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Abstract

Abstract dialectical frameworks (ADFs) have recently been proposed as a versatile gen-
eralization of Dung’s abstract argumentation frameworks (AFs). In this paper, we present
a comprehensive analysis of the computational complexity of ADFs. Our results show that
while ADF's are one level up in the polynomial hierarchy compared to AFs, there is a useful
subclass of ADF's which is as complex as AFs while arguably offering more modeling ca-
pacities. As a technical vehicle, we employ the approximation fixpoint theory of Denecker,
Marek and Truszczynski, thus showing that it is also a useful tool for complexity analysis
of operator-based semantics.

1 Introduction

Formal models of argumentation are increasingly being recognized as viable tools in knowledge
representation and reasoning [Bench-Capon and Dunne, 2007]. A particularly successful form-
alism are Dung’s abstract argumentation frameworks (AFs) [1995]. AFs treat arguments as
abstract entities and natively represent only attacks between them using a binary relation. Typ-
ically, abstract argumentation frameworks are used as a target language for translations from
more concrete languages. For example, the Carneades formalism for structured argumentation
[Gordon et al., 2007] has been translated to AFs [Van Gijzel and Prakken, 2011]; Caminada and
Amgoud [2007] and Wyner et al. [2013] translate rule-based defeasible theories into AFs. Des-
pite their popularity, abstract argumentation frameworks have limitations. Most significantly,
their limited expressiveness is a notable obstacle for applications: AF arguments can only at-
tack one another. Furthermore, Caminada and Amgoud [2007] observed how AFs that arise as
translations of defeasible theories sometimes lead to unintuitive conclusions.

To address the limitations of abstract argumentation frameworks, researchers have proposed
quite a number of generalizations of AFs [Brewka et al., 2013b]. Among the most general
of those are Brewka and Woltran’s abstract dialectical frameworks (ADFs) [2010]. ADFs are
even more abstract than AFs: while in AFs arguments are abstract and the relation between
arguments is fixed to attack, in ADFs also the relations are abstract (and called links). The
relationship between different arguments (called statements in ADFSs) is specified by acceptance
conditions. These are Boolean functions indicating the conditions under which a statement s
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can be accepted when given the acceptance status of all statements with a direct link to s (its
parents). ADFs have been successfully employed to address the shortcomings of AFs: Brewka and
Gordon [2010] translated Carneades to ADFs and for the first time allowed cyclic dependencies
amongst arguments; for rule-based defeasible theories we [Strass, 2013b] showed how to deal with
the problems observed by Caminada and Amgoud [2007].

There is a great number of semantics for AFs already, and many of them have been generalized
to ADFs. Thus it might not be clear to potential ADF users which semantics are adequate
for a particular application domain. In this regard, knowing the computational complexity of
semantics can be a valuable guide. However, existing complexity results for ADFs are scattered
over different papers, miss several semantics and some of them present upper bounds only. In this
paper, we provide a comprehensive complexity analysis for ADFs. In line with the literature, we
represent acceptance conditions by propositional formulas as they provide a compact and elegant
way to represent Boolean functions.

Technically, we base our complexity analysis on the approximation fixpoint theory (AFT)
by Denecker et al. [2000, 2003, 2004]. This powerful framework provides an algebraic account
of how monotone and nonmonotone two-valued operators can be approximated by monotone
three- or four-valued operators. (As an example of an operator to be approximated, think of the
two-valued van Emden-Kowalski consequence operator from logic programming.) AFT embodies
the intuitions of decades of KR research; we believe that this is very valuable also for relatively
recent languages (such as ADFs), because we get the enormously influential formalizations of
intuitions of Reiter and others for free. (As a liberal variation on Newton, we could say that
approximation fixpoint theory allows us to take the elevator up to the shoulders of giants instead
of walking up the stairs.) In fact, approximation fixpoint theory can be and partially has already
been used to define some of the semantics of ADFs [Brewka et al., 2013a; Strass, 2013a]. There,
we generalized various AF and logic programming semantics to ADFs using AFT, which has
provided us with two families of semantics, that we call — for reasons that will become clear
later — approzimate and ultimate, respectively. Intuitively speaking, both families approximate
the original two-valued model semantics of ADFs, where the ultimate family is more precise in
a formally defined sense. The present paper employs approximating operators for complexity
analysis and thus shows that AFT is also well-suited for studying the computational complexity
of formalisms.

Along with providing a comparison of the approximate and ultimate families of semantics,
our main results can be summarized as follows. We show that: (1) the computational complexity
of ADF decision problems is one level up in the polynomial hierarchy from their AF counterparts;
(2) the ultimate semantics are as complex as the approximate semantics, with the notable ex-
ception of two-valued stable models; (3) there is a certain subclass of ADFs, called bipolar ADFs
(BADFs), which is of the same complexity as AFs. Intuitively, in bipolar ADF's all links between
statements are supporting or attacking. To formalize these notions, Brewka and Woltran [2010]
gave a precise semantical definition of support and attack. In our work, we assume that the link
types are specified by the user along with the ADF. We consider this a harmless assumption
since the existing applications of ADFs produce bipolar ADFs where the link types are known
[Brewka and Gordon, 2010; Strass, 2013b]. This attractiveness of bipolar ADFs from a KR point
of view is the most significant result of the paper: it shows that BADFs offer — in addition to
AF-like and more general notions of attack — also a syntactical notion of support without any
increase in computational cost. Support for a statement s, in this case, can be anything among
“set support” (all statements in a certain set must be accepted for the support to become active),
“individual support” (at least one statement supporting s must be accepted for the support to
become active). In the same vein, BADF's offer “set attack” (all statements in a certain set must
be accepted for the attack to become active) and the traditional AF-like “individual attack” (at
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least one statement attacking s must be accepted for the attack to become active). Naturally,
these notions of support and attack can be freely combined.

Previously, Brewka et al. [2011] translated BADFs into AFs and suggested indirectly that
their complexities align, albeit restricted to two-valued semantics. Here we go a direct route,
which has more practical relevance since it directly affects algorithm design. Our work was also
inspired by the complexity analysis of assumption-based argumentation by Dimopoulos et al.
[2002] — they derived generic results in a way similar to ours.

The paper proceeds as follows. We first provide the background on approximation fixpoint
theory, abstract dialectical frameworks and the necessary elements of complexity theory. In the
section afterwards, we define the relevant decision problems, survey existing complexity results,
use examples to illustrate how operators revise ADF interpretations and show generic upper
complexity bounds. In the main section on complexity results for general ADFs, we back up
the upper bounds with matching lower bounds; the section afterwards does the same for bipolar
ADFs. We round up with a brief discussion of related and future work.

2 Background

A complete lattice is a partially ordered set (A,C) where every subset of A has a least upper
and a greatest lower bound. In particular, a complete lattice has a least and a greatest element.
An operator O : A — A is monotone if for all z C y we find O(z) C O(y). Anz € Ais a
fizpoint of O if O(x) = z; an x € A is a prefizpoint of O if O(z) C x and a postfizpoint of O if
2 £ O(z). Due to a fundamental result by Tarski and Knaster, for any monotone operator O on
a complete lattice, the set of its fixpoints forms a complete lattice itself [Davey and Priestley,
2002, Theorem 2.35]. In particular, its least fixpoint Ifp(O) exists.

In this paper, we will be concerned with more general algebraic structures: complete partially
ordered sets (CPOs). A CPO is a partially ordered set with a least element where each directed
subset has a least upper bound. A set is directed iff it is nonempty and each pair of elements
has an upper bound in the set. Clearly every complete lattice is a complete partially ordered
set, but not necessarily vice versa. Fortunately, complete partially ordered sets still guarantee
the existence of (least) fixpoints for monotone operators.

Theorem 1 ([Davey and Priestley, 2002, Theorem 8.22]). In a complete partially ordered set
(A,C), any C-monotone operator O : A — A has a least fixpoint.

2.1 Approximation Fixpoint Theory

Denecker et al. [2000] introduce the important concept of an approximation of an operator. In
the study of semantics of knowledge representation formalisms, elements of lattices represent
objects of interest. Operators on lattices transform such objects into others according to the
contents of some knowledge base. Consequently, fixpoints of such operators are then objects
that are fully updated — informally, the knowledge base can neither increase nor decrease the
amount of information in a fixpoint.

To study fixpoints of operators O, DMT study their approzimation operators @.! When O
operates on a set A, its approximation O operates on pairs (z,y) € A x A. Such a pair (z,y)
can be seen as representing a set of lattice elements by providing a lower bound = and an upper
bound y. Consequently, (z,y) approximates all z € A such that  C 2z C y. We will restrict our
attention to consistent pairs — those where x C y, that is, the set of approximated elements is

1The approximation of an operator O is typographically indicated by a calligraphic O.
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Kripke-Kleene semantics Ifp(O) grounded pair
admissible/reliable pair (z,y) (z,y) <; Oz, y) admissible pair
three-valued supported model (z,y) | (z,y) = O(z,y) complete pair
M-supported model (z,y) (z,y) <; O(z,y) and (x,y) is <;-maximal | preferred pair
two-valued supported model (z, z) (z,2) = O(z, x) model
two-valued stable model (z, z) x = Ifp(O'(-,z)) stable model

Table 1: Operator-based semantical notions (and their argumentation names on the right) for
a complete lattice (A,C) and an approzimating operator O : A° — A° on the consistent CPO.
While an approximating operator always possesses three-valued (post-)fizpoints, two-valued fiz-
points need not exist. Clearly, any two-valued stable model is a two-valued supported model is a
preferred pair is a complete pair is an admissible pair; furthermore the grounded semantics is a
complete pair.

nonempty; we denote the set of all consistent pairs over A by A¢. A pair (z,y) with x = y is
called exact — it “approximates” a single element of the original lattice.

It is natural to order approximating pairs according to their information content. Formally,
for x1, z2,y1,y2 € A define the information ordering (x1,y1) <; (z2,y2) iff 21 C 22 and yo C y;.
This ordering and the restriction to consistent pairs leads to a complete partially ordered set
(A°,<;), the consistent CPO. For example, the trivial pair (L, T) consisting of C-least L and
C-greatest lattice element T approximates all lattice elements and thus contains no information
— it is the least element of the CPO (A°, <;); exact pairs (z,z) are the maximal elements of
(A, <5).

To define an approximation operator O : A — A€ one essentially has to define two functions:
a function O’ : A° — A that yields a revised lower bound (first component) for a given pair;
and a function O” : A° — A that yields a revised upper bound (second component) for a given
pair. Accordingly, the overall approximation is then given by O(z,y) = (O'(x,y), 0" (x,y)) for
(z,y) € A°. The operator O : A° — A° is approzimating iff it is <;-monotone and it satisfies
O'(z,x) = O"(x,x) for all z € A, that is, O assigns exact pairs to exact pairs. Such an O then
approzimates an operator O : A — A on the original lattice iff O'(z,z) = O(x) for all x € A.

The main contribution of Denecker et al. [2000] was the association of the stable operator
to an approximating operator. Their original definition was four-valued; in this paper we are
only interested in two-valued stable models and simplified the definitions. For an approximating
operator O on a consistent CPO, a (two-valued) pair (z,z) € A® is a (two-valued) stable model
of O iff z is the least fixpoint of the operator O'(-, z) defined by w +— O’ (w, z) for w C x. This
general, lattice-theoretic approach yields a uniform treatment of the standard semantics of the
major nonmonotonic knowledge representation formalisms — logic programming, default logic
and autoepistemic logic [Denecker et al., 2003].

In subsequent work, Denecker et al. [2004] presented a general, abstract way to define the
most precise — called the wultimate — approximation of a given operator O. Most precise here
refers to a generalisation of <; to operators, where for 01, O, they define O; <; Oy iff for all
x Cy € Ait holds that O;(x,y) <; Oa(x,y).

Denecker et al. [2004] show that the most precise approximation of O is Up : A — A® with

(e9) = ([T40G) |2 E = E g}, [{0(G) 2 C 2 C})

where M denotes the greatest lower bound and U the least upper bound in the complete lattice

(4,5).
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In recent work, we defined new operator-based semantics inspired by semantics from logic
programming and abstract argumentation [Strass, 2013a].?2 An overview is in Table 1.

2.2 Abstract Dialectical Frameworks

An abstract dialectical framework (ADF) is a directed graph whose nodes represent statements
or positions which can be accepted or not. The links represent dependencies: the status of a node
s only depends on the status of its parents (denoted par(s)), that is, the nodes with a direct link
to s. In addition, each node s has an associated acceptance condition Cjy specifying the exact
conditions under which s is accepted. Cy is a function assigning to each subset of par(s) one
of the truth values t, f. Intuitively, if for some R C par(s) we have Cs(R) = t, then s will be
accepted provided the nodes in R are accepted and those in par(s) \ R are not accepted.

Definition 1. An abstract dialectical framework is a tuple = = (S, L, C') where
e S is a set of statements (positions, nodes),
e L C S xS isa set of links,

o C = {Cs}ses is a collection of total functions Cs : opar(s) _ {t, £}, one for each statement
s. The function Cjy is called acceptance condition of s.

It is often convenient to represent acceptance conditions by propositional formulas. In particular,
we will do so for the complexity results of this paper. There, each Cj is represented by a
propositional formula ¢, over par(s). Then, clearly, Cs(R N par(s)) = t iff R = ;. Furthermore,
throughout the paper we will denote ADFs by = and tacitly assume that = = (S, L, C') unless
stated otherwise.

Brewka and Woltran [2010] introduced a useful subclass of ADF's called bipolar: Intuitively, in
bipolar ADFs (BADFs) each link is supporting or attacking (or both). Formally, a link (r,s) € L
is supporting in = iff for all R C par(s), we have that Cs(R) = t implies C5(R U {r}) = t;
symmetrically, a link (r, s) € L is attacking in E iff for all R C par(s), we have that Cs(RU{r}) =
t implies Cs(R) = t. An ADF = = (S, L, C) is bipolar iff all links in L are supporting or attacking;
we use LT to denote all supporting and L~ to denote all attacking links of L in Z. For an s € S
we define attz(s) = {z | (z,s) € L™} and supp=(s) = {z | (z,s) € LT}.

The semantics of ADFs can be defined using approximating operators. For two-valued se-
mantics of ADFs we are interested in sets of statements, that is, we work in the complete lattice
(A,C) = (25,C). To approximate elements of this lattice, we use consistent pairs of sets of
statements and the associated consistent CPO (A¢, <;) — the consistent CPO over S-subset
pairs. Such a pair (X,Y) € A€ can be regarded as a three-valued interpretation where all ele-
ments in X are true, those in Y\ X are unknown and those in S\ Y are false. (This allows us to
use “pair” and “interpretation” synonymously from now on.) The following definition specifies
how to revise a given three-valued interpretation.

Definition 2 ([Strass, 2013a, Definition 3.1]). Let = be an ADF. Define the following op-
erator Gz : 25 x 25 — 25 x 25 by

gE(va) = (%(va)vgé(va))
GL(X,Y)={se S | BCpar(s),Cs(B)=t,BC X,
(par(s)\ B)NY = 0}

2To be precise, we used a slightly different technical setting there. The results can however be transferred to
the present setting [Denecker et al., 2004, Theorem 4.2].
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Intuitively, statement s is included in the revised lower bound iff the input pair provides sufficient
reason to do so, given acceptance condition Cy. Although the operator is defined for all pairs
(including inconsistent ones), its restriction to consistent pairs is well-defined since it maps con-
sistent pairs to consistent pairs. This operator defines the approximate family of ADF semantics
according to Table 1. Based on the three-valued operator Gz, a two-valued one-step consequence
operator for ADFs can be defined by G=(X) = GL(X, X ). The general result of Denecker et al.
[2004] (Theorem 5.6) then immediately defines the ultimate approximation of Gz as the operator
Uk given by Ue(X,Y) = (L(X,Y), W (X,Y)) with

OZ/{é(X,Y):{SGS| fOraHXgZQY,Z':@S}and
o W(X,)Y)={se S| forsome X CZCY,ZE ¢}

Incidentally, Brewka and Woltran [2010] already defined this operator, which was later used to
define the ultimate family of ADF semantics according to Table 1 [Brewka et al., 2013a].3 In
this paper, we will refer to the two families of three-valued semantics as “approximate ¢” and
“ultimate ¢” for o among admissible, grounded, complete, preferred and stable. For two-valued
supported models (or simply models), approximate and ultimate semantics coincide.

Although Table 1 defines two-valued stable models also for the ultimate operator, Brewka
et al. [2013a] have their own tailor-made definition of two-valued stable models. There, a two-
valued pair (M, M) is a stable model of an ADF = = (5, L, C) iff M is the lower bound of the
ultimate grounded semantics of the reduced ADF ZM = (M, LN(M x M), C™) where the reduced
acceptance formula for an s € S is given by the partial evaluation <p£0’M): For a propositional
formula ¢ over vocabulary P and X CY C P we define the partial valuation of ¢ by (X,Y)
as XY) = p[p/t : p € X][p/f : p € P\ Y]. This partial evaluation takes the two-valued part of
(X,Y) and replaces the evaluated variables by their truth values. Naturally, XY is a formula
over the vocabulary Y\ X.

It is not hard to prove that the definition of two-valued stable models given by Brewka et al.
[2013a] coincides with ultimate two-valued stable models. We start with an easy observation.

Lemma. Let ¢ be a propositional formula over vocabulary S, and let A, B, C, D be sets with
ACBCSandCCDCS.

(C7D)
(sﬁ(A’B)) — (AUC,BND)

Next, it is easy to see that M is the lower bound of the ultimate grounded semantics of the
reduced ADF =M = (M,L N (M x M),CM) if and only if (M, M) is the ultimate grounded
semantics of 2. Furthermore, M is a model of =, whence it is a model of M. Thus all
acceptance formulas in ZM are satisfiable and for any X C M we get U\ (X, M) = M. That is,

during computation of the least fixpoint of &, the upper bound remains constant at M. Now
(X,M)
for any X C M and s € S, we have s € UL(X, M) iff <st’M) is a tautology iff (<p§‘”’M)) is

a tautology iff s € UL, (X, M). So in the complete lattice (2MC), the operators UL (-, M) and
Uy (-, M) coincide. Therefore, their least fixpoints coincide.
2.3 Complexity theory

We assume familiarity with the complexity classes P, NP and coNP, as well as with polynomial
reductions and hardness and completeness for these classes. We also make use of the polynomial

3Technically, Brewka et al. [2013a] represented interpretations not by pairs (X,Y) € A¢ but by mappings
v: S — {t,f,u} into the set of truth values t (true), f (false) and u (unknown or undecided). Clearly the two
representations are interchangeable.
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hierarchy, that can be defined (using oracle Turing machines) as follows: ¥f =IIJ = Al = P,
o= NPE?, 7, = CONPE?7 AL = P> for i > 0.

As a somewhat non-standard polynomial hierarchy complexity class, we use DfD , a general-
isation of the complexity class DP to the polynomial hierarchy. A language is in DP iff it is the
intersection of a language in NP and a language in coNP. Generally, a language is in DZ_I iff it is
the intersection of a language in X" and a language in IIF. The canonical problem of DP = D§
is SAT-UNSAT, the problem to decide for a given pair (1, %2) of propositional formulas whether
1y is satisfiable and 15 is unsatisfiable. Obviously, by definition X ITF" C Dﬁl C Afil for all
1> 0.

3 Preparatory Considerations

We first introduce some notation to make precise what decision problems we will analyze. For a
set S, let

o (A°, <;) be the consistent CPO of S-subset pairs,
e O an approximating operator on (A€, <;),

e o € {adm, com, grd, pre, 2su, 2st} a semantics among admissible, complete, grounded, pre-
ferred, two-valued supported and two-valued stable semantics, respectively.

In the verification problem we decide whether (X,Y) € A is a o-model/pair of O, denoted by
VerQ(X,Y). In the ezistence problem we ask whether there exists a o-model/pair of O which is
non-trivial, i.e. different to (), S), denoted by Exists®. For query reasoning and s € S we consider
the problem of deciding whether there exists a o-model/pair (X,Y") of O s.t. s € X, denoted by
Cred?(s) (credulous reasoning) and the problem of deciding whether in all o-models/pairs (X, Y)
of O we have s € X, denoted by Skept(s) (skeptical reasoning). Note that it is no restriction
to check only for truth, since checking for falsity of an s € S can be modeled by introducing a
new statement s’ that behaves like the logical negation of s, by setting its acceptance condition
to pg = —s.

3.1 Existing results

We briefly survey — to the best of our knowledge — all existing complexity results for abstract
dialectical frameworks. For general ADF's = and the ultimate family of semantics, Brewka et al.
[2013a] have shown the following:

e Vertt is in P, Existss, is NP-complete (Proposition 5)
. Verg{jm is coNP-complete (Proposition 10)
. Vergfd and Ver’  are DY-complete (Theorem 6, Cor. 7)
e Vert is in DY (Proposition 8)
e Existsk, is ¥)'-complete (Theorem 9)

For bipolar ADFs, Brewka and Woltran [2010] showed that Ver?fd is in P (Proposition 15). So
particularly for BADFs, this paper will greatly illuminate the complexity landscape.




Technical Report 2 (2013) Analyzing the Computational Complexity of ADFs via AFT

3.2 Relationship between the operators

Since U is the ultimate approximation of Gz it is clear that for any X CY C S we have

G(X,Y) <;LE(X,Y). In other words, the ultimate revision operator produces new bounds
that are at least as tight as those of the approximate operator. More explicitly, the ultimate
new lower bound always contains the approximate new lower bound: GL(X,Y) CUL(X,Y);
conversely, the ultimate new upper bound is contained in the approximate new upper bound:
W(X,Y)CGl(X,Y). Somewhat surprisingly, it turns out that the revision operators for the
upper bound coincide.

Lemma 2. Let 2= (S,L,C) be an ADF and X CY C S.
E(X)Y) = (X,Y)

Proof. Let s € S. We will use that for all B, X,P C S, we find (P\B)NX =0 if PNX C B.
Now s € GY(X,Y)
iff 3B : B C par(s)NY and Cs(B) =t
(par(s)\ B)NX =10
iff 3B : par(s) N X € B C par(s)NY and Cy(B) =t
if 37 : X CZ CY and Cs(Z Npar(s)) =t
iff s € U(X,Y) O

The operators for computing a new lower bound are demonstrably different, since we can find
Zand (X,Y) with U4(X,Y) € G£(X,Y), as the following ADF shows.
Example 1. Consider the ADF D = ({a},{(a,a)},{®s}) with one self-dependent statement
a that has acceptance formula ¢, = a V —a. In Figure 1, we show the relevant CPO and the
behavior of approximate and ultimate operators: we see that Gp(0, {a}) <; Up(D, {a}), which
shows that in some cases the ultimate operator is strictly more precise.

So in a sense the approximate operator cannot see beyond the case distinction aV —a. As we
will see shortly, this difference really amounts to the capability of tautology checking.

Example 2. ADF E = ({a,b},{(b,a),(b,b)},{®a,vs}) has acceptance formulas ¢, = bV —b
and @, = 2b. So b is self-attacking and the link from b to a is redundant. In Figure 1, we
show the relevant CPO and the behavior of the operators Uz and Gg on this CPO.

The examples show that the approximate and ultimate families of semantics really are differ-
ent, save for one straightforward inclusion relation in case of admissible.
Corollary 3. For any ADF Z, we have the following:
1. An approximate admissible pair is an ultimate admissible pair, but not vice versa.
2. With respect to their sets of pairs, the approximate and ultimate versions of preferred,
complete and grounded semantics are C-incomparable.
Proof. 1. The inclusion follows from Gz <; Us. In Example 2, ({a},{a,b}) is ultimate admiss-

ible but not approximate admissible.

2. In Example 2, we have: (1) approximate grounded, preferred and complete semantics co-
incide; (2) ultimate grounded, preferred and complete semantics coincide; (3) approximate
grounded and ultimate grounded semantics are different with no subset relation either
way. (|
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operator visualization: - ~~.

approximate > 7 P S Tl
ultimate - - - - > e e . \\\ o
both ~-==--- - OR pa—

@, {0}) - - - -~ {a} {a b}) ({8} {a,b})

(0, {a,b})

Figure 1: Hasse diagrams of consistent CPOs for the ADF's from Example 1 (left) and Example 2
(right). Solid lines represent the information ordering <;. Directed arrows express how revision
operators map pairs to other pairs. For pairs where the revisions coincide, the arrows are densely
dashed and violet. When the operators revise a pair differently, we use a dotted red arrow for the
ultimate and a loosely dashed blue arrow for the approzimate operator. Ezxact (two-valued) pairs
are the <;-mazimal elements. For those pairs, (and any ADF Z) it is clear that the operators Us
and G= coincide since they approximate the same two-valued operator G=. In Example 1 on the
left, we can see that the ultimate operator maps all pairs to its only fizpoint ({a},{a}) where a
is true. The approzimate operator has an additional fizpoint, (0,{a}), where a is unknown. In
Ezxample 2 on the right, the major difference between the operators is whether statement a can
be derived given that b has truth value unknown. This is the case for the ultimate, but not for
the approzimate operator. Since there is no fizpoint in the upper row (showing the two-valued
operator Gg), the ADF' E does not have a two-valued model. Each of the revision operators
has however ezxactly one three-valued fizpoint, which thus constitutes the respective grounded,
preferred and complete semantics.

3.3 Operator complexities

We next analyze the computational complexity of deciding whether a single statement is con-
tained in the lower or upper bound of the revision of a given pair. This then leads to the
complexity of checking whether current lower/upper bounds are pre- or postfixpoints of the re-
vision operators for computing new lower/upper bounds, that is, whether the revisions represent
improvements in terms of the information ordering. Intuitively, these results describe how hard
it is to “use” the operators and lay the foundation for the rest of the complexity results.

Proposition 4. Let = be an ADF, s€ Sand X CY C S.
1. Deciding s € G5(X,Y) is in P.
2. Deciding G5(X,Y) C X isin P.
3. Deciding X C G£L(X,Y) isin P.

Now let O € {G=,UE}.

10
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4. Deciding s € O"(X,Y) is NP-complete.
5. Deciding O"(X,Y) CY is coNP-complete.
6. DecidingY C O"(X,Y) is NP-complete.

Proof. 1. Since X CY, we have that whenever there exists a B C X N par(s) with Cs(B) =t
and par(s)\ B C S\Y, we know that B = X N par(s): Assume there is an r € (X N
par(s)) \ B. Then r € par(s) and r ¢ B, whencer € par(s)\ BC S\Y. Byre X CY
we get v ¢ S\'Y, contradiction. Thus B = X N par(s). Now

s € GL(X,Y) iff there exists B C X N par(s) with Cs(B) =t and par(s)\ BC S\Y
iff Cs(X Npar(s)) =t and par(s) \ X CS\Y
iff Cs(X Npar(s)) =t and (Y \ X) Npar(s) =0

For acceptance functions represented by propositional formulas, Cs(X N par(s)) = t can
be decided in polynomial time, since we only have to check whether X | 5. It can be
decided in quadratic time whether there is an undecided parent r € par(s) withr € Y\ X.

2. Deciding s € G (X,Y) is NP-complete:

in NP: By definition, G (X,Y) = GL(Y, X). To verify s € GL(Y, X), we can guess a set
M C S and verify that M CY, par(s)\ M C S\ X and M = p;.

NP-hard: For hardness, we provide a reduction from SAT. Let 1) be a propositional formula
over vocabulary P. Define an ADF = = (S, L,C) as follows. Set S = P U {z} where
z ¢ P, ¢, =1 and ¢, = p for all p € P. Observe that par(z) = P, and set X = {)
andY = P. Now z € GZ(X,Y) iff z € GL(Y, X)) iff z € GL(P, () iff there is an M C P
with P\ M N0 =0 and M = ¢, iff there is an M C P with M |= v iff ¢ is satisfiable.

3. Deciding GL(X,Y) C X isin P: For each s € S\ X, we have to check whether s ¢ G=(X,Y).
Any one check can be done in polynomial time by item 1, and there are at most linearly
many checks.

4. Deciding X C GL(X,Y) is in P: For each s € X, we have to check whether s € GL(X,Y).
Again, one check can be done in polynomial time by item 1, and there are at most linearly
many checks.

5. Deciding GZ(X,Y) CY is coNP-complete:
in coNP: To show GL(Y,X) € Y, we guess an s € S\'Y and a set My C par(s) that
witnesses s € GL(Y, X).
coNP-hard: Set X = ) and Y = P. By definition, we have z ¢ P, thus z € GL(P,0)
implies GL(P,() € P. Conversely, P = S\ {z}, by definition G5(P,0) C S and hence
z ¢ GL(P,0) implies GL(P, () C P. In combination, GL(P,0) C P iff z ¢ GL(P,0). With
what we inferred above we see that GY(X,Y) CY if GL(Y,X) C Y iff G&(P,0) C P
iff z ¢ GL(P,0) iff ¢ is unsatisfiable, and so the claim follows.
6. Deciding Y C GZ(X,Y") is NP-complete:

in NP: We can guess for each s € Y a set My C par(s) to witness s € GL(Y, X). Note that
the guesses do not depend on each other.

11
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NP-hard: For hardness, we first note that p € G5(P,0) for all p € P, hence P C GL(P,0)
and S C GL(P,0) iff = € GL(P,0). Furthermore z does not occur in any acceptance
formula, so GL(S,0) = GL(P,0). Now set X = 0 and Y = S. Using item 1, it follows
that

iff 2 € GL(P,0)
iff v is satisfiable (I

These results can also be formulated in terms of partial evaluations of acceptance formulas:
We have s € GL(X,Y) iff the partial evaluation gogX"Y) is a formula without variables that has

truth value t. Similarly, we have s € GZ(X,Y) iff the partial evaluation @EX’Y) is satisfiable. Un-

der standard complexity assumptions, computing a new lower bound with the ultimate operator

is harder than with the approximate operator. This is because, intuitively, s € UL (X,Y) iff the
(X,Y)

partial evaluation g is a tautology.

Proposition 5. Let = be an ADF,s€ Sand X CY CS.
1. Deciding s € UL(X,Y) is coNP-complete.
2. Deciding UL(X,Y) C X is NP-complete.
3. Deciding X CUL(X,Y) is coNP-complete.

Proof. The hardness proofs use the same ADF for their reduction (it is the one from Proposi-
tion 4): Let 1 be a propositional formula over vocabulary P. Define an ADF = = (S,L,C) as
follows. Set S = PU{z} where z ¢ P, ¢, = and ¢, = p for allp € P.

1. Deciding s € UL(X,Y) is coNP-complete:

in coNP: To decide that s ¢ Us(X,Y), we guess a Z with X C Z C 'Y and verify that
Z FE @s.
coNP-hard: In addition to the reduction above, set X = and Y = P. Now

z € UL(X,Y) iff z € (D, P)
iff for all Z C P, we have Z = ¢,
iff for all Z C P, we have Z |= 1
iff ¢ is a tautology

2. Deciding UL(X,Y) C X is NP-complete:

in NP: To show that S\ X C S\ Ui(X,Y), for each statement s € S\ X we guess a
respective Zs with X C Z, C'Y that witnesses s ¢ U(X,Y).

NP-hard: Set X =0 and Y = P. Then
W(X,Y) C X it (0,9) C 0
> ¢ U0, S)
iff 1 is refutable

12
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3. Deciding X CUL(X,Y) is coNP-complete:

in coNP: To verify that X € UL(X,Y), we guess an s € X and the X C Z C Y that
witnesses s ¢ UL(X,Y).

coNP-hard: Set X = {z} andY = S. We observe that z does not occur in any acceptance
formula and thus U ({z},S) = U(D, P). Then

X CULX,Y) iff 2 € ({2}, 9)
iff z € UL(0, P)
iff ¢ is a tautology O

The next result considerably simplifies the complexity analysis of deciding the existence of
non-trivial pairs.

Lemma 6. Let (A,C) be a complete lattice and O an approximating operator on A°. The
following are equivalent:

1. O has a non-trivial admissible pair.
2. O has a non-trivial preferred pair.
3. O has a non-trivial complete pair.

Proof. “(1) = (2)": Let (L, T) <; (x,y) <; O(z,y). We show that there is a preferred pair
(p,q) > (z,y). Define D = {(a,b) | (x,y) <; (a,b)}, then the pair (D,<;) is a CPO on
which O is an approximating operator. (Obviously (a,b) € D implies (x,y) <; (a,b) whence
by presumption and <;-monotonicity of O we get (z,y) <; O(z,y) <; O(a,b) and O(a,b) €
D.) Now any sequence (a,b) <; O(a,b) <; O(O(a,b)) <; ... is a non-empty chain in D and

therefore has an upper bound in D. By Zorn’s lemma, the set of all O-admissible pairs in
A has a maximal element (p,q) >; (x,y) >; (L, T).

“(2) = (3)”: By [Strass, 2013a, Theorem 3.10], every preferred pair is complete.

“(3) = (1)”: Any complete pair is admissible (Table 1). O

This directly shows the equivalence of the respective decision problems, that is, it holds that
ExistsS),, = Exists'?re = Exists? ..
Regarding decision problems for querying, skeptical reasoning w.r.t. admissibility is trivial, i.e.
(@, S) is always an admissible pair in any ADF. Further credulous reasoning w.r.t. admissibility,

complete and preferred semantics coincides.

Lemma 7. Let = be an ADF, O € {Gz,U&} and s € S. Then CredS) (s) iff CredQ (s) iff

adm
Cred$.(s).

Proof. Assume (X,Y) with s € X is admissible w.r.t. O, then there exists a (X',Y’) with
(X,Y) <; (X',Y') which is preferred w.r.t. O and s € X', see proof of Lemma 6. Since any
preferred pair is also complete and any complete pair is also admissible the claim follows. (I

13
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3.4 Generic upper bounds

We now show generic upper bounds for the computational complexity of the considered problems.
This kind of analysis is in the spirit of the results by Dimopoulos et al. [2002, Section 4]. The first
item is furthermore a straightforward generalization of [Denecker et al., 2004, Theorem 6.13].

Theorem 8. Let S be a finite set, define A = 2° and let O be an approximating operator on
(A°,<;), the consistent CPO of S-subset pairs. For (X,Y) € A€ let the problems of decid-
ing whether X C O'(X,Y), as well as O"(X,Y) CY be in IIF; let the problems of deciding
O'(X,Y)C X as well as Y C O"(X,Y) be in ©F. For any pair (X,Y) € A¢ and statement
s € S, we have:

1. The least fixpoint of O can be computed in polynomial time with a polynomial number of
calls to a S -oracle.

2. Ver©

adm

3. VerQ (X.,Y) is in D}’; Cred2,(s) is in BF, ;

com com

(X,Y) is in IIF'; Cred$,, (s) is in ©F, ;

adm

4. Verge(X, Y) is in Hﬁ_l; Credge(s) is in Ef:_l; Skeptge(s) is in HZ_Q.

Proof. 1. For any (X,Y) € A€ we can use the oracle to compute an application of O by simply
asking whether z € O'(X,Y) for each z € S. This means we can compute with a linear
number of oracle calls the sets O'(X,Y) and O"(X,Y), thus the pair O(X,Y’). Hence we
can compute the sequence (0,5) <; O(0,5) <; O(0O(®,S)) <; ... which converges to the
least fixpoint after a linear number of operator applications.

2. VerQ (X,Y) isin 1Y by assumption. For Cred, (s), we guess a pair (X1,Y;) with s € X,

adm adm

(resp. s € S\ 'Y ) and check if it is admissible w.r.t. O, which is in III’ by 2.
3. Ver9

com

(X,Y) is in DY by assumption. Cred2, (s) = Cred?

com adm

(s) by Lemma 7.
4. For Ver® (X,Y), consider the co-problem, i.e. deciding whether (X,Y) is not a preferred

pre

pair. We first check if (X,Y) is a complete pair w.r.t. O, which Is in Df by 3, i.e. can be
achieved via two oracle calls as above. If this holds, we guess a (X1,Y1) with (X,Y) <;
(X1,Y1) and check if it is a complete pair w.r.t. O.

Credge(X ,Y): coincides with credulous reasoning w.r.t. admissibility, see Lemma 7;
Skeptge(s): Consider the co-problem, i.e. deciding whether there exists a preferred pair

(X1,Y1) with X3 N {a} = 0. We guess such a pair (X1,Y1) and check if it is a preferred
pair w.r.t. O. 0

Naturally, the capability of solving the functional problem of computing the grounded se-
mantics allows us to solve the associated decision problems.

Corollary 9. Under the assumptions of Theorem 8, the problems Vergrd and Existsgd are in

P
Al

4 Complexity of General ADF's

Due to the coincidence of G and &', the computational complexities of decision problems that
concern only the upper bound operator also coincide. This will save both work and space in
the subsequent developments. Additionally, for all containment results (except for the grounded
semantics), we can use Theorem 8 and need only show hardness.

14
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Proposition 10. Let = be an ADF, X,Y C S and consider any O € {Gz,U}. VerS (X,Y) is
coNP-complete.

Proof. Hardness follows from Proposition 4, item 5. ]

Recall that a pair (X,Y) is an approximate/ultimate complete pair iff it is a fixpoint of the
corresponding (approximate/ultimate) operator. Given the complexities of operator computa-
tion, it is straightforward to show the following.

Proposition 11. Let = be an ADF, X CY C S and consider any O € {G=,U&}. VerQ (X,Y)
is DY -complete.

Proof. O = G=: Claim. Let = be an ADF and X,Y C S.

1. Deciding whether GL(X,Y) = X is D -complete.

2. Deciding whether GL(X,Y) =Y is DL -complete.

3. Deciding whether (X,Y) is an approximate four-valued supported model is Dg—
complete.

4. Deciding whether (X,Y) is an approximate three-valued supported model is DZP—
complete.

Proof of the claim. All hardness proofs use the same reduction from SAT-UNSAT, the
problem to decide for a given pair (Y1, 12) of propositional formulas whether v, Is satisfiable
and v Is unsatisfiable. (We can use the techniques from the proof of Proposition 4.) Let
(11,%2) be an instance of SAT-UNSAT. For convenience, we assume w.l.o.g. that ¢, uses
vocabulary Py and formula 15 uses vocabulary P, with Py N\ Py = (). We construct an ADF
== (S,L,C) as follows:

e S=P UP,U{z,22} (where z1,20 ¢ P, UPy),
o p,=pforallpe PLUP;,
e ., =1 and ., = Ps.

1. Deciding whether GL(X,Y) = X is DY -complete:
in DY: We have to decide whether X C GL(X,Y) (in NP) and G4(X,Y) C X (in
coNP).
DY -complete: Set X =S\ {22} and Y = (). We have the following:
e X COLX,)Y)iff X CGL(X,0) iff z1 € GL(X,0) iff ¢y is satisfiable.
e GLX,Y)C X iff GL(X,0) C X iff 2o ¢ GL(X,0) iff 1o is unsatisfiable.
This shows that (11,12) is a positive instance of SAT-UNSAT iff GL(X,Y) = X.
2. Deciding whether GL(X,Y) =Y is D} -complete:
in DY: We have to decide whether Y C GL(X,Y) (in NP) and GL(X,Y) C Y (in
coNP).

DY -hard: Modify the ADF such that ¢, = | for allp € P, U P,. Set X = S and
Y = {z1}. We have the following:

o Y CGLUX,Y) iff {#1} CGL(X,{z1}) iff z1 € GL(X,{z1}) iff ¢ is satisfiable.

o GL(X,)Y) CYiffGL(X,{z1}) C{z}iff 20 ¢ GL(X,{#1}) iff 12 is unsatisfiable.
Combining these two yields that (1, 12) is a positive instance of SAT-UNSAT iff
G(X,)Y)=Y.

15
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3.

4.

Deciding whether (X,Y) is a four-valued supported model is Dg—complete:

First of all (X,Y') is a four-valued supported model iff G=(X,Y) = (X, Y) iff GL(X,Y) =

X and GL(Y, X) =Y.

in DY: The guesses for X C GL(X,Y) and Y C GL(Y,X) are independent of each
other and can be combined. The same holds for the guesses for GL(X,Y) C X
and GL(Y,X)CY.

DQP—hard: For technical reasons, we additionally assume w.l.o.g. that Py, Py # (0.* It
follows that ) # par(s) C Py U P; for all s € S.
Now set X =0 andY = S\ {22} (and note for the next item that X CY ). We
observe the following:
(a) v is satisfiable iff X C GL(X,Y) and Y C GL(Y, X):

i. Let 91 be satisfiable. Then z, € G5(Y, X). By definition of the acceptance
conditions, Py U P, C GL(Y,X). HenceY C GL(Y, X). X =0 C G,(X,Y)
is trivial.

ii. Let 11 be unsatisfiable. Then z; ¢ GL(Y,X) andY € GL(Y, X).

(b) 1 is unsatisfiable iff GL(Y, X) CY and G5(X,Y) C X:

i. Let 1o be unsatisfiable. Then z, ¢ GL(Y,X), and GL(Y,X) C Y. Fur-
thermore GL(X,Y) = X = 0. (Assume to the contrary that there is
some s € GL(X,Y). Then there is an M C X = () with M | s and
(par(s) \ M) NY = 0. Hence par(s) N'Y = (. Contradiction, since
P,UP, CY and all statements in s have non-empty parents among P1UP.)

ii. Let 1o be satisfiable. Then z» € GL(Y,X) and GL(Y,X) Z Y since zo ¢ Y.

We conclude that (11, 12) is a positive instance of SAT-UNSAT iff 1, is satisfiable
and 1o is unsatisfiable iff X C GL(X,Y) and Y C GL(Y, X) and GL(Y,X) C Y
and GL(X,)Y) C X iff GL(X,Y) =X and GL(Y, X) =Y iff (X,Y) is a four-valued
supported model of Z.
Note that in the hardness proof of item 3, the constructed pair was a three-valued
supported model. O

O =Uk: Let (¢1,12) be an instance of SAT-UNSAT. For convenience, we again assume w.l.o.g.
that 11 uses vocabulary P; and formula v uses vocabulary P, with Py N P, = (. We
construct an ADF = = (S, L,C) as follows:

S =P UPyU{z1,29,d} (where z1,29,d ¢ P UP;),
pp=pforallpe PLUP;,

¢ =d,

¢z =1 Ad and ., = ths.

Now we show that for X =0 and Y = S\ {22} we have (X,Y) =Ue(X,Y) iff (¢1,72) is a
ves instance of the SAT-UNSAT problem.

“only if”:

& (X.,Y) is true. Then due to the fact that zo ¢ Us(X,Y’), we have for
each V with ) CV CY that V [~ ¢,, = 12 and since P, C V it follows that s is
unsatisfiable. Since z; € Y it holds that ¢, is satisfiable and ¢, is satisfiable iff 11
is satisfiable.

Assume Verte

4There are only two formulas for an empty vocabulary (T and L), and those two can be equivalently formulated
with a non-empty vocabulary (p V —p and p A —p).
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“if”: Assume 1), is satisfiable and 1, is unsatisfiable. Clearly then for V with() CV C P, we
have V F& 1y = @,,, thus zo ¢ U (X,Y"). Further ¢,, is satisfiable. In particular there
exists aV C P; such that V |= ¢ and thus VU{d} = ¢, and since X C (VU{d}) C Y
it follows that z; € Y. Since ., is not a tautology (e.g. V [~ ¢, ) we have that
z1 ¢ UWE(X,Y). All remaining statements similarly have satisfiable but not tautological
acceptance conditions, thus are in U (X,Y) but not in U.(X,Y). This implies that
(X,Y) is complete w.r.t. Us. O

Next, we analyze the complexity of verifying that a given pair is the approximate (ultimate)
Kripke-Kleene semantics of an ADF Z, that is, the least fixpoint of Gz (U&). Interestingly, the
membership part is the tricky one, where we encode the steps of the operator computation into
propositional logic.

Theorem 12. Let Z be an ADF, X CY C S and consider any operator O € {Gz,Us}. Deciding

Vefgd(X, Y) is DY -complete.

Proof. We begin the proof for O = Gz=.

in DY: We provide a reduction to SAT-UNSAT. Assume that S = {s1,...,s,} and set P =
{ti,u;s,b;; | 1 <i,j <n}. For each statement s;, the propositional variable t; indicates
that s; is true, while u; indicates that s; is undefined. Thus the truth values of the t; and
u; determine a four-valued interpretation (T,U). The b; ; are used to guess parents that
are needed to derive the acceptance of statement s; in one operator application step; more
precisely, b; ; indicates that s; is a parent of s; that is “needed” to infer u;. By ¢; we
denote the acceptance formula of s;; by ¢! we denote ¢; where each s; has been replaced
by t;; by ¢? we denote ¢; where each s; has been replaced by b; ;. Now define the formulas

prcy = /\ (ti = u;) (T,U) is a consistent pair
S, €S
d<, = N\ ~tin N\ w (T,U) <; (X,Y)
€7¢X s; €Y
¢, = N\ tin N\ —u (T,U) >; (X,Y)
s;€X si¢Y
P<; = b<; N>, (T,U) <; (X,Y)
PP = /\ (uj —tj) s; has no undecided parents
rjEpar(s;)
o] = /\ (t; — bij) guesses for s; are consistent with T
rjEpar(s;)
¢ = J\ (ti & (9} A 67)) G(T,U)=T
S, €S
b= N\ (wi & (&I 1 6)) &(T.U)=U
s, €S
¢fp = ¢pr A ¢fpu gE(T7 U) = (T, U)
Y1 = b N b= A drcu G(T,U) = (T,U) with (T,U) = (X,Y) and T CU
2/12 = ¢fp A ¢<-; gE(T7 U) = <T7 U) with (T7 U) < (X7 Y)
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We claim that (1) v is satisfiable iff (X,Y") is a consistent fixpoint of G=, and (2) ) is
satisfiable iff there is a fixpoint (T, U) <; (X,Y) of Gz. From this it follows that (i1, 2)
is a positive instance of SAT-UNSAT iff (X,Y) is the Kripke-Kleene semantics of =.

1. 1 is satisfiable iff (X,Y) is a consistent fixpoint of G=.

“if”: Let G=(X,Y) = (X,Y) with X CY. Define an interpretation I C P as follows:

e Sett;eliffs;€ X andu; € I iff s; €Y.

e Since GL(Y,X) =Y, we have for each 1 < i < n that s; € Y iff there is a
B; C par(s;) with B; = ¢; and par(s;) \ B; € S\ X. Now pick such a B; for
each s; € S and set b; ; € I iff s; € B;.

We have to show I = 1. By definition (T,U) = (X,Y) whence I |= ¢—. Adding
X CY, it becomes clear that I = ¢rcy.

For any s; € S, we have I = t; iff s; € X iff s; € GL(X,Y) iff X = ¢; and
par(s;)NY C par(s;) N X iff [ = ¢! and I |= ¢V iff I = @t A ¢2Y. Thus I = dp.
For any s; € S, we have I = w; iff s, € YV iff s; € GL(Y,X) iff B; = ¢; and
par(s;)) \ B; C S\ X iff I = ¢ and I = N\, _g(=b;; — —t;) iff I | b and
I'E N es(ty = bij) iff I = dpu.

Hence I = ¢= A\ ¢prcu A drpl N drpu whence I =11 and 1 is satisfiable.

“only if”: Let I C P be such that I |= ;. Define a three-valued pair (X,Y) and a
sequence By, ..., B, by setting

e s; € X ifft,el ands; €Y iffu; € I, and

® S GBZ' 15617J el.

We have to show G=(X,Y) = (X,Y).
We have s; € GL(X,Y) iff X | ¢; and par(s;) NY C par(s;) N X iff [ = ¢! and
TE ¢ iffI = oing2Y iff I =t (since I = ¢f) iff s; € X. Hence G4(X,Y) = X.
Similarly, we have s; € Y iff I |=u; iff I = (9% A ¢7) (since I = ¢rpy) iff T = F
and I = ¢} iff B; = ¢; and par(s;)\ B; € S\ X iff s; € GL(Y, X).
Hence Y = GL(Y, X) and in combination G=(X,Y) = (X,Y).

2. 4o Is satisfiable iff there is a fixpoint (T,U) <; (X,Y) of G=.

“if”: Let (T,U) <; (X,Y) with Gs(T,U) = (T,U). We can define a two-valued
interpretation I C P as above with (T,U) playing the role of (X,Y). In an
entirely analogous way we can then prove I = ¢g,. It is straightforward to show
that (T,U) <; (X,Y) implies I |= ¢,.

“only if”: From an interpretation I |= 1o we can define a pair (T,U) as above and
can show that it is a fixpoint of Gz with (T,U) <; (X,Y).

s;ES

D2P -hard: This follows from the proof of Item 4 in Proposition 11: The three-valued supported
model to verify there coincides with the Kripke-Kleene semantics of the constructed ADF.

For O = Uk this result was shown already in [Brewka et al., 2013a, Theorem 6], but the proof
was omitted due to space limitations. For sake of completeness we will present here an alternative
proof which will be re-used later for query based reasoning. We first prove the following useful
claim.

Claim. Let 2 be an ADF and X CY C S. If it holds that
1. for each x € X there exists an I, s.t. X C I, CY and I, = ¢,;

2. for each f € S\'Y there exists an It st. X CI; CY and Iy [~ ¢y; and
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3. for each y € Y \ X there exists two I, I} s.t. X C I, I, CY, I, = ¢, and I} [ py;
then Ifp(lk) <; (X,Y). Further the grounded pair Ifp(L&) satisfies these three properties.

Proof of the claim. Let (L,U) be the grounded pair of U, then it is straightforward to show
that this pair satisfies all three properties, just recall that for each s € L we have ng’U) is
tautological, for s € S\ U it is unsatisfiable and otherwise it is neither.

Assume (X,Y) satisfies all three properties, then we show by induction on n > 1 that
U0, 8) <; (X,Y), with the usual meaning of iterative applications of operators, i.e. Us(X,Y) =
W '(X,Y)). Forn = 1 and U2(0,S) = (L1,U;) we have that if s € Ly then ¢, is a
tautology, implying that s € X, since otherwise there would exist a two-valued interpretation
which does not satisfy ps. The case for s € S\ Uy is symmetric. Now assume the induction
hypothesis (L,,U,) = U0, S) <; (X,Y) and to show that U (0, S) <; (X,Y) holds consider
Wt 0,8) = (Lyt1,Upsr). If s € Lyt \ Ly, then goSL”’U") is tautological, which means that s
must be in X. Similarly for the arguments set to false. This proves the claim. O

Now note that the pair in the claim, as well as all interpretations which show the three properties
can be constructed in polynomial time w.r.t. to a given ADF. Additionally the evaluations for
each such interpretation are computable in polynomial time w.r.t. the size of the ADF. Using
this claim now we can guess a pair (X,Y) with X CY and s ¢ X and a set of interpretations as
defined in the claim to show that s is not true in the grounded pair. This is achieved by checking
if (X,Y) satisfies all three properties defined in the claim. If it does then s cannot be true in
the grounded pair, since every argument set to true in the grounded pair is also true in the pair
(X,Y). Checking if an argument is not false in the grounded pair is symmetric. This solves the
complementary problem of deciding whether s is true/false in the grounded pair. To show that
s is undefined in the grounded pair, we check if it is not true and not false in the grounded pair.
Lastly, the verification problem simply consists of checking for each argument the corresponding
truth value, which can be decided in DY (NP for unknown values and otherwise coNP). Note
that these checks can be done independently of each other.

For Dg -hardness, as for the approximate operator, consider the proof of Proposition 11 and
the reduction shown there for O = Us. The constructed pair for that ADF is the grounded pair
iff 1)1 is satisfiable and ), is unsatisfiable. O

We next ask whether there exists a non-trivial admissible pair, that is, if at least one statement
has a truth value other than unknown. Clearly, we can guess a pair and perform the coNP-check
to show that it is admissible. The next result shows that this is also the best we can do.

Theorem 13. Let = be an ADF and consider any operator O € {G=,Ue}. ExistsS,  is ¥1-
complete.

Proof. in ©¥': We guess a pair (X,Y) and verify that X CY and (0, S) <; (X,Y) in polynomial
time, and (X,Y) <; O(X,Y) using the NP oracle.

YF hard: We provide a reduction from the ¥¥-hard problem QBF, 5-TRUTH. We show the
proof for O = Gz, as the proof for the ultimate operator is analogous. Let IPVYQvy be a
QBF. We define an ADF = as follows:

e S=PU-PUQQU{z} where-P={-p | p € P},
o o, =—2A—--pforpeP,
® o, =-zA-pfor-pe-P,
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® ;=g forqeq,
o v, =z A\,

We show that D has a non-trivial admissible pair iff APVQ1) is true.

“if”: Let M C P be such that (M) is a tautology. We define a consistent pair (X,Y)

by setting
e X =MU-P\ M and
e Y =XUQ.

(X,Y) is obviously non-trivial, since z ¢ Y. Note that by definition p € X iff p € M,
andp ¢ Y iff p ¢ M, whence yMM) = )(XY) Tt remains to show that (X,Y) is
admissible for =, that is, X C GL(X,Y) and GL(YV, X) CY.

(Xy) _

X CGE(X,Y): e Letp e X forp € P. Then by definition -p ¢ Y and ¢y
L A-L =T whencep € G5(X,Y).
e Let-p € X for -p € -P. Symmetric.
GY,X)CY: e Letp¢Y forpe P. Then by definition -p € X and go}(jX’Y) =
L A=T =1 whencep ¢ GL(Y, X).
o Let-p¢Y for-p€-P. Symmetric.
e Finally, we have (pgx,y) = L A pY) = p(X5Y) = (MM) - Gince
PMM) s a tautology, —pMM) = —p(XY) js unsatisfiable and y ¢ GL(Y, X).
“only if”: Let (X,Y’) be a non-trivial admissible pair for . We have to show that IPVQ1
is true. Define M = X NP, we show that /™M) is a tautology. We first observe that
Q C Y \ X by their acceptance conditions and since (X,Y) is admissible: if ¢ € X,
then ¢ ¢ GL(X,Y); if ¢ ¢ Y, then g € GL(Y, X). We next show z ¢ Y.
By the presumption that (X,Y’) is non-trivial, we get that either (1) X # () or (2)
Y CS.
1. X £40.
(a) z € X. Then cpgx’y) =-TApXY) = | and 2 ¢ GL(X,Y), that is, (X,Y) is
not admissible. Contradiction.
(b) p € X. Then by admissibility p € GL(X,Y), that is, we have the equivalence
@éx’y) = (mz A=-p)XY) =T whence z ¢ Y and -p ¢ Y.
(c) -p € X. Symmetric.
22.YCS.
(a) z € S\Y. This is what we want to show.
(b) p € S\'Y. By admissibility p ¢ GL(Y, X) and the partially evaluated accept-
ance formula (p;x,y) = (=2 A =-p)XY) must be unsatisfiable. Since z ¢ X,
we get -p € X. By item 1c above, we get z ¢ Y.
(c) -p € S\Y. Symmetric.
Hence z ¢ Y. Since (X,Y) is admissible, z ¢ GL(Y,X). Thus the partially
evaluated acceptance formula cng’Y) = —L A —pXY) s unsatisfiable, that is,
—pXY) js unsatisfiable and XY) = p(M:-M) jg a tautology. (I

Lemma 6 implies the same complexity for the existence of non-trivial complete and preferred
pairs.
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Corollary 14. Let 2 be an ADF, o € {com,pre} and consider any operator O € {Gz,lUs}.
Exists$ is ¥F -complete.

By corollary to Theorem 12, the existence of a non-trivial grounded pair can be decided in
DY by testing whether the trivial pair (), S) is (not) a fixpoint of the relevant operator. The
following result shows that this bound can be improved.

Proposition 15. Let = be an ADF and consider any operator O € {Gz,l&}. Existsgd is coNP-
complete.

Proof. Obviously, = has a non-trivial approximate grounded semantics iff the trivial pair (0, 5)
is not a fixpoint of Gz, so we show that the co-problem (deciding whether G=(0,S) = (0, S)) is
NP-complete.

in NP: We have that G=(0,5) = (0,5) if 0 C GL(0,S) C 0 and S C GL(S,0) C S. So mainly we
have to verify GL(0,S) C 0 and S C G5(S,0). By Proposition 4, the first part can be decided
in P (item 2) and the second part in NP (item 6).

NP-hard: We give a reduction from SAT. Let i) be a propositional formula over vocabulary P.
Define an ADF D = (S,L,C) with S = P U{z} for z ¢ P and ¢, = p for p € P and
v, = z ANp. It is readily verified that by definition every statement has a parent that is
undecided in (0,S) and thus GL(0,S) = (. Furthermore, P C GL(S,0) is easy to show.
Thus S C GL(S,0) iff z € GL(S,0) iff there is an M C S with par(z) \ M C S\ 0 and
M = o, iff there is an M C S with M |= ¢, iff p, = z A1) is satisfiable iff ¢ is satisfiable.

For O = Uk&, the proof is analogous to the one above — we show NP-completeness of the comple-
mentary problem.

in NP: We have to verify Us(0,S) C 0 and S C U(0,S). By Proposition 5(2) and Proposi-
tion 4(6), this can be done in NP.

NP-hard: The construction is the same as in Proposition 15. ([

Using the result for existence of non-trivial admissible pairs, the verification complexity for
the preferred semantics is straightforward to obtain, similarly as in the case of AFs [Dimopoulos
and Torres, 1996].

Proposition 16. Let = be an ADF, X CY C S and consider any O € {Gz,lUs}. Verge(X,Y)
is 1§’ -complete.

Proof. in IIY: To show that (X,Y) is not preferred, we guess a pair (M, N) with (X,Y) <;
(M, N) and use the NP oracle to show that (M, N) is a complete pair (which can be done
in DY).

II7-hard: Consider the complementary problem, that is, deciding whether a given pair is not a
preferred pair. Even for the special case of the pair (0, S), Theorem 13 shows that this
problem is X -hard. (]

Considering query reasoning we now show that on general ADFs credulous reasoning with
respect to admissibility is harder than on AFs. By Lemma 7, the same lower bound holds for
complete and preferred semantics.
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Proposition 17. Let £ be an ADF, O € {G=,U&} be an operator and s € S. Cred$ (s) is
Y _complete.

Proof. Membership is given by Theorem 8. Hardness is shown by a reduction from the ¥¥ -hard
problem QBF, 3-TRUTH. Let 3PVQv be a QBF. We define an ADF E as follows:

« S=PUQU{S}.
o pp=pforpeP,
® pg=—qforqeq,
o wr=-fANp.

We now show that there exists an admissible pair (X,Y) in 2 w.r.t. O with f € S\Y iff IPYQvy
is true. Note that for any admissible pair we have that f is not set to true, since then its
acceptance condition evaluates to false.

“if”: Assume the QBF is valid. Then there exists a P’ C P such that for any Q' C Q we have
P'U@ E v. We now show that (P, P’ U Q) is admissible in Z for O. Since for any
p € P’ we have that {p} |= ¢, it follows that P' C GL(P',P'UQ) and P’ CUL(P',P'UQ).
Further () = ¢4 for ¢ € Q, thus Q C GZ(P', P’UQ). Lastly, R |~ ¢ for PP C RC P'UQ
since R =1, hence f ¢ GY(P',P'UQ).

“only if”: Assume that there exists an admissible pair (X,Y) in E w.r.t. O such that f € S\Y.
First we show that Q C (Y'\X). Suppose the contrary, then (X,Y’) would not be admissible
w.r.t. O, since if thereisaq € Q and g € X, then q¢ ¢ GY(X,Y). Similarly g € S\Y, implies
that q is in the new lower bound for both operators in O. We now show that X U Q' = ¢
for any Q" C Q, thus implying that 1 is valid (note that X C P). Suppose there exists
a @ C Q such that X U Q' F~ 9, then X UQ' = ¢y and X C (X UQ') CY and thus
fed(X,Y), implying that (X,Y") is not admissible w.r.t. O, which is a contradiction.[]

For credulous and skeptical reasoning with respect to the grounded semantics, we first observe
that the two coincide since there is always a unique grounded pair. Furthermore, a statement s
is true in the approximate grounded pair iff s is true in the least fixpoint (of Gg) iff s is true in
all fixpoints iff there is no fixpoint where s is unknown or false. This condition can be encoded
in propositional logic and leads to the next result. For the ultimate operator we can use results
for the verification problem [Brewka et al., 2013a, Theorem 6]. Briefly put, the problem is in
coNP since the NP hardness comes from verifying that certain arguments are undefined in the
ultimate grounded pair, which is not needed for credulous reasoning. For coNP-hardness the
proof of [Brewka and Woltran, 2010, Proposition 13| can be easily adapted.

Proposition 18. Let E be an ADF, O € {G=,lk} and s € S. Both Credgd(s) and Skeptgd(s)
are coNP-complete.

Proof. For showing the membership result for O = Ug, see the proof of Theorem 12, in particular
the claim proved there. For hardness the proof for both operators is the same. For showing the
results for O = Gz consider the following proof.

in coNP: We reduce to unsatisfiability checking in propositional logic. Let 2= = (S, L,C) be an
ADF with S = {s1,...,s,} and assume we want to verify that sy is true in the grounded
pair of Z for some 1 < k < n. Set P = {ti,ui,biyj | 1 <4,j <n}. For each statement s;,
the propositional variable t; indicates that s; is true, while u; indicates that s; is undefined.
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Thus the truth values of the t; and u; determine a four-valued interpretation (T,U). The
b; ; are used to guess parents that are needed to derive the acceptance of statement s; in
one operator application step; more precisely, b; ; indicates that s; is a parent of s; that is
“needed” to infer u;. By p; we denote the acceptance formula of s;; by ¢l we denote p;
where each s; has been replaced by t;; by cpi? we denote ¢; where each s; has been replaced
by b; ;. Now define the formulas

brcy = /\ (t; — ;) (T,U) is a consistent pair
$; €S
P2 = /\ (u; — tj) s; has no undecided parents
rjEpar(s;)
o = /\ (t; — bij) guesses for s; are consistent with T
r;jEpar(s;)
S =\ (ti & (o} AGT)) &(TU)=T
s, €S
O = [\ (i & (90 1 9))) G (T,U)=U
s, €S
¢cfp = d)fpl A d)fpu A d)TgU gE(Tv U) = (T7 U) and T - U
B = dlp/ D € P renamed copy

Y = (o A tr) V (B, A —uiy,)

(Observe that this is basically the construction from Theorem 12.) We claim that 1 is
unsatisfiable iff there is no consistent fixpoint where sy, is unknown or false.

1. ¢5 N —ty, Is unsatisfiable iff there is no consistent fixpoint where s, is unknown:

“if”: Let ¢, A Tty be satisfiable. Then there is an interpretation I C P such that
I = ¢gp and I [~ ty,. As in the proof of Theorem 12 we can construct a consistent
pair (X,Y) and show that it is a fixpoint of G= with s, € Y \ X.

“only if”: Let X CY C S such that G=(X,Y) = (X,Y) and s € Y\ X. As in the
proof of Theorem 12 we can construct an interpretation I C P such that I = ¢g
and I [~ ty.

2. ¢ Ny, Is unsatisfiable iff there is no consistent fixpoint where s, is false: Similar.

coNP-hard: Let ¢ be a propositional formula over vocabulary P. Define the ADF D = (S, L,C)
with S = PU{z}, ¢, = - for p € P, and ¢, = /\peP —p. We show that z is true in the
grounded semantics of Gp iff v is a tautology.

“if”: Let ¢ be a tautology. Then —) is unsatisfiable and p ¢ G5(0,S) for all p € P.
Obviously ¢, is satisfiable whence z € G/5(0,S). Thus G/5(0,S) = {z}. Furthermore
G,(0,5) = 0 since all statements have undecided parents. Thus Gp(0,S) = (0,{z}).
Now since z does not occur in the acceptance formula of z, it is clear that Gp (0, {z}) =
({z},{z}) = Gp({z},{z}). Thus z is true in the grounded semantics of Gp.

“only if”: Let Ifp(Gp) = (X,Y) and z € X. By the acceptance condition of z and the fact
that (X,Y) is a fixpoint of Gp we get PNY = . Since X CY we have (X,Y) =
({z},{z}). Assume to the contrary that v is not a tautology. Then —) is satisfiable
and P CY = GJ(0,S). Contradiction. O
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Regarding skeptical reasoning for the remaining semantics we need only show the results for
complete and preferred semantics, in all other cases the complexity coincides with credulous reas-
oning or is trivial. For complete semantics it is easy to see that skeptical reasoning coincides with
skeptical reasoning under grounded semantics, since the grounded pair is the <;-least complete
pair.

Corollary 19. Let = be an ADF, O € {Gs,U&} and s € S. SkeptQ,(s) is coNP-complete.

Similar to reasoning on AFs, we step up one level of the polynomial hierarchy by changing
from credulous to skeptical reasoning with respect to preferred semantics, which makes skeptical
reasoning under preferred semantics particularly hard. We apply proof ideas by Dunne and
Bench-Capon [2002] to prove IT¥-hardness.

Theorem 20. Let Z be an ADF, O € {Gz, Uk} and s € S. Skept$,(s) is I1§ -complete.

Proof. Membership is given by Theorem 8. Hardness is shown by a reduction from the I1£'-hard
problem QBF5 -TRUTH. Let VPIQVRiy be a QBF. We define an ADF = as follows:

e S=PUQU-QU{f}, with-Q ={-q | q € Q},
e pp=pforpeP,

® g ="fA—qlorqeq,

® pqg="fNgfor-q€-Q,

e . =-rforr€R,

® py=—f A

We now show that all preferred pairs (X,Y) in 2 w.r.t. O have f € S\Y iff VPIQVRY is
true. First observe some helpful facts. For any preferred pair (X,Y) in = w.r.t. O we have
PN (Y \ X) =0, since otherwise it would not be <;-maximal. Suppose the contrary, i.e. (X,Y)
is preferred and p € P and p € Y \ X. We know that (X,Y) <; O(X,Y) due to admissibility of
the pair and trivially it holds that (X,Y) <; (XU{p},Y). Due to monotonicity of O w.r.t. <, we
know that O(X,Y) <; O(X U{p},Y). This implies that (X,Y) <, O(X U{p},Y). This means
that X C O'(XU{p},Y) and O"(XU{p},Y) C Y. Further we can deduce that p € GL(XU{p},Y)
aswell asp € UL(XU{p},Y), hence X U{p} C O'(XU{p},Y) and thus (XU{p},Y) is admissible
w.r.t. O and (X,Y) is not preferred, since clearly (X,Y) <; (X U{p},Y). The case where p is
set to false is symmetric.

Suppose that f is set to true in a preferred pair (X,Y), i.e. f € X, then for any Q' C @ and
R' C R we have X UQ"UR' |~ ¢y, hence f cannot be in X. If f € Y \ X, then it holds that
q,-q € Y\ X for any q € Q and -q € -Q, or in other words, if f is undefined in the preferred pair
then also all statements in Q U-Q are undefined. Assume (X,Y) is an admissible pair w.r.t. O,
then if f is undefined in this pair, for no q € Q and -q € -Q it holds that q or -q is true in the
admissible pair. For O = Gz this is immediate, since this operator requires that all parents of
q,-¢ ({f,-q} and {f,q} respectively) are not undefined. For O = Us the formula ap,(]X"Y) is not
tautological if f is undefined (similarly for -q). Further for q (-q) it holds that its truth value is
false in an admissible pair only if -q is true (q is true). This is easy to see, since f is never true
in an admissible pair, hence -q (q) must be true. This implies that if f is undefined, both q and
-q are undefined.
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“if”: Assume that the formula is valid. We now have to show that in all preferred pairs w.r.t. O
we have that f is not in the upper bound. For any P’ C P there is a preferred pair (X,Y)
with P’ C X (because (P’,S) is admissible w.r.t. O) and since PN (Y \ X) = 0 it follows
that in the preferred pair P’ are set to true and P\ P’ to false. For such a P’ we know
that there is a Q' C @Q such that for any R’ C R we have P'UQ’' U R' = 1. We now show
there is a preferred pair (X', Y") with X' = P/UQ'U-(Q\ Q') andY' = X’ UR in E w.r.t.
0. Weset -(Q\ Q') ={-¢|qe€ (@Q\Q)}. It is easy to see that P’ C GL(X',Y") and also
for the ultimate operator. Likewise since f € S\'Y also Q' C GL(X',Y") and also for U as
well as for the negated statements. Similarly we can show that P\ P’ is not in the upper
bound, as well as for Q \ Q' and the negated statements. The statements r € R are always
undecided for both operators. To see that f & G (X', Y"), we know that P"UQ'UR' E
by assumption. Thus (X',Y") is indeed a preferred pair w.r.t. O. Now we know that there
exists a preferred pair which sets P’ to true and f to false. To see that there is no preferred
pair (X", Y") which sets P’ to true and P\ P’ to false such that f € Y| it suffices to show
that for this case then also Q,-Q C Y\ X", which holds since f is undecided and then
(X", Y") is smaller w.r.t. <; to the preferred pair (X', Y") and hence cannot be a preferred
pair in this ADF. Summarizing, all preferred pairs set a P’ C P to true and P\ P’ to false
and for each such choice there exists a preferred pair setting f to false. Further if for such
a choice a preferred pair exists with f set to false, we know that there is no preferred pair
with the same assignment to the statements in P and setting f not to false. Thus any
preferred pair sets f to false and hence f is skeptically rejected w.r.t. O.

“only if”: Assume that in any preferred pair w.r.t. O we have that f € S\Y. As in the
“if” direction we know that for any P’ C P there exists a preferred pair (X,Y) with
PN(Y\X)=0and P C X. Since f € S\'Y we have that in any such preferred pair
also (QU-Q)N (Y \ X) = 0, since otherwise it would not be maximal w.r.t. <; by a similar
argument as above. Further we know that R C Y \ X. This means that there exists a
Q' C @ such that (P'UQ") C X. Thus for any R’ C R we have P'U Q" UR' [~ ¢y, since
f € S\Y and hence P'UQ"UR' = 1. Since for any P’ C P such a preferred pair exists,
the QBF is valid. O

4.1 Two-valued semantics

The complexity results we have obtained so far might lead the reader to ask why we bother with
the approximate operator Gz at all: the ultimate operator L& is at least as precise and for all
the semantics considered up to now, it has the same computational costs. We now show that
for the verification of two-valued stable models, the operator for the upper bound plays no role
and therefore the complexity difference between the lower bound operators for approximate (in
P) and ultimate (coNP-hard) semantics comes to bear.

For the ultimate two-valued stable semantics, Brewka et al. [2013a] already have some
complexity results: model verification is in D; (see Proposition 8), and model existence is
SP-complete (see Theorem 9). We will show next that we can do better for the approximate
version, with this deterministic polytime decision procedure for verifying that a given set X CY
of statements is the least fixpoint of GL(-,Y").

Proposition 21. Let = be an ADF and X CY C S. Verifying that X is the least fixpoint of
GL(-,Y) isin P.

Proof. We provide the following polynomial-time decision procedure with input Z, X,Y .

1. Seti =0 and Xy = 0.
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2. For each statement s € S, do the following:
(a) If par(s) N (Y \ X;) = 0 and Cy(par(s) N X;) =t, then set s € X; 1.
3. If X;11 = X; = X then return “Yes”.
4. If X;41 = X; © X then return “No”.
5. If X;41 € X then return “No”.
6. Increment i and go to step 2.

Overall, the loop between steps 2 and 6 is executed at most |S| times, since X; C X, 1 for all
i € N and we can add at most all statements one by one. In each execution of the loop, step 2a
is executed |S| times. The conditions of step 2a, in particular par(s) N X; &= s, can be verified
in polynomial time.

It remains to show that X is the least fixpoint of GL(-,Y") iff the procedure returns “Yes”.

“if”: Assume the procedure returned “Yes” on input =, X,Y.

e X is a fixpoint of GL(-,Y), that is, GL(X,Y) = X:

“C”: Let s € GL(X,Y). Then there is a B C X N par(s) such that Cs(B) = t and
par(s)\ B C S\Y. As in the proof of Proposition 4, we get that B = X Npar(s),
Cs(par(s)NX) =t and par(s)N(Y'\X) = 0. Since the procedure answered “Yes”,
there was ani € N with X; 11 = X; = X. From step 2a of the procedure, we know
that par(s) N (Y \ X;) = 0 and Cs(par(s) N X;) =t means that s € X;11 = X.

“D”: Let s € X. Since the procedure answered “Yes”, there was an i € N with
Xiy1 = X; = X. Now s € X;41 by step 2a of the procedure means that par(s) N
(Y'\ X;) =0 and Cy(par(s) N X;) = t. Thus there exists a B = par(s) N X with
Cs(B) =t and par(s) \ BC S\Y, and s € GL(X,Y).

e X is the least fixpoint: Assume to the contrary that there is some X' C X that is a
fixpoint of GL(-,Y). But then step 4 of the procedure would have detected X;11 =

X; = X’ C X and returned “No”, contradiction.

“only if”: Let X be the least fixpoint of GL(-,Y") and assume to the contrary that the procedure
answered “No”.

e The procedure answered “No” in step 4. By the argument above, we can show that
there is a fixpoint X' C X, contradiction.

e The procedure answered “No” in step 5. We have X;y1 € X for some i € N, that is,
there is some s € X;11 with s ¢ X. Since s € X;11, we have par(s) N (Y \ X;) =0
and Cs(par(s) N X;) = t. Since the procedure did not terminate with X; already, we
know that X; C X. Therefore, par(s) N (Y \ X) = 0 and Cs(par(s) N X) = t. This
means s € GL(X,Y) = X. Contradiction. O

In particular, the procedure can decide whether Y is the least fixpoint of G4(-,Y), that is,
whether (YY) is a two-valued stable model of G=. This yields the next result.

Theorem 22. Let = be an ADF and X C S. 1. Vergc;t(X7 X)isinP. 2. Existsgrgt is NP-complete.

Proof. 1. We have to verify that X is the least fixpoint of the operator GL(-, X), which can
be done in polynomial time by Proposition 21.
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2. Deciding whether Z has a two-valued stable model is NP-complete:

in NP: To decide whether there is a two-valued stable model, we guess a set X C S and
verify as above that (X, X) is indeed a two-valued stable model.

NP-hard: Carries over from AFs. O

The hardness direction of the second part is clear since the respective result from stable semantics
of abstract argumentation frameworks carries over.

Brewka et al. [2013a] showed that Vert, is in DZ (Proposition 8). We can improve that upper
bound to coNP: the proof is not that trivial, but basically the operator for the upper bound
(contributing the NP part) is not really needed. Using the complexity of the lower revision
operator U, we can even show completeness for coNP.

Proposition 23. Let E be an ADF and X C S. Verst (X, X) is coNP-complete.

Proof. in coNP: Given an ADF = = (S, L,C) and a set M C S we first construct the reduct ZM
in polynomial time. Now M is an ultimate two-valued stable model of = iff all statements
in M are true in the grounded semantics of ZM. We will show that the co-problem (there is
an s € M that is false or undecided in the grounded semantics of =M ) is in NP. To this end
consider the claim shown in the proof of Theorem 12 for the ultimate semantics. We guess
two sets X CY C M and a statement s € M\ X. Furthermore we guess witnesses to verify
that (X,Y) satisfies the presumptions in the claim, which shows that lfp(lE) <; (X,Y)
and thus s is not true in the grounded pair of . Note that for each statement we need at
most two two-valued interpretations over S as witnesses, which can easily be constructed
in polynomial time.

coNP-hard: Let ¢ be a propositional formula over a vocabulary P. We define an ADF D over
statements P with ¢, =1 for all p € P. Now P is an ultimate two-valued stable model of
D iff P is the least fixpoint of U}, (-, P) iff U},(0, P) = P = U, (P, P) iff p € U}, (0, P) for all

p € P iff <p1(,®’P) is a tautology iff (%P is a tautology iff ¢ is a tautology. O

We now turn to the credulous and skeptical reasoning problems for the two-valued semantics.
We first recall that a two-valued pair (X, X) is a supported model (or model for short) of an ADF
Eiff G=(X, X) = (X, X). Thus it could equally well be characterized by the two-valued operator
by saying that X is a model iff G=(X) = X. Now since U& is the ultimate approximation of Gz,
also Ue(X, X) = (X, X) in this case. Rounding up, this recalls that approximate and ultimate
two-valued supported models coincide. Hence we get the following results for reasoning with this
semantics.

Corollary 24. Let= be an ADF, O € {Gs,U&} be an operator and s € S. The problem Cred$) (s)
is NP-complete; Skept$),(s) is coNP-complete.

Proof. The membership parts are clear since Verggsu is in P. Hardness carries over from AFs [Dimo-
poulos and Torres, 1996].

For the approximate two-valued stable semantics, the fact that model verification can be
decided in polynomial time leads to the next result.

Corollary 25. Let Z be an ADF and s € S. Cred$:,(s) is NP-complete; SkeptS:,(s) is coNP-
complete.
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Proof. The membership parts are clear since Ver%t isin P. Hardness carries over from AFs [Dimo-
poulos and Torres, 1996].

For the ultimate two-valued stable semantics, things are bit more complex. First of all, we
recapitulate a result of Brewka et al. [2013a] because we will need the proof later on.

Theorem ([Brewka et al., 2013a, Theorem 9]). Let £ = (S,L,C) be an ADF. Deciding
whether = has an ultimate two-valued stable model is ¥5 -complete.

Proof. For membership, we first guess a set M C S. We can verify in polynomial time that M
is a two-valued supported model of =, and compute the reduct =);. Using the NP oracle, we
can compute the grounded semantics (K', K') of the reduct in polynomial time. It then only
remains to check K' = M.

For hardness, we provide a reduction from the Y§-complete problem of deciding whether a
QBF, 5-formula is valid. Let 3PVQ be an instance of QBF, 3-TRUTH where v is in DNF and
P,Q # (). We have to construct an ADF D such that D has a stable model iff APVQq) is true.

First of all, define-P = {-p | p € P} for abbreviating the negations of p € P. For guessing an
interpretation for P, define the acceptance formulas ¢, = —-p and ¢., = —p for p € P. Define ¢/
as the formula v[—p/-p] where all occurrences of —p have been replaced by -p. (Note that v is in
DNF and thus ¢ is a DNF without negation.) Further add a statement z with ¢, = -z A =)/,
an integrity constraint that ensures truth of ¢’ in any model. For ¢ € QQ we set ¢, = ¢'. Thus
we get the statements S = P U-P U QU {z}. We have to show that D has a stable model iff
APYQ1p is true.

“if”: Let Mp C P be such that the following formula over vocabulary @ is a tautology:
¢ = w(MF%MPUQ)

We now construct a stable model M = Mp UQU {-p € -P | p ¢ Mp}. We first show that
M is a model of D: For each p € Mp, we have -p ¢ M by definition and hence M =
pp = —-p. Conversely, if p ¢ Mp then -p € M and M = ¢., = —p. For ¢ € (), we have
that ¢, = ¢’ and so we have to show M |= +'. This is however immediate since ¢ (the
partial evaluation of ¢ with M as interpretation for P) is a tautology. Finally, by definition
z ¢ M, and since M = 9" we get M B~ ¢, = -z A=)’ as required.

To show that M is a stable model, we have to show that all statements in M are true in
the ultimate Kripke-Kleene semantics of the reduct Dy;. The reduct is given by

[ ] DM = (]\47 L]w,CM) with

o o, =1 forpe M,

o p,="1for-pe M,

o oy = 1O,
The computation of the Kripke-Kleene semantics starts with (), M) and leads to the first
revision (K{, K{/) = Us(, M). Since the acceptance condition of any p,-p € M Is tauto-

logical, we have p,-p € K|, that is, the statements p,-p € M are considered true. For the
next step, the acceptance formula of any q € @) can thus be simplified to

(M\Q,M)

PIM\QM) — (W(@,m)

_ /1@
='[p/L:p¢ M,-p/L:-p¢ M,p/T :pe M,-p/T :-pec M],

28



Technical Report 2 (2013) Analyzing the Computational Complexity of ADFs via AFT

a formula over Q that is equivalent to ¢ = p(Mp-MPUQ) ' By presumption, ¢ is a tautology.
Hence at this point all acceptance formulas partially evaluated by (K|, K[J) are tautologies
and thus Us(K(), K) = (M, M), which has already been shown to be a fixpoint of Us.

“only if”: Let M C S be an ultimate two-valued stable model of D. We have to show that
3IPVYQ is true. Define Mp = MNP and ¢ = ¢pMP-MPUQ)  We show that ¢ is a tautology.

First of all, since M is a model of Dy; we have z ¢ M: assume to the contrary that z € M,
then M is a model for p, = =z A=)’ = L A—)’, contradiction. Hence M W= —z A—)’, that
is, M = —)'. This shows that M |= 4/, that is, M = ¢, for all ¢ € Q, whence Q C M.
Thus the evaluation of p € P and -p € -P defined by M shows the truth of the formula

MM =/ [p/T i pe M,-p/T:-pe M,p/L:p¢ M,-p/L:-p¢ Mlg/T :q€ Q)]

Now since M is a stable model of D, the pair (M, M) is the ultimate grounded semantics
of the reduct Dy, again given by

L] D]M = (M,LM,CM) with

o o, =1 forpe M,

o v, =1 for-pe M,

® Pg= CE
To show that ¢ is a tautology, assume to the contrary that ¢ is refutable. As observed
in the “if” part, ¢ is equivalent to the formula cp,(ZM\Q’M). Thus also ¢, is refutable,

whence q ¢ Up, (0, M) for all ¢ € Q and Uf, (0, M) = M \ Q. Furthermore we know that

us (0,M) = M. Now QMNEM) g refutable and thus Up,, (M \ Q, M) = (M \ Q, M).
Since Q # (), we find that (M, M) is not the least fixpoint of Up,,. Contradiction. O

The hardness reduction in this proof makes use of a statement z that is false in any ultimate
two-valued stable model. This can be used to show the same hardness for the credulous reasoning
problem for this semantics: we introduce a new statement x that behaves just like —z, then x is
true in some model iff there exists a model.

Proposition 26. Let = be an ADF and s € S. The problem Cred% (s) is ¥4 -complete.

Proof. in 21’1 We can guess a set X C S with s € X and verify in coNP that it is an ultimate
two-valued stable model.

YP hard: Let 3PYQvy be a QBF. We use the same ADF construction as in the hardness proof
of Existst, and augment D by an additional statement = with ¢, = —z. It is clear that in
any model of D, z must be false and so x must be true. So x is true in some two-valued
stable model of D iff D has a two-valued stable model iff APVQ is true. (]

A similar argument works for the skeptical reasoning problem: Given a QBF VP3Q, we
construct its negation IPVQ—1), whose associated ADF D has an ultimate two-valued stable
model (where z is false) iff APVQ-) is true iff the original QBF VP3Q is false. Hence VPIQ
is true iff z is true in all ultimate two-valued stable models of D.

Proposition 27. Let = be an ADF and s € S. The problem Skeptzfsft(s) is TI¥ -complete.

Proof. in IIY’: To decide the co-problem, we guess a set X C S with s ¢ X and verify in coNP
that it is an ultimate two-valued stable model.
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(Corollary 19)

(Theorem 20)

(Corollary 24)

approximate (G=), o| admissible complete preferred grounded model stable model
in P
coNP-c DP ¢ nr-c P m .
o o 2~ 2~ D; -c ([Brewka et al., in P
Very (Proposition 10) |(Proposition 11) |(Proposition 16) (Theorem 12) |2013a, Prop. 5]) | (Theorem 22)
coNP-c NP-c
Existsc}: Eg—c Zg—c Zg—c P it 15) ([Brewka et al., NP-c
i (Theorem 13) (Corollary 14) | (Corollary 14) TOPOSINON 19) 190134, Prop. 5]) | (Theorem 22)
Cred: B; -c b B; -c b 25 -c coNP-c NP-c NP-c
red, (Proposition 17) |(Proposition 17, |(Proposition 17, |(Proposition 18) (Corollary 24) (Corollary 25)
Lemma 7) Lemma 7)
NP-c
= . coNP-c n’-c colt™™ coNP-c coNP-c
Skepto trivial (Corollary 19) (Theordem 20) (Proposition 18) (Corollary 24) (Corollary 25)
ultimate (&), o admissible complete preferred grounded model stable model
coNP-c DE- inP
Dl -c nl-c 2 =C coNP-c
e ([Brewka et al., 2 ) 2~ ([Brewka et al., ([Brewka et al., .. P
Ver 2013a, é%Blgewléa et %15, (Proposition 16) 2013a, Thm. 6]) |2013a, Prop. 5)) (Proposition 23)
Prop. 10]) 8, Lor.
NP-c »P e
P P P coNP-c 2
Existsgf 35 -c 35 -c 35 -c (Proposition 15) ([Brewka et al., | ([Brewka et al.,
(Theorem 13) (Corollary 14) | (Corollary 14) 2013a, Prop. 5]) |2013a, Thm. 9])
e »Pc Ef—c 25—0 coNP-c NP-c »F-c
Cred,~ (Proposition 17) |(Proposition 17, |(Proposition 17, |(Proposition 18) (Corollary 24) (Proposition 26)
Lemma 7) Lemma 7) .
P
o NP- P_ coNP-c NP- II5 -c
Skeptzf,‘E trivial co ¢ 15 -c (Proposition 18) < ¢ (Proposzition 27)

Table 2: Complexity results for semantics of Abstract Dialectical Frameworks.

IIY-hard: Let VP3Q be a QBF with v in CNF. Define the QBF 3PYQ—) and observe that —)
can be transformed into DNF in linear time. We use this new QBF to construct an ADF
D as we did in the hardness proof of Existszft. As observed in the proof of Proposition 26,
the special statement z is false in all ultimate two-valued stable models of D. To show that
VP3AQ is true iff z is true in all ultimate two-valued stable models of D, we show that
VP3Q is false iff D has an ultimate two-valued stable model where z is false: YP3Q is
false iff =V P3Q1 is true iff APYQ— is true iff D has an ultimate two-valued stable model
iff D has an ultimate two-valued stable model where z is false.

5

Complexity of Bipolar ADFs

O

We first note that since BADF's are a subclass of ADF's, all membership results from the previous
section immediately carry over. However, we can show that many problems will in fact become
easier. Intuitively, computing the revision operators is now P-easy because the associated satis-
fiability /tautology problems only have to treat restricted acceptance formulas. In bipolar ADFs,
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by definition, if in some three-valued pair (X,Y’) a statement s is accepted by a revision oper-
ator (s € O'(X,Y)), it will stay so if we set its undecided supporters to true and its undecided
attackers to false. Symmetrically, if a statement is rejected by an operator (s ¢ O”(X,Y)), it
will stay so if we set its undecided supporters to false and its undecided attackers to true. This
is the key idea underlying the next result.

Proposition 28. Let 2 be a BADF with L=LYUL™, O € {G,lk},s€ Sand X CY CS.
1. Deciding s € O'(X,Y) is in P.
2. Deciding s € O"(X,Y) is in P.

Proof. It suffices to show the claims for O = Uz, since the result that s € U (X,Y') is computable
in P implies that deciding s € GZ(X,Y’) is in P, due to coincidence of the two operators. Further
due to Proposition 4 we know that deciding s € GL(X,Y’) is a problem in P.

Recall that for M C S, if a link (z, s) is attacking, then it cannot be the case that M [~ o5
and M U{z} = ps. Similarly if (z, s) is supporting, then it cannot be the case that M = ¢, and
M U{z} £ ps. If (z,s) is attacking and supporting then for any M C S we have M | ¢ iff
M U{z} E ps, i.e. a change of the truth value of z does not change the evaluation of @;.

Given a consistent pair (X,Y) and s € S we can use a “canonical” interpretation representing
all X C Z CY as follows. Note that the aforementioned ‘redundant” links, i.e. links in the
intersection L™ N L™ can be disregarded completely and for ease of notation we will assume in
the proof that no such link is present (formally if (x, s) is a redundant link, then we can replace
each x in @, uniformly with T or L). Let Z C S, Z' C attz(s) and Z" C supp=(s). Then

seU(Z,7)
iff s cU(Z\ 2, 2)
iff s e U(Z\ 2,20 2",

The “if” direction is both times trivially satisfied. This can be seen by the easy fact that if
LU is tautological, then so is p&"U" with (L,U) <; (L',U’). Suppose the first “only if” does
not hold, i.e. the first line holds, but the second is not true. Then there exists a set H with
(Z\ Z') C H C Z such that H £ ¢s. By assumption Z |= ¢, and since HU (Z' N Z) = Z also
HU(Z'nZ) | ¢s, which is a contradiction, since Z' C att=(s) and thus (Z' N Z) C att=(s),
which implies that there exists a statement in attz(s) which is not attacking.

Suppose the second only if does not hold, then there exists a H with (Z\Z') C H C (ZUZ")
such that H W~ ¢,. Since we have that (Z\Z') C (H\(Z"\Z)) C Z it follows that H\ (Z"\Z) |=
s, which is a contradiction since Z" consists only of supporters of s.

Now we set the canonical interpretation as Z = X U (Y \ supp=(s)). Observe that there
exists Z' C attz(s) and Z" C suppz(s) s.t. X = Z\Z' andY = ZU Z", thus s € U(Z,Z)
iff s € UL(X,Y). Since we can construct Z in polynomial time if L™ and L~ are known and
deciding s € U(Z, Z) simply amounts to evaluating a formula under a valuation, the first claim
follows.

Showing the second claim is similar. Let Z C S, Z' C supp=(s) and Z" C attz(s). Then

sel(Z,7)
iffs e Ul(Z\ 2, 2)
iffs e U (Z\2',202"). O

Using the generic upper bounds of Theorem 8, it is now straightforward to show membership
results for BADFs with known link types.
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Corollary 29. Let E be a BADF with L = L™ U L™, consider any operator O € {Gz,U&} and
semantics o € {adm,com}. For X CY C S and s € S, we find that

Ver$(X,Y) and Vel’gd (X,Y) are in P;

Ver9 (X,Y) is in coNP;

pre

Exists$, Exists,,, CredS (s) and CredS) (s) are in NP;

Credg,(s), Skepty(s), Skeptoy, (s) are in P;

ietcO
EX|stsgrd,

e Skept9.(s) is in I1L.

pre

Proof. Membership is due to Theorem 8 and the complexity bounds of the operators in BADFs
in Proposition 28, just note that S = TI{’ = P. Further, due to Corollary 9, we can compute the
grounded pair in P® = P. For the existence of non-trivial pairs we can simply guess and check
in polynomial time for admissible pairs and thus also for complete and preferred semantics. [

Hardness results straightforwardly carry over from AF's.

Proposition 30. Let Z be a BADF with L = L™ U L™, consider any operator O € {G=,U} and
semantics o € {adm,com,pre}. For X CY C S and s € S:
e Ver9 (X,Y) is coNP hard;

pre

e Exists? and Cred?(s) are NP hard;

o Skept®, (s) is 1§ hard.

pre

Proof. Hardness results from AFs for these problems carry over to BADFs as for all semantics
AFs are a special case of BADFs [Brewka et al., 2013a; Strass, 2013a]. The complexities of the
problems on AFs for admissible and preferred semantics are shown by Dimopoulos and Torres
[1996], except for the Hf -completeness result of skeptical preferred semantics, which is shown
by Dunne and Bench-Capon [2002]. The complete semantics is studied by Coste-Marquis et al.
[2005]. O

We next show that there is no hope that the existence problems for approximate and ultimate
two-valued stable models coincide as there are cases when the semantics differ.

Example 3. Consider the BADF F = (S, L,C) with statements S = {a,b,c} and acceptance
formulas ¢, =t, ¢» =a Ve and . =aVb. The only two-valued supported model is (S,.5)
where all statements are true. This pair is also an ultimate two-valued stable model, since
U (0,S) = {a}, and both wg{a}’s) =tV eand o9 =t v b are tautologies, whence we have
U.-({a},S)=S5. However, (S,S5) is not an approximate two-valued stable model: although
Gr(0,5) = {a}, then G ({a},S) = {a} and we thus cannot reconstruct the upper bound S. Thus
F has no approximate two-valued stable models.

So approximate and ultimate two-valued (stable) model semantics are indeed different. How-
ever, we can show that the respective existence problems have the same complexity.

Proposition 31. Let Z be a BADF with L = LT U L™, O € {G=,U&} an operator and semantics
o € {2su,2st}. For X C S, Ver9 (X, X) is in P; Exists® is NP-complete.
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Proposition 30)

Proposition 30)

Proposition 30)

(Corollary 29)

O € {G=,lE}, 0| admissible complete preferred grounded model stable model
in P in P coNP-c in P in P in P
Ver (Corollary 29, (Corollary 29, (Corollary 29, (Proposition 31) |(Proposition 31)

(Corollary 29)

(Corollary 29)

(Corollary 32)

NP-c NP-c NP-c in P NP-c NP-c
Existsf (Corollary 29, (Corollary 29, (Corollary 29, (Corollary 29) (Proposition 31) | (Proposition 31)
Proposition 30) |Proposition 30) |Proposition 30) Y
NP-c NP-c NP-c .
P NP-c NP-c
Clredf'9 (Corollary 29, (Corollary 29, (Corollary 29, m ] ]
Proposition 30) |Proposition 30) |Proposition 30) (Corollary 29) (Corollary 32) (Corollary 32)
. Hg’—c ; _ -
Skept© trivial in P (Corollary 29, in P coNP-c coNP-c

(Corollary 32)

Proposition 30)

Table 3: Complexity results for semantics of bipolar Abstract Dialectical Frameworks.

Proof. Membership carries over — for supported models from [Brewka et al., 2013a, Proposition 5],
for approximate stable models from Theorem 22. For membership for ultimate stable models, we
can use Proposition 28 to adapt the decision procedure of Proposition 21. In any case, hardness
carries over from AFs [Dimopoulos and Torres, 1996]. (Il

For credulous and skeptical reasoning over the two-valued semantics, membership is straight-
forward and hardness again carries over from argumentation frameworks.

Corollary 32. Let £ be a BADF with L = L™ U L™; consider any operator O € {Gz,U&} and
semantics o € {2su,2st}. For s € S, Cred9(s) is NP-complete; Skept? (s) is coNP-complete.

6 Discussion

In this paper we studied the computational complexity of abstract dialectical frameworks us-
ing approximation fixpoint theory. We showed several novel results for two families of ADF
semantics, the approximate and ultimate semantics, which are themselves inspired by argument-
ation and AFT. We showed that in most cases the complexity increases by one level of the
polynomial hierarchy compared to the corresponding reasoning tasks on AFs. A notable differ-
ence between the two families of semantics lies in the stable semantics, where the approximate
version is easier than its ultimate counterpart. For the restricted, yet powerful class of bipolar
ADFs we proved that for the corresponding reasoning tasks AFs and BADFs have the same
complexity, which suggests that many types of relations between arguments can be introduced
without increasing the worst-time complexity. On the other hand, our results again emphasize
that arbitrary (non-bipolar) ADFs cannot be compiled into equivalent Dung AF's in deterministic
polynomial time unless the polynomial hierarchy collapses to the first level.

Although AFT may not have been developed with the intention of studying newly conceived
formalisms and defining semantics for them, we show that indeed AFT is a fruitful basis for
investigating such new formal models, in particular it is well-suited for analyzing their complexity.

Our results lay the foundation for future algorithms and their implementation, for example
augmenting the ADF system DIAMOND [Ellmauthaler and Strass, 2013] to support also the
approximate semantics family, as well as devising efficient methods for the interesting class of
BADFs.
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For further future work several promising directions are possible. Studying easier fragments
of ADFs as well as parameterized complexity analysis can lead to efficient decision procedures,
as is witnessed for AFs [Dvorék et al., 2014; Dvordk et al., 2012]. We also deem it auspicious to
use alternative representations of acceptance conditions, for instance by employing techniques
from knowledge compilation [Darwiche and Marquis, 2002].

AFs also feature several other useful semantics for which a detailed analysis would reveal
further insights, for example semi-stable semantics [Caminada et al., 2012] and naive-based
semantics, such as cf2 [Baroni et al., 2005]. Furthermore in [Polberg et al., 2013] an extension-
based semantics for ADF's is proposed and a complexity analysis would be interesting.

Regarding semantical analysis, it would be useful to consider principle-based evaluations of
ADF semantics as was done for AFs [Baroni and Giacomin, 2007]. Furthermore it appears natural
to compare (ultimate) ADF semantics and ultimate logic programming semantics [Denecker
et al., 2004] using approximation fixpoint theory, in particular with respect to computational
complexity.
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