Exercise 5: Tree width and Hypertree width

Database Theory
2023-05-09
Maximilian Marx, Markus Krdtzsch

1/66



Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ax,y, z,u,v. (r(x,y, z,u) As(z,u, v))

2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ax,y, z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))
Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.

Solution.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))

Definition (Lecture 6, Slide 23)
The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.

Solution.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.

Solution.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.

Solution.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.

Solution.
1.
X y X y
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.

Solution.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.

Solution.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.

Solution.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.

Solution.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.

Solution.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.

Solution.
1.
X y X y
] [ ]
(] (] (] v z u
\ z u
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x, u) Ad(u, y))

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.

Solution.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x,u) A d(u,y))
Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x,u) A d(u,y))
Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.
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Exercise 1
Exercise. Construct the query hypergraph and the primal graph for the following queries:
1. Ix,y,z,u,v. (r(x,y, z,u) As(z,u, v))
2. Ax,y,z,u,v. (a(x,y) Ab(y,z) Ac(z,u) Ad(u, v) Ae(v,z) Af(z,x) Ad(x,u) A d(u,y))
Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two
vertices if there is some hyperedge in G that contains these two vertices.

Solution.
1.
X y X y
(] (]
(] (] ] ; z u
\% z u
2.
X y
z
(]
\% z u

<e

20/66



Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue
why there cannot be a tree decomposition of smaller width.

2. 3.

1 3 5 7

OO LLL Lo X
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Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue
why there cannot be a tree decomposition of smaller width.

2. 3.

OO LLL Lo X

Solution.
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Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue
why there cannot be a tree decomposition of smaller width.

2. 3.

1 3 5 7
1 3 5 7 I I 1 3 5 7
2 .!l 2 i 6 &

‘ B

Solution.
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Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue
why there cannot be a tree decomposition of smaller width.

2. 3.

1 3 5 7
1 3 5 7 1 3 5 7
BN Ll L A
Solution.
1.

3 5
—_— Te—— —_— Te—
2 2 4 4 4 6 6 6 8
[ S — T —

~» tree width 2.
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Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue
why there cannot be a tree decomposition of smaller width.

1. 2 > 4.
1 3 5 7 1 3 5 7
1 3 5 7 1 3 5 7
O LLL e [IXE)
Solution.
¢:.u ion
1 3 - G._. 5 . 5._. 7
S [P (R (NP
~> tree width 2.
2.
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Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue
why there cannot be a tree decomposition of smaller width.

1. 2 > 4.
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Solution.
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Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue
why there cannot be a tree decomposition of smaller width.

1. 2 > 4.
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Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue
why there cannot be a tree decomposition of smaller width.

1. 2 > 4.
1 3 5 7 ! = > z ' > : . 1 3 5 7
LI LLL L X
T~ ‘ AN
Solution. e
3.

~> tree width 2.
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Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue
why there cannot be a tree decomposition of smaller width.

| . 3. 4.
1 3 5 7 ‘ - : :
o IBEN o XL
Solution. -
3.
|
e, Y © > tree width 2.
4,
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Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue
why there cannot be a tree decomposition of smaller width.

| . 3. 4.
1 3 5 7 ‘ - : :
o IBEN o XL
Solution. -
3.
|
e, Y © > tree width 2.
4,

2 4 I AXG 6 8
~» tree width 3.
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Exercise 3

Exercise. Show that the n x n grid has a tree width < n by finding a suitable tree decomposition of width n. For
example, the following 4 x 4 grid has tree width 4:
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Exercise 3

Exercise. Show that the n x n grid has a tree width < n by finding a suitable tree decomposition of width n. For
example, the following 4 x 4 grid has tree width 4:

Solution.
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Exercise 3

Exercise. Show that the n x n grid has a tree width < n by finding a suitable tree decomposition of width n. For
example, the following 4 x 4 grid has tree width 4:

a b c d
e f 9 h
i ] k
m n o P
Solution.
a b c d h i ] k |
e ‘ i ] k I mI
|
b c d g9 h ] k |
e f ‘ i ] k m n
|
c d f g h k I
e f g i ] n o P
d e f g h
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Exercise 4

Exercise. Show that a clique (fully connected graph) of size n has tree width n— 1.
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Exercise 4
Exercise. Show that a clique (fully connected graph) of size n has tree width n— 1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.
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Exercise 4
Exercise. Show that a clique (fully connected graph) of size n has tree width n— 1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.

Solution.
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Exercise 4
Exercise. Show that a clique (fully connected graph) of size n has tree width n— 1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.

Solution.
> Consider an n-clique.

37/66



Exercise 4
Exercise. Show that a clique (fully connected graph) of size n has tree width n— 1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.
Solution.

> Consider an n-clique.

> Clearly, n cops have a winning strategy: they can occupy every vertex.
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Exercise 4
Exercise. Show that a clique (fully connected graph) of size n has tree width n— 1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.
Solution.

> Consider an n-clique.

> Clearly, n cops have a winning strategy: they can occupy every vertex.

> Thus, an n-clique has tree width at most n— 1.
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Exercise 4
Exercise. Show that a clique (fully connected graph) of size n has tree width n— 1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.

Solution.
> Consider an n-clique.
> Clearly, n cops have a winning strategy: they can occupy every vertex.
> Thus, an n-clique has tree width at most n— 1.
> Consider the cops & robber game with n— 1 cops.
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Exercise 4
Exercise. Show that a clique (fully connected graph) of size n has tree width n— 1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.

Solution.
> Consider an n-clique.
> Clearly, n cops have a winning strategy: they can occupy every vertex.
> Thus, an n-clique has tree width at most n— 1.
> Consider the cops & robber game with n— 1 cops.
> Every vertex has n— 1 neighbours.
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Exercise 4
Exercise. Show that a clique (fully connected graph) of size n has tree width n— 1.
Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.
Solution.
> Consider an n-clique.
> Clearly, n cops have a winning strategy: they can occupy every vertex.
> Thus, an n-clique has tree width at most n— 1.
> Consider the cops & robber game with n— 1 cops.
> Every vertex has n— 1 neighbours.
>

While the cops can occupy all neighbouring vertices, they cannot catch the robber: if they move to the robbers
position, one of the neighbouring vertices becomes free.
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Exercise 4
Exercise. Show that a clique (fully connected graph) of size n has tree width n— 1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.
Solution.
> Consider an n-clique.
Clearly, n cops have a winning strategy: they can occupy every vertex.
Thus, an n-clique has tree width at most n— 1.
Consider the cops & robber game with n — 1 cops.
Every vertex has n— 1 neighbours.

While the cops can occupy all neighbouring vertices, they cannot catch the robber: if they move to the robbers
position, one of the neighbouring vertices becomes free.

> Thus, the robber wins if there are at most n— 1 cops.

vV v v VY Y
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Exercise 4
Exercise. Show that a clique (fully connected graph) of size n has tree width n— 1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.
Solution.
> Consider an n-clique.
Clearly, n cops have a winning strategy: they can occupy every vertex.
Thus, an n-clique has tree width at most n— 1.
Consider the cops & robber game with n — 1 cops.
Every vertex has n— 1 neighbours.

vV v v VY Y

While the cops can occupy all neighbouring vertices, they cannot catch the robber: if they move to the robbers
position, one of the neighbouring vertices becomes free.

> Thus, the robber wins if there are at most n— 1 cops.
> Hence the n-clique cannot have tree width < n—2.
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Exercise 5

Exercise. Recall that a graph is 3-colourable if one can assign three colours to its vertices in such a way that
neighbouring vertices never share the same colour. Let C3 be the set of all 3-colourable graphs. Are the graphs in C3
of bounded or unbounded tree width? Explain your answer.
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Exercise 5

Exercise. Recall that a graph is 3-colourable if one can assign three colours to its vertices in such a way that
neighbouring vertices never share the same colour. Let C3 be the set of all 3-colourable graphs. Are the graphs in C3
of bounded or unbounded tree width? Explain your answer.

Solution.
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Exercise 5

Exercise. Recall that a graph is 3-colourable if one can assign three colours to its vertices in such a way that
neighbouring vertices never share the same colour. Let C3 be the set of all 3-colourable graphs. Are the graphs in C3
of bounded or unbounded tree width? Explain your answer.
Solution.

> Any nx ngrid is 2-colourable.
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Exercise 5

Exercise. Recall that a graph is 3-colourable if one can assign three colours to its vertices in such a way that
neighbouring vertices never share the same colour. Let C3 be the set of all 3-colourable graphs. Are the graphs in C3

of bounded or unbounded tree width? Explain your answer.
Solution.
> Any nx ngrid is 2-colourable.

> Hence, C3 contains all grids.
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Exercise 5

Exercise. Recall that a graph is 3-colourable if one can assign three colours to its vertices in such a way that
neighbouring vertices never share the same colour. Let C3 be the set of all 3-colourable graphs. Are the graphs in C3

of bounded or unbounded tree width? Explain your answer.
Solution.

> Any nx ngrid is 2-colourable.

> Hence, C3 contains all grids.

> Grids have unbounded tree width.
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Exercise 5

Exercise. Recall that a graph is 3-colourable if one can assign three colours to its vertices in such a way that
neighbouring vertices never share the same colour. Let C3 be the set of all 3-colourable graphs. Are the graphs in C3
of bounded or unbounded tree width? Explain your answer.

Solution.

> Any nx ngrid is 2-colourable.

> Hence, C3 contains all grids.

> Grids have unbounded tree width.

> Thus, C3 contains graphs of unbounded tree width.
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Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1.

Deleting an edge from a graph may make the tree width smaller but never larger.

2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3.
4

. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but

Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.

never larger.
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Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1.

Deleting an edge from a graph may make the tree width smaller but never larger.

2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3.
4

. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but

Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.

never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.
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Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1.

Deleting an edge from a graph may make the tree width smaller but never larger.

2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3.
4

Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.

. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but

never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.

Theorem (Lecture 8, Slide 17)

A hypergraph H is of hypertree width < k iff k marshals have a winning strategy in the marshals & robber game on H.
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Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1.

Deleting an edge from a graph may make the tree width smaller but never larger.

2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3.
4

. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but

Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.

never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.

Theorem (Lecture 8, Slide 17)

A hypergraph H is of hypertree width < k iff k marshals have a winning strategy in the marshals & robber game on H.

Solution.

54/66



Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1.

Deleting an edge from a graph may make the tree width smaller but never larger.

2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3.
4

. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but

Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.

never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.

Theorem (Lecture 8, Slide 17)

A hypergraph H is of hypertree width < k iff k marshals have a winning strategy in the marshals & robber game on H.

Solution.

1. True: cops don't walk along edges, so deleting edges does not invalidate winning strategies.

55/66



Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1.

Deleting an edge from a graph may make the tree width smaller but never larger.

2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3.
4

. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but

Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.

never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.

Theorem (Lecture 8, Slide 17)

A hypergraph H is of hypertree width < k iff k marshals have a winning strategy in the marshals & robber game on H.

Solution.

1. True: cops don't walk along edges, so deleting edges does not invalidate winning strategies.
2. True: analogous.
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Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1.

Deleting an edge from a graph may make the tree width smaller but never larger.

2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3.
4

. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but

Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.

never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.

Theorem (Lecture 8, Slide 17)

A hypergraph H is of hypertree width < k iff k marshals have a winning strategy in the marshals & robber game on H.

Solution.

1. True: cops don't walk along edges, so deleting edges does not invalidate winning strategies.
2. True: analogous.

3. False: Consider a hypergraph that has a hyperedge containing all vertices. Then the hypergraph is acyclic (i.e.,

has hypertree width 1), but removing the hyperedge may result in a cyclic hypergraph (i.e., hypertree width > 1).
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Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1.

Deleting an edge from a graph may make the tree width smaller but never larger.

2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3.
4

Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.

. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but

never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph G is of tree width < k — 1 iff k cops have a winning strategy in the cops & robber game on G.

Theorem (Lecture 8, Slide 17)
A hypergraph H is of hypertree width < k iff k marshals have a winning strategy in the marshals & robber game on H.
Solution.

1.
2.
3.

True: cops don't walk along edges, so deleting edges does not invalidate winning strategies.
True: analogous.

False: Consider a hypergraph that has a hyperedge containing all vertices. Then the hypergraph is acyclic (i.e.,
has hypertree width 1), but removing the hyperedge may result in a cyclic hypergraph (i.e., hypertree width > 1).

. True: marshals don’t occupy vertices, but hyperedges, so deleting vertices does not invalidate winning strategies.
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Exercise 7

Exercise. The following BCQ corresponds to graph (a) in Exercise 2:

Ax1, X2, X3, X4, X5, X6, X7, Xa. 1(X1, X2) Ar(X1,X3) Ar(X2, Xa) A (X3, Xs) A (X3, X5) A

r(xa, X) A r(xs, X6) A r(xs,x7) A r(Xs, Xg) A r(x7,Xs)

According to the logical characterisation from the lecture, this query can be expressed in the 3-A-fragment of FO using
only tree width4-1 variables. Find such a formula.
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Exercise 7
Exercise. The following BCQ corresponds to graph (a) in Exercise 2:
Ax1, X2, X3, X4, X5, X6, X7, X8 T(X1, X2) A F(X1,X3) A F(X2, X4) A 1(X3, X4) A (X3, X5) A
r(xa, X) A r(xs, X6) A r(xs,x7) A r(Xs, Xg) A r(x7,Xs)

According to the logical characterisation from the lecture, this query can be expressed in the 3-A-fragment of FO using
only tree width4-1 variables. Find such a formula.

Solution.
Ay, z.r(x,y) Ar(x,z) A
(Hx. r(y, x) Ar(z,x) A
(Fy-r(z.y) A
(Elz. r(x,z) Ar(y,z) A
(Hx. r(y,x) A
Ay r(x.y) A "(ZuV))))))
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Exercise 8
Exercise. Consider Adler’s Hypergraph:

Play the marshals & robber game on this graph.
1. Can one marshal catch the robber?
. Can two marshals catch the robber?
. Can three marshals catch the robber?
. Adler et al. [Eur. J. Comb., 2007] proposed this

A WO N

graph as an example where fewer marshals can
win if they are allowed to play
non-monotonically, that is, if they are not
required to shrink the remaining space in each
turn. Can you confirm her findings?

Can you explain why non-monotone play is

unavoidable in one of the above cases if the
marshals want to win?
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Exercise 8

Exercise. Consider Adler’s Hypergraph:

Solution.

Play the marshals & robber game on this graph.
1. Can one marshal catch the robber?
. Can two marshals catch the robber?
. Can three marshals catch the robber?
. Adler et al. [Eur. J. Comb., 2007] proposed this

A WO N

graph as an example where fewer marshals can
win if they are allowed to play
non-monotonically, that is, if they are not
required to shrink the remaining space in each
turn. Can you confirm her findings?

Can you explain why non-monotone play is

unavoidable in one of the above cases if the
marshals want to win?
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Exercise 8
Exercise. Consider Adler’s Hypergraph:
Play the marshals & robber game on this graph.
1. Can one marshal catch the robber?

. Can two marshals catch the robber?

. Can three marshals catch the robber?

. Adler et al. [Eur. J. Comb., 2007] proposed this
graph as an example where fewer marshals can
win if they are allowed to play
non-monotonically, that is, if they are not

required to shrink the remaining space in each
turn. Can you confirm her findings?

A WO N

—
*

Can you explain why non-monotone play is
unavoidable in one of the above cases if the
marshals want to win?

Solution.
1. No.
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Exercise 8
Exercise. Consider Adler’s Hypergraph:
Play the marshals & robber game on this graph.
1. Can one marshal catch the robber?

. Can two marshals catch the robber?

. Can three marshals catch the robber?

. Adler et al. [Eur. J. Comb., 2007] proposed this
graph as an example where fewer marshals can
win if they are allowed to play
non-monotonically, that is, if they are not

required to shrink the remaining space in each
turn. Can you confirm her findings?

A WO N

—
*

Can you explain why non-monotone play is
unavoidable in one of the above cases if the
marshals want to win?

Solution.
1. No.
2. Yes, but only non-monotonically.
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Exercise 8
Exercise. Consider Adler’s Hypergraph:
Play the marshals & robber game on this graph.
1. Can one marshal catch the robber?

. Can two marshals catch the robber?

. Can three marshals catch the robber?

. Adler et al. [Eur. J. Comb., 2007] proposed this
graph as an example where fewer marshals can
win if they are allowed to play
non-monotonically, that is, if they are not

required to shrink the remaining space in each
turn. Can you confirm her findings?

A WO N

—
*

Can you explain why non-monotone play is
unavoidable in one of the above cases if the
marshals want to win?

Solution.
1. No.
2. Yes, but only non-monotonically.
3. Yes, even when playing monotonically.
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Exercise 8
Exercise. Consider Adler’s Hypergraph:

Play the marshals & robber game on this graph.

1. Can one marshal catch the robber?

A WO N

—
*

Solution.
1. No.
2. Yes, but only non-monotonically.
3. Yes, even when playing monotonically.

. Can two marshals catch the robber?
. Can three marshals catch the robber?
. Adler et al. [Eur. J. Comb., 2007] proposed this

graph as an example where fewer marshals can
win if they are allowed to play
non-monotonically, that is, if they are not
required to shrink the remaining space in each
turn. Can you confirm her findings?

Can you explain why non-monotone play is

unavoidable in one of the above cases if the
marshals want to win?

() The graph has hypertree width 3, but generalised hypertree width 2.

66/66



