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Abstract. Recently an approach to model human reasoning as stud-
ied in cognitive science by logic programming, has been introduced by
Stenning and van Lambalgen and exemplified with the suppression task.
We investigate this approach from the view of a framework where differ-
ent logic programming semantics correspond to different translations of
logic programs into formulas of classical two-valued logic extended by two
second-order operators, circumscription and literal projection. Based on
combining and extending previously known such renderings of logic pro-
gramming semantics, we take semantics into account that have not yet
been considered in the context of human reasoning, such as stable mod-
els and partial stable models. To model human reasoning, it is essential
that only some predicates can be subjected to closed world reasoning,
while others are handled by open world reasoning. In our framework,
variants of familiar logic programing semantics that are extended with
this feature are derived from a generic circumscription based representa-
tion. Further, we develop a two-valued representation of a three-valued
logic that renders semantics considered for human reasoning based on
the Fitting operator.
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1 Introduction

When humans are presented with reasoning tasks typical “fallacies” can be ob-
served, conclusions that are not sound in a naive classical logic understanding.
Such patterns of human reasoning have been researched quite intensely in cog-
nitive science, with [Byr89] being a landmark work. Recently, an approach to
model such patterns of human reasoning by means of logic programming has
been presented [SvL05,SvL08]. It involves a two-step process, termed reasoning
to and reasoning from and interpretation. The first step consists of the construc-
tion of a logic program from e.g. natural language statements and the choice of
a logic programming semantics. The second step is then the actual reasoning,
straightforwardly performed with respect to the program and chosen semantics.

The logic programming semantics originally suggested for this purpose in
[SvL05] had in the meantime been subject to various corrections and improve-
ments [HR09a,HR09b,HPW11]. Here, we also focus on the investigation of logic
programming semantics, assuming that the programs are constructed just as de-
scribed in [SvL08]. So we have given logic programs on the one hand and given
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tables of empirical results about human reasoning on the other hand. The ob-
jective is to devise logic programming semantics under which the logic programs
yield results that match the empirical results.

With respect to this problem, so far only fixed point characterizations of the
semantics of logic programs have been considered [SvL08,HR09a,HR09b,HPW11].
In this paper, we pursue a different approach: Logic programs are represented
as classical formulas, where their semantics as a logic program is expressed by
wrapping them into formulas of classical logic extended by operators for circum-
scription and projection. Projection is a generalization of second-order quan-
tification [Wer08]. Like circumscription, it can be processed computationally by
variants of second-order quantifier elimination. In short, we map human rea-
soning via logic programming to a classical logic framework that could be im-
plemented by a general classical reasoner with the ability to perform variants of
second-order quantifier elimination. With this approach, we specify and compare
adaptions of different well-known logic programming semantics to the modeling
of human reasoning tasks. We show this here for human reasoning tasks that
involve forward reasoning, where conditionals and truth values of antecedents
are presented to the subjects, and it is investigated which values they do ascribe
to consequents. Modeling human reasoning tasks that involve backward reason-
ing has also been considered in [SvL05,SvL08] and elaborated in an abductive
framework [HPW11]. We do not consider backward reasoning in this paper, but
a suitable variant of abduction that can be expressed in terms of circumscription
and projection has been worked out and will be described in a further paper.

The paper is structured as follows: In Section 2 we introduce notation and the
semantic framework, which is applied in Section 3 to model some familiar two-
and three-valued semantics of logic programming, generalized by allowing to
specify predicates to be handled by open world reasoning, which is necessary to
model human reasoning. In Section 4 we outline the approach of [SvL05,SvL08] to
model human reasoning by means of logic programs. We discuss the adequacy of
the considered semantics to model empirical results obtained in cognitive science,
exemplified with forward reasoning tasks that involve suppression. In the next
two sections we discuss particular technical issues: Alternate ways of handling
the predicates subjected to open world reasoning in Section 5, and a mapping of
a three-valued logic that renders the semantics of the Fitting operator to classical
two-valued logic in Section 6. We conclude in Section 7 with summarizing the
contributions of this work and discussing implied issues for future research.

For the theorems in the paper, proof are given in the appendix. Propositions
serve as lemmas or for illustration and are stated without proofs, since they are
not hard to prove or can essentially be found in related papers [Wer08,Wer10c,Wer10a].

2 Notation and Semantic Framework

In this paper, we use classical propositional logic as basis. We extend it with
operators for projection and circumscription, and develop logic programming
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semantics with this extended classical logic. This framework could be straight-
forwardly generalized to first-order logic instead of propositional logic as basis,
as actually shown for projection in [Wer08], for circumscription in [Wer10c] and
for logic programming semantics in [Wer10a]. However, there are some particular
issues related to the use of first-order quantification in the modeling of human
reasoning, which will be discussed in Section 5.1.

2.1 Type Indicating Symbols

We use the following symbols, also with sub- and superscripts, to stand for items
of types as indicated in the following table (definitions of these types are given
later on), considered implicitly as universally quantified in definition, theorem
and proposition statements:

F,G,H: formula;
A: atom;
L: literal;
S: scope (that is, set of literals);

I, J : interpretation.

2.2 Formulas

We consider formulas of classical propositional logic, extended by operators for
circumscription and projection. They are constructed from propositional atoms
(or, synonymously, 0-ary predicates), truth value constants ⊤,⊥, the unary con-
nective ¬, binary connectives ∧,∨,→,←,↔, as usual, and the two operators circ

and project to express circumscription and projection. As meta-level notation we
use n-ary versions of ∧ and ∨.

2.3 Predicate Groups

Semantics for knowledge representation often involve what might be described
as handling different occurrences of a predicate differently – for example de-
pending on whether it is subject to negation as failure. If such semantics are
to be modeled with classical logic, then these occurrences can be identified by
using distinguished predicates, which are equated with the original ones when
required. Predicate groups are a means to express this: We assume a fixed set
of atoms ALL that can be partitioned into a finite number of disjoint sets of
equal cardinality which we call predicate groups. The idea is that each “original”
predicate (or, for propositional logic, synonymously, atom) is replicated once in
each group. The respective copy of p in group PGi is then written pi, where i

is a natural number, denoting the index starting from 0 of the predicate group
in some assumed fixed ordering. We use this index number also to denote the
predicate group itself. Formally, the partitioning into predicate groups can be
modeled by means of a total ordering on predicates such that p denotes the po-
sition of pi within predicate group i, sorted according to that ordering. We call
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such a position ungrouped predicate. The set of all ungrouped predicates is writ-
ten P. If i and j are predicate groups, we say that pi and pj are corresponding
predicates.

2.4 Literals

We use literals as objects by themselves, related to formulas, but not as con-
stituents of formulas. Thus, we always write them prefixed with a sign also if
they are positive. More precisely: A literal is a pair of an atom and a sign. We
write the positive (negative) literal with atom A as +A (−A). The complement of
a literal L is denoted by L. If S is a set of literals, then S denotes the set of the
complements of the members of S. The set of literals that “occur” in a formula F

is denoted by L(F ), defined formally as follows: L(A) def= {+A} for an atom A;
L(⊤) def= L(⊥) def= {}; L(¬F1) def= L(F1); L(F1∧F2) def= L(F1∨F2) def= L(F1)∪L(F2);
L(F1 ← F2) def= L(F1 ∨ ¬F2); L(F1 ↔ F2) def= L((F1 ← F2) ∧ (F2 ← F1)),
L(projectS(F )) def= L(F ); L(circS(F )) def= L(F ) ∪ S ∪ S. We say that a formula F

is over a set of literals S if L(F ) ⊆ S.

2.5 Scopes

The variants of circumscription and projection that we use are parameterized by
a set of literals. We call a set of literals in this context a scope. In the specifications
of scopes we use the following shorthands: A set of atoms stands for the set
of all literals whose atom is in the given set. For example, {p0, q1} stands for
{+p0,−p0, +q1,−q1}. If S is a scope specifier, then +S (−S) denotes the set of all
positive (negative) literals in S. If P denotes a set of ungrouped atoms, and i a
predicate group, then P i is the set of all literals whose atom is in {pi | p ∈ P}.
We write just the natural number i as shorthand for Pi, that is, the set of all
literals whose atom is in predicate group i. For example, if P = {p, q}, then 1
stands for {+p1,−p1, +q1,−q1}.

2.6 Semantic Framework

An interpretation is a set of literals that contains for all atoms A exactly one
of +A or −A. The satisfaction relation between interpretations and formulas is
defined by clauses, one for atoms and one for each logic operator, as shown for
a selection of operators in the Table 1 below. Based on the satisfaction relation,
entailment and equivalence are defined as usual: F1 |= F2 if and only if for all
interpretations I it holds that if I |= F1 then I |= F2. F1 ≡ F2 if and only if
F1 |= F2 and F2 |= F1.

2.7 Projection

The formula projectS(F ) is called the projection of formula F onto scope S. It
is semantically defined in Table 1. The forgetting in F about S is a variant of
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Table 1. The Satisfaction Relation (Excerpt)

I |= A iffdef +A ∈ I.

I |= ⊤.

I |= ¬F iffdef I 6|= F.

I |= F1 ∧ F2 iffdef I |= F1 and I |= F2.

I |= projectS(F ) iffdef there exists a J such that:
J |= F and J ∩ S ⊆ I.

I |= circS(F ) iffdef I |= F, and there does not exist a J such that:
J |= F and J ∩ S ⊂ I ∩ S.

projection, where the scope is considered complementary:

forgetS(F ) def= project
ALL−S(F ). (i)

The particular variants of projection and forgetting that we use are literal pro-
jection and literal forgetting [Wer08,LLM03]. Combined with first-order logic,
projection generalizes second-order quantification. Combined with propositional
logic, Boolean quantification: A quantified Boolean formula ∃p F can be ex-
pressed as forget{p}(F ) or, equivalently as project

ALL−{p}(F ). Literal projection
also allows to express, so-to-speak, quantification upon just the positive or neg-
ative occurrences of a Boolean variable in a formula. Intuitively, the literal pro-
jection of a formula F onto scope S is a formula that expresses about literals
in S the same as F , but expresses nothing about other literals. A projection of a
propositional formula is equivalent to a propositional formula (without projec-
tion operator) in which only literals in the projection scope do occur. Such a sen-
tence is a uniform interpolant of the formula with respect to the scope. A naive
way to construct such a sentence is indicated by the following equivalences, where
F [p\⊤] (F [p\⊥]) denotes F with all occurrences of atom p replaced by ⊤ (⊥):
(1.) forget{p}(F ) ≡ F [p\⊤]∨F [p\⊥]. (2.) forget{+p}(F ) ≡ F [p\⊤]∨(¬p∧F [p\⊥]).

(3.) forget{−p}(F ) ≡ (p ∧ F [p\⊤]) ∨ F [p\⊥].
In the course of this paper we will use projection for different purposes. One

of them is to provide a semantic account of systematically replacing predicates
from one predicate group by their correspondents from another one. Let i, j be
different predicate groups. We define

reni\j(F ) def= forgeti(F ∧
∧

p∈P

(pj ↔ pi)). (ii)

We define ren[i1\j1, ..., in\jn](F ) as a shorthand for renin\jn

(...(reni1\j1
(F ))...).

The formula reni\j(F ) is equivalent to F with all occurrences of predicates from i

replaced by their respective corresponding predicates from j.

2.8 Scope Determined Circumscription

Like project, the circ operator has a scope specifier and a formula as arguments. It
is also semantically defined in the Table 1. It allows to express variants of parallel
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predicate circumscription where the effects are controlled by the scope parameter
[Wer10c]. Atoms that occur just in a positive literal in the circumscription scope
are minimized, atoms that occur just in a negative literal are maximized, atoms
that occur in both polarities are fixed and atoms that do not at all occur in
the scope are varying. Thus, if F is a formula over disjoint sets of predicates
P , Q and Z, then the parallel predicate circumscription of P in F with fixed Q

and varied Z [Lif94], traditionally expressed as CIRC[F ; P ; Z], can be written
as circ+P∪Q(F ).

3 Considered Logic Programming Semantics

3.1 Normal Logic Programs and their Classical Representation

We consider finite normal logic programs, that is, finite sets of rules of the form

p← q1 ∧ . . . ∧ qn ∧ ¬r1 ∧ . . . ∧ ¬rm, (iii)

where n, m ≥ 0 and p, qi, ri are atoms. The logical connectives are understood
there with a special meaning that depends on the associated logic programming
semantics. The classical representation of a normal logic program is a classical
propositional sentence, obtained from the program by forming the conjunction
of its members and replacing each atom by its representative from the indicated
group, according to the following schema:

p0 ← q2
1 ∧ . . . ∧ q2

n ∧ ¬r
1
1 ∧ . . . ∧ ¬r1

m. (iv)

In (iv) the logical connectives are understood in the classical sense. Information
that was expressed in (iii) by the positioning of an atom in a rule head, positive
body or negative body, respectively, is now captured instead by the assignment
to predicate groups.

3.2 Open Predicates

As explicated below in Section 4.1, it is essential for the application of logic
programming to model human reasoning according to the approach of [SvL08]
that some of the predicates which do not occur in a head are distinguished as
open and handled by open world reasoning instead of closed world reasoning.
In [SvL08,HR09a] the syntax of logic programs is extended, such that the open
predicates can be specified within the program itself: Exactly those predicates
in the program that do not occur in some head are considered as open. Rules of
the form p← ⊥ serve just for the purpose to exclude p from the open predicates.
The logic programming semantics that we will consider can straightforwardly be
generalized to take open predicates into account. Instead of tweaking the pro-
gram syntax, we characterize them by operators with two parameters, a program
and a set of open predicates.
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3.3 Two-Valued Semantics

The semantics of Clark’s completion and the stable model semantics can be
expressed as follows, for classical representations F of logic programs, that is,
formulas over scope 0 ∪ 1 ∪ 2 (representations of normal logic programs are
special cases of such formulas), and sets O of ungrouped predicates such that
L(F ) ∩O0 = ∅ which are considered open:

comp(F,O) def= ren1\0(circ+0∪1∪O0(ren2\1(F ))). (v)

stable(F,O) def= ren1\0(circ+0∪1∪O0(ren2\0(F ))). (vi)

The characterization of stable models in terms of circumscription originates from
[Lin91, Section 3.4.1] (see also [Lif08]). It is expressed here just in terms of
projection (for the renaming) and circumscription. In the definition (v) it is
combined with the characterization of Clark’s completion in terms of stable
models with negation as failure in the head [IS98]. In our classical representations
of logic programs, positive body literals are assigned to predicate group 2. By
the innermost renaming step in (v) and (vi) they are reassigned to 0 for the
stable models semantics, or to 1 for the completion semantics, respectively.

If F is the classical representation of a normal logic program, that is, a set
of rules of the form (iii), then Clark’s completion of the program is equivalent
to comp(F, {}), after dropping the predicate group superscripts. A set of atoms
is an answer set of the program according to the stable model semantics if and
only if it is obtained by dropping the predicate group superscripts from the
set of atoms with predicate group 0 in the positive literals of some model of
stable(F, {}). Based on the following proposition, a proof of the correspondence
of Clark’s completion to the characterization in definition (v) can be sketched:

Proposition 1 (Completion: Syntactic and via Circumscription). Let F

be a formula and let L1, . . . , Ln be literals such that for all i ∈ {1, . . . , n}
there exist formulas Gi and Hi with the properties (1.) F ≡ (Li ← Gi) ∧ Hi,
(2.) L(Gi)∩{L1, . . . , Ln, L1, . . . , Ln} = ∅, and (3.) L(Hi)∩ (Li∪Li) = ∅. Then,

F ∧
n∧

i=1

(Li → Gi) ≡ circ
ALL−{L1,...,Ln}

(F ).

If F is the classical representation of a normal logic program and we assume
ALL = 0 ∪ 1 ∪ 2, we can match the right side of the proposition with

circ(0∪1∪2)−(−0)(ren2\1(F )). (vii)

The scope of the circumscription in this formula is then equal to +0∪1∪2. Since
ren2\1(F ) does not express anything about predicate group 2, it can be dropped

from the circumscription scope. That is, from ren2\1(F ) ≡ project0∪1(ren2\1(F ))

it can be derived that formula (vii) is equivalent to circ+0∪1(ren2\1(F )), which

matches the argument of the outer renaming in the definition (v). Detailed formal
justifications of the correspondences of first-order generalizations of definitions
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(v) and (vi) to the respective logic programming semantics rendered by them
are provided in [Wer10b].

As an example, consider the program {p ← p, q ← ¬p}. Its classical repre-
sentation is F def= (p0 ← p2) ∧ (q0 ← ¬p1). Its Clark’s completion is rendered
as

comp(F, {}) ≡ ren1\0(circ+0∪1((p0 ← p1) ∧ (q0 ← ¬p1)))

≡ ren1\0((¬p0 ∧ ¬p1 ∧ q0) ∨ (p0 ∧ p1 ∧ ¬q0))

≡ (¬p0 ∧ q0) ∨ (p0 ∧ ¬q0).

(viii)

The stable models semantics of F is rendered as

stable(F, {}) ≡ ren1\0(circ+0∪1((p0 ← p0) ∧ (q0 ← ¬p1)))

≡ ren1\0((¬p0 ∧ ¬p1 ∧ q0) ∨ (¬p0 ∧ p1 ∧ ¬q0))

≡ ¬p0 ∧ q0.

(ix)

The models of the logic program according to the respective semantics are
then represented by the models in the sense of classical logic of the formulas
comp(F, {}) and stable(F, {}), respectively.

3.4 Three-Valued Semantics

In the specifications of two-valued logic programming semantics, predicate groups
serve to indicate the effect of circumscription. Two predicate groups can also be
applied to express truth values F,U,T of a three-valued logic in a two-valued
logic. An interpretation I over (possibly a superset of) 0∪ 1 is said to assign to
an atom p a three-valued truth value as specified in the following table:

Table 2. Correspondence to Three-Valued Truth Values

I assigns to p the value F iff I |= ¬p0 ∧ ¬p1;
I assigns to p the value U iff I |= ¬p0 ∧ p1;
I assigns to p the value T iff I |= p0 ∧ p1.

The remaining possibility that I |= p0 ∧ ¬p1 is not considered as representing a
three-valued truth value. The axiom cons can be used to exclude models with
such assignments:

cons def=
∧

p∈P

(p1 ← p0). (x)

An interpretation is called less-or-equal-than another interpretation if and only
if each atom assigned to F or T by the first interpretation is assigned to the
same three-valued truth value by the second interpretation. Models that are least
with respect to this relation can be expressed by circumscription: If the models
of F satisfy cons, then the least models of F are the models of circ+0∪−1(F ).
Accordingly we define:

least(F ) def= circ+0∪−1(F ). (xi)
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If cons is used together with least, it can equivalently be placed inside or outside
of the least operator:

Proposition 2 (Consistent Inside and Outside Least).

least(cons ∧ F ) ≡ cons ∧ least(F ).

The following definition renders the models obtained by the Fitting operator
[Fit85], and with the O parameter also the so-called weak completion semantics
of [HR09a]. It is defined for the same classes of arguments F and O as comp and
stable.

fitting(F,O) def= cons ∧
ren2\0(F ) ∧

ren[0\2, 1\0, 2\1](forget+0(circ+0∪2∪1∪O0(F ))).
(xii)

If F is the classical representation of a normal logic program, then least(fitting(F, {}))
has a single model that represents the least three-valued model of the Fitting
operator by combinations of two-valued values in predicate groups 0 and 1, as
specified above. As shown in [Fit85], the least model of the Fitting operator is
also the least model of the completion of the program, considered as a formula
in a certain three-valued logic. With Theorem 3 in Section 6 we show the corre-
spondence of the latter to least(fitting(F, {})), which then obviously implies that
least(fitting(F, {})) correctly renders the least model obtained with the Fitting
operator.

As an example, consider the program {p← p, q ← ¬p, r ← ¬r}. Its classical
representation is F def= (p0 ← p2) ∧ (q0 ← ¬p1) ∧ (r0 ← ¬r1).

(1) least(fitting(F, {}))
(2) ≡ least(cons ∧
(3) (p0 ← p0) ∧ (q0 ← ¬p1) ∧ (r0 ← ¬r1) ∧
(4) ren[0\2, 1\0, 2\1]

(5) (forget+0((p0 ↔ p2) ∧ (q0 ↔ ¬p1) ∧ (r0 ↔ ¬r1))))
(6) ≡ least(cons ∧
(7) (p0 ← p0) ∧ (q0 ← ¬p1) ∧ (r0 ← ¬r1) ∧
(8) (p1 → p1) ∧ (q1 → ¬p0) ∧ (r1 → ¬r0))))
(9) ≡ least((p0 ∧ p1 ∧ ¬q0 ∧ ¬q1 ∧ ¬r0 ∧ r1) ∨

(10) (¬p0 ∧ p1 ∧ q0 ∧ q1 ∧ ¬r0 ∧ r1) ∨
(11) (¬p0 ∧ p1 ∧ ¬q0 ∧ q1 ∧ ¬r0 ∧ r1) ∨
(12) (¬p0 ∧ p1 ∧ ¬q0 ∧ ¬q1 ∧ ¬r0 ∧ r1) ∨
(13) (¬p0 ∧ ¬p1 ∧ q0 ∧ q1 ∧ ¬r0 ∧ r1))
(14) ≡ ¬p0 ∧ p1 ∧ ¬q0 ∧ q1 ∧ ¬r0 ∧ r1.

(xiii)

In line (4) the circumscription in the definition of fitting has been computed,
yielding the completion of F . Line (8) shows line (4)–(5) after applying forget-
ting to extract just the converse implications of the completion and renaming.
The extraction of the converse implications requires that literal forgetting which
distinguishes polarity has to be applied, and is justified by the following propo-
sition:
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Proposition 3 (Semantic Extraction of the Completion Addendum).
Let L1, . . . , Ln, G1, . . . Gn, where n ≥ 0, be literals and formulas, respectively,
such that for all i ∈ {1, . . . , n} it holds that L(Gi)∩{L1, . . . , Ln, L1, . . . , Ln} = ∅.
Then

forget{L1,...,Ln}(

n∧

i=1

(Li ↔ Gi)) ≡
n∧

i=1

(Li → Gi).

Lines (7) and (8) in the example (xiii) show that the core of the characteriza-
tion of the semantics of the Fitting operator could be specified syntactically as
a program translation that consists of the original implications with the same
predicate group settings as for the stable models semantics conjoined with the
converse implications obtained from the completion, but with flipped predicate
groups. In lines (9)–(13) the argument of least is shown in a disjunctive nor-
mal form where each model corresponds to a conjunction. The corresponding
three valued models written as pairs of the atoms assigned to T and the atoms
assigned to F are as follows: 〈{p}, {q}〉 for the conjunction in (9); 〈{q}, {}〉 for
(10); 〈{}, {}〉 for (11); 〈{}, {q}〉 for (12); 〈{q}, {p}〉 for (13). Line (14) shows the
result of restricting to the least models, that is, circumscribing upon +0 ∪ −1.
Correspondingly, line (14) represents 〈{}, {}〉.

Formula partial-stable(F,O) defined below renders the partial stable models
semantics [Prz90a,Prz90b]. We follow the approach of [JNS+06] where a trans-
lation of is specified such that the stable models of the translated program cor-
respond to the partial stable models of the original program. This translation
has its roots in [Sch95]. The definition of partial-stable combines the transla-
tion of [JNS+06], where three-valued interpretations are represented by two-
valued interpretations according to Table 2, with the characterization of stable
models according to the definition (vi). Each of these two translations involves
discrimination between two predicate groups. The combination of both yields
four predicate groups, which are reduced in the final value of partial-stable by
renaming to groups 0 and 1. Formulas partial-stable(F,O) are defined for the
same classes of arguments F and O as for the other considered semantics. The
models of partial-stable(F,O) represent the three-valued partial stable models by
combining the values of atoms for predicate groups 0 and 1. The O parameter
generalizes the partial stable models semantics by allowing to handle predicates
in a given set specially as open.

partial-stable(F,O) def= ren[2\0,3\1](

circ+0∪+1∪2∪3∪O0∪O1(cons ∧
ren[2\0,1\3](F ) ∧

ren[1\3,0\1,2\1,3\2](F ))).

(xiv)

That partial-stable(F, {}) correctly renders the partial stable models semantics
follows from the correctness of the encoding of that semantics into the stable
models semantics, shown in [JNS+06], and the correctness of the characterization
of the stable models semantics as given in definition (vi).

We illustrate partial-stable with the same example as fitting, the program
{p ← p, q ← ¬p, r ← ¬r} whose classical representation is F def= (p0 ←
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p2) ∧ (q0 ← ¬p1) ∧ (r0 ← ¬r1). We write the superscripts that indicate the
predicate groups as binary numbers with two digits:

(1) partial-stable(F, {})

(2) ≡ ren[10\00,11\01](

(3) circ00+∪01+∪10∪11(
∧

p00∈PG00
(p01 ← p00) ∧

(4) (p00 ← p00) ∧ (q00 ← ¬p11) ∧ (r00 ← ¬r11) ∧

(5) (p01 ← p01) ∧ (q01 ← ¬p10) ∧ (r01 ← ¬r10)))

(6) ≡ ¬p00 ∧ ¬p01 ∧ q00 ∧ q01 ∧ ¬r00 ∧ r01.

(xv)

The binary notation of predicate group superscripts indicates how the transla-
tion of [JNS+06] into stable models and representation of stable models accord-
ing to definition (vi) are combined: The right digit corresponds to the group
discrimination required by the translation into stable models, the left digit to
the discrimination required by expressing the stable models semantics with cir-
cumscription. The three-valued model represented by line (6) is 〈{q}, {p}〉.

4 Adequacy for the Suppression Task with Forward

Reasoning

4.1 Modeling Human Reasoning by Nonmonotonic Logics
According to Stenning and van Lambalgen

In the field of human reasoning, it is observed that humans suppress certain
inferences, that is, do not draw certain conclusions from given facts and condi-
tionals. This comprises conclusions that would be valid as well as conclusions
that would not be valid in a straightforward classical logic reading of the natu-
ral language sentences presented to the subjects. Observed reasoning by humans
is inherently nonmonotonic: the presence of an additional sentence can effect
suppression of a conclusion that would have been drawn without the additional
sentence. Moreover, whether certain inferences are suppressed can not be de-
termined just by the syntactic form of the natural language sentences. Corre-
sponding experiments have been considered as evidence that logic is inadequate
to model human reasoning [Byr89]. Stenning and van Lambalgen [SvL05,SvL08]
propose an approach based on nonmonotonic logic that is adequate for modeling
the reported experiments.

Instead of a naive translation of natural language sentences into classical
logic, they assume a two stage process, where the first stage, reasoning to an in-
terpretation, is an “interpretative” process that assigns logical form which is not
implied by the syntactical structure of the given natural language sentences, but
takes contextual information and background knowledge into account. This stage
includes the understanding of conditionals as implicitly relativized with a pre-
condition that excludes abnormal situations and the decision to apply a specific
logic, such as determining that nonmonotonic closed world reasoning should be
applied with respect to abnormality predicates and certain other predicates. The
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second stage, reasoning from an interpretation, is then considered as straight-
forward reasoning with respect to the logical representations of conditionals and
facts resulting from the previous stage.

Reasoning tasks investigated with respect to suppression fall into two cate-
gories: First, forward reasoning tasks, where the truth value of the antecedent
of a conditional is given and it is to be determined whether a consequent holds.
Depending on the truth value of the antecedent, the forward reasoning patterns
are called modus ponens and denial of the antecedent. Second, Backward reason-
ing, where values of a consequent are given and it is to be determined whether
an antecedent holds. Here we just consider forward reasoning tasks.

In the presentation of the human reasoning tasks from [Byr89] we follow
[HPW11]. For the text phrases given to the subjects we introduce the following
abbreviations:

Table 3. Conditionals and Facts used in the Experiments

Ce If she has an essay to write she will study late in the library.
Ct If she has a textbook to read she will study late in the library.
Co If the library stays open she will study late in the library.
e She has an essay to write.
l She will study late in the library.
o If the library stays open she will study late in the library.
t She has textbooks to read.

We abbreviate the negation of a fact X by ¬X, e.g. ¬e denotes she does not
have an essay to write. The empirical results reported originally in [Byr89] and
obtained similarly in a repetition of the experiment in [DSSd00] are shown in
Table 4: Phrases K presented to the subjects and the proportion of subjects ac-
cording to [Byr89] and [DSSd00] who have drawn conclusion Q from them. Tasks
1–3 are modus ponens inferences, and 4–6 denial of the antecedent inferences.
In both of these groups three experiments have been made: First (tasks 1 and
4), the single conditional Ce is given, along with a statement that its precon-
dition e is true or false, respectively. Second (tasks 2 and 5), the setting of the
first variant is extended by a further conditional Ct that is typically understood
as providing an alternative possible reason for the consequent l. Third (tasks 3
and 6), the setting of the first task is extended by a conditional Co that in fact
represents an additional necessary precondition for the consequent l, although it
is syntactically of the same form as Ct. As Table 4 shows, the addition of Co to
the setting of task 1 effects that the conclusion of l is suppressed by many sub-
jects: In the experiment reported in [Byr89], only 38% of the subjects concluded
l in task 3. In the experiment repeated by [DSSd00], this number is larger (61%)
but still significantly smaller compared to tasks 1 (88%) and 2 (93%).
According to the approach of Stenning and van Lambalgen, logic programs can
model the empirical results shown in Table 4. Together with some chosen logic
programming semantics, they form the result of the reasoning to an interpre-
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Table 4. Empirical Results about Human Reasoning Tasks

K Q [Byr89] [DSSd00]

1. Ce, e l 96% 88%
2. Ce, Ct, e l 96% 93%
3. Ce, Co, e l 38% 61%
4. Ce,¬e ¬l 46% 49%
5. Ce, Ct,¬e ¬l 4% 22%
6. Ce, Co,¬e ¬l 63% 49%

Table 5. Logic Programs Corresponding to the Tasks in Table 4

P1
def= {l← e ∧ ¬ab1, ab ← ⊥, e← ⊤}. O1

def= {}.
P2

def= {l← e ∧ ¬ab1, ab1 ← ⊥, l← t ∧ ¬ab2, ab2 ← ⊥, e← ⊤}. O2
def= {t}.

P3
def= {l← e ∧ ¬ab1, ab1 ← ¬o, l← o ∧ ¬ab3, ab3 ← ¬e, e← ⊤}. O3

def= {o}.
P4

def= {l← e ∧ ¬ab1, ab ← ⊥, e← ⊥}. O4
def= {}.

P5
def= {l← e ∧ ¬ab1, ab1 ← ⊥, l← t ∧ ¬ab2, ab2 ← ⊥, e← ⊥}. O5

def= {t}.
P6

def= {l← e ∧ ¬ab1, ab1 ← ¬o, l← o ∧ ¬ab3, ab3 ← ¬e, e← ⊥}. O6
def= {o}.

tation phase. The semantics considered in [SvL08] is a three-valued completion
semantics, a variant of the Fitting operator semantics [Fit85]. The presenta-
tion in [SvL05,SvL08] erroneously associates the wrong three-valued logic with
programs, which has been corrected in [HR09a], where this semantics has been
termed weak completion semantics.

Since we are here interested in considering different three- and also two-
valued logic programming semantics we do not commit to a particular one,
but emphasize a particular required feature that can actually be combined with
various logic programming semantics: The semantics needs to supports that some
predicates are handled by closed world reasoning, while others are handled with
open world reasoning. This can technically be expressed in different ways, as
discussed in Sections 3.2 and 5. In our framework, we express it by specifying
semantics for logic programs with respect to a second parameter besides the
program, the set of predicates that are to be considered as open, that is, to be
handled with open world reasoning, where all other predicates are to be handled
with closed world reasoning.

In Table 5, for each task i from Table 4, the corresponding the logic pro-
gram Pi and set Oi of open predicates is shown. Here we use conventional no-
tation following the schema (iii). To remain faithful to the source literature
[SvL08,HR09a,HPW11] we keep rules with ⊥ as body, which are redundant in
presence of the explicitly given sets of open predicates. The reasoning to an
interpretation described in [SvL05,SvL08] which, given the combinations of nat-
ural language conditionals and facts from Table 4, yields these programs can be
summarized in the following steps:

1. Consider a conditional “if A then B” as standing for “if A and nothing
abnormal is the case, then B”. This leads to the representation of Ce as
l← e ∧ ¬ab, of Ct as l← t ∧ ¬ab2, and of Co as l← o ∧ ¬ab3.
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Table 6. Models of the Programs in Table 5 Obtained with Different Semantics

P O 3-valued 2-valued 3-valued O={} 2-valued O={}

P1 O1 〈{e, l}, {ab1}〉 {e, l} 〈{e, l}, {ab1}〉 {e, l}
P2 O2 〈{e, l}, {ab1, ab2}〉 {e, l}, {e, l, t} 〈{e, l}, {ab1, ab2, t}〉 {e, l}
P3 O3 〈{e}, {ab3}〉 {e, l, o}, {ab1, e} 〈{ab1, e}, {ab3, l, o}〉 {ab1, e}
P4 O4 〈{}, {ab1, e, l}〉 {} 〈{}, {ab1, e, l}〉 {}
P5 O5 〈{}, {ab1, ab2, e}〉 {}, {l, t} 〈{}, {ab1, ab2, e, l, t}〉 {}

P6 O6 〈{ab3}, {e, l}〉 {ab3, o}, {ab1, ab3} 〈{ab1, ab3}, {e, l, o}〉 {ab1, ab3}

2. Consider all abnormality predicates, ab1, ab2, ab3 in the examples, as subject
to closed world reasoning.

3. Consider all predicates that occur as consequent in a rule as subject to closed
world reasoning.

4. Consider all remaining predicates, that is, predicates that just occur in an-
tecedents and are not abnormality predicates, as subject to open world rea-
soning. Since we assume a logic programming semantics in which predicates
not explicitly specified as open are handled by closed world reasoning, this
leads to the sets Oi of open predicates shown in Table 5.

5. If there are two conditionals with the same conclusion, determine whether
the premise of the second conditional is an alternative to the first one, like t

in Ct which is an alternative to e in Ce for concluding l, or is additional to
the first one, like o in Co. This step requires to take contextual information
and background knowledge into account.

6. If the second conditional provides an additional premise, it “highlights the
possibility of abnormality”, which is expressed by adding a clause that asserts
the abnormality precondition of the first conditional if the premise of the
second conditional fails: ab1 ← ¬o, in the example. For reasons of symmetry
an analogous clause is added for the first conditional: ab3 ← ¬e, in the
example.

7. Add expressions for the facts: Positive facts with explicit clauses, like e ←
⊤; negative facts in a way such that they are implied under closed world
reasoning. The latter is achieved by not letting negative facts be members of
the set of open predicates, or in the original notation of [SvL08] by adding
clauses like e← ⊥.

4.2 Adequacy of Different Logic Programming Semantics

When applied to model human reasoning, logic programming semantics should
correspond in some way to empirical results obtained with human subjects. The
investigations of suppression center around facts that are concluded from given
conditionals and facts. A program that represents the outcome of reasoning to-
wards an interpretation with respect to a human reasoning task should then
have the same facts as consequences that are concluded by most human sub-
jects when presented with the task. Table 6 shows the models for the programs
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given in Table 5 with respect to several semantics. Column “3-valued” shows
the three-valued models of least(fitting(Pi, Oi)) and least(partial-stable(Pi, Oi)),
which happen to be the same for the given programs and sets of open predicates.
The first of these formulas, least(fitting(Pi, Oi)), expresses the so-called weak
completion semantics, which has been previously considered in investigations of
adequacy for human reasoning [SvL08,HR09a,HR09b,HPW11]. It is convention-
ally characterized as a least fixed point semantics with respect to a variant of
the Fitting operator that takes open predicates especially into account. In the
table, three-valued models are written as pairs of the atoms assigned to T and
the atoms assigned to F. Column “2-valued” shows the models of comp(Pi, Oi)
and stable(Pi, Oi), which again happen to be the same. These two-valued models
are written as the list of the atoms that are satisfied. For P2, P3, P5 and P6,
these semantics yield two models.

If we accept that a positive or negative fact is considered a consequence if and
only if it is satisfied by all models of the program under the respective semantics,
then the table yields – in coincidence for the 3- as well as the 2-valued semantics –
the fact l as a consequence for task 1 and 2, and ¬l for task 4 and 5. For tasks 3
and 4 neither l nor ¬l is a consequence, due to the assignment of l as U by the
3-valued semantics and alternate models with different truth values of l by the
2-valued semantics, respectively.

Let us compare this with the empiric results in Table 4. In tasks 1 and 2 the
vast majority of subjects concludes l, establishing the adequacy of the considered
logic programming semantics with respect to these two tasks. In task 3 the
conclusion of l is suppressed by a large proportion of subjects. The considered
logic programming semantics match this in that l is not a consequence. With
respect to the results reported by [Byr89], the logic programming semantics
render the reasoning of the majority of subjects, with respect to [DSSd00], only
of a large minority. In tasks 4, about half of the subjects conclude ¬l, and
in task 6 about two thirds [Byr89] or also half of the subjects [DSSd00]. The
considered logic programming semantics have ¬l as a conclusion for this tasks,
thus modeling the reasoning of this half of the subjects. In tasks 5, the conclusion
of ¬l is suppressed by the vast majority of subjects. In accord with this, the
considered logic programming semantics match in that ¬l is not a consequence.

To sum up, the considered logic programming semantics are adequate to
some degree: For modus ponens tasks, conclusions are either drawn by a vast
majority of subjects or suppressed by a significant number. In the first case, the
logic programming semantics have the conclusions as a consequence, in the latter
case not, reflecting the suppression. For denial of antecedent tasks, conclusions
are either drawn by about half of the subjects or suppressed by a vast number.
Again, in the first case the conclusions are consequences of the program, while
in the suppression case they are not consequences.

The models obtained with two further logic programming semantics are
shown in the two rightmost columns “3-valued O = {}” and “2-valued O = {}”
show the values of least(fitting(Pi, {})) as well as least(partial-stable(Pi, {})), and
comp(Pi, {}) as well as stable(Pi, {}), respectively. These correspond to the re-
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spective semantics when open predicates are not specially taken into account. For
task 5 they have ¬l as a consequence, contradicting the corresponding empiric
results such that these semantics can be clearly regarded as inadequate.

5 Ways to Express Open Predicates

As explained in Section 4.1, logic programming semantics that are applied to
model human reasoning according to the approach of [SvL08] require that only
some predicates are handled “by closed world reasoning”, and others are to be
considered as open. There are different ways to specify and technically handle
these two sets of predicates.

5.1 First-Order Issues

As already described in Section 3.2, the way taken in [SvL08,HR09a] is to extend
the syntax of logic programs such that exactly those predicates in the program
that do not occur in some head are considered as open, where, otherwise re-
dundant rules of the form p ← ⊥ serve to exclude p from the open predicates.
Unfortunately, this approach leads to an ambiguity if lifted to first-order pro-
grams. Consider the following example program:

{p(a)← ⊤, q ← p(b)}. (xvi)

The first step in computing Clark’s completion of this program, considering p as
a unary predicate, would result in the following program, considered equivalent
to (xvi):

{p(X)← X = a, q ← p(b)}. (xvii)

The ground expansion of (xvii) with respect to the Herbrand base {a, b} is:

{p(a)← a = a, p(b)← b = a, q ← p(b)}. (xviii)

Now, whether the ground atom p(b) is to be considered as open depends on
whether (xvi) or (xviii) is taken as basis to check whether p(b) occurs in a head:
With respect to (xvi), the atom p(b) does not occur in a head and thus has to be
considered as open. If (xviii) is taken as basis, no instance of the unary predicate
p is considered open.

First-order versions of the operators comp, stable, fitting and partial-stable

[Wer10a] take as second argument a set of ground atoms that actually specify
which ground atoms are to be considered as open. If a “whole predicate” is to be
considered as open, this is expressed by a set containing all ground atoms with
the respective predicate. Thus, from a first-order perspective, these operators
permit to specify explicitly for each ground atom whether it should be considered
as open.
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5.2 Encoding Open Predicates in Standard Semantics

The logic operators that represent logic programming semantics, comp, stable,
fitting and partial-stable allow to specify open predicates with a second argument,
a set of predicates. It this is the empty set, then they render the “standard”
versions of the respective semantics, Clark’s completion, stable models semantics,
Fitting operator semantics, and partial stable models semantics, respectively. In
the definitions of all of these logic operators, the second argument that specifies
the open predicates is passed as set of fixed predicates to circumscription.

If the logic program represented by the argument formula to one of these
semantic operators corresponds to a normal logic program, then it is also possible
to encode the handling of open predicates into the program and the semantic
operator with just the empty set of open predicates. The original program with
respect to a given set of open predicates is then equivalent to the modified
program with respect to the empty set of open predicates. In this way, stock
processors for logic programs which usually do not provide explicit support for
open predicates can be applied. Let O be the set of ungrouped predicates to be
considered as open. For comp and fitting, such a program modification is achieved
by adding {p ← p | p ∈ O} to the program. For stable and partial-stable, such a
program modification is achieved by adding {p ← ¬not p,not p ← ¬p | p ∈ O}
to the program, where the not p are “fresh” ungrouped predicates, that is, not
occurring in the original program, different for each p ∈ O. These auxiliary
predicates can be eliminated from the final result by forgetting. The following
two propositions formally state the correspondence of these encodings of open
predicates for the considered logic programming semantics:

Theorem 1 (Encoding Open Predicates with Completion). Let F be the
classical representation of a normal program and let O be a set of ungrouped
predicates such that L(F ) ∩O0 = ∅. Define

E def=
∧

p∈O

(p0 ← p2).

It then holds that:
(i) comp(F ∧ E, {}) ≡ comp(F,O).

(ii) fitting(F ∧ E, {}) ≡ fitting(F,O).

Theorem 2 (Encoding Open Predicates with Stable Models). Let F be
the classical representation of a normal program and let O be a set of ungrouped
predicates such that L(F ) ∩ O0 = ∅. Assume that for each p ∈ O there exists
a distinguished ungrouped predicate not p that is neither in O nor occurs in F .
Define N def= {not p | p ∈ O}. Define

E def=
∧

p∈O

((p0 ← ¬not p1) ∧ (not p0 ← ¬p1)).

It then holds that:
(iii) forgetN0(stable(F ∧ E, {})) ≡ forgetN0(stable(F,O)).
(iv) forgetN0∪N1(pstable(F ∧ E, {})) ≡ forgetN0∪N1(pstable(F,O)).
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6 Representing a Three-Valued Logic for Completion

Semantics by a Two-Valued Logic

An assignment of three-valued truth values to atomic formulas, by two-valued
interpretations over two predicate groups 0 and 1, has been specified in Table 2
(p. 9). This can be extended to complex formulas of certain three-valued logics.
We develop such an extension for a particular three-valued logic that can be
applied to render the logic programming semantics of the Fitting operator. Its
correspondence to fitting, defined in (xii), is shown formally as Theorem 3.

6.1 Representing S3 in Two-Valued Logic with Predicate Groups

We need some additional terminology: A formula in a three-valued logic is con-
structed from ungrouped propositional atoms and three-valued versions of the
logic operators. For these, we use the same symbols as for two-valued logics,
with exception of implication and biconditional where we consider variants with
different three-valued semantics, identified by sub- and superscripts. We assume
the two predicate groups 0 and 1. The semantics of three-valued formulas is then
specified by means of a three-valued valuation function, a function that maps an
interpretation that satisfies cons and a three-valued formula to a three-valued
truth value. We write the interpretation argument as subscript to the function
name. An interpretation I is a model of a formula F in the three-valued logic
represented by some valuation function val if and only if I satisfies cons and
valI(F ) is the so-called designated truth value, which is just T, as far as we con-
sider three-valued logics here. We now focus on a particular three-valued logic,
specified by the valuation function val, defined as follows, where the three-valued
truth values are assumed to be ordered by T > U > F:

valI(A) def= F if I |= ¬A0 ∧ ¬A1;
U if I |= ¬A0 ∧A1;
T if I |= A0 ∧A1.

valI(⊥) def= F.

valI(⊤) def= T.

valI(¬F ) def= ¬valI(F ), where ¬F = T, ¬U = U, ¬T = F.

valI(F ∧G) def= min(valI(F ), valI(G)).
valI(F ∨G) def= max(valI(F ), valI(G)).

valI(F ←3 G) def= T if valI(F ) ≥ valI(G); F otherwise.
valI(F ↔3 G) def= valI((F ←3 G) ∧ (G←3 F )).

(xix)

The variant of implication ←3 is called seq3 in the literature [Got01]. The logic
specified by val is known as S3 in the so-called standard sequence of many valued
logics [Res69]. Hence we call a three-valued formula in which the only logic oper-
ators are those for which there is a clause in the definition (xix) an S3-formula.
(In the original presentation of S3 [Res69] the 0-ary logic operators ⊤ and ⊥ are
not included, but this is no essential difference, since they could be replaced by
formulas p←3 p and ¬(p←3 p), respectively, for some arbitrary atom p.) If we
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speak just of a formula in the sequel, we still refer to a formula of classical propo-
sitional logic, extended by the operators for circumscription and projection, as
specified in Section 2.2.

We now define functions binn, for n ∈ {0, 1} that map an S3-formula to a
classical propositional formula over scope 0 ∪ 1 in a way that is “compatible”
with val, as made precise by the subsequent Proposition 4, which is easy to verify
by induction on formulas:

bin0(A) def= A0.

bin1(A) def= A1.

binn(⊥) def= ⊥.

binn(⊤) def= ⊤.

binn(¬F ) def= ¬bin1−n(F ).
binn(F ∧G) def= binn(F ) ∧ binn(G).
binn(F ∨G) def= binn(F ) ∨ binn(G).

binn(F ←3 G) def= (bin0(F )← bin0(G)) ∧ (bin1(F )← bin1(G)).
binn(F ↔3 G) def= (bin0(F )↔ bin0(G)) ∧ (bin1(F )↔ bin1(G)).

(xx)

Proposition 4 (Relating Conversion and Valuation). The following prop-
erties relate bin0 and bin1 with val, for interpretations I that are over the predi-
cate groups 0 and 1 and satisfy cons, and S3-formulas F .

1. I |= bin0(F ) iff I |= bin0(F ) ∧ bin1(F ) iff valI(F ) = T.
2. I |= bin1(F ) iff valI(F ) = U or valI(F ) = T.

6.2 S3 and the Reconstructed Fitting Operator Semantics

The following proposition establishes the correspondence between the logic pro-
gramming semantics obtained by forming Clark’s completion and considering
it as an S3-formula on the one hand, and the logic operator fitting defined in
Section 3.4 on the other hand:

Theorem 3 (Correspondence of Completion under S3 and the Recon-
structed Fitting Operator Semantics). Let F be the classical representation
of a normal logic program and let F ′ be the Clark’s completion of the program
considered as S3-formula (that is, without assignment of predicate groups and
with the logic operators of S3 in place of the corresponding operators of propo-
sitional logic). If I is an interpretation over predicates in groups 0 and 1, then
the following statements are equivalent:

1. I |= least(fitting(F, {})).
2. I |= least(cons ∧ bino(F ′)).
3. I is a least model of F ′.

As shown in [Fit85], the least model of the Fitting operator applied to a normal
logic program is the least model of its Clark’s completion considered as a three-
valued S3-formula. Hence, from the equivalence of (1.) to (3.) it follows that the
logic operator fitting defined in Section 3.4 correctly renders the semantics of the
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Fitting operator with respect to least models. The equivalence of (2.) to (3.),
which easily follows from Proposition 4, shows a way to map the three-valued
logic corresponding to the Fitting operator to two-valued logic with predicate
groups.

6.3 Discussion: Alternate Three-Valued Implications

Logic programming semantics have been investigated with respect to different
three-valued versions of implication and biconditional. Let us extend the defini-
tion of val in (xix) with definition two further variants of the implication:

valI(F ←1 G) def= valI(F ←3 G) except for the following cases:
U if valI(F ) = U and valI(G) = T;
U if valI(F ) = F and valI(G) = U.

valI(F ←′ G) def= valI(F ←1 G) except for the following case:
U if valI(F ) = U and valI(G) = U.

(xxi)

The variants ←1 and ←′ are termed seq1 and seq′, respectively, in [Got01]. The
variant seq1 is also called  Lukasiewicz’s implication, and seq′ is also known as
Kleene’s strong implication. In the original specification of the Fitting operator
semantics [Fit85], for the biconditional the semantics of↔3 has been used. Since
only completed logic programs were considered as formulas of a three-valued
logic, the choice of a three-valued semantics for implication had not been of
concern there. It became relevant in the context of other logic programming
semantics, and ←3 has been added as semantics for implication in [Prz89]. Also
in the context of human reasoning, the three-valued semantics of implication is
of interest. Kleene’s strong semantics for implication (←′) has been erroneously
ascribed to a variant of the Fitting operator in [SvL08], which was subsequently
corrected in [HR09a] by replacement with  Lukasiewicz’s implication (←1) and
the biconditional defined in terms of it as (F ↔1 G) def= (F ←1 G) ∧ (G←1 F ).
However, for the consideration of a normal logic program under a three-valued
semantics, the semantics for implication and biconditional are only relevant as
far as, for given argument values, they yield the designated truth value T or not.
This is sufficient to decide whether a given interpretation is a model of a given
conjunction whose conjuncts are implications or equivalences. In this respect←3

and ←1 are identical. There appears to be no use for the “extra information”
produced by ←1 in yielding U in some cases where ←3 yields F, unless logic
programs which do allow implications or biconditionals occurring within heads
or bodies would be considered.

7 Conclusion

We summarize the contributions made in this paper, grouped into different as-
pects, and outline implied further research questions.
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7.1 Uniform Consideration of Open World Predicates

Logic programming semantics that are applied to model human reasoning fol-
lowing the approach of Stenning and van Lambalgen must allow that only some
predicates are handled with closed world reasoning, while others are handled
with open world reasoning. Both of these modes are quite naturally available
with parallel predicate circumscription, by specifying some predicates to be min-
imized and others to be fixed. By expressing other logic programming semantics
in terms of circumscription, this feature is straightforwardly transferred, yield-
ing variants of these other semantics that allow to specify predicates handled by
open world reasoning. Scope-determined circumscription is a variant of circum-
scription which allows in a first-order context to distinguish between open and
closed world reasoning not just on the level of predicates, but also more fine-
grained for arbitrary sets of ground atoms. This feature possibly has applications
in human reasoning scenarios that are modeled not just propositionally.

7.2 Adequacy of Semantics for Modeling Human Reasoning

For the suppression task examples, we have seen that the least models of the
partial stable models semantics are exactly the least models obtained with the
Fitting operator, when special handling of open world predicates is taken into ac-
count. Not only three-valued, but also two-valued semantics, in particular Clark’s
completion and the stable models semantics, can be considered as modeling the
suppression task with no less adequacy, where again open world predicates need
to be handled specially.

That completion and stable models semantics yield the same models for
the given programs representing the suppression task is no surprise, since these
programs satisfy the tightness condition (do not have “positive loops”), also if
the predicated for open world reasoning encoded according to Theorem 2. Are
there logic programs that represent human reasoning scenarios for which these
semantics differ, or do the “simpler” completion semantics suffice generally for
human reasoning?

With all logic programming semantics considered here and in the referenced
literature, the matching of consequences with those drawn by human subjects in
suppression task experiments is rather coarse. Only relative tendencies of human
subjects to perform or suppress a conclusion in some of the considered reasoning
scenarios compared to certain others are reflected in corresponding conclusions
obtained under the logic programming semantics. Considered by themselves, for
some of the scenarios, the conclusions obtained under the logic programming
semantics do not coincide with those drawn by a significant portion or even ma-
jority of the subjects. To obtain a more faithful modeling that yields rationales
for different courses of human reasoning, it seems that logic programming se-
mantics have to be considered in further respects than just consequences. This
is an open issue, where some possibilities are indicated below in Section 7.5.
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7.3 More Expressive Logic Programming Languages

For clarity, we based the logic programming semantics on a propositional frame-
work. As shown in [Wer08,Wer10c] this can be straightforwardly generalized to
first-order logic, including first-order versions of the logic programming seman-
tics [Wer10a].

The operators like stable that characterize logic programming semantics ac-
tually have quite weak preconditions on their arguments: The formula F repre-
senting the logic program must be over scope 0 ∪ 1 ∪ 2 and the set O of open
predicates must satisfy L(F )∩O0 = ∅. This allows to express various generaliza-
tions of normal programs just by passing corresponding formula representations
to the operators. For example, generalizations of the stable models semantics by
permitting integrity constraints, disjunctive rules and negation as failure in the
head can be expressed in this way [Wer10a].

7.4 Computational Approaches

A principle that has been followed throughout in the paper is that “semantic”
operators are applied as far as possible. That is, logic operators which have clas-
sically equivalent values for classically equivalent arguments, independently of
syntactic properties. In particular, projection and circumscription are such oper-
ators. Logic programming semantics inherit this property by characterizing them
in terms of such operators. “Semantic” operators facilitate processing by general
automated reasoning tools. Projection and circumscription can be processed by
variants of second-order quantifier elimination, for which a variety of techniques
is available [GSS08,Wer09] and which instantiates with respect to propositional
logic to Boolean variable elimination. For any general system, it is a challenge
to embed or simulate known efficient techniques for special cases.

A prototype system based on propositional logic has been implemented to ex-
plore the approach to the computational processing of logics by eliminating oper-
ators such as project and circ (http://cs.christophwernhard.com/provers/toyelim/).
A macro feature allows the user to define additional operators like stable in terms
of these. Scopes can be specified in a way similar to the notation used in this
paper. The system provides a uniform user interface that integrates a portfolio
of embedded methods and external programs. input formulas are rewritten such
that suitable subproblems can be passed to external QBF or SAT solvers, or be
handled by dedicated elimination procedures, which currently are implemented
naively, adequate for small applications.

7.5 Possible Implications for the Investigation of Human Reasoning

Let us first note what has been suppressed with the approach followed in the
paper: A constructive operational view of rule processing, as for example with
a fixed point operator on which processing by neural networks can be based
[SvL08,HR09b]. Modern logic programming semantics, like stable models, can
not be naively characterized in such a constructive way. On the other hand,
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ascribing an operational model of the way in which humans process rules remains
important with respect to human reasoning. Thus, the mapping of rule semantics
to processing models can be identified as a general research issue with respect
to human reasoning.

We proceed by pointing out particular aspects of the approach followed in
the paper that might be of interest in human reasoning. In the characterizations
of logic programming semantics, predicate groups were used to indicate how a
particular predicate occurrence has to be handled in two respects: whether it is
subjected to minimization by circumscription, and what it contributes to a three-
valued valuation (p0 for p is true, ¬p1 for p is false, ¬p0 for p is false or undefined,
and p1 for p is true or undefined). It seems to be interesting future research to
explore these groups not just considered as a technical encoding device but as
associated with epistemic meanings such as believe(p) and potentially-true(p). Is
it useful to take such epistemic annotations into account in the theory of mental
models?

We considered logic programs as classical formulas with predicate groups.
The assignment of predicate groups is determined by the position of predicate
occurrences with respect to the rules of the original program (e.g. an occurrence
of p in a head corresponds to p0, an occurrence in a negated body literal to p1). In
consequence, logic programming is viewed just as a generalization of circumscrip-
tion where only some occurrences of a predicate are subjected to minimization.
The non-classical rule syntax of logic programs is then just a device to indicate
these occurrences. Can this observation be matched with rationales for human
reasoning, ways in which humans understand conditionals? Can the “fallacies”
observed in human reasoning be explained and systematized as patterns of the
interplay of predicate groups that indicate epistemic status?
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A Proofs

A.1 Notation in Proofs

In proofs we basically use the notation and symbols as specified for the main
part of the paper in Section 2. In addition we use the following:

Notation for Systematic Replacement. If i, j, k, l are predicate groups, we
write a formula G that is over two different predicate groups i and j also as
G[i, j] and let G[k, l] denote G[i, j] with all occurrences of predicates from group i

replaced by their correspondents from group k, and predicates from group j by
their correspondents from l.

Notation for Modified Interpretations. The notation I[L] specifies an in-
terpretation that is like a given one I except that it contains a given literal L,
no matter whether I contains that literal or not:

I[L] def= (I − {L}) ∪ {L}. (xxii)

This notation is generalized for sets of literals M that are consistent, that is do
not contain a literal and its complement:

I[M ] def= (I −M) ∪M. (xxiii)

Abbreviations. In justifications of proof steps we use the following abbrevia-
tions:

con. for contracting the definition of
def. for the definition of
exp. for expanding the definition of

A.2 Proofs of Theorems in Section 5

Theorem 1 (Encoding Open Predicates with Completion) Let F be the
classical representation of a normal program and let O be a set of ungrouped
predicates such that L(F ) ∩O0 = ∅. Define

E def=
∧

p∈O

(p0 ← p2).

It then holds that:

(i) comp(F ∧ E, {}) ≡ comp(F,O).

(ii) fitting(F ∧ E, {}) ≡ fitting(F,O).
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Proof (Sketch). Since F is the classical representation of a normal logic program
and L(F ) ∩ O0 = ∅, we know that F is equivalent to a formula of a particular
syntactic form: Let C def= P − O. For each p ∈ C there exists a formula Gp[2, 1]
such that

F ≡
∧

p∈C

(p0 ← Gp[2, 1]). (xxiv)

Theorem 3.i is then obtained from the following equivalences, which can be shown
with the definition of comp and Proposition 1: comp(F ∧ E, {}) ≡

∧
p∈C(p0 ↔

Gp[0, 0])∧
∧

p∈O(p0 ↔ p0) ≡
∧

p∈C(p0 ↔ Gp[0, 0]) ≡ comp(F,O). Theorem 3.ii is
obtained from the following equivalences, which can be shown similarly, by taking
in addition Proposition 3 into account: fitting(F ∧ E, {}) ≡ cons ∧

∧
p∈C((p0 ←

Gp[0, 1])∧ (p1 → Gp[1, 0]))∧
∧

p∈O((p0 ← p0)∧ (p1 → p1)) ≡ cons∧
∧

p∈C((p0 ←

Gp[0, 1]) ∧ (p1 → Gp[1, 0])) ≡ fitting(F,O). ⊓⊔

In the proof of Theorem 2 below we make at several times use of the following
property of projection:

Proposition A1 (Modifying Models Outside the Formula Base). If F ≡
projectS(F ), I |= F , and I ∩ S ⊆ J , then J |= F .

Theorem 2 (Encoding Open Predicates with Stable Models) Let F be
the classical representation of a normal program and let O be a set of ungrouped
predicates such that L(F ) ∩ O0 = ∅. Assume that for each p ∈ O there exists
a distinguished ungrouped predicate not p that is neither in O nor occurs in F .
Define N def= {not p | p ∈ O}. Define

E def=
∧

p∈O

((p0 ← ¬not p1) ∧ (not p0 ← ¬p1)).

It then holds that:

(iii) forgetN0(stable(F ∧ E, {})) ≡ forgetN0(stable(F,O)).

(iv) forgetN0∪N1(pstable(F ∧ E, {})) ≡ forgetN0∪N1(pstable(F,O)).

Proof. (3.iii) Define C def= P−(O∪N); F ′ def= ren2\0(F ); H def=
∧

not p∈N (not p1 ↔

not p0); and 0 = 1 def=
∧

p∈P(p0 ↔ p1). It then holds that:

F ′ ≡ projectC0∪C1∪O0∪O1(F ′). (xxv)

E ≡ projectO0∪O1∪N0∪N1(E). (xxvi)

We now bring the two sides of the theorem into forms which are suitable to
show their equivalence. By expanding the definitions of stable and ren, along
with properties of projection and circumscription, for left side the following
equivalences can be shown:

forgetN0(stable(F ∧ E, {})) (xxvii)

≡ forgetN0(ren1\0(circ+0∪1(F ′ ∧ E))) (xxviii)

≡ forgetN0(forget1(1 = 0 ∧ circ+0∪1(F ′ ∧ E))) (xxix)

≡ forget1(1 = 0 ∧ forgetN0∪N1(H ∧ circ+0∪1(F ′ ∧ E))). (xxx)
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And for the right side:

forgetN0(stable(F,O)) (xxxi)

≡ forgetN0(ren1\0(circ+0∪1∪O0(F ′))) (xxxii)

≡ forgetN0(forget1(1 = 0 ∧ circ+0∪1∪O0(F ′))) (xxxiii)

≡ forget1(1 = 0 ∧ circ+C0∪1∪O0(F ′)). (xxxiv)

The theorem follows from the equivalence of the argument formulas of the for-
getting operator in formulas (xxx) and (xxxiv), which we are going to show:

1 = 0∧ forgetN0∪N1(H ∧ circ+0∪1(F ′∧ E)) ≡ 1 = 0∧circ+C0∪1∪O0(F ′). (xxxv)

The left-to-right direction of equivalence (xxxv) can be shown as follows. Con-
sider the following table. Let I be an interpretation that satisfies the left side
of (xxxv), but not the right side. Assumptions (1) and (2) follow from this. We
show that they lead to a contradiction (25).

(1) I |= forgetN0∪N1(H ∧ circ+0∪j(F ′ ∧ E)). assumption

(2) I 6|= circ+C0∪1∪O0(F ′). assumption
(3) There exists a J such that 9

>

>

=

>

>

;

by (1), exp. forget, project

(4) J |= F ′,
(5) J |= E,
(6) J |= ¬raise+0∪1

(F ′ ∧ E),
(7) J − (N0 ∪N1) = I − (N0 ∪N1).
(8) I |= F ′. by (7), (4), (xxv), Prop. A1
(9) I |= raise+C0∪1∪O0(F ′). by (8), (2), exp. circ

(10) There exists a K such that
)

by (9), Prop. A4
(11) K |= F ′,
(12) K ∩ (1 ∪O0) = I ∩ (1 ∪O0),
(13) K ∩ +C0 ⊂ I ∩ +C0.
(14) Let K′ = K[J ∩ (N0 ∪N1)].
(15) K′ |= F ′. by (14), (11), (4), Prop. A1
(16) K′ ∩ (O0 ∪N0) = J ∩ (O0 ∪N0). by (14), (12), (7)
(17) K′ ∩ +C0 ⊂ J ∩ +C0. by (14), (13), (7)
(18) K′ ∩ +0 ⊂ J ∩ +0. by (17), (16), (1)
(19) K′ ∩N1 = J ∩N1. by (14)
(20) K′ ∩ (O1 ∪ C1) = J ∩ (O1 ∪ C1). by (14), (27), (7)
(21) K′ ∩ 1 = J ∩ 1. by (20), (19), (1)
(22) K′ ∩ (O0 ∪O1 ∪N0 ∪N1) =

J ∩ (O0 ∪O1 ∪N0 ∪N1) by (21), (31)
(23) K′ |= E. by (22), (5), (xxvi), Prop. A1
(24) J |= raise+0∪1

(F ′ ∧ E). by (23), (21), (18), (15), Prop. A4
(25) contradiction. by (39), (6)

The right-to-left direction of equivalence (xxxv) can be shown as follows. Con-
sider the following table. Let I be an interpretation that satisfies the right side
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of equivalence (xxxv), assumptions (1) and (2). We show that I also satisfies the
right side, corresponding to steps (1) and (11).

(1) I |= 1 = 0. assumption
(2) I |= circ+C0∪1∪O0(F ′). assumption
(3) I |= F ′ by (2), exp. circ

(4) I |= ¬raise+C0∪1∪O0(F ′) by (2), exp. circ

(5) Let J def= I[{+not p0|−p1 ∈ I ∩O1} ∪
{−not p0|+p1 ∈ I ∩O1} ∪
{+not p1|−p0 ∈ I ∩O0} ∪
{−not p1|+p0 ∈ I ∩O0}].

(6) J |= F ′. by (5), (3), (xxv), Prop. A1
(7) J |= E. by (5)
(8) J − (N0 ∪N1) = I − (N0 ∪N1). by (5)
(9) J |= ¬raise+0∪1

(F ′ ∧ E). shown below
(10) J |= H. by (5), (1)
(11) I |= forgetN0∪N1(H ∧ circ+0∪1

(F ′ ∧ E)) by (10)–(6), con. circ, def. forget,
con. project

It remains to show step (9). We show that assuming its negation, step (12), leads
to a contradiction (34).

(12) J |= raise+0∪1
(F ′ ∧ E) assumption

(13) There exists a K such that: 9

>

>

=

>

>

;

by (12), Prop. A4
(14) K |= F ′,
(15) K |= E,
(16) K ∩ 1 = J ∩ 1,
(17) K ∩ +0 ⊂ J ∩ +0.
(18) For all members +p0 of J ∩ +O0 it holds that:
(19) J |= p0, by (18)
(20) J |= ¬not p1, by (19), (5)
(21) K |= ¬not p1, by (20), (16)
(22) K |= p0, by (21), (15)
(23) +p0 ∈ K ∩ +O. by (22), (18)
(24) K ∩ +O0 6⊂ J ∩ +O0. by (23), (18)
(25) K ∩ +N0 6⊂ J ∩ +N0. analogously to (24)
(26) K ∩ +C0 ⊂ J ∩ +C0. by (25), (24), (17)
(27) K ∩ +C0 ⊂ I ∩ +C0. by (26), (5)
(28) Let K′ = K[I ∩N1].
(29) K′ |= F ′. by (28), (16), (xxv)), Prop. A1
(30) K′ ∩ 1 = I ∩ 1. by (28), (16), (8)
(31) K′ ∩O0 = I ∩O0. by (28), (24), (17), (8)
(32) K′ ∩ +C0 ⊂ I ∩ +C0. by (28), (27)
(33) I |= raise+C0∪1∪O0(F ′). by (32)–(29), Prop. A4
(34) contradiction. by (33), (4)

(3.iv) Can be shown analogously to Theorem 3.iii: Define C def= P − (O ∪
N); F ′ def= cons ∧ ren[2\0,1\3](F ) ∧ ren[1\3,0\1,2\1,3\2](F ); E′ def= ren[2\0,1\3](E) ∧
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ren[1\3,0\1,2\1,3\2](E); H def=
∧

not p∈N ((not p2 ↔ not p0) ∧ (not p3 ↔ not p1)).
It then holds that:

F ′ ≡ projectC0∪C1∪C2∪C3∪O0∪O1∪O2∪O3(F ′). (xxxvi)

E′ ≡
∧

p∈O((p0 ← ¬not p3) ∧ (not p0 ← ¬p3) ∧
(p1 ← ¬not p2) ∧ (not p1 ← ¬p2)).

(xxxvii)

E′ ≡ projectO0∪O1∪O2∪O3∪N0∪N1∪N2∪N3(E′). (xxxviii)

As in the proof of Proposition (3.iii), the two sides of the theorem can be brought
into forms suitable for showing their equivalence. For the left side:

forgetN0∪N1(pstable(F ∧ E, {})) (xxxix)

≡ forget2∪3(2 = 0 ∧ 3 = 1 ∧
forgetN0∪N1∪N2∪N3(H ∧ circ+0∪+1∪2∪3(F ′ ∧ E′)).

(xl)

And for the right side:

forgetN0∪N1(pstable(F,O)) (xli)

≡ forget2∪3(2 = 0 ∧ 3 = 1 ∧ circ+C0∪+C1∪2∪3∪O0∪O1(F ′)). (xlii)

The theorem follows from the equivalence of the argument formulas of the for-
getting operator in formulas (xl) and (xlii), which can be shown like equiva-
lence (xxxv) in the proof of Theorem 3.iii, but with 0 ∪ 1 in place of 0; 2 ∪ 3 in
place of 1; E′ in place of E; and F ′ as well as H as defined above. ⊓⊔

A.3 Proofs of Theorem in Section 6

In the proof of Theorem 3 we use some additional material. An operator for so-
called raising compactly expresses a portion of the definition of circ [Wer10c]. It
is defined, like circ and proj in Table 1, with a clause that specifies its semantics:

I |= raiseS(F ) iffdef there exists a J such that
J |= F and J ∩ S ⊂ I ∩ S.

(xliii)

Now scope-determined circumscription, and thus also least can be characterized
in terms of raising:

Proposition A2 (Circumscription and Least in Terms of Raising).

(i) circS(F ) ≡ F ∧ ¬raiseS(F ).

(ii) least(F ) ≡ F ∧ ¬raise+0∪−1(F ).

Raising is, like projection, monotonic:

Proposition A3 (Monotonicity of Raising). If F1 |= F2, then raiseS(F1) |=
raiseS(F2).
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The following proposition provides an alternate characterization of raising that
refers to the biscope and uniscope of a scope, two disjoint subsets into which
a scope can be partitioned: The biscope contains those members of the scope
whose complement is also a member of the scope (thus they are “bi-polar” mem-
bers). The uniscope contains the remaining members of the scope, that is, those
whose complement is not also a member of the scope (thus they are “uni-polar”
members). The following definitions provide formal notation for this:

bsc(S) def= S ∩ S. (xliv)

usc(S) def= S − S. (xlv)

Now raising can be characterized as follows:

Proposition A4 (Raising in Terms of Biscopes and Uniscopes).

I |= raiseS(F )

if and only if there exists a J such that

1. J |= F ,
2. J ∩ bsc(S) = I ∩ bsc(S), and
3. J ∩ usc(S) ⊂ I ∩ usc(S).

Theorem 3 (Three-Valued Correspondence for Fitting Semantics) Let
F be the classical representation of a normal logic program and let F ′ be the
Clark’s completion of the program considered as S3-formula (that is, without
assignment of predicate groups and with the logic operators of S3 in place of the
corresponding operators of propositional logic). If I is an interpretation over (at
least) predicates in groups 0 and 1, then the following statements are equivalent:

1. I |= least(fitting(F, {})).
2. I |= least(cons ∧ bino(F ′)).
3. I is a least model of the S3-formula F ′.

Proof. Equivalence of statements (2.) and (3.) follows from Proposition 4. We
now show equivalence of (1.) and (2.). Since F is the classical representation
of a normal logic program, for each p ∈ P there exists a formula Gp[2, 1] with
⊤,⊥,¬,∧ and ∨ as only logic operators such that

F ≡
∧

p∈P

(p0 ← Gp[2, 1]), (xlvi)

and, moreover, for different predicate groups i and j, any atoms from group i

are only positive in the Gp[i, j], and atoms from j only negative, thus:

For all p ∈ P it holds that Gp[i, j] ≡ forget
−i∪+j(Gp[i, j]). (xlvii)

With the definition of fitting and Propositions 1 and 3, from (xlvi) it follows that

fitting(F, {}) ≡ cons ∧
∧

p∈P

((p0 ← Gp[0, 1]) ∧ (p1 → Gp[1, 0])). (xlviii)
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With the definition of bin0 and bin1, from (xlvi) it follows that

cons ∧ bin0(F ′) ≡ cons ∧
∧

p∈P

((p0 ↔ Gp[0, 1]) ∧ (p1 ↔ Gp[1, 0])). (xlix)

Now let X, Y be formulas defined as follows:

X def=
∧

p∈P

((p0 ← Gp[0, 1]) ∧ (p1 → Gp[1, 0])), (l)

Y def=
∧

p∈P

((p0 → Gp[0, 1]) ∧ (p1 ← Gp[1, 0])). (li)

Thus, least(fitting(F, {})) ≡ least(cons ∧ X) ≡ cons ∧ least(X) and least(cons ∧
bin0(F ′)) ≡ least(cons ∧ X ∧ Y ) ≡ cons ∧ least(X ∧ Y ). The last step in these
equivalences, moving cons to the outside of least, is justified by Proposition 2.
The theorem then follows from the following equivalence, which we are going to
show:

least(X) ≡ least(X ∧ Y ). (lii)

The left-to-right direction of (lii) can be proven as follows. Consider the table
below. The left-to-right direction of Proposition (lii) is derived as step (5), with
step (2) remaining to be shown:

(1) least(X) |= X. by Prop. 4.ii
(2) least(X) |= Y . shown below
(3) ¬raise+0∪−1

(X) |= ¬raise+0∪−1
(X ∧ Y ). by Prop. A3

(4) least(X) |= X ∧ Y ∧ ¬raise+0∪−1
(X ∧ Y ). by (3), (2), (1), Prop. 4.ii

(5) least(X) |= least(X ∧ Y ). by (4), Prop. 4.ii

Step (2) above can be shown as follows. Consider the table below. Let I be an
interpretation that satisfies least(X), step (6). We derive as step (27) that I is
also a model of Y .

(6) I |= least(X). assumption
(7) I |= X. by (6), Prop. 4.ii
(8) I |= ¬raise+0∪−1

(X). by (6), Prop. 4.ii
(9) There does not exist a J such that:

J |= X and J ∩ (+0 ∪ −1) ⊂ I ∩ (+0 ∪ −1). by (8) and the def. (xliii)
(10) Let p be an arbitrary member of P.
(11) Let X ′ def= (p1 → Gp[1, 0]) ∧

V

q∈P−{p}((q0 ← Gq[0, 1]) ∧ (q1 → Gq[1, 0])).

(12) Gp[0, 1] ≡ forget{−p0}(Gp[0, 1]). by (xlvii)

(13) I |= X ′. by (11), (7), (l)
(14) X ′ ≡ forget{+p0}(X ′). by (11), (l), (xlvii)

(15) Assume the case that I |= p0. assumption
(16) I[−p0] 6|= X. by (15), (9), (7)
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(17) I[−p0] |= X ′. by (14), (13)
(18) I[−p0] 6|= p0 ← Gp[0, 1]. by (17), (16), (11), (l)
(19) I[−p0] |= Gp[0, 1]. by (18)
(20) I |= Gp[0, 1]. by (19), (12)
(21) I |= p0 → Gp[0, 1]. by (20)
(22) Assume complementary to (15) that I |= ¬p0. assumption
(23) I |= p0 → Gp[0, 1]. by (22)
(24) I |= p0 → Gp[0, 1]. by (23), (22), (21), (15)
(25) I |= p1 ← Gp[1, 0]. analogously to (24)
(26) I |=

V

p∈P((p0 → Gp[0, 1]) ∧ (p1 ← Gp[1, 0])). by (25), (24), (10)

(27) I |= Y . by (26), (li)

The right-to-left direction of (lii) can be shown as follows. Consider the following
table. We will prove step (1) which is equivalent to step (3), the right-to-left
direction of (lii).

(1) X ∧ Y ∧ raise+0∪−1
(X) |= raise+0∪−1

(X ∧ Y )
(2) iff X ∧ Y ∧ ¬raise+0∪−1

(X ∧ Y ) |= ¬raise+0∪−1
(X)

(3) iff least(X ∧ Y ) |= least(X). by Prop. 4.ii

Step (1) above can be shown as follows. Consider the following table. Let I be
an interpretation that satisfies the left side of (1), that is steps (4)–(6).

(4) I |= X. assumption
(5) I |= Y . assumption
(6) I |= raise+0∪−1

(X). assumption
(7) There exists a J such that: ff

by (6), (xliii)(8) J |= X

(9) J ∩ (+0 ∪ −1) ⊂ I ∩ (+0 ∪ −1).
(10) There exists a K such that:

)

by (7), (5), (4) as shown below
(11) K |= X,
(12) K |= Y ,
(13) K ∩ (+0 ∪ −1) ⊂ I ∩ (+0 ∪ −1).
(14) I |= raise+0∪−1

(X ∧ Y ). by (10)–(13), (xliii)

We prove steps (10)–(13) by giving a method for constructing a suitable K. The
method maintains three parameters K ′, (the representation of) an interpreta-
tion, Y ′ and Y ′′, conjunctions of implications from Y . They are initialized as
follows:

K ′ := J ; Y ′ := ⊤; Y ′′ := Y. (liii)

The method proceeds in a loop: While there is an implication or reverse impli-
cation C in Y ′′ that is not satisfied by K ′, move C from Y ′′ to Y ′; if C is of
the form p0 → Gp[0, 1] for some p ∈ P, then assign K ′ := K ′[−p0]; otherwise (C
must then be of the form p1 ← Gp[1, 0] for some p ∈ P) assign K ′ := K ′[+p1].
On exit of the loop, return K ′ as value of K. The loop preserves the following
invariants:
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(15) K′ |= X ∧ Y ′.
(16) K′ ∩ (+0 ∪ −1) ⊆ J ∩ (+0 ∪ −1).
(17) Y ′ ∧ Y ′′ ≡ Y .
(18) For all implications C in Y ′:

If C = (p0 → Gp[0, 1]), then K′ |= ¬p0; else C = (p1 ← Gp[1, 0]) and K′ |= p1.

At termination of the method it holds that K = K ′ and K ′ |= Y ′′. The required
properties of K then follow with these invariants: (11) from (15); (12) from (15)
and (17), since K |= Y ′′; (13) from (16) and (9).

It remains to prove the invariants. That they hold after initialization and that
(16)–(18) are preserved by the loop is easy to see. We show (15). Assume that in
round i+1 of the loop an implication C = p0 → Gp[0, 1] is moved from Y ′′ to Y ′.
The case for a reverse implication p1 ← Gp[1, 0] is analogous. Consider the table
below. For natural numbers n, let K ′

n and Y ′
n with denote the values of K ′ and

Y ′, respectively, when the round n is finished. Since C is moved from Y ′′ to Y ′ in
round i+1, it must holds that K ′

i 6|= C, stated as (19). Assumptions (20) and (21)
express the effects the reassignments of Y ′ and K ′ performed in round i + 1.
Step (22) and (23) are induction assumptions, corresponding to (15) and (18)
above. Let X ′ be the conjunction of all implications of X with exception of the
converse of C, that is, p0 ← Gp[0, 1], as formally expressed in (23). We derive
the induction step K ′

i+1 |= X ∧ Y ′
i+1 as step (38):

(19) K′
i 6|= p0 → Gp[0, 1]. assumption

(20) Y ′
i+1 ≡ Y ′

i ∧ (p0 → Gp[0, 1]). assumption
(21) K′

i+1 = K′
i[−p0]. assumption

(22) K′
i |= X ∧ Y ′

i . assumption
(23) For all implications D in Y ′

i there is a q ∈ P s. t.
either D = (q0 → Gq[0, 1]) and K′

i |= ¬q0;
else D = (q1 ← Gq[1, 0]) and K′

i |= q1. assumption
(24) Let X ′ def= (p1 → Gp[1, 0]) ∧

V

q∈P−{p}((q0 ← Gq[0, 1]) ∧ (q1 → Gq[1, 0])).

(25) K′
i |= X. by (22)

(26) X ≡ (p0 ← Gp[0, 1]) ∧X ′. by (24), (l)
(27) K′

i |= X ′. by (26), (25)
(28) K′

i |= p0 ← Gp[0, 1]. by (26), (25)
(29) K′

i |= ¬Gp[0, 1]. by (28), (19)
(30) ¬Gp[0, 1] ≡ forget+p0(¬Gp[0, 1]). by (xlvii)

(31) K′
i[−p0] |= p0 ← Gp[0, 1]. by (30) (29)

(32) X ′ ≡ forget+p0(X ′). by (24), (xlvii)

(33) K′
i[−p0] |= X ′. by (32), (27)

(34) K′
i[−p0] |= X. by (33), (31), (26)

(35) K′
i |= Y ′

i . by (22)
(36) K′

i[−p0] |= Y ′
i . by (35), (18)

(37) K′
i[−p0] |= Y ′

i+1. by (36), (20)
(38) K′

i+1 |= X ∧ Y ′
i+1. by (37), (34), (21)

⊓⊔


