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Abstract. We introduce an effective translation from proofs in the dis-
play calculus to proofs in the labelled calculus in the context of tense
logics. We identify the labelled calculus proofs in the image of this trans-
lation as those built from labelled sequents whose underlying directed
graph possesses certain properties. For the minimal normal tense logic Kt,
the image is shown to be the set of all proofs in the labelled calculus G3Kt.

1 Introduction

The widespread application of logical methods in several areas of computer sci-
ence, epistemology and artificial intelligence has resulted in an explosion of new
logics — each requiring an analytic calculus to facilitate study and applications.
Analytic calculi, whose rules (de)compose in a stepwise manner the formulae to
be proved, can be exploited to prove important metalogical properties of the
formalized logics and are central to developing automated reasoning methods.
Being relatively simple and not requiring much technical machinery (‘bureau-
cracy’), the sequent calculus has always been the most popular formalism to use
and try to construct analytic calculi. However, its simplicity means that it is also
limited in its expressive power, and is hence unable to support analytic calculi
for the many logics of interest. This has motivated the search for other, more
expressive formalisms. Many proof formalisms generalizing the sequent calculus
have been introduced in the last 30 years; each of them incorporates the bureau-
cracy in a distinct way and hence possesses distinct strengths, weaknesses, and
expressive power. In particular, certain formalisms are more helpful than others
for proving certain computational or metalogical properties. For this reason, it is
fruitful to study logics in a number of different formalisms. For example, a large
class of extensions of the minimal tense logic Kt have been presented as instances
of the labelled calculus (e.g., [19, 15]) and of the display calculus [12, 20, 9]. The
former is a extension of the sequent calculus in which the relational semantics of
the formalized logics is made an explicit part of the syntax; the latter extends
Gentzen’s language of sequents with new structural connectives that allow each
formula in a sequent to be “displayed” as the whole of the antecedent or the
whole of the succedent.

Labelled and display calculi substantially differ in their nature. Display cal-
culi are typically internal in the sense that each step in a proof can be read as a
formula of the logic. In general, labelled calculi appear to manipulate formulae
from a more expressive language which partially encodes the logic’s semantics,



and are hence termed external. Internal and external calculi have been introduced
and studied within two essentially independent—and sometimes competing—
streams in proof theory. These calculi possess different properties and lead to
distinct proofs.

An effective way to relate calculi is by defining embeddings, i.e. functions
that stepwise transform any proof in a calculus into a proof of the same formula
in another calculus. A crucial feature of such a function is that the structure
properties of the derivation are preserved in the translation. Such embeddings
permit the transfer of certain proof theoretic results, thus alleviating the need
for independent proofs in each system (see [8, 10, 16]). Moreover they shed light
on the role of bureaucracy in proof calculi, and on the general problem of charac-
terizing the relationships between different syntactic and semantic presentations
of a logic.

In this paper we investigate the relationships between display and labelled
proofs for a well known class of tense logics obtained by extending Kt with
Scott-Lemmon axioms [13] ♦h�ip→ �j ♦k p. Due to their distinct foundational
origins—the algebraic semantics for display calculi [12] and Kripke semantics
for labelled calculi [15]— the relationship between their proofs is prima facie
unclear; this is particularly true for the direction from labelled to display proofs
(e.g., [17] contains a translation of display sequents into labelled sequents). Ex-
ploiting the work of Goré et al. [9] who present the display calculus for tense logic
as a nested sequent with two types of nesting constructors, we show the equiv-
alence of the display calculus to a calculus on labelled directed graphs whose
underlying undirected graph is a tree. These structures – labelled UT graphs –
are a natural generalization of the labelled trees shown in [10] to correspond to
nested sequents [11, 3].

In particular, we give a bi-directional embedding between proofs in the dis-
play calculus and the labelled UT graph calculus. The latter are then mapped
into Negri’s [15] labelled sequent proofs. In the reverse direction, we then con-
sider specifically Negri’s labelled calculus for Kt and show that every derivation
there is a derivation in the labelled UT graph calculus.

2 Display and Labelled Calculi for Tense Logics

The tense logic Kt extends the normal modal logic K by the addition of the tense
operators ♦ and � with the following axioms and inference rule (see, e.g. [2, 4]):

�(p→ q)→ (�p→ �q) ♦p↔ ¬�¬p
p→ �♦p p→ � ♦ p A (nec)

�A

Intuitively, we interpret �A as claiming that the formula A holds at every
point in the future, whereas �A is interpreted as claiming that A holds at every
point in the past. Similarly, the formula ♦A is interpreted as A holding at some
point as the future, while ♦A intuitively means that A holds at some point in
the past.



We assume that our language consists of formulae in negation normal form,
where all negation signs are pushed inward onto the propositional atoms. In
particular, formulae are built from literals p and p using the ∧, ∨, ♦, �, ♦, and
� operators. Note that all results still hold for the full language where the ¬,→,
and↔ operators as taken as primitive as well. Nevertheless, we restrict ourselves
to negation normal form for matters of convenience.

The logics we consider in this paper are extensions of Kt with the Scott-
Lemmon axioms ♦h�ip → �j ♦k p (or equivalently, ♦h ♦j p → ♦i♦kp), for
h, j, i, k ≥ 0. In negation normal form and in the absence of implication, the
axioms become �h ♦i p̄ ∨�j ♦k p (equivalently, �h�j p̄ ∨ ♦i♦kp).

Display Calculi for Tense Logics Introduced under the name Display
Logic, Belnap’s Display Calculus [1] generalises Gentzen’s sequent calculus by
supplementing the structural connective (comma) with new structural connec-
tives. A (display) sequent X ` Y is a tuple (X,Y ) where X and Y are structures
which are built from formulae and structure constants using the structural con-
nectives of the calculus. The defining feature of a display calculus is that it
satisfies the display property.

Definition 1 (Display property, display rules). Let Z be an occurrence of
a substructure occurring in a sequent X ` Y . Using invertible structural rules
(the ‘display rules’) a sequent of the form Z ` U or U ` Z can be derived for
suitable U .

The beauty of the display calculus lies in a general cut-elimination theorem for
all calculi obeying eight easily verifiable syntactic conditions [1, 20]; this makes
the display calculus a good candidate for capturing large classes of logics in a
unified way, irrespective of their semantics or connectives.

We recall below Goré et al. [9] one-sided display calculus SKT for Kt, which
is a variant of Kashima’s calculus [11]. SKT is referred to as a shallow nested
sequent calculus because (i) the ◦{ } and •{ } provide (two types of) nesting and
(ii) all the rules are shallow in the sense that they operate at the root of the
sequent (when the sequent is viewed in terms of its grammar tree). Although the
rules in SKT are shallow, successive applications of the display rules (rf) and (rp)
enable nested formulae to be brought to the root without the use of additional
rules.

The display sequents of SKT are generated by the following grammar, where
A is a tense formula in negation normal form: X := A|X,X| ◦ {X}| • {X}.

Definition 2 (The Calculus SKT[9]).

(id)
Γ, p, p

Γ,A,B
( ∨ )

Γ,A ∨B
Γ,A Γ,B

( ∧ )
Γ,A ∧B

Γ,∆,∆
(ctr)

Γ,∆
Γ (wk)
Γ,∆

Γ, ◦{∆}
(rf)

•{Γ}, ∆
Γ, •{∆}

(rp)
◦{Γ}, ∆

Γ, •{A}
(�)

Γ,�A
Γ, ◦{A}

(�)
Γ,�A

Γ, •{∆,A},♦A
(♦)

Γ, •{∆},♦A
Γ, ◦{∆,A},♦A

(♦)
Γ, ◦{∆},♦A



A modular method of extending a base display calculus for Kt by a large
class of axioms inclusive of the Scott-Lemmon axioms was introduced in [12].
Following [12], Goré et al. [9] present the rule d(h, i, j, k) corresponding to the
Scott-Lemmon axiom �h�j p̄ ∨ ♦i♦kp.

Γ, ◦i{•k{∆}}
d(h, i, j, k)

Γ, •h{◦j{∆}}

The interpretation I of a display sequent as a tense formula is defined as follows.

I(A) = A for every formula A I(◦X) = �I(X)
I(X,Y ) = I(X) ∨ I(Y ) I(•X) = �I(X)

Theorem 1 ([12, 9]). Let S be any finite set of Scott-Lemmon axioms. A ∈ Kt+
S iff A is derivable in SKT + S′, where S′ = {d(h, i, j, k)|�h�j p̄ ∨ ♦i♦kp ∈ S}.

Labelled Calculi for Tense Logics Labelled sequents [7, 14] generalise
Gentzen sequents by the prefixing of state variables to formulae occurring in the
sequent and by making the relational semantics explicit in the syntax. A labelled
sequent has the form R, Γ where the relation mset (multiset) R consists of terms
of the form Rxy. Meanwhile Γ is a multiset of labelled formulae (e.g. x : A→ B,
y : p). A labelled sequent can be viewed as a directed graph (defined using the
set R) with formulae decorating each node [17, 18].

Negri [15] has presented a method for generating cut-free and contraction-free
labelled sequent calculi for the large family of modal logics whose Kripke seman-
tics are defined by geometric (first-order) formulae. The proof of cut-elimination
is general in the sense that it applies uniformly to every modal logic defined by
geometric formulae. This result has been extended to labelled sequent calculi for
intermediate and other non-classical logics [5] and indeed to arbitrary first-order
formulae [6]. See also Viganò [19] where non-classical logics with semantics de-
fined by Horn formulae are investigated using cut-free labelled calculi introduced
therein.

We begin by extending in the natural way the usual labelled sequent calculus
for K to a labelled sequent calculus for Kt.

Definition 3 (The labelled sequent calculus G3Kt[15]).

(id)R, x : p, x : p, Γ

R, x : A, x : B,Γ
( ∨ )R, x : A ∨B,Γ

R, x : A,Γ R, x : B,Γ
( ∧ )R, x : A ∧B,Γ

R, Ryx, y : A,Γ
(�)
∗

R, x : �A,Γ
R, Rxy, y : A,Γ

(�)
∗

R, x : �A,Γ

R, Ryx, y : A, x : ♦A,Γ
(♦)

R, Ryx, x : ♦A,Γ
R, Rxy, y : A, x : ♦A,Γ

(♦)R, Rxy, x : ♦A,Γ



The (�) and (�) rules have a side condition: the variable y does not occur in
the conclusion. When a variable is not allowed to occur in the conclusion of an
inference, we refer to it as an eigenvariable.

Following the method in [15], the rule l(h, i, j, k) corresponding to the Scott-
Lemmon axiom �h�j p̄ ∨ ♦i♦kp is given below. We use the notation Rnxz to
represent a relational sequence Rxy1, Ry1y2, ..., Ryn−1z of length n.

R, Rivx,Rkux,Rhwv,Rjwu, v : ∆,u : ∆′, Γ
l(h, i, j, k)∗

R, Rhwv,Rjwu, v : ∆,u : ∆′, Γ

All variables occurring in the relational atoms Rivx,Rkux with the exception
of v and u are eigenvariables.

Remark 1. In the rule above, some care is needed when some of the parameters
h, i, j, and k are equal to zero. There are sixteen possible cases to consider,
though we only give six of the cases below since all others can be obtained by
switching h and j, or i and k. The table below specifies the instances of the rule
depending on if the parameter is greater than zero (marked with a greater than
> sign in the table), or equal to zero (marked with an equality symbol = in the
table):

h j i k Premise Conclusion
= > > > R, Rivx,Rkux,Rjvu, v : ∆,u : ∆′, Γ R, Rjvu, v : ∆,u : ∆′, Γ
= > > = R, Rivu,Rjwu, v : ∆,u : ∆′, Γ R, Rjvu, v : ∆,u : ∆′, Γ
> = = > R, Rkuv,Rhuv, v : ∆,u : ∆′, Γ R, Rhuv, v : ∆,u : ∆′, Γ
= = > > R, Rivx,Rkvx, v : ∆, v : ∆′, Γ R, v : ∆, v : ∆′, Γ
= = > = R, Rivv, v : ∆, v : ∆′, Γ R, v : ∆, v : ∆′, Γ
> > > = R, Rivu,Rhwv,Rjwu, v : ∆,u : ∆′, Γ R, Rhwv,Rjwu, v : ∆,u : ∆′, Γ

The cases when all parameters are greater than zero gives the rule in its
full form as presented above, and when all parameters are equal to zero all
relational atoms are removed from the rule instance, and the premise is equal to
the conclusion.

The rule instances when i = k = 0 appear to necessitate the addition of
equality symbols to the language of G3Kt, along with the structural, equality
rules specified in Negri [15]. However, for matters of simplicity, we omit these
additional rules and note that all following results are preserved even in the
addition of such rules.

The following contraction and weakening rules are admissible [15] in G3Kt+
l(h, i, j, k).

R,Q,Q, ∆,∆, Γ
(ctr)R,Q, ∆, Γ

R, Γ
(wk)R,Q, Γ,∆

Theorem 2 ([15]). Let S be any finite set of Scott-Lemmon axioms. A ∈ Kt+S
iff x : A is derivable in SKT + S′, where S′ = {l(h, i, j, k)|�h�ip̄∨♦j♦kp ∈ S}.



3 Interpreting a display sequent as a labelled UT

In this section we show how to translate (back and forth) a display sequent into
a labelled directed graph whose underlying undirected graph is a tree.

We write V = V1tV2 to mean that V = V1∪V2 and V1∩V2 = ∅. The multiset
union of multisets M1 and M2 is denoted M1 ]M2. A labelling function L is
a map from a set V to a multiset of tense formulae. For labelling functions L1

and L2 on the set V1 and V2 respectively, let L1 ∪ L2 be the labelling function
on V1 ∪ V2 defined as follows:

L1 ∪ L2(x) =


L1(x) x ∈ V1, x 6∈ V2
L2(x) x 6∈ V1, x ∈ V2
L1(x) ] L2(x) x ∈ V1, x ∈ V2

A labelled graph (V,E, L) is a directed graph (V,E) (V 6= ∅) equipped with a
labelling function L on V .

Definition 4 (Labelled graph isomorphism). We say that two labelled graphs
u1 = (V1, E1, L1) and u2 = (V2, E2, L2) are isomorphic (written u1 ∼= u2) if and
only if there is an isomorphism f : V1 → V2 such that:

(i) for every x, y ∈ V1, (x, y) ∈ E1 iff (fx, fy) ∈ E1

(ii) for every x ∈ V , L(x) = L(fx).

Definition 5 (Labelled UT). A labelled graph whose underlying (undirected)
graph is a tree is termed a UT (underlying tree).

Example 1. Assuming that the nodes are decorated with multisets of formulae,
the following two graphs represent labelled UTs:

x

y

??

z

OO

w

`` y

����

u

��
v x

Interpreting a display sequent Γ as a labelled UT. Starting from the
display sequent Γ = A1, ..., An, ◦{∆1}, ..., ◦{∆k}, •{Σ1}, ..., •{Σm} we define the
labelled UT δU(Γ ) = (V,E, L) as follows:

1. Construct a labelled tree for Γ by parsing ◦{∆i} by adding a ◦-edge from the
current node to a new node containing ∆i and then construct the labelled
tree for ∆i; parse •{Σi} by adding a •-edge from the current node to a new
node containing Σi and then construct a labelled tree for Σi.

2. Now read each •-edge (x, y) as a ◦-edge (y, x).
3. For each multiset of formulas associated with a node x, define L(x) to be

equal to that multiset.



The resulting graph is no longer a tree, but it consists solely of ◦-edges since
every •-edge has been replaced. In particular, this graph can be viewed naturally
as a labelled UT.

Example 2. Take the display sequent A, ◦{B, •{}}, •{D,E, •{F}, ◦{G}} to in-
terpret. Below left is the grammar tree of the sequent after step one of the above
algorithm, and the graph below right is the complete UT:

x

◦
��

•

  
y

•
��

w

•
~~

◦

��
z u v

x

��
y w

``

��
z

OO

u

>>

v
Note that L(x) = {A}, L(y) = {B}, L(z) = ∅, L(w) = {D,E}, L(u) = {F},
and L(v) = {G}.

For concreteness, we give the formal details of the interpretation below.
Let N<N denote the set of finite sequences on N. We recursively define a func-
tion δU(x)(Γ ) (for (x) ∈ N<N) mapping a display sequent Γ to a labelled UT (on
the depth of Γ ):

1. Base case. A pictorial representation is given below right.

δU(x)(A1, . . . , AM ) = ({(x)}, ∅, x 7→ {A1, . . . , An})
(x)

A1, . . . , AM

2. Inductive case. Let Γ be the display sequent below where ♥j ∈ {◦, •}.

A1, . . . , AM ,♥1{X1}, . . . ,♥N{XN}

Suppose that δU(x,j)(♥j{Xj}) = (Vj , Ej , Lj) for 1 ≤ j ≤ N . Then we de-
fine δU(x)(Γ ) = (V,E,L) where

V = {(x)} ∪ V1 ∪ . . . ∪ VN
E = {((x), (xj)) | ♥j = ◦} ∪ {((xj), (x)) | ♥j = •}
L = L(x) ∪ L1 ∪ . . . ∪ LN

A pictorial representation is given below:

δU(x1)(X1) . . . δU(xN)(XN )

(x)

A1, . . . , AM

♥1

hh
♥N−1

<<

♥2

bb

♥N

66

Example 3. Under the translation δU , the sequent Γ = A, ◦{B, •{C}}, •{D}
becomes the UT δU(1)(Γ ) = 〈V,E, L〉 below:



(11)

B
• //

(111)

C

(12)

D

(1)

A

◦

dd

•

::

We have that V = {(1), (11), (111), (12)} and the labelling function L maps
(1) to the multiset {A}, (11) to {B}, (111) to {C}, and (12) to {D}. Note that
in practice we use the more familiar symbols x, y, z, ... to denote labels. The
numerical labels presented here are just a matter of technical convenience.

Definition 6 (u[v] notation). We write u[v] to mean the labelled graph con-
taining labelled subgraphs u[ ] and v which have a single vertex x in common such
that the label of x in u[v] is the union of L(x) from u[ ] and v.

Example 4. Suppose that the graph (bottom right) is the labelled graph u[v]
where x is the common vertex between u[] and v. The labelled graph u[] is
shown below middle, with the labelled graph v shown below right.

·

��
· x

__

        
·

OO

∗

?? ??????

∗

·

��
· x

__

x

��������
·

OO

∗

>>>>>>>>

∗

If u[v] = (V,E, L), then there exist partitions V = V1t{x}tV2, E = E1tE2,
and L1 and L2 such that L = L1 ∪ L2, where u[ ] = (V1 t {x}, E1, L1) and v =
(V2 t {x}, E2, L2). In particular, L(x) = L1(x) ] L2(x). Note that when u[v] is
a labelled UT, then u[ ] and v must necessarily be labelled UTs.

We have seen that every display sequent defines (up to isomorphism) a la-
belled UT. With a slight abuse of notation, we will use the display sequent
notation to denote a labelled UT. For example, we will write u[X] to mean the
labelled graph such that the labelled graph u[ ] and the labelled UT δU(X) are
subgraphs with a single common vertex. The context will make it clear if we are
referring to a display sequent or a labelled UT.

The translation from a display sequent to a labelled UT extends naturally to
a translation from a display sequent rule to a labelled UT rule. This leads us to
the definition of the following calculus.

Definition 7 (UT calculus). Every sequent in this calculus is a labelled UT.



(id)uu[p, p]
u[A] u[B]

(∧)u
u[A ∧B]

u[A,B]
(∨)u

u[A ∨B]

A, ◦{X}
(�)u�A,X

u[◦{∆,A},♦A]
(♦)u

u[◦{∆},♦A]

u[◦{∆,♦A}, A]
(♦)u

u[◦{∆,♦A}]

u[◦{A}]
(�)u

u[�A]

u[Γ ]
(w)u

u[Γ,∆]

u[∆,∆]
(c)u

u[∆]

For convenience, we drop the subscript (x) and write δU for δU(x).
Recall that SKT + d(h, i, j, k) (see below left) is a calculus for the exten-

sion of Kt with the Scott-Lemmon axiom �h�j p̄ ∨ ♦i♦kp. We define the UT
rule u(h, i, j, k) as below right.

Γ, ◦i{•k{∆}}
d(h, i, j, k)

Γ, •h{◦j{∆}}
u[◦i{•k{∆}}]

u(h, i, j, k)
u[•h{◦j{∆}}]

Since display sequents may be interpreted as trees with two types of edges
(◦-edges and •-edges), they possess a root node, whereas UTs do not possess
a root in general. Nevertheless, the underlying tree structure of a UT permits
us to view any node as the root, and the lemma below ensures that we obtain
deductively equivalent labelled UTs via the residuation rules regardless of the
node where we begin the translation.

Lemma 1. For every Γ and ∆, δU(Γ, ◦{∆}) ∼= δU(•{Γ}, ∆)

Proof. Let (V,E, L) be the labelled UT corresponding to Γ, ◦{∆}. Then there
exists x, y ∈ V and (x, y) ∈ E such that V = V1 t {x} t V2 t {y} and E =
E1 t E2 t {(x, y)} and δU(Γ ) = (V1 t {x}, E1) and δU(∆) = (V2 t {y}, E2).

Now consider the interpretation (V ′, E′, L′) of •{Γ}, ∆. Then there exists u, v ∈
V ′ and (u, v) ∈ E such that V ′ = V ′1 t {u} t V ′2 t {y} and E′ = E′1 t E′2 t
{(u, v)} and δU(Γ ) = (V ′1 t {u}, E′1) and δU(∆) = (V ′2 t {v}, E′2). By inspec-
tion, (V1, E1, L1) ∼= (V ′1 , E

′
1, L
′
1) and (V2, E2, L2) ∼= (V ′2 , E

′
2, L
′
2). It follows that

(V,E, L) ∼= (V ′, E′, L′).

Interpreting a labelled UT as a display sequent. Given a UT u = 〈V,E,L〉
we first pick a vertex x ∈ V to compute the display sequent Uδx(u). If E = ∅,
then Uδ(u) = L(x) is the desired display sequent. Otherwise, for all n forward
looking edges (x, yi) ∈ E (with 1 ≤ i ≤ n) where yi is the common label
of u = u[vi] and vi, and for all k backward looking edges (zj , x) ∈ E (with
1 ≤ j ≤ k) where zj is the common label of u = u[wj ] and wj , we define the
image of Uδx(u) as the display sequent

L(x), ◦{Uδy1(v1)}, . . . , ◦{Uδyn(vn)}, •{Uδz1(w1)}, . . . , •{Uδyk(vk)}

Since the UTs v1, . . . , vn, w1, . . . , wk are smaller than u, the recursive definition
of Uδ is well-founded.



Lemma 2. For any UT u = 〈V,E, L〉, and for any vertices x, y ∈ V , the display
sequent Uδx(u) is derivable from Uδy(u) via the residuation rules (rf) and (rp).

Proof. Follows by lemma 1.

Lemma 3. (i) For every Γ and ∆, δU(Γ,∆) is the UT u[v], where v is the
UT δU(∆) and u[ ] is the UT δU(Γ ).

(ii) For every UT u[v], Uδ(u[v]) is the display sequent Γ,∆ (up to display
equivalence) where Γ = Uδ(u[ ]) and ∆ = Uδ(v).

Proof. By construction of δU and Uδ.

Theorem 3 (Translating derivations: SKT+S and UT calculus+S′). Let
S be any finite set of d(h, i, j, k) rules and S′ be the set {u(h, i, j, k)|d(h, i, j, k) ∈
S}. Then:

(i) Let δ be a derivation of Γ in SKT+S. Then there is an effective translation
of δ to a derivation δ′ of δU(Γ ) in the UT calculus with S′.

(ii) Let δ be a derivation of the labelled UT u in the UT calculus with S′. Then
there is an effective translation of δ to a derivation of Uδ(g) in SKT + S.

Proof. (i) Induction on the height of δ.
Base case. δU(Γ, p, p̄) is a UT of the form u[p, p̄] (Lemma 3(i)) and is hence

an initial sequent in the UT calculus.
Inductive case. It suffices to simulate each rule instance of SKT in the UT

calculus. Every rule in SKT other than (rf), (rp), (�) and (♦) has the form below
left for suitable Y1 and Y0; moreover, there is a corresponding rule in the UT
calculus as shown below right.

Γ, Y1
(r)

Γ, Y0

u[Γ, Y1]
(r)uu[Γ, Y0]

The induction hypothesis gives us a derivation of δU(Γ, Y1) = u[Γ, Y1]. Apply-
ing (r)u we get u[Γ, Y0] = δU(Γ, Y0) as required.

We consider the remaining rules below.

Γ, ◦{∆}
(rf)

•{Γ}, ∆
δUx(Γ, ◦{∆})

Lem. 1∼= δUx(•{Γ}, ∆)

Γ, •{∆}
(rp)

◦{Γ}, ∆
δUx(Γ, •{∆})

Lem. 1∼= δUx(◦{Γ}, ∆)

Γ, •{A}
(�)

Γ,�A

δUx(Γ, •{A})
◦{Γ}, A

(�)
Γ,�A

Γ, •{∆,A},♦A
♦

Γ, •{∆},♦A

δUx(Γ, •{∆,A},♦A)

∆,A, ◦{Γ,♦A}
♦

∆, ◦{Γ,♦A}
δU(Γ, •{∆},♦A)



(ii) Induction on the height of δ. The argument is similar to the above case
and uses Lemma 3(ii).

4 From labelled UTs to labelled sequents

We identify a subclass of labelled sequents which we call G3Kt(UT ) sequents,
and prove that they correspond to labelled UT graphs. Due to the relations of
the latter with the display calculi shown in the previous section, it follows that
every derivation in the SKT+u(h, i, j, k) calculus corresponds to a derivation in
the labelled calculus restricted to G3Kt(UT ) sequents.

Transforming a labelled UT u = (V,E, L) into a labelled sequent R, Γ .
Define R = {Rxy|(x, y) ∈ E} and

Γ =
⊎

x∈V,L(x)6=∅

x : L(x)

where x : L(x) represents the multiset L(x) with each formula prepended with
a label x.

Example 5. The UT u = 〈V,E, L〉 where V = {x, y, z}, E = {(x, y), (z, x)},
L(x) = {A}, L(y) = {B}, and L(z) = {C} corresponds to the labelled sequent
Rxy,Rzx, x : A, y : B, z : C.

Transforming a labelled sequent R, Γ into a labelled graph (V,E, L).
Let V be the set of all labels occurring in R, Γ . Define

E = {(x, y)|Rxy ∈ R} L(x) = {multiset of formulae with label x in Γ}

Example 6. The labelled sequent Rxy,Ryz,Rux, x : A, z : B, z : C, u : D be-
comes the UT u = 〈V,E, L〉 where V = {x, y, z, u}, E = {(x, y), (y, z), (u, x)},
L(x) = {A}, L(y) = ∅, L(z) = {B,C} and L(u) = {D}.

The reader will observe that the translations are obtained rather directly.
This is because the main difference between a labelled graph and a labelled
sequent is notation. The main step of the translation was already established in
the previous section. Our interest in this work is the image of a display sequent
in the labelled calculus. This motivates the following definitions.

Definition 8 (G3Kt(UT ) sequent). A labelled sequent whose image (under
the above translation) is a labelled UT is called a G3Kt(UT ) sequent.

Definition 9 (G3Kt(UT ) calculus). Define the calculus G3Kt(UT ) to be the
labelled calculus restricted to G3Kt(UT ) sequents and with weakening and con-
traction defined as follows:

R, Γ
(wk)

∗
ulR,Q, ∆, Γ

R,Q, Q̂, ∆, ∆̂, Γ
(ctr)∗ulR,Q, ∆, Γ



Weakening has the side condition that the conclusion must be a G3Kt(UT )-
sequent. Contraction possesses side conditions that ensure it behaves just as the
(ctr)u rule:

1. The labelled graph of Q̂, ∆̂ must be isomorphic to the labelled graph of Q, ∆.
2. The conclusion must be a G3Kt(UT )-sequent.
3. Both Q, ∆ and Q̂, ∆̂ form labelled UTs that share a root, and all other vari-

ables in Q̂, ∆̂ do not appear in the conclusion of the inference, i.e. they are
eigenvariables.

We use the notation (r)ul to indicate the remaining inference rules of G3Kt(UT ).

For h, i, j, k ∈ N, define ul(h, i, j, k) as follows:

R, Rivx,Rkux, v : ∆,u : ∆′, Γ
ul(h, i, j, k)∗

R, Rhwv,Rjwu, v : ∆,u : ∆′, Γ

The asterisk indicates the following side conditions: (i) all variables occur-
ring in Rivx,Rkux with the exception of v and u are eigenvariables and (ii) all
variables occurring in Rhwv,Rjwu with the exception of v and u are fresh.

Remark 2. Similar to the presentation of the l(h, i, j, k) rules (cf. Remark 1), we
provide the table below showing the different instances of the rule depending
on the values of the parameters h, i, j, and k. The reduction in cases is due to
the fact that we allow the ul(h, i, j, k) rules to relabel formulae from premise to
conclusion–an action which is not allowed for the l(h, i, j, k) rules.

i k Premise
> > R, Rivx,Rkux, v : ∆,u : ∆′, Γ
= > R, Rkuv, v : ∆,u : ∆′, Γ
> = R, Rivu, v : ∆,u : ∆′, Γ
= = R, v : ∆, v : ∆′, Γ

h j Conclusion
> > R, Rhwv,Rkwu, v : ∆,u : ∆′, Γ
= > R, Rjwu,w : ∆,u : ∆′, Γ
> = R, Rhwv, v : ∆,w : ∆′, Γ
= = R, w : ∆,w : ∆′, Γ

To see that the G3Kt(UT ) + ul(h, i, j, k) calculus is well-defined, it suffices
to observe that the conclusion of every G3Kt rule is a G3Kt(UT ) sequent given
that the premise(s) is (are) G3Kt(UT ) sequents.

Lemma 4. If the premise of a G3Kt(UT )+ul(h, i, j, k) inference is a G3Kt(UT )-
sequent, then the conclusion is an G3Kt(UT )-sequent.

Proof. We argue the result for the (wk)ul, (ctr)ul, (�)ul, and ul(h, i, j, k) rules
since all other cases are similar or trivial.

Case 1 and 2. These cases follow from the side conditions on the (wk)ul
and (ctr)ul rules, which only allow application of the rule when the result is a
G3Kt(UT ) sequent.

Case 3. Assume that R, Ryx, y : A,Γ is a G3Kt(UT )-sequent and that u =
〈V,E, L〉 is the corresponding UT. Since y is an eigenvariable, the conclusion



R, x : �A,Γ gives a labelled graph u′ = 〈V ′, E′, L′〉 where V ′ = V − {y},
E′ = E − {(y, x)}, L′(y) is undefined, L′(x) is equal to L(x) extended with
x 7→ {�A}, and L′ is equal to L for all other labels in V ′.

Case 4. We prove the claim for when h, i, j, k > 0 since other cases are
similar. Assume that the premise R, Rixy,Rkzy, Γ is a G3Kt(UT )-sequent with
all variables ym strictly between x and z eigenvariables. Observe that in u =
〈V,E, L〉 there is a path of length i + k from the node x to z where the first i
edges are forward looking, and the last k edges are backwards looking. Observe
that the UT u′ = 〈V ′, E′, L′〉 of the conclusion R, Rhwx,Rjwz, Γ will contain a
path of length h+ j from the node x to z where the first h edges are backwards
looking, and the last j edges are forwards looking. Due to the eigenvariable
condition on all nodes ym strictly between x and z, it cannot be the case that
an edge given by R contains a label ym, and it must be the case that L(ym) = ∅
(thus ensuring u′ is connected). Also, all new nodes along the h+ j-path strictly
between x and z will be fresh (thus ensuring u′ is free of cycles). Hence, u′ will
be a UT.

Lemma 5 (Translating derivations: G3Kt(UT )+S and UT calculus+S′).
Let S be any finite set of ul(h, i, j, k) rules and S′ = {u(h, i, j, k)|ul(h, i, j, k) ∈
S}. Then

(i) Let δ be a derivation of x : A in G3Kt(UT ) + S. Then there is an effective
translation of δ to a derivation δ′ of A in the UT calculus+S′.

(ii) Let δ be a derivation of A in the UT calculus+S′. Then there is an effective
translation of δ to a derivation δ′ of x : A in G3Kt(UT ) + S.

Proof. Follows from the observation that the translation of every rule instance
in G3Kt(UT ) + S is a rule instance in the UT calculus+S′ and vice versa.

Combining the previous results we obtain:

Theorem 4 (Translating derivations: SKT + S and G3Kt(UT ) + S′). Let
S be any finite set of d(h, i, j, k) rules and S′ = {ul(h, i, j, k)|d(h, i, j, k) ∈ S}.
Then

1. Let δ be a derivation of A in SKT+S. Then there is an effective translation
of δ to a derivation δ′ of x : A in G3Kt(UT ) + S′.

2. Let δ be a derivation of x : A in G3Kt(UT ) + S′. Then there is an effective
translation δ to a derivation δ′ of A in SKT + S.

Proof. Immediate from theorem 3 and lemma 4.

5 Labelled UTs vs labelled sequents

In the previous sections, we observed how to embed the display calculus SKT +
S (for a finite set S of d(h, i, j, k) rules) in the labelled calculus formalism,
in particular, as a proper fragment, which we called G3Kt(UT ) + S′ (S′ =



{ul(h, i, j, k)|d(h, i, j, k) ∈ S}). Indeed, an G3Kt(UT )-sequent is a severe restric-
tion of a labelled sequent since the underlying graph in the former is restricted
to a tree. As a result we have two distinct labelled calculi for Scott-Lemmon
extensions of Kt. In this section we investigate the natural question that arises:
what is the relationship between these calculi? As seen below, the labelled calcu-
lus simulates G3Kt(UT )+S′, despite the slightly different rules (i.e. ul(h, i, j, k))
used by the latter to capture the Scott-Lemmon axioms. The next question is
therefore whether the converse also holds, that is, whether the two calculi can
represent the same proofs. In the case of the normal minimal tense logic Kt the
answer is affirmative.

From G3Kt(UT ) + ul(h, i, j, k) to G3Kt + l(h, i, j, k). As stated in Re-
mark 1, when i = k = 0 it appears that the language of sequents must be
extended to include equality atoms, and the calculus extended to include equal-
ity structural rules, in order to capture all Scott-Lemmon extensions with the
l(h, i, j, k) rules. For reasons of simplicity, we only give the effective translation
from G3Kt(UT ) +ul(h, i, j, k) derivations to G3Kt+ l(h, i, j, k) derivations when
i > 0 or k > 0. We remark that the effective translation also goes through for
i = k = 0 in the presence of the equality structural rules given in Negri [15].

Lemma 6. The calculus G3Kt+l(h, i, j, k) admits height-preserving substitution
of variables [15].

Theorem 5. Let δ be a derivation of x : A in G3Kt(UT ) + ul(h, i, j, k), with
i > 0 or k > 0. Then there is an effective translation of δ to a derivation δ′

of x : A in G3Kt + l(h, i, j, k).

Proof. We prove the result by induction on the height of the derivation δ.

Base case. It is easy to see that initial sequents of G3Kt(UT ) are initial
sequents of G3Kt.

Inductive step. We show the inductive step for two of the ul(h, i, j, k) rules
and the (ctr)ul rule, since all other rules and instances are easily confirmed.

R, Rivx,Rkux, v : ∆,u : ∆′, Γ

R, v : ∆, v : ∆′, Γ

R, Rivx,Rkux, v : ∆,u : ∆′, Γ
lem. 6

R, Rivx,Rkvx, v : ∆, v : ∆′, Γ
l(h, i, j, k)

R, v : ∆, v : ∆′, Γ

R, Rivu, v : ∆,u : ∆′, Γ

R, v : ∆, v : ∆′, Γ

R, Rivu, v : ∆,u : ∆′, Γ
lem. 6

R, Rivv, v : ∆, v : ∆′, Γ
l(h, i, j, k)

R, v : ∆, v : ∆′, Γ

R,Q, Q̂, ∆, ∆̂, Γ
R,Q, ∆, Γ

R,Q, Q̂, ∆, ∆̂, Γ
lem. 6R,Q,Q, ∆,∆, Γ
(ctr)R,Q, ∆, Γ



From G3Kt + l(h, i, j, k) to G3Kt(UT ) + ul(h, i, j, k). Consider now the
converse direction. Let S be a finite set of Scott-Lemmon axioms and define

Sul = {ul(h, i, j, k)|�h�j p̄ ∨ ♦i♦kp ∈ S}
Sl = {l(h, i, j, k)|�h�j p̄ ∨ ♦i♦kp ∈ S}

Given a derivation δ in G3Kt + Sl, in general δ will not be a derivation
in G3Kt(UT ) + Sul because some sequents in δ (possibly even the endsequent)
may not be a G3Kt(UT )-sequent. A more meaningful question is: given a deriva-
tion of x : A in G3Kt+ Sl, is there a derivation of x : A in G3Kt(UT ) + Stu that
is effectively related to δ? The constraint that the new derivation is “effectively
related” is crucial, for otherwise one could trivially relate δ with the derivation δ′

obtained from the following equivalence:

`δG3Kt+Sl
x : A iff A ∈ Kt + �h�j p̄ ∨ ♦i♦kp iff ∃δ′. `δ

′

G3Kt(UT )+Sul
x : A

Although the phrase ‘effectively related’ has not been explicitly defined, what
we envisage is a local (i.e. rule by rule) transformation on δ, which is sensitive
to its structure, that ultimately yields a G3Kt(UT ) + Sul derivation of x : A.
Notice that the G3Kt(UT ) + Sul derivation obtained via the above argument is
not sensitive to the input in the sense that any two G3Kt+Sl derivations of x : A
would be mapped to the same G3Kt(UT ) + Sul derivation.

In the boundary case when S = Sl = Sul = ∅ we have the following result.

Proposition 1. Every labelled derivation in G3Kt of x : A is also a derivation
in G3Kt(UT ).

Proof. We argue by contradiction. Let δ be a derivation of x : A in G3Kt and
suppose there is a labelled sequent R, Γ in δ that is not a G3Kt(UT )-sequent.
This means that the underlying graph of R is not a tree. If R is not connected,
then by inspection of the rules of G3Kt, the underlying graph of every sequent
below it (and hence x : A) would not be connected and this is a contradiction.
On the other hand, if R is connected and its underlying graph is not a tree, then
the underlying graph must contain a cycle. This follows from the fact that R is
assumed connected, and the fact that any acyclic connected graph forms a tree.
This means that there exist x, y, w such that {Rxw,Ryw} ⊆ R. By inspection of
the rules of G3Kt, every sequent below R, Γ will contain this cycle contradicting
the assumption that x : A is the end sequent.

This argument does not work for extensions of G3Kt because the additional
strutural rules can remove underlying cycles from the premise. Indeed, consider
the rule for transitivity:

R, Rxy,Ryz,Rxz, Γ
(Trans)R, Ryz,Rxz, Γ

The underlying graph of a sequent satisfying the premise of (Trans) necessarily
contains a cycle. However it need not be the case that the conclusion contains
an underlying cycle.



In summary: embedding the display calculus into the labelled calculus has
yielded two seemingly distinct labelled calculi for the tense logics: G3Kt+l(h, i, j, k)
and G3Kt(UT ) + ul(h, i, j, k). Investigating the (im)possibility of a pointwise
translation from the derivations in the former to the latter is an interesting
problem which we defer to future work.
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