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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. ∃x , y , z, u, v .
(
r(x , y , z, u) ∧ s(z, u, v)

)
2. ∃x , y , z, u, v .

(
a(x , y) ∧ b(y , z) ∧ c(z, u) ∧ d(u, v) ∧ e(v , z) ∧ f(z, x) ∧ d(x , u) ∧ d(u, y)

)

Definition (Lecture 6, Slide 23)
The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.

Solution.
1.

x y

z uv

2.
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Exercise 2
Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue
why there cannot be a tree decomposition of smaller width.

1.
1

2

3

4

5

6

7

8

2.
1

2

3

4

5

6

7

8

9

3.
1

2

3

4

5

6

7

8

9 10

4.
1

2

3

4

5

6

7

8

Solution.

3.
1

2

3

2 4

3 3 5

4 4 6

5 5 7

6 6 8

7

4 6

10

4

9 10

⇝ tree width 2.

4.
1

2

3

4

3 5

4 6

5 7

6 8

⇝ tree width 3.
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Exercise 3
Exercise. Show that the n × n grid has a tree width ≤ n by finding a suitable tree decomposition of width n. For
example, the following 4 × 4 grid has tree width 4:

a b c d

e f g h

i j k l

m n o p

Solution.
a b c d

e

b c d

fe

c d

gfe

d

hgfe

e f g h

i

f

ji

g h

g

kji

h

h

lkji

i j k l

m

m n

j k l

n o

k l

p
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h

h

lkji

i j k l

m

m n

j k l

n o

k l

p
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Exercise 4
Exercise. Show that a clique (fully connected graph) of size n has tree width n − 1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width ≤ k − 1 iff k cops have a winning strategy in the cops & robber game on G.

Solution.
▶ Consider an n-clique.
▶ Clearly, n cops have a winning strategy: they can occupy every vertex.
▶ Thus, an n-clique has tree width at most n − 1.
▶ Consider the cops & robber game with n − 1 cops.
▶ Every vertex has n − 1 neighbours.
▶ While the cops can occupy all neighbouring vertices, they cannot catch the robber: if they move to the robbers

position, one of the neighbouring vertices becomes free.
▶ Thus, the robber wins if there are at most n − 1 cops.
▶ Hence the n-clique cannot have tree width ≤ n − 2.
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Exercise 5
Exercise. Recall that a graph is 3-colourable if one can assign three colours to its vertices in such a way that
neighbouring vertices never share the same colour. Let C3 be the set of all 3-colourable graphs. Are the graphs in C3
of bounded or unbounded tree width? Explain your answer.

Solution.
▶ Any n × n grid is 2-colourable.
▶ Hence, C3 contains all grids.
▶ Grids have unbounded tree width.
▶ Thus, C3 contains graphs of unbounded tree width.
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Exercise 6
Exercise. Decide whether the following claims are true or false. Explain your answer.

1. Deleting an edge from a graph may make the tree width smaller but never larger.

2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.

3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.

4. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but
never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width ≤ k − 1 iff k cops have a winning strategy in the cops & robber game on G.

Theorem (Lecture 8, Slide 17)
A hypergraph H is of hypertree width ≤ k iff k marshals have a winning strategy in the marshals & robber game on H.

Solution.

1. True: cops don’t walk along edges, so deleting edges does not invalidate winning strategies.

2. True: analogous.

3. False: Consider a hypergraph that has a hyperedge containing all vertices. Then the hypergraph is acyclic (i.e.,
has hypertree width 1), but removing the hyperedge may result in a cyclic hypergraph (i.e., hypertree width > 1).

4. True: marshals don’t occupy vertices, but hyperedges, so deleting vertices does not invalidate winning strategies.
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Exercise 7
Exercise. The following BCQ corresponds to graph (a) in Exercise 2:

∃x1, x2, x3, x4, x5, x6, x7, x8. r(x1, x2) ∧ r(x1, x3) ∧ r(x2, x4) ∧ r(x3, x4) ∧ r(x3, x5) ∧

r(x4, x6) ∧ r(x5, x6) ∧ r(x5, x7) ∧ r(x6, x8) ∧ r(x7, x8)

According to the logical characterisation from the lecture, this query can be expressed in the ∃-∧-fragment of FO using
only tree width+1 variables. Find such a formula.

Solution.

∃x , y , z. r(x , y) ∧ r(x , z) ∧(
∃x . r(y , x) ∧ r(z, x) ∧(
∃y . r(z, y) ∧(
∃z. r(x , z) ∧ r(y , z) ∧(
∃x . r(y , x) ∧(
∃y . r(x , y) ∧ r(z, y)

)))))
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Exercise 8
Exercise. Consider Adler’s Hypergraph:

Play the marshals & robber game on this graph.

1. Can one marshal catch the robber?

2. Can two marshals catch the robber?

3. Can three marshals catch the robber?

4. Adler et al. [Eur. J. Comb., 2007] proposed this
graph as an example where fewer marshals can
win if they are allowed to play
non-monotonically, that is, if they are not
required to shrink the remaining space in each
turn. Can you confirm her findings?

(∗) Can you explain why non-monotone play is
unavoidable in one of the above cases if the
marshals want to win?

Solution.

1. No.

2. Yes, but only non-monotonically.

3. Yes, even when playing monotonically.

(∗) The graph has hypertree width 3, but generalised hypertree width 2.
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non-monotonically, that is, if they are not
required to shrink the remaining space in each
turn. Can you confirm her findings?

(∗) Can you explain why non-monotone play is
unavoidable in one of the above cases if the
marshals want to win?

Solution.

1. No.

2. Yes, but only non-monotonically.

3. Yes, even when playing monotonically.

(∗) The graph has hypertree width 3, but generalised hypertree width 2.
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