
Lecture 1: Welcome/Introduction/Overview
Concurrency Theory Summer 2024

Dr. Stephan Mennicke

April 8th, 2024
TU Dresden, Knowledge-Based Systems Group

Welcome to Concurrency Theory in
Summer 2024

Welcome to Concurrency Theory in Summer 2024.

Organizational Issues

Room, Time, URL

1. Sessions:
Tuesdays DS2 (9:20–10:50) in APB/E005 ⇝ planned as lectures
Wednesdays DS3 (11:10–12:40) in APB/E005 ⇝ planned as exercises

2. No sessions:
• May 1 (labor day) Wednesday
• May 21 & 22 (Pentecost week)
• June 5 (dies academicus) Wednesday

3. Website:
https://iccl.inf.tu-dresden.de/web/Concurrency_Theory_(SS2024)
(slides, literature, etc.)

4. Matrix (Chat):
https://matrix.to/#/#concur:tu-dresden.de

5. Examination:
• oral examination (20-25 minutes)
• registration depending on your study/exam regulations

Dr. Stephan Mennicke Concurrency Theory 5 / 22

https://iccl.inf.tu-dresden.de/web/Concurrency_Theory_(SS2024)
https://matrix.to/#/#concur:tu-dresden.de

Introduction

What is Concurrency Theory?

Concurrency Theory = study of the semantics of concurrent languages or systems.
⇝ several activities (the processes) may run concurrently

Central Questions:
1. What is a process, mathematically?
2. What does it mean for two processes to be equal?

• seek notions of equality that are effective
• equality must be justifiable, according to the notion of process

Dr. Stephan Mennicke Concurrency Theory 7 / 22

From Functions to Processes

First, no concurrency = sequential (programming) languages

Main Tool (since the 1970s):

denotational semantics = programs are functions
• concepts are clear for functional languages (e.g., the 𝜆-calculus)
• also applicable to imperative languages

How? ⇝ next lectures

Example 1 : Consider the following two program fragments:

X := 2 and X := 1; X := X+1

They yield the same function 𝑓 . Informally, if 𝑓 is applied to store 𝑠 : Var → ℕ, then
store 𝑠′ : Var → ℕ is produced such that 𝑠′(𝑋) = 2 and 𝑠′(𝑋) = 𝑠(𝑌) for all
variables 𝑌 ≠ 𝑋.

Consequence: Programs are equal if they have the same denotation.
Dr. Stephan Mennicke Concurrency Theory 8 / 22

Now with Concurrency

Examples are troublesome in languages with concurrency features:
𝑃 ∥ 𝑄 means program 𝑃 runs concurrently with program 𝑄.

⇝ intuitively, 𝑃 ∥ 𝑄 is the parallel composition of 𝑃 and 𝑄

Example 2 : Now consider the programs in the parallel context [⋅] ∥ X := 2. Then

X := 2 ∥ X := 2

always terminates with X set to 2 while

(X := 1; X := X+1) ∥ X := 2

may terminate with values different from 2.

Consequence 1: Function equality is not preserved by parallel composition.

Consequence 2: Parallel programs are not functions, they are processes.

The Goal is Compositionality
Dr. Stephan Mennicke Concurrency Theory 9 / 22

Why Compositionality?

• allows to exploit the structure of the language for reasoning
• inference of properties from components to larger systems
• optimization of program components

We aim for a compositional semantics.

On the level of equality (i.e., equivalences) we are looking for congruences.

Dr. Stephan Mennicke Concurrency Theory 10 / 22

More Issues with Programs as Functions

Nontermination as a Feature
• concurrent programs may not terminate and yet produce meaningful computations

‣ operating systems
‣ controllers of railway stations

• in sequential languages, programs that do not terminate have mathematically undefined
(i.e., undesirable or wrong) behavior

Nondeterminism
• nondeterministic behavior is everywhere in concurrent systems
• sequential languages use powerset or powerdomain constructions

⇝ quickly becomes cumbersome
• if nondeterminism is a language feature, then we cannot distinguish it from concurrency

features

Dr. Stephan Mennicke Concurrency Theory 11 / 22

Interaction is Key

The example programs

X := 2 and X := 1; X := X+1

should be distinguished because of their interaction with the memory. The difference
between them is harmless in sequential languages: Why?

⇝ only initial and final state are visible to the outside world (i.e., the environment).

New keyword: interaction
• computation = interaction (in concurrency)
• examples:

‣ access to memory cells
‣ queries to databases
‣ selection of a beverage at a vending machine

Dr. Stephan Mennicke Concurrency Theory 12 / 22

Processes, Behavior, and Interaction

• participants in interactions are called processes
• the behavior of a process should tell

‣ the When?
‣ and How? of interaction with the environment

• need a mathematically precise model of behavior
• interaction is kept simple: handshake synchronization

Dr. Stephan Mennicke Concurrency Theory 13 / 22

Another Example: A Vending Machine

The vending machine is capable of dispensing coffee or tea for 1€.
• it has a slot for the coin (1€);
• it has a button for picking coffee (𝑐);
• and another button for requesting tea (𝑡)

The behavior of the vending machine is described by what we can observe by interaction
⇝ experiments

The main model we use throughout the lecture is that of labeled transition systems (LTS):
• state information
• for each state, what interactions are possible

Dr. Stephan Mennicke Concurrency Theory 14 / 22

The Vending Machine as an LTS

1€

?𝑐

?𝑡

!𝑐

!𝑡

𝑃1 𝑃2

𝑃3

𝑃4

• states are 𝑃1, 𝑃2, 𝑃3, and 𝑃4
• labeled edges (i.e., transitions) tell us about the possible interactions

Dr. Stephan Mennicke Concurrency Theory 15 / 22

Labeled Transition Systems

Definition 3 (Labeled Transition System): A labeled transition system (LTS) is a triple
(Pr,Act,→) where Pr is a non-empty set, the domain of the LTS; Act is the set of
actions; and →⊆ Pr × Act × Pr is the transition relation.

The elements of Pr are sometimes called states, more often processes.

Processes range over by 𝑃 , 𝑃1, 𝑃2,… and 𝑄 or 𝑅, actions usually by 𝜇, 𝜇1, 𝜇2,….

We write 𝑃 →
𝜇

𝑄 for (𝑃 , 𝜇,𝑄) ∈→.

For every action 𝜇 ∈ Act, →
𝜇

 is a binary relation over Pr.

If 𝑠 = 𝜇1𝜇2…𝜇𝑘, then 𝑃 →
𝑠

𝑃 ′ if there are 𝑃1, 𝑃2,…, 𝑃𝑘−1 ∈ Pr such that 𝑃 →
𝜇1

𝑃1, 𝑃1 →
𝜇2

𝑃2, …, 𝑃𝑘−1 →
𝜇𝑘

𝑃 ′.

Write 𝑃 →
𝜇

 if there is a 𝑃 ′ such that 𝑃 →
𝜇

𝑃 ′ and 𝑃 ↛
𝜇

 if there is none.

Dr. Stephan Mennicke Concurrency Theory 16 / 22

The Vending Machine as an LTS

1€

?𝑐

?𝑡

!𝑐

!𝑡

𝑃1 𝑃2

𝑃3

𝑃4

This is the LTS 𝑉 = (Pr,Act,→) where Pr = {𝑃1, 𝑃2, 𝑃3, 𝑃4}, Act = {1€, ?𝑐, ?𝑡, !𝑐, !𝑡},
and →= {(𝑃1, 1€, 𝑃2), (𝑃2, ?𝑐, 𝑃3), (𝑃2, ?𝑡, 𝑃4), (𝑃3, !𝑐, 𝑃1), (𝑃4, !𝑡, 𝑃1)}

Dr. Stephan Mennicke Concurrency Theory 17 / 22

Classes of LTSs and Processes

Definition 4 (Induced LTS) : Let 𝐿 be an LTS and 𝑃 a process of 𝐿. The induced LTS
by 𝑃 is the smallest LTS 𝐿′ (with domain Pr) such that 𝑃 ∈ Pr, Act is the same action
set as for 𝐿, and if 𝑄 ∈ Pr and there is a transition 𝑄 →

𝜇
𝑄′ in 𝐿, then 𝑄′ ∈ Pr and

𝑄 →
𝜇

𝑄′ is a transition of 𝐿′.

Definition 5 (LTS Classes) : An LTS is
• image-finite if for each 𝜇, relation →

𝜇
 is image-finite (i.e., for all 𝑃 , the set

{𝑃 ′ | 𝑃 →
𝜇

𝑃 ′} is finite);
• finitely branching if it is image-finite and, for each 𝑃 , the set {𝜇 |𝑃 →

𝜇
} is finite;

• finite-state if it has a finite number of states;
• finite if it is finite-state and acyclic;
• deterministic if all processes are deterministic (i.e., for 𝑃 and 𝜇, 𝑃 →

𝜇
𝑃1 and 𝑃 →

𝜇
𝑃2

implies 𝑃1 = 𝑃2)

Dr. Stephan Mennicke Concurrency Theory 18 / 22

Summary and Overview

Summary

• denotations as sound basis for sequential programming language semantics
• denotations insufficient when concurrency is involved

‣ computation is interaction
‣ interaction between processes

• labeled transition systems (Definition 3) as the model for behavior
‣ basic notions and notations
‣ classes of LTSs and processes (Definition 5)

Dr. Stephan Mennicke Concurrency Theory 20 / 22

Overview

Part 0: Completing the Introduction (next)
• learning about bisimilarity and bisimulations

Part 1: Semantics of (Sequential) Programming Languages
• WHILE – an old friend
• denotational semantics (a baseline and an exercise of the inductive method)
• natural semantics and (structural) operational semantics

Part 2: Towards Parallel Programming Languages
• bisimilarity and its success story
• deep-dive into induction and coinduction
• algebraic properties of bisimilarity

Part 3: Expressive Power
• Calculus of Communicating Systems (CCS)
• Petri nets

Dr. Stephan Mennicke Concurrency Theory 21 / 22

Literature

• Sangiorgi, D. (2012). Introduction to bisimulation and coinduction. Cambridge
University Press.

• Esparza, J. Petri Nets Lecture Notes from a course given at TU Munich https://archive.
model.in.tum.de/um/courses/petri/SS2019/PNSkript.pdf

• Reisig, W. (2013). Understanding Petri Nets. Springer Berlin Heidelberg.

• Sangiorgi, D., & Walker, D. (2003). The pi-calculus: a theory of mobile processes.
Cambridge University Press.

• Milner, R. (1980). A calculus of communicating systems. Springer Berlin Heidelberg.

• Milner, R. (1999). Communicating and mobile systems. Cambridge University Press.

• Davide Sangiorgi (2012). Advanced topics in bisimulation and coinduction.
Cambridge University Press.

Dr. Stephan Mennicke Concurrency Theory 22 / 22

https://archive.model.in.tum.de/um/courses/petri/SS2019/PNSkript.pdf
https://archive.model.in.tum.de/um/courses/petri/SS2019/PNSkript.pdf

	Nontermination as a Feature
	Nondeterminism

