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ABSTRACT
Entities in today’s knowledge graphs do not only differ in their

property values but also in the schematic structures they are rep-

resented by. Given their extraction-based foundation, it is quite

common that in practical knowledge base instances totally unre-

lated graph structures describe entities of the same type. Hence,

operators for handling such heterogeneity are mandatory when

designing a robust query language for knowledge graphs. While

SPARQL does offer optional patterns for this purpose, their query

answers often suffer from an unintuitive matching behavior. In

contrast, preference semantics seem to be a much more intuitive

and still robust way of expressing how the optimal query result

may look like. While preferences over data value domains are al-

ready applied for graph data, we argue for structural preferences to

achieve fine-grained control of heterogeneity in the query answers.

Therefore, we propose a new operator for SPARQL, enabling the ex-

pression of structural as well as some value preferences. Equipped

with a Pareto-style semantics, we give examples of how to model

preferences with the new operator. Our prototypical implementa-

tion allows for evaluating several encodings of the new construct

at DBpedia’s SPARQL endpoint.

CCS CONCEPTS
• Information systems → Query operators; Query reformula-

tion; Query intent; Retrieval models and ranking; Resource De-
scription Framework (RDF); Query languages for non-relational
engines.
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1 INTRODUCTION
One of the major difficulties in working with today’s knowledge

graphs is that entities differ in the schematic structures they are

represented by. During extraction, it is quite common that in prac-

tical knowledge base instances we have two entities (represented

as nodes or resources) that share a type, e. g., scientists, but are

characterized in totally different ways regarding their properties.

Furthermore, extraction may even miss important aspects of an

entity a user later expects in the knowledge graph. Upon query-

ing by basic graph patterns (conjunctive queries), a user is most

likely disappointed because too few or even no results are returned.

Hence, operators for handling such heterogeneity are mandatory

when designing a robust query language for knowledge graphs.

Although SPARQL offers optional patterns for handling incom-

pleteness and heterogeneity issues in RDF graphs, it is only one

particular way of doing so. Further deficiencies and peculiarities of

optional patterns are comprehensively discussed by the research

community [1, 2, 17]. Preference semantics seem to be a much more

intuitive and still robust way of expressing how the optimal query

result may look like [11]. While extensions of SPARQL regarding

preferences over data value domains exist [8, 10, 16, 21, 22], a user

cannot express her preferences regarding the completeness of query

results. We want to call such preferences structural preferences, for
which we show in Sect. 2 that the operators SPARQL already offers

do not suffice for expressing these. Rather cumbersome construc-

tions are necessary to express a query as simple as I look for cars,
preferably including their price and/or brand. If the preferences are
not satisfiable in a given knowledge graph, we are still looking for

cars and expect that cars are returned if there are any. In contrast,

the works on value preferences above would just allow for express-

ing certain preferences over the attribute values, e. g., the lowest

price or a specific brand.

We contribute the newOPTIMAL operator for SPARQL, enabling
the expression of structural as well as some value preferences. In

Sect. 3, we motivate and define this operator, and give examples

indicating the possibilities we have regarding preference modeling.

Equipped with a Pareto-style semantics, we evaluate two different

encodings on DBpedia’s public SPARQL endpoint
1
. Sect. 5 provides

a discussion on preference modeling in the literature. We conclude

(Sect. 6) the paper by relating the new operator to the existing ones.

Furthermore, we elaborate on some limitations the operator still

has and what we plan to do to overcome these.

1
Our prototypical implementation is available at Github: https://github.com/ifis-tu-

bs/optisparql

https://doi.org/10.1145/3394231.3397911
https://doi.org/10.1145/3394231.3397911
https://doi.org/10.1145/3394231.3397911
https://github.com/ifis-tu-bs/optisparql
https://github.com/ifis-tu-bs/optisparql
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2 SPARQL AND PREFERENCES
In this section, we give a brief overview of the Resource Description
Framework (RDF) and its prime query language SPARQL. We then

analyze SPARQL’s built-in operators and features w. r. t. preference

modeling.

SPARQL is the W3C-recommended language for querying RDF

data [18, 23]. RDF builds on the notion of RDF triples [20], which are
triples (𝑠, 𝑝, 𝑜) consisting of a subject resource 𝑠 , which is connected
via property 𝑝 to object resource or literal 𝑜 . As the name suggests,

RDF triples describe resources and their properties, which are uni-

versally identified by IRIs (International Resource Identifiers). Let

us assume an infinite supply of IRIs I. Following the RDF standard,
subjects 𝑠 may solely stem from this universe of IRIs, i. e., 𝑠 ∈ I.
Properties 𝑝 are also universally identified by an IRI. The reason is

that we may want to append information about a certain property,

such as their domain or range. Objects 𝑜 are either resources or

concrete data values, called literals, from a universe L of literals.

Thus, an RDF triple follows the type I × I × (I ∪ L). Sets of
RDF triples form RDF graphs G. In this paper, blank nodes and the

entailment semantics induced by RDF or RDFS are irrelevant for

the contents of the paper.

As for RDF, subject-predicate-object triples are first-class citi-

zens of SPARQL, there called triple patterns. Besides resources and
literals, all the components of a triple pattern may be drawn from a

set of variablesV , that are bound to actual resources/literals during

query evaluation. Thus, triple patterns 𝑡 are elements of the set

(I ∪ V) × (I ∪V) × (I ∪ L ∪V). vars(𝑡) denotes the set of all
variables occurring in triple pattern 𝑡 . Sets of triple patterns once

more form graph structures called basic graph patterns (BGPs).
Let G be an RDF graph. During the evaluation of a triple pattern

𝑡 w. r. t. G, partial functions 𝜇 are returned, mapping the variables

in 𝑡 to resources and/or literals in G. Furthermore, 𝜇 assigns re-

source/literal components of 𝑡 to themselves, i. e., 𝜇 : (I ∪ L ∪
V) ↩→ (I ∪ L) with 𝜇 (𝑥) = 𝑥 for all 𝑥 ∈ I ∪ L. The set of all

variables 𝑣 ∈ V , for which 𝜇 is defined is denoted by dom(𝜇). 𝜇
is a match for triple pattern 𝑡 = (𝑠, 𝑝, 𝑜) in G iff vars(𝑡) = dom(𝜇)
and (𝜇 (𝑠), 𝜇 (𝑝), 𝜇 (𝑜)) ∈ G (𝜇 (𝑡) ∈ G for short). Consequently, 𝜇 is

a match for BGP G in G iff dom(𝜇) = vars(G)2 and 𝜇 (𝑡) ∈ G for all

triple patterns 𝑡 ∈ G. We denote the set of all matches for G in G
by JGKG.

Instead of a classical introduction to syntax and semantics of fur-

ther language constructs of SPARQL [17], we subsequently discuss

certain features of the language and discuss them w. r. t. preferences

they express. Given any two SPARQL queries Q1 and Q2, for which

we want to express that we prefer an answer regarding Q1 and Q2

but we would still be happy with an answer to just Q1. We elaborate

on some of SPARQL’s options for combining Q1 and Q2 w. r. t. the

degrees of preference they express. There are three basic operators

that allow for the combination of Q1 and Q2: conjunction (AND),
union (UNION), and optional patterns (OPTIONAL). Furthermore,

built-in filter conditions are included to filter query results for some

desired properties.

• Q1: Just asking for all the matches for Q1 is a safe way of

answering our preference query. However, Q2 is neglected

2vars (G) := ⋃
𝑡∈G vars (𝑡 )

and we will never get an answer to Q1 and Q2, even if there

are some in the RDF graph.

• Q1 AND Q2: This query forms the other extreme because

here answers toQ1 andQ2 are enforced. If this set of matches

is empty, we will not get the opportunity to observe possible

matches for Q1.

On a technical level, the query is compositionally evaluated.

Every match 𝜇 must be constructed from compatiblematches

𝜇1 ∈ JQ1KG and 𝜇2 ∈ JQ2KG. 𝜇1 and 𝜇2 are compatible iff they

agree on all shared variables, i. e., ∀𝑣 ∈ dom(𝜇1) ∩ dom(𝜇2) :
𝜇1 (𝑣) = 𝜇2 (𝑣).

• Q1 UNION Q2: Every match 𝜇 for Q1 or Q2 is returned but

they are not combined. Therefore, it is not possible to obtain

matches obeying the preference order, i. e., that Q1 must be

matched. The same holds for the query Q1UNION (Q1 AND
Q2). Although all matches we desire are included in the

result set, we have superfluous matches to Q1 that could be

extended by matches of Q2.

• Q1 OPTIONAL Q2: Such optional patterns are the SPARQL

means of handling incomplete information in RDF graphs.

Upon evaluation of Q1 OPTIONAL Q2, all the matches for

Q1ANDQ2 are returned, i. e., all preferredmatches. Addition-

ally, query evaluation returns all matches for Q1 that may

not be extended by matches for Q2. Optional patterns en-

force our preference only locally, i. e., per match. That means,

a match 𝜇1 ∈ JQ1KG is not a match to Q1 OPTIONAL Q2

if there is a compatible match 𝜇2 ∈ JQ2KG. However, the
existence of 𝜇2 and the fact that 𝜇1 is compatible with 𝜇2
does not influence the other matches for Q1. Hence, the set

of matches JQ1 OPTIONAL Q2KG likely contains matches

for Q1 and for Q1 AND Q2. Further note that optional pat-

terns constitute the single source of Pspace-completeness

of SPARQL’s evaluation problem [17, 19].

Other formulations of queries, e. g., using built-in filter conditions,

are possible but generally tend to be quite complex and unreadable

(cf. the encodings we use for implementing our preference operator

in Sect. 4). Furthermore, such constructions are rather unnatural. It

is unlikely that a user comes up with a query like this to fulfill her

information need based on structural preferences. Throughout the

next section, we aim for an operator in the style of AND, UNION,
and OPTIONAL, being simple binary operators between SPARQL

queries.

3 MODELING PREFERENCESWITH OPTIMAL
We used a rather simple form of preference between two SPARQL

queries so far. This section is devoted to further requirements for

a (structural) preference operator and their resolution in so-called

optimal patterns. We discuss abstract syntax, semantics, and some

examples illustrating the use of the new OPTIMAL operator.

3.1 Requirements
Before we start defining new operators for SPARQL, we elaborate

on the requirements we aim to satisfy by our proposal.

Types of Preferences. We distinguish two types of preferences,

value preferences and structural preferences. Value preferences apply
to attributes of data objects. Examples include I prefer red cars or



Preference-driven Control over Incompleteness of Knowledge GraphQuery Answers WebSci ’20, July 6–10, 2020, Southampton, United Kingdom

I prefer cars with a maximum velocity of 180km/h. Structural pref-
erences, on the other hand, apply to the matches found within an

RDF graph. The relevance of a match is assessed by the information

it includes. We may, for instance, ask for cars with color informa-
tion or I prefer cars with details on the manufacturer over those with
color/pricing information. In this paper, we primarily focus on the

structural preferences.

Dependencies between Preferences. If more than one preference

is involved, they may have different relations to each other. Two or

more preferences are independent if satisfying one of them does

not affect the assessment of the others. For example, I prefer red
cars manufactured in Germany. The preference for the color red
may be assessed independently of the country of origin Germany.
An expressed preference may also depend on another property of

the data object, e. g., For sports cars, I prefer the color red. The color
preference is only present for cars of a certain type. Other cars

may have arbitrary color. Another type of dependency follows the

structural category. These dependencies appear in statements like

I prefer cars with information about the manufacturer and its head
office. Here, the inclusion of the head office depends on a successful

match of the manufacturer.

Ranking and Priority. Besides the just discussed dependencies

between preferences, we may want to express preferences with

different levels of importance. Queries incorporating statements

like The color is more relevant than the brand suggest a prioritization
of one preference over another. In this case, both preferences should

be satisfied but, if this is impossible, the more important preference

should. If preferences are equally important, any combination of

preferences may be desired for the answer, as long as there is no

other dominant answer.

Expression Complexity. As mentioned at the end of the last sec-

tion, it is possible to get more fine-grained preferences into standard

SPARQL queries. However, such queries come at the price of being

unreadable because they do not follow the simple binary shape of a

conjunction (Q1ANDQ2) or an optional pattern (Q1OPTIONALQ2).

Single graph patterns would have to be included multiple times

within a single implementation of a preference query. The complex-

ity in modeling preference queries would hinder the application

of such a construct in practice. Instead, we pursue a simple and

intuitive modeling of preferences by a single operator, i. e., queries

of the form Q1 OPTIMAL Q2.

We subsequently introduce abstract syntax, intuitive meaning,

and formal semantics of preference queries by the OPTIMAL oper-

ator, (partially) obeying the just sketched requirements.

3.2 Syntax
Let Q1 and Q2 be SPARQL queries, i. e., they do not contain the new

OPTIMAL operator. LikeOPTIONAL,OPTIMAL is a left-associative
operator combining Q1 and Q2 to Q1 OPTIMAL Q2 in its simplest

form. The answer to Q1 OPTIMAL Q2 must fulfill Q1 but also Q2

if possible. This way, we may formulate necessary conditions for

a data object (e. g., we look for cars) as well as preferences for the

returned structures (e. g., the color of the returned cars should be

known). Candidate matches for Q1 or Q2 are less relevant than

those fulfilling Q1 and Q2. Only if there are no matches for Q1 and

Q2 (i. e., Q1ANDQ2), we return the matches for Q1 only. In contrast

to the related optional pattern Q1OPTIONALQ2, Q1OPTIMALQ2

either returns matches to Q1ANDQ2 or to Q1. Thus, non-emptiness

of the result set of Q1ANDQ2 influences the way the other matches

for the query are found. The just mentioned query about cars and

their color is exemplified by the following query:

?𝑐𝑎𝑟 is_a CarOPTIMAL (?𝑐𝑎𝑟 color ?𝑐𝑜𝑙𝑜𝑟 ) (1)

Loosely following the SPARQL ASCII syntax within our example

queries, ?𝑐𝑎𝑟 and ?𝑐𝑜𝑙𝑜𝑟 are variables (leading ?), Car is an RDF

resource identifying a type (typewriter font), and is_a and color are
properties (italics shape). For literals, we will also use the typewriter

font but we put them in single ticks, e. g.,
′42.0′ for the literal real

value 42.0. We neglect the unfolded and longish syntax of IRIs and

literals for the sake of space and readability.

We allow for a clean syntax for expressing prioritized preferences

(e. g., a car’s color is more important than its brand).

?𝑐𝑎𝑟 is_a Car OPTIMAL (?𝑐𝑎𝑟 color ?𝑐𝑜𝑙𝑜𝑟 )
OPTIMAL (?𝑐𝑎𝑟 brand ?𝑏𝑟𝑎𝑛𝑑) (2)

In (2), the left-associativity of the OPTIMAL operator applies. First,

we aim at fulfilling the preference for cars with color information.

Only then the cars’ brands are evaluated if possible. The first occur-

rence of the OPTIMAL operator defines the structure with higher

priority than later occurrences of the same operator.

In Sect. 3.1, we also argued for preferences of equal importance.

To satisfy this requirement by simultaneous fulfillment of the others

(especially expression complexity), we have to break with the stan-

dard syntactic structure of SPARQL. We have to be able to assign

several preferences (Q1,Q2,. . . ,Q𝑛) to a single OPTIMAL operator.

Hence, we allow for queries of the shape

Q OPTIMAL (Q1,Q2, . . . ,Q𝑛).
This allows us to put the preferences for color and brand on equal

footing, as in

?𝑐𝑎𝑟 is_a Car OPTIMAL
(
?𝑐𝑎𝑟 color ?𝑐𝑜𝑙𝑜𝑟,
?𝑐𝑎𝑟 brand ?𝑏𝑟𝑎𝑛𝑑

)
(3)

In query (3), the optimal matches are those cars having information

on both, color and brand. If there is no such car in the database, we

get all cars with color information as well as all cars with brand

information. Only if no such cars exist, we simply get all resources of

type Car. Especially the example of (3) makes apparent the need for

a Pareto-style semantics of the operator. We will discuss some more

involved examples of preference modeling in Sect. 3.4, just after we

have formally fixed the semantics of the OPTIMAL operator.

3.3 Semantics
To obtain only relevant answers to optimal patterns, we follow a

Pareto semantics delivering only the best matches for our queries.

Such a semantics entails a skyline of matches. Every candidate

match must be checked for Pareto dominance. Finally, only maximal

(i. e., non-dominated) matches are returned.

We assume the standard semantics for arbitrary SPARQL queries

Q0, Q1, Q2, . . . , as sketched in Sect. 2 and given in detail, e. g., by

Pérez et al. [17]. This allows us to solely focus on the evaluation

semantics of the optimal pattern Q = Q1 OPTIMAL Q2. We call

the left-hand side of an optimal pattern its necessary part, i. e., the
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necessary part of Q is Q1. The right-hand side of optimal patterns

contains one or more subqueries, forming the preferred part of
them. Since preferred parts of optimal patterns may contain more

than one subquery, we call the number of respective subqueries

preference degree.
With the just fixed set of notions, we formalize the evaluation

semantics of general optimal patterns

Q = Q0 OPTIMAL (Q1,Q2, . . . ,Q𝑛)

of preference degree𝑛w. r. t. some RDF graphG. Recall that matches

𝜇 to Q necessarily cover Q0, i. e., there is a match 𝜇0 ∈ JQ0KG with

𝜇0 ⊆ 𝜇. Furthermore, any subset of the preferred subqueries Q1, Q2,

. . . , Q𝑛 may also be covered. A partial function 𝜇 : (I ∪L ∪V) ↩→
(I ∪ L) is called a candidate match for the optimal pattern Q iff

there are 𝜇𝑖 ∈ JQ𝑖KG ∪ {∅} (𝑖 = 0, 1, . . . , 𝑛), such that

(1) 𝜇0 ≠ ∅ (as Q0 is necessary to be matched),

(2) for all 𝑖, 𝑗 ∈ {0, 1, . . . , 𝑛}, 𝜇𝑖 and 𝜇 𝑗 are compatible, and

(3) 𝜇 = 𝜇0 ∪ 𝜇1 ∪ . . . ∪ 𝜇𝑛 .

We stress here that any submatch 𝜇1, . . . , 𝜇𝑛 may be empty. A pre-

ferred subquery Q𝑖 (𝑖 = 1, . . . , 𝑛) is covered by 𝜇 iff there is a

match 𝜇𝑖 ∈ JQ𝑖KG with 𝜇𝑖 ≠ ∅, contributing to 𝜇, i. e., 𝜇𝑖 ⊆ 𝜇.

The set of all subqueries in Q that are covered by 𝜇 is denoted by

coverQ (𝜇). In the worst case, no preference is covered, i. e., 𝜇 = 𝜇0
and coverQ (𝜇) = {Q0}.

Among the candidate matches, we are only interested in the

best matches. Therefore, a dominance relation between candidate

matches is crucial. With respect to the given optimal pattern Q ,

a candidate match 𝜇 is dominated by candidate match 𝜇 ′, denoted
by 𝜇 ≺Q 𝜇 ′, iff coverQ (𝜇) ⊊ coverQ (𝜇 ′). This means, 𝜇 ′ covers
all the preferred subqueries 𝜇 does but includes at least one more

subquery.

Finally, we call 𝜇 a match for the optimal pattern Q iff 𝜇 is a

candidate match for Q that is not dominated by any other candi-

date match. In other words, matches must be maximal w. r. t. the

dominance relation ≺Q .

3.4 Further Examples
In this part of the section, we give two more examples to illus-

trate the possibilities of preference modeling with SPARQL and the

newly introduced optimal patterns. First, we would like to know

about the places visited by
′JohnDoe′, preferably in

′Germany′ but
alternatively in

′Europe′. Since Germany is a country and Europe a

continent, each type of information require a different query pattern.

Once more, we use prioritized preference modeling to implement

this query:

?𝑝𝑒𝑟𝑠𝑜𝑛 name ′JohnDoe′ AND ?𝑝𝑒𝑟𝑠𝑜𝑛 visited ?𝑝𝑙𝑎𝑐𝑒

OPTIMAL(?𝑝𝑙𝑎𝑐𝑒 country ?𝑟𝑒𝑔𝑖𝑜𝑛 FILTER ?𝑟𝑒𝑔𝑖𝑜𝑛 = ′Germany′)
OPTIMAL(?𝑝𝑙𝑎𝑐𝑒 continent ?𝑟𝑒𝑔𝑖𝑜𝑛 FILTER ?𝑟𝑒𝑔𝑖𝑜𝑛 = ′Europe′)
FILTER (bound (?𝑟𝑒𝑔𝑖𝑜𝑛))

(4)

The construction of (4) uses built-in filter conditions. Especially

the last one (bound (?𝑟𝑒𝑔𝑖𝑜𝑛)) guarantees that no result is returned

if
′JohnDoe′ never went to Germany nor Europe. Furthermore,

both preferred subqueries are in conflict with each other. If a place

in Germany has been found, variable ?𝑟𝑒𝑔𝑖𝑜𝑛 is bound to the lit-

eral
′Germany′ and cannot be changed to

′Europe′ as required by

the second preference. This example shows how well prioritized

preferences may be implemented using optimal patterns.

During the last example we already used built-in filter conditions

of standard SPARQL, whichmake the implementation of some value

preferences available. Suppose, we would like to find a new car,

preferably below a price of 20,000 Euro. If this is impossible, we

prefer cars with a price between 20,000 and 25,000 Euro over cars

with any other price or those cars with no pricing information.

Especially the last part of the query requires an optional pattern:

?𝑐𝑎𝑟 is_a Car OPTIMAL (?𝑐𝑎𝑟 price ?𝑝𝑟𝑖𝑐𝑒 FILTER
(?𝑝𝑟𝑖𝑐𝑒 <= 20000))

OPTIMAL (?𝑐𝑎𝑟 price ?𝑝𝑟𝑖𝑐𝑒 FILTER
(?𝑝𝑟𝑖𝑐𝑒 <= 25000))

OPTIONAL (?𝑐𝑎𝑟 price ?𝑝𝑟𝑖𝑐𝑒)

(5)

Note how the second preference for cars between 20,000 and 25,000

Euro is modeled by incorporating the first preference. If we do not

find a car cheaper than 20,000 Euro with the first preference, we

will not find one when looking for cars cheaper than 25,000 Euro.

Query (5) also shows how naturalOPTIMAL patterns combine with

standard SPARQL syntax.

The example queries (1)–(5) provide glimpses on the possibilities

with this new operator. Next, we observe some characteristics of

these queries during different query evaluation processes.

3.5 Query Rewriting
The new operator is likely to profit from specialized query eval-

uation techniques. These require more time for further research

and implementation. For demonstration and testing purposes, we

propose query rewriting in order to encode OPTIMAL patterns

with existing query patterns. That way, we can evaluate OPTIMAL

patterns on standard query processors. The goal is to make the new

operator available and usable on any system supporting SPARQL

1.0 without the need of adjusting existing query evaluation.

We have found two different methods of encoding optimal pat-

terns using SPARQL’s standard operators. Both methods work by

first constructing a superset of desired results and then filtering out

all candidates that are dominated by other matches (cf. Sect. 3.3).

The superset can be constructed either by combining all possible

preference combinations using UNION operators or by selecting

all locally dominant mappings using optional patterns. In order

to check which preferences are satisfied in each result, we bind

a fresh variable in the respective subquery. Thus, the variable re-

mains unbound for results that do not match the preference. We

have previously defined a Pareto semantics by pair-wise checking

for domination between all answer candidates. Instead of directly

comparing matches, we instead group all matches by their fulfilled

preferences (i. e., by which 𝑖 = 1, ..., 𝑛 a non-empty mapping is cho-

sen for the candidate). In the next step, we determine which groups

of preference structures yield at least one result. Therefore, we

use EXISTS filter conditions detecting matches for every possible

preference and store the result in a fresh variable. Finally, we filter

out any results that are within a dominated group.

Similar approaches towards encoding preferences with optional

patterns and filter conditions have already been discussed for other

SPARQL extensions like PrefSparql [8] or SPREFQL [15]. To the
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Figure 1: Candidate groups and dominance relations

best of our knowledge, an encoding using UNION operators has

not been suggested so far.

For this new encoding process we use query (3) as an example.

Given is a query Q with a necessary condition Q0 (i. e., ?car needs

to be of type Car) and two equally important preferences𝐴 (i. e., the

car should have information on its color) and 𝐵 (i. e., the car should

have information on its brand). All mappings out of the expected

result set JQKG are expected to fulfill Q0. Furthermore, if at least

one mapping exists that fulfills both, 𝐴 and 𝐵, then all mappings

are expected to fulfill both preferences. If this is not the case but

at least one mapping fulfills either 𝐴 or 𝐵 then all mappings need

to fulfill 𝐴 or 𝐵. Thus, we define four groups 𝐺1 to 𝐺4. 𝐺1 fulfills

both preferences,𝐺2 only fulfills 𝐴,𝐺3 only fulfills 𝐵 and𝐺4 fulfills

neither. Each answer candidate is sorted into exactly one group.

We construct a basic graph pattern for each of the four groups and

assign an identifier to the mapping (e. g., via BIND(?group, 1)
for 𝐺1). Then we join the results using a UNION operation. The

resulting query will result in a superset of our desired resolution

set. Dominated results still need to be filtered out.

Fig. 1 shows all four groupswith their respective fulfilled (in bold)

and unfulfilled (stroked-through) preferences. The arrows between

the groups denote dominance relations between all mappings of

each group towards all mappings of the respective other group.

The outgoing end of the arrow means a group dominates the other,

whereas the incoming end means a group is being dominated.

In the next step, we use each of the individual basic graph pat-

terns and execute them as part of an EXISTS-clause. We store each

result in a new variable. These variables tell us which preference

combinations result in at least one mapping.

Last, we use the grouped dominance relations (as shown in Fig. 1)

in order to remove all mappings of dominated groups. The resulting

query will be answered as previously defined. This technique can

also be used for preferences of different importance. For query (2),

all of the steps stay the same except for the constructed dominance

relation. In order to accommodate for the more important ?color
preference, an additional group relation needs to be added, indicat-

ing dominance of 𝐺2 over 𝐺3.

4 EXPERIMENTAL EVALUATION
In this section we evaluate the usability of resulting query results

on a small set of typical query patterns. We use encodings as de-

scribed in Sect. 3.5 in order to simulate our new operator using

existing methods. On Github
3
, we provide automated transforma-

tion processes that take pre-parsed optimal queries and turn them

into queries using SPARQL’s standard operators. In order to verify

whether our method yields usable results, we simulate this rewrit-

ing process and test the resulting queries on DBpedia’s vast set of

data.

Our two main criteria are result set size (i. e., the number of

distinct query answers) and query performance (approximated by

server response times). In order for the new operator to be useful,

result set sizes should be much smaller than those of OPTIONAL
in at least some cases. Meanwhile, performance should stay within

acceptable boundaries for a user to take advantage of it.

4.1 Setup and Configuration
It is our goal to roughly outline query performance and result set

sizes in a real-world querying scenario. We compare them to the

results of SPARQL’s existing method for handling incompleteness

(i. e., optional patterns). To do so, we have chosen some queries

which are well-formed and use the OPTIONAL operator. In these

queries we replace the OPTIONAL operators by OPTIMAL. We

provide a tool generating the rewritten queries via both methods

(UNION and OPTIONAL). In order to avoid programming a full

query parser, our tool instead generates queries from a simple JSON

object, that we construct manually.

Using the automatically generated SPARQL 1.0 encodings, we

can test the queries on a Virtuoso instance. In order to better sim-

ulate a real-world scenario and to make our procedures and re-

sults replicable, we choose to use DBPedia’s public SPARQL end-

point
4
[3, 14]. On the other hand, our performance results are less

precise by doing so. The comparatively small HTTP overhead does

not change the general notion of our results, though. For better

comparability we use COUNT(*) and DISTINCT operators to flatten

result sizes and to avoid unrepresentative size mismatches due to

recurring responses.

All our selected configuration options for DBPedia’s endpoint

are listed in Tab. 1. Some of these deviate from the default values in

order to better fit our test scenario. First, we disable the execution

timeout by setting it to zero. This is important to execute more

complex queries. Also, this setting prevents the endpoint from

returning partial results when the timeout is reached, which would

otherwise lead to unrepresentative result set sizes. Second, we

disable strict checking of void variables. Some of our rewritten

queries would otherwise be rejected. Last, we set the results format

to JSON for ease of processing.

3
https://github.com/ifis-tu-bs/optisparql

4
A web interface can be used at http://dbpedia.org/sparql

https://github.com/ifis-tu-bs/optisparql
http://dbpedia.org/sparql
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Table 1: DBPedia Endpoint Settings

Endpoint Setting Selected value

Default Dataset Name http://dbpedia.org

Results Format JSON

Execution timeout 0

Strict checking of void variables Disabled

Log debug info at the end of the screen Disabled

Generate SPARQL compilation report Disabled

Table 2: Response Sizes of Query Answers

# Preferences Original OPTIMAL Stripped Results

Stepwise evaluation

1 1 40 40 0

2a 3 1,138,470 1,138,448 22

3a 3 7,673 6,162 1,511

4 1 2,955 355 2,600

5 1 5,476 355 5,121

6 1 65,001,490 64,941,633 59,857

7a 3 1,344,546 285 1,344,261

8a 3 21,433 1,227 20,206

Simultaneous evaluation

2b 3 1,138,470 1,138,448 22

3b 3 7,673 6,162 1,511

7b 3 1,344,546 3,468 1,341,078

8b 3 21,433 1,227 20,206

Finally, we send our unmodified original queries to the SPARQL

endpoint, as well as our generated OPTIMAL representations to the

endpoint. We record the returned result set size and the browser

waiting time. In order to calculate waiting time, we subtract all

HTTP related latencies including the time to wait for a connection

to be started, to resolve the DNS, to create an HTTP connection, to

send the request, and to read the response from memory.

4.2 Result Set Sizes
Tab. 2 shows the result set sizes we have retrieved by executing both

the original optional patterns and our optimal encodings. It also

shows the difference in result size between both query types. We

divided the table in two parts. The first one shows optimal patterns

with prioritized preferences according to the order given by the

original query. The second section shows the same queries modeled

as a skyline of all preferences. Queries with only one preference

are the same in both cases. Thus, we only show those queries in

the second section that use more than one preference.

Every query using an encoding of our optimal patterns has the

same or fewer results than the respective original query.We observe,

the number of stripped results varies vastly between 0 and 99.98%

of the total result set. Note that this value can never reach 100%

becauseOPTIMAL only strips results that are dominated by at least

one other result. Running the two queries in question (numbered 1

Table 3: Response Times [in milliseconds]

# Preferences Original OPTIMAL

(Union)

OPTIMAL

(Optional)

Stepwise evaluation

1 1 30 186 134

2a 3 1,980 3,470 3,820

3a 3 2,640 3,500 3,040

4 1 29 101 84

5 1 85 48 56

6 1 30,170 34,710 81,000

7a 3 15,390 1,530 8,040

8a 3 441 994 945

Simultaneous evaluation

2b 3 1,980 9,180 8,591

3b 3 2,640 3,450 2,942

7b 3 15,390 1,310 1,223

8b 3 441 589 1,652

and 7) again, this time using a conjunction instead of an optional

pattern, leads to the same result set size of 40 for query 1 but an

empty result set for query 7. This additional test proves all candi-

date matches for query 1 to be complete but all candidate matches

for query 7 to be incomplete. Querying over a complete dataset has

the effect that no answers at all are stripped from the result set.

This is expected because every complete answer satisfies all prefer-

ences. Thus, all answers are equally relevant and returned as a valid

result. On the other hand, querying over an incomplete dataset

leads to a much higher number of stripped candidate matches. We

also observe that the result set for query 7 is much larger when

using a skyline over all preferences (denoted 7b), as opposed to

applying them individually (denoted 7a). This happens because re-

sults that are rated badly in more important preferences are filtered

out despite being well ranked in less important preferences. When

applying a complete skyline instead, these results still appear in

the result set as long as they are not dominated w. r. t. the total set

of preferences. Because of that, a complete skyline always returns

at least the same number of results as any ranked preference query

over the same query. We expect this difference in results to increase

with heterogeneity of incomplete datasets. On the other hand, all

other queries have the same number of results for both individual

and concurrent preference evaluation. This suggests that partially

complete datasets or datasets with homogeneous incompleteness

are also very common. In these cases, optimal patterns return the

same result sets for both methods of evaluation.

4.3 Performance Results
Tab. 3 illustrates the same queries as before. In this table we show

the number of inquired preferences and the response times in mil-

liseconds by both the original optional patterns as well as the two

encodings using eitherUNION orOPTIONAL. We have divided this

table into two parts as well; again based on the modeled evaluation

method.

The first thing to point out is the lack of any queries with more

than three preferences. Our encodings for optimal patterns include
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a list of all possible preference combinations in order to test for

dominance between results. Consequently, query sizes increase ex-

ponentially with the number of preferences. The DBPedia SPARQL

endpoint uses GET parameters to enquire user queries. For these

reasons, every tested optimal pattern with at least four preferences

either fails with HTTP error code 414 URI Too Long or by running

into an HTTP timeout because of the quite complex query evalua-

tion. Queries with more preferences need dedicated testing using

a Virtuoso instance on a controlled machine. Even for just four

preferences we expect these queries to take at least several seconds

or minutes under usual conditions based on size and structure of

the dataset.

In most cases both types of optimal patterns take significantly

more time to process than the original patterns. This is expected

because of the additional filtering steps. It is, however, surprising

that in 3 out of 12 tests (in particular queries 6, 7a and 7b) evaluating

optimal patterns is actually faster. In all three cases the majority

of results are stripped from the result set. We assume that this

reduction of results leads to a faster computation of a distinct result

set during the projection step. After all, applying a set of filter

conditions can be done in linear time whereas pair-wise comparison

for distinctiveness can only be done in quadratic time. More tests

are needed in order to verify this conjecture.

Both encodings deliver similar performance results. The encod-

ing using optional patterns is slightly faster in most instances. This

may be because of optimized query evaluation for optional patterns

that filter out some of the dominated answers more efficiently. Due

to the nature of our testing methods, this may also be caused by

random interference from other influence factors. The general no-

tion, however, consists of relatively equal response times via both

encodings. Some queries pose an exception to this general obser-

vation. In particular, queries 6, 7a and 8b lead to better response

times of the UNION-based encoding. Exchanging the evaluation

method for queries 7 and 8 leads to similar response times between

the two encodings, indicating an impact of the preference order on

response times of query evaluation. Thus, we consider the UNION-
based encoding to be more scalable due to its lower fluctuation in

performance. This is no surprise, given the evaluation complexity

of union queries to be np-complete while the same problem already

is Pspace-complete for queries with optional patterns [19].

5 RELATEDWORK
Preferences are well-studied in the realm of relational databases [5–

7, 12]. Some developments have even been made in the Semantic

Web [8, 16, 21, 22]. The just mentioned works focus on a preference

model based on data values, i. e., value preferences (cf. Sect. 3.1).

In contrast, we let the user define her preferences regarding the

information included in query answers.

Modeling value preferences with SPARQL has been the goal of

multiple extensions to the language. Pivert et al. [16] offer a good

overview on different techniques that are already in use.

The survey authors argue that Top-k Queries can be expressed

even without any extensions but using standard operations. A sim-

ple example is ORDER BY DESC(?score) LIMIT 10, in which query
results will be sorted by a specified ranking condition and then

truncated to only include the best k answer candidates. A prefer-

ence for the 100 cheapest cars can be modeled similarly: ORDER
BY ASC(?price) LIMIT 100. Pivert et al. note the inefficiency of

completely answering a query and filtering afterwards. Thus, they

point out the importance of optimizing the information retrieval

process for this common kind of query, being an observation we

share with them.

The extension f-SPARQL supplies fuzzy logic operators to built-

in filter conditions of SPARQL. These operators can be used to

rate and select mappings based on relative data values. Keywords

and operators to express the desired value range are used. A user

saying I prefer cars that are comparatively cheap can express this

preference in f-SPARQL by using a keyword inside a filter condition

like FILTER (?price = low). Likewise, a user preferring a car that
costs around $30,000 can express this wish using a fuzzy operator like
FILTER (?price AROUND 30000). Based on the chosen keyword,

f-SPARQL will then define a lower and upper threshold for values

to fit the description. The value of the selected thresholds depends

on scale and variability of stored data in the database graph. Values

will then be ranked according to a trapezoid function over these

thresholds. For example, when looking for cheap cars a value will

be rated with a zero if it exceeds the upper threshold and a one

if it falls below the lower threshold. Any value in between will

be ranked between zero and one linearly according to its position

within the two thresholds. By default all values ranked greater

than zero will be returned. It is also possible to specify a parameter

k to retrieve only the k highest ranked values. When specifying

multiple preferences, the criterions can be ranked by supplying an

additional ranking parameter. FILTER (?price = low) with 0.3
will reduce the impact of the price preference to 30%.

A different extension with a similar goal is called PrefSPARQL.
This extension takes a slightly different approach in that it does

not assign numerical ratings to query results. Instead, PrefSPARQL

generates a Pareto skyline of results based on the individual prefer-

ences. Based on previous work of Siberski et al. [21], the extension

adds a new PREFERRING clause to the language. A user preferring

a car that costs less than $30,000 if available can express this state-

ment using the new clause that acts similarly to a FILTER method:

PREFERRING ?price < 30000. Just like f-SPARQL, it also supports
fuzzy operators like AROUND or HIGHEST. It includes a PRIOR

TO operation that allows ranking between multiple preferences.

When used, a prioritized preference will be evaluated first. A less

important preference will then apply its filter to the result set of the

prioritized preferences. PrefSPARQL queries can be rewritten using

OPTIONAL and FILTER NOT EXISTS operations to be answered

by any SPARQL 1.0-compatible DBMS.

In addition to the aforementioned techniques listed in the survey,

we mention SPREFQL as an important extension. Troumpoukis et

al. [22] use the groundwork provided by Chomicki [7] to bring his

relational algebra to the Semantic Web. Instead of rating or filtering

results based on their respective data values, this framework makes

use of pairwise comparison to generate a skyline. For this reason

SPREFQL adds a new PREFER clause to SPARQL that enables a

user to specify when to prefer a result set over another one. A

query selecting price and color from cars could be extended so

that lower prices and a blue color are preferred. The resulting

clause would look like this: PREFER ?price1 ?color1 TO ?price2
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?color2 IF (?price1 < ?price2) AND (?color1 = "blue"
&& ?color2 != "blue"). The part after PREFER describes the

first result’s values. These are compared to the second result which,

in turn, is defined after the TO operation. The specified variable

assignment must match the one specified in the SELECT operation.

Everything after the IF operation defines preferences. ?price1 <
?price2 means that a result with a lower price is to be preferred

over one with a higher price. Multiple preferences can be combined

using the new AND operation to create a Pareto skyline. It is also

possible to specify a ranking between preferences using the OVER

operation. Just like PrefSPARQL queries, queries using SPREFQL

can be rewritten to be answered by a SPARQL 1.0 compatible DBMS.

Keles et al. [10] have recently proposed a method to gener-

ate Pareto skylines on the client. The so-called SkyTPF extends

SPARQL by a new SKYLINE OF clause that enables users to prefer

either as small values as possible using MIN or values as big as

possible using MAX. Stating a preference towards cheap cars can be

accomplished by supplementing a SPARQL query like this: SKYLINE
OF ?price MIN. It is possible to specify multiple preferences by

separating them with a comma; SkyTPF will then return a Pareto

skyline. This paper is worth mentioning despite its small feature

set because it computes preference results in a new and interesting

way. Instead of relying on query rewriting, SkyTPF provides an

API on the client to send multiple queries to a backend that sup-

ports Bindings-Restricted Triple Pattern Fragments as described by

Hartig et al. [9]. The query results are then processed on the client

using Divide & Conquer to generate a skyline. Using this method

Keles et al. achieve a more efficient way to process large skyline

queries than previous research.

6 CONCLUSION
Wehave presented a new operator for SPARQL that allows for a fine-

grained handling of the inherent incompleteness of RDF knowledge

bases. With the example of SPARQL’s standard operators, we have

developed requirements for a structural preference operator. The

new OPTIMAL operator positions itself just between the rather

restrictive query conjunction and the loose optional patterns of

SPARQL. In fact, one can prove that for any two queries Q1 and Q2,

the set of matches of the optimal pattern Q1 OPTIMAL Q2 is just

between those evaluated for Q1 AND Q2 and Q1 OPTIONAL Q2:

JQ1 AND Q2KG ⊆ JQ1 OPTIMAL Q2KG ⊆ JQ1 OPTIONAL Q2KG.

We thereby forged a new construct that is worth studying deeper.

For instance, we did not yet analyze the operator’s expressive power

and/or complexity. Our experiments have shown that the encodings

we used for evaluating optimal patterns on a standard SPARQL

query engine have deficiencies regarding evaluation runtime. One

reason is the increased size and complexity of the encoded queries.

Better encodings or the incorporation of specialized evaluation

procedures [4, 10, 13] may enhance the overall evaluation time.

The new operator still has some limitations and important se-

mantic differences compared to most operators of standard SPARQL.

For a potentially incomplete RDF graph, SPARQL usually returns

only those results that are guaranteed to be correct answers, i. e.,

certain answers. Additional RDF triples that are added later almost

always yield additional or more complete matches to a query. How-

ever, added triples will not cause other mappings to be removed

from a result set. We defined the OPTIMAL operator to work very

differently. Results to OPTIMAL queries deliver the best matches

possible for the data at hand. No match is guaranteed to stay a

match universally. Thus, added triples may remove formerly dom-

inating matches from result sets. The just described situation is

similar to non-monotonicity of some optional patterns [2].

Optimal patterns provide an easy yet precise method for mod-

eling preferences. We have shown how structural and even some

value preferences can be modeled. Preferences can have different

prioritization or can be used collectively to form a skyline. We

have not yet discussed dependencies between multiple preferences,

though. Dependencies between distinct preferences are necessary

for advanced preference modeling. They allow a user to attach con-

ditions to preferences. They can also ensure structural integrity of

results that answer contiguous preferences like I prefer cars with in-
formation about the manufacturer and its head office — the inclusion

of the head office depends on the inclusion of the manufacturer. In

the current state, optimal patterns allow for easier modeling of pref-

erences in general. Modeling dependent preferences still requires

a significant amount of modeling using complex filter conditions.

In order to enable a more usable method of this feature, we are

currently considering an additional set of operators for modeling de-

pendencies between multiple preferences. These operators should

allow for complex 𝑛 :𝑚 relations between preferences and enable

both, positive as well as negative dependencies. This is subject for

future work.
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