Decomposing Finite Closure Operators by Attribute Exploration 13

0 1,000 2,000
0

5

10

15

0 1,000 2,000
0

5

10

0 1,000 2,000
0

0.2

0.4

0.6

Fig. 3. Number of intents against overall runtime

0 100 200
0

5

10

15

0 100 200
0

5

10

0 100 200
0

0.2

0.4

0.6

Fig. 4. Number of pseudo-intents against overall runtime

0 1,000 2,000
0

5

10

15

0 1,000 2,000
0

5

10

0 500 1,0001,500
0

0.2

0.4

0.6

Fig. 5. Calls to ·′′ against overall runtime

14 Daniel Borchmann

maximal counterexamples instead of smaller ones we were also able to show
that we can directly compute an object-reduced decomposition without some
intermediate, non-object-reduced context.
By some theoretical result we were able to show that our new algorithm is not
able to compute the object-reduced decomposition of an arbitrary closure opera-
tor e�ciently, since it may always be exponentially large in the size of the input
set. However, experiments show that the new algorithms, in particular when
using maximal counterexamples, were able to outperform the naive implemen-
tations. But the experiments also revealed unexpected results and a satisfactory
explanation could not be given. This clearly is a point of future research. In
those experiments it is also not clear in which way the generation of the sample
contexts had an in�uence on the overall results of the experiments, especially
the one shown in Figure 2, which, at least for the author, was unexpected.
Another point, which has been already mentioned above, is the following: For a
thorough complexity analysis of the presented algorithm it must be clari�ed how
to represent the closure operator c. Apart from trivially listing all possible closed
sets, it might also be possible to represent c as a complete set of implications.
For such a representation we can see that the object-reduced decomposition of
c can then be computed in space polynomial in the input and the output. It is
not clear, however, if other representations yield better complexity results.

8 Acknowledgements

The author is deeply indebted to the thorough reviews of the anonymous review-
ers, which substantially improved the overall quality of this paper. The author
would also like to thank Bernhard Ganter, who suggested the O(|M |) computa-
tion of the maximal counterexamples.

References

1. Simon Andrews. In-Close, a fast algorithm for computing formal concepts. In Sebas-
tian Rudolph, Frithjof Dau, and Sergei O. Kuznetsov, editors, ICCS Supplementary

Proceedings, Moscow, 2009.

2. Felix Distel. Hardness of Enumerating Pseudo-intents in the Lectic Order. In
Kwuida and Sertkaya [7], pages 124�137.

3. Bernhard Ganter. Two basic algorithms in concept analysis. In Kwuida and Sertkaya
[7], pages 312�340.

4. Bernhard Ganter and RudolphWille. Formal Concept Analysis: Mathematical Foun-

dations. Springer, Berlin-Heidelberg, 1999.

5. Sergei O. Kuznetsov. On the intractability of Computing the Duquenne-Guigues
Base. J. UCS, 10(8):927�933, 2004.

6. Sergei O. Kuznetsov and Sergei A. Obiedkov. Algorithms for the construction of
concept lattices and their diagram graphs. In Luc De Raedt and Arno Siebes,
editors, PKDD, volume 2168 of Lecture Notes in Computer Science, pages 289�300.
Springer, 2001.

Decomposing Finite Closure Operators by Attribute Exploration 15

7. Léonard Kwuida and Baris Sertkaya, editors. Formal Concept Analysis, 8th Interna-

tional Conference, ICFCA 2010, Agadir, Morocco, March 15-18, 2010. Proceedings,
volume 5986 of Lecture Notes in Computer Science. Springer, 2010.

8. Vilém Vychodil, Petr Kraj£a, and Jan Outrata. Parallel Recursive Algorithm for
FCA. In Radim B¥lohlávek and Sergej O. Kuznetsov, editors, Concept Lattices and
Their Application, pages 71�82. Palacký University, Olomouc, 2008.

9. Vilém Vychodil, Petr Kraj£a, and Jan Outrata. Advances in algorithms based on
CbO. In Marzena Kryszkiewicz and Sergei Obiedkov, editors, Concept Lattices and
Their Application, pages 325�337, 2010.

	Decomposing Finite Closure Operators by Attribute Exploration

