
Information Sciences 181 (2011) 1951–1970
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
RFuzzy: Syntax, semantics and implementation details of a simple and
expressive fuzzy tool over Prolog

Susana Munoz-Hernandez *, Víctor Pablos-Ceruelo, Hannes Strass
L-3302, Campus de Montegancedo s/n, Facultad de Informática, Universidad Politécnica de Madrid, Boadilla del Monte 28660, Spain
a r t i c l e i n f o

Article history:
Available online 5 August 2010

Keywords:
Fuzzy logic
Logic programming application
Knowledge representation and reasoning
Semantics
Implementation
0020-0255/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.ins.2010.07.033

* Corresponding author. Tel.: +34 646465267; fax
E-mail addresses: susana@fi.upm.es (S. Munoz-H

1 ‘‘Is there a need for fuzzy logic” is an issue with a
it is needed can be found there.

2 A good survey on many-valued logics (Gödel log
a b s t r a c t

We present the RFuzzy framework, a Prolog-based tool for representing and reasoning with
fuzzy information. The advantages of our framework in comparison to previous tools along
this line of research are its easy, user-friendly syntax, and its expressivity through the
availability of default values and types.

In this approach we describe the formal syntax, the operational semantics and the
declarative semantics of RFuzzy (based on a lattice). A least model semantics, a least fix-
point semantics and an operational semantics are introduced and their equivalence is pro-
ven. We provide a real implementation that is free and available. (It can be downloaded
from http://babel.ls.fi.upm.es/software/rfuzzy/.) Besides implementation details, we also
discuss some actual applications using RFuzzy.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Logic programming [18] has been successfully used in knowledge representation and reasoning for decades. However, a
serious drawback is the lack of an easy and user-friendly way to represent vague world information. Indeed, world data is not
always perceived in a crisp way. Information that we gather might be imperfect, uncertain, or fuzzy in some other way.
Hence the management of uncertainty and fuzziness is very important in knowledge representation.1

Over time, a great quantity of frameworks for incorporating uncertainty (in the sense of fuzziness) in logic programming
have been proposed. Alas, only few of them resulted in actually usable tools. Since logic programming is traditionally used in
knowledge representation and reasoning, we argue (as in [40]) that it is perfectly well-suited to implement a fuzzy reasoning
tool as ours.

1.1. Fuzzy approaches in logic programming

Introducing fuzzy logic into logic programming resulted in the development of several fuzzy systems over Prolog. These
systems replace its inference mechanism, SLD-resolution, with a fuzzy variant that is able to handle partial truth. Most of
these systems implement the fuzzy resolution introduced by Lee [16], as the Prolog-Elf system [10], the FRIL Prolog system
[2] and the F-Prolog language [17]. However, there is no common method for fuzzifying Prolog, as noted in [39].

Some of these Fuzzy Prolog systems only consider fuzziness on predicates whereas other systems consider fuzzy facts or
fuzzy rules. There is no agreement about which fuzzy logic should be used. Most of them use min–max logic (for modelling
the conjunction and disjunction operations), other systems just use Łukasiewicz logic [12].2
. All rights reserved.

: +34 913363669.
ernandez), vpablos@fi.upm.es (V. Pablos-Ceruelo), hannes.strass@alumnos.upm.es (H. Strass).
long history of spirited discussions and debate, as pointed out by Zadeh [52]. A better explanation on why

ics, Łukasiewicz logic, Product logic) can be found in [6,7].

http://babel.ls.fi.upm.es/software/rfuzzy/
http://dx.doi.org/10.1016/j.ins.2010.07.033
mailto:susana@fi.upm.es
mailto:vpablos@fi.upm.es
mailto:hannes.strass@alumnos.upm.es
http://dx.doi.org/10.1016/j.ins.2010.07.033
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

1952 S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970
There is also an extension of constraint logic programming [3], which can model logics based on semiring structures. This
framework can model min–max fuzzy logic, which is the only logic with semiring structure. Another theoretical model for
fuzzy logic programming without negation has been proposed by Vojtáš [49], which deals with many-valued implications.

1.2. Fuzzy Prolog

One of the most promising fuzzy tools for Prolog was the ‘‘Fuzzy Prolog” system [48,5]. The most important advantages in
comparison to the other approaches are:

1. A truth value is represented as a finite union of sub-intervals on [0,1]. An interval is a particular case of union of one ele-
ment, and a unique truth value (a real number) is a particular case of having an interval with only one element.

2. A truth value is propagated through the rules by means of an aggregation operator. The definition of this aggregation oper-
ator is general and it subsumes conjunctive operators (triangular norms [14] like min, prod, etc.), disjunctive operators
[46] (triangular co-norms, like max, sum, etc.), average operators (averages as arithmetic average, quasi-linear average,
etc) and hybrid operators (combinations of the above operators [38]).

3. Crisp and fuzzy reasoning are consistently combined [24].

Fuzzy Prolog adds fuzziness to a Prolog compiler using CLP ðRÞ instead of implementing a new fuzzy resolution method,
as other former fuzzy Prolog systems do. It represents intervals as constraints over real numbers and aggregation operators as
operations with these constraints. Thus, Prolog’s built-in inference mechanism is used to handle the concept of partial truth.

1.3. RFuzzy approach motivation

Over the last few years several papers have been published by Medina et al. [31,32,30] about multi-adjoint programming.
They describe a theoretical model, but no means of serious implementations apart from promising prototypes [1] and re-
cently the FLOPER tool [34,27].

The FLOPER implementation is inspired by Fuzzy Prolog [5] and adds the possibility to use multi-adjoint logic. On the one
hand, Fuzzy Prolog is more expressive in the sense that it can represent continuous fuzzy functions and its truth values are
more general (unions of intervals of real numbers as opposed to real numbers); on the other hand, Fuzzy Prolog’s syntax is so
flexible and general that can be complex for non-expert programmers that are just interested in modelling simple fuzzy
problems.

This is the reason why we herein propose the RFuzzy3 approach. It is simpler for the user than Fuzzy Prolog because the
truth values are simple real numbers instead of the general structures of Fuzzy Prolog. RFuzzy allows to model multi-adjoint
logic (see Section 5) and moreover provides some interesting improvements with respect to FLOPER: default values, partial
default values (just for a subset of data), typed predicates and useful syntactic sugar (for representing facts, rules and func-
tions). Additionally RFuzzy inherits Fuzzy Prolog characteristics that makes it more expressive than other tools. Examples of
this are:

� RFuzzy uses Prolog-like syntax, providing flexibility in the queries’ syntax,
� it allows the programmer to combine crisp and fuzzy predicates,
� it provides general connectives to combine truth values and
� it provides constructive answers when querying data or truth values.

Some previous works have been published to introduce details about the syntax [36,22] and the operational semantics
[37,42] of RFuzzy. The present work combines all these theoretical and practical details and additionally provides the declar-
ative semantics and some application examples.

We start by introducing the formal syntax of RFuzzy (Section 2) and its declarative and operational semantics (Sections 3
and 4, respectively), to arrive at the justification of the sentence ‘‘RFuzzy allows to model multi-adjoint logic” (Section 5).
Afterwards we board RFuzzy implementation and usage (Section 6) and provide some real application cases (Section 7).
The last section (Section 8) is in charge of presenting the conclusions of this work.

2. Syntax

We will use a signature R of function symbols and a set of variables V to ‘‘build” the term universe TUR,V (whose elements
are the terms). It is the minimal set such that each variable is a term and terms are closed under R-operations. In particular,
constant symbols are terms.

Similarly, we use a signature P of predicate symbols to define the term baseTBPR,V (whose elements are called atoms).
Atoms are predicates whose arguments are elements of TUR,V. Atoms and terms are called ground if they do not contain vari-
3 In RFuzzy’s name, the ‘‘R” means Real, because the truth value that it uses is a real number instead of an interval or union of intervals as in Fuzzy Prolog.
RFuzzy should not be confused with the term ‘‘R-Fuzzy set” [51,50] that means rough fuzzy set.

S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970 1953
ables. As usual, the Herbrand universe is the set of all ground terms, and the Herbrand base HB is the set of all atoms with
arguments from the Herbrand universe. To capture different interdependencies between predicates, we will make use of
a signature X of many-valued connectives4:

� conjunctions &1, &2, . . . , &k

� disjunctions _1, _ 2, . . . , _ l

� implications 1, 2, . . . , m

� aggregations @1, @2, . . . ,@n

� real numbers v 2 ½0;1� � R. These connectives are of arity 0(v 2X(0)) and symbolise dependency on no other predicate.

While X denotes the set of connective symbols, X̂ denotes the set of their respective associated truth functions. Instances
of connective symbols and truth functions are denoted by F and bF , respectively.

Truth functions for conjunctions are conjunctors bF : ½0;1�2 ! ½0;1� monotone and non-decreasing in both coordinates.
Truth functions for disjunctions are disjunctors bF : ½0;1�2 ! ½0;1� monotone in both coordinates. Truth functions for impli-
cations are implicators bF : ½0;1�2 ! ½0;1� non-increasing in the first and non-decreasing in the second coordinate. Truth func-
tions for aggregation operators are functions bF : ½0;1�n ! ½0;1� that verify bFð0; . . . ;0Þ ¼ 0 and bFð1; . . . ;1Þ ¼ 1. At last, truth
functions for connectives v 2X(0) are functions of arity 0 (constants) that coincide with the connectives ðbF ¼ FÞ.

A n-ary truth function for a connective is called monotonic in the ith argument (i 6 n), if x 6 x0 implies
4 Not
work w

5 Not
bF ðx1; . . . ; xi�1; x; xiþ1; . . . ; xnÞ 6 bFðx1; . . . ; xi�1; x0; xiþ1; . . . ; xnÞ:
A truth function is called monotonic if it is monotonic in all arguments.
Immediate examples for connectives that come to mind are

� for conjunctors: Łukasiewicz logic ðbFðx; yÞ ¼ maxð0; xþ y� 1ÞÞ, Gödel logic ðbFðx; yÞ ¼ minðx; yÞÞ, product logic
ðbFðx; yÞ ¼ x � yÞ.
� for disjunctors: Łukasiewicz logic ðbFðx; yÞ ¼ minð1; xþ yÞÞ, Gödel logic ðbFðx; yÞ ¼ maxðx; yÞÞ, product logic ðbFðx; yÞ ¼ x � yÞ.
� for implicators: Łukasiewicz logic ðbFðx; yÞ ¼ minð1;1� xþ yÞÞ, Gödel logic ðbFðx; yÞ ¼ y if x > y else 1Þ, product logic
ðbFðx; yÞ ¼ x � yÞ.
� for aggregation operators5: arithmetic mean, weighted sum or a monotone function learned from data.

Definition 2.1. Let X be a connective signature, P a predicate signature, R a term signature and V a set of variables.
A fuzzy clause is written as
A c;Fc FðB1; . . . ;BnÞ;
where A 2 TBP,R,V is called the head, B1, . . . ,Bn 2 TBP,R,V is called the body, c 2 [0,1] is the credibility value, and
Fc 2 {&1, . . . ,&k} �X(2) and F 2X(n) are connectives symbols (for the credibility value and the body, respectively)

A fuzzy fact is a special case of a clause where c = 1, Fc is the usual multiplication of real numbers ‘‘ � ” and n = 0 (thus
F 2X(0)). It is written as A F (we omit c and Fc).

A fuzzy query is a pair hA,vi, where A 2 TBP,R,V and v is either a ‘‘new” variable that represents the initially unknown truth
value of A or it is a concrete value v 2 [0,1] that is asked to be the truth value of A.

Intuitively, a clause can be read as a special case of an implication: we combine the truth values of the body atoms with
the connective associated to the clause to yield the truth value for the head atom.

Example 1. Consider the following clause, that models to what extent cities can be deemed good travel destinations – the
quality of the destination depends on the weather and the availability of sights:
good� destinationðXÞ 1:0;� �ðnice-weatherðXÞ; many-sightsðXÞÞ:
The credibility value of the rule is 1.0, which means that we have no doubt about this relationship. The connective used here
in both cases is the usual multiplication of real numbers. We enrich the knowledge base with facts about some cities and
their continents:

nice-weather(madrid) 0.8, many-sights(madrid) 0.6,
nice-weather(istanbul) 0.7, many-sights(istanbul) 0.7,
nice-weather(moscow) 0.2, many-sights(sydney) 0.6,
e that in Fuzzy Prolog (and in previous RFuzzy works) the term ‘‘aggregation operator” subsumes conjunctions, disjunctions and aggregations. In this
e distinguish between them and include a new one (implications).
e that the above definition of aggregation operators subsumes all kinds of minimum, maximum or mean operators.

1954 S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970
city-continent(madrid, europe) 1.0,
city-continent(moscow, europe) 1.0,
city-continent(sydney, australia) 1.0,
city-continent(istanbul, europe) 0.5,
city-continent(istanbul, asia) 0.5.

Some queries to this program could ask if Madrid is a good destination, hgood-destinationðmadridÞ; vi. Another query
could check if Istanbul is the perfect destination, hgood-destinationðistanbulÞ;1:0i. The result of the first query will be the
real value 0.48 and the second one will fail. It can be seen that no information about the weather in Sydney or sights in
Moscow is available although these cities are ‘‘mentioned”.

In the above example, the knowledge that we represented using fuzzy clauses and facts was not only vague but moreover
incomplete. Indeed, this is the general case in real applications. Information is sometimes missing for some or all of the cases
and it is necessary to provide an alternative semantics for these situations. The open world assumption (OWA) introduces
the concept of unknown or absent information. It is very common in logic programming (for example in Prolog program-
ming) to use the closed world assumption (CWA) for supposing false information that is not explicitly present or not deriv-
able from the program. There are other works (like [19]) that allow any assumption.

We have chosen to use CWA enriched with a mechanism of default rules for assigning default values when information
about truth values is absent in a program. In particular, we have been able to provide a rich syntax for defining default values
to subsets of elements satisfying a particular condition.

Definition 2.2. A default value declaration for a predicate p 2P(n) is written as
defaultðpðX1; . . . ;XnÞÞ ¼ ½d1 if u1; . . . ; dm if um�;

where di 2 [0,1] for all i. The ui are first-order formulas restricted to terms from TUR;fX1 ;...;Xng, the predicates = and –, the sym-
bol true and the conjunction ^ and disjunction _ in their usual meaning.
Example (continued). Let us add the following default value declarations to the knowledge base and thus close the men-
tioned gaps.
defaultðnice-weatherðXÞÞ ¼ 0:5;
defaultðmany-sightsðXÞÞ ¼ 0:2;
defaultðgood-destinationðXÞÞ ¼ 0:3:
They could be interpreted as: when visiting an arbitrary city of which nothing further is known, it is likely that you have nice
weather but you will less likely find many sights. Irrespective of this, it will only to a small extent be a good travel
destination.

To model the fact that a city is not on a continent unless stated otherwise, we add another default value declaration for
city-continent:
defaultðcity-continentðX; YÞÞ ¼ 0:0:
Notice that in this example m = 1 and u1 ¼ true for all the default value declarations.
The default values allow our knowledge base to answer arbitrary questions about predicates that occur in it. But will the

answers always make sense? To stay in the above example, if we ask a question like ‘‘What is the truth value of nice-
weather(australia)?” we will get the answer ‘‘0.5” which does not make too much sense since Australia is not a city, but a
continent.

To address this issue, we introduce types into the language. Types in RFuzzy are subsets of terms of the Herbrand base of
the program. When we assign types to the arguments of a predicate, we are restricting their domains. This contrasts with
[43] and similar works, most of them variants of the proposal of Mycroft and O’Keefe [28] that was an adaption of the type
system of Hindley and Milner [25]. These works are more oriented to input/output type checking while in RFuzzy types are
used for the constructive generation of answers (see Section 6.2).

Definition 2.3. Types are built from terms t 2 HU. A assigns a type s 2 T to a term t 2 HU and is written as t: s. A assigns a
type ðs1; . . . ; snÞ 2 T n to a predicate p 2Pn and is written as p: (s1, . . . ,sn), where si is the type of p’s ith argument. The set
composed by all term type declarations and predicate type declarations is denoted by T.
Example (continued). Using the set of types T ¼ fCity; Continentg, we add some term type declarations to our knowledge
base:
madrid : City; istanbul : City; sydney : City; moscow : City;
africa : Continent; america : Continent; antarctica : Continent;
asia : Continent; europe : Continent:

S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970 1955
We also type the predicates in the obvious way (i.e. providing the predicate type declarations):
nice-weather : ðCityÞ; many-sights : ðCityÞ;
good-destination : ðCityÞ; city-continent : ðCity; ContinentÞ:
For a ground atom A ¼ pðt1; . . . ; tnÞ 2 HB we say that it is well-typed with respect to T iff p: (s1, . . . ,sn) 2 T implies (ti: si) 2 T
for 1 6 i 6 n. For a ground clause A c;Fc FðB1; . . . ;BmÞ we say that it is well-typed w.r.t. T iff A is well-typed whenever all Bi are
well-typed for 1 6 i 6m (i.e. if the clause preserves well-typing). We say that a non-ground clause is well-typed iff all its
ground instances are well-typed.
Example (continued). With respect to the given type declarations, city-continent(moscow, antarctica) is well-typed, city-
continent(asia, europe) is not.

A fuzzy logic program P is a triple P = (R,D,T) where R is a set of fuzzy clauses, D is a set of default value declarations and T is
a set of type declarations.

From now on, when speaking about programs, we will implicitly assume the signature R to consist of all function symbols
occurring in P, the signature P to consist of all the predicate symbols occurring in the program, the set T to consist of all
types occurring in type declarations in T, and the signature X of all the connective symbols.

Lastly, we introduce the important notion of a well-defined program.

Definition 2.4. A fuzzy logic program P = (R,D,T) is called well-defined iff

� for each predicate symbol p/n occurring in R, there exist both a predicate type declaration and a default value declaration;
� all clauses in R are well-typed;
� for each default value declaration
defaultðpðX1; . . . ;XnÞÞ ¼ ½d1 if u1; . . . ; dm if um�;
the formulas ui are pairwise contradictory and u1 _ � � � _ um is a tautology, i.e. exactly one default truth value applies to each
element of p/n’s domain.

Besides, a well-defined fuzzy logic program cannot have clauses that depend, directly or indirectly (i.e. via other clauses)
on themselves. This is considered a program error and neither our semantics nor our implementation is capable of dealing
with this kind of programs.

3. Declarative semantics

The possibility to define default truth values for predicates offers us a great deal of flexibility and expressivity. But it also
has its drawbacks: reasoning with defaults is inherently non-monotonic – we might have to withdraw some conclusions that
have been made in an earlier stage of execution. To capture this formally, we attach to each truth value an attribute that
indicates how this value has been concluded. These attributes could be ordered numbers (as in [45] where real numbers
in [0,1] are used) but we decided, for clarity reasons, to restrict the possible scenarios to three cases that are characterised
by three different symbols depending on the origin of the truth values:

� exclusively by application of program facts and clauses, represented by the symbol . denoting the attribute value safe,
� by indirect use of default values, represented by the symbol � denoting the attribute value unsafe (mixed), or
� directly via a default value declaration, represented by the symbol N denoting the attribute value unsafe (pure).

We need to be able to compare the attributes (in order to be able to prefer one conclusion over another) and to combine
them to keep track of default value usage in the course of computation. This is formalised by setting the ordering <a on truth
value attributes such that N < a� < a..

The operator � : {N,�,.} � {N,�,.} ? {�,.} is then defined as:
x � y :¼
. if x ¼ y ¼ .

r otherwise:

�

The operator � is designed to keep track of attributes during computation: only when two ‘‘safe” truth values are combined,
the result is known to be ‘‘safe”, in all other cases it is ‘‘unsafe”. It should be noted that ‘‘�” is monotonic.

The truth values that we use in the description of the semantics will be real values v 2 [0,1] with an attribute (i.e. a
z 2 {N,�,.}) attached to it. We will write them as zv, and the set of possible truth values as T. So, zv 2 T. The ordering ^

on the truth values will be the lexicographic product of <a, the ordering on the attributes, and the standard ordering < of
the real numbers. The set of truth values is thus totally ordered as follows:
?	 N0 	 � � � 	 N1 	 r0 	 � � � 	 r1 	 N0 	 � � � 	 .1:
We remark that the pair ðT;^Þ forms a complete lattice.

1956 S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970
A valuation r : V ! HU is an assignment of ground terms to variables. Each valuation r uniquely constitutes a mapping
r̂ : TBP;R;V ! HB that is defined in the obvious way.

A fuzzy Herbrand interpretation (or short, interpretation) of a fuzzy logic program is a mapping I : HB! T that assigns
truth values to ground atoms. The of an interpretation is the set of all atoms in the Herbrand Base, although for readability
reasons we usually omit those atoms to which the truth value ? is assigned (interpretations are total functions). This map-
ping can be seen as a set of pairs (A,zv) such that A 2 HB and zv 2 T n f?g, meaning for an atom not being in the set that its
truth value is ?.

For two interpretations I and J, we say , I is less than or equal to J written I v J, iff I(A) ^ J(A) for all A 2 HB. Two interpre-
tations I and J are , written I = J, iff I v J and J v I. Minimum and maximum for interpretations are defined from ^ as usually.

Accordingly, the infimum (or intersection) and supremum (or union) of interpretations are, for all A 2 HB, defined as (I
u J)(A) :¼min(I(A), J(A)) and (I t J)(A) :¼max(I(A), J(A)).

The pair ðI P;vÞ of the set of all interpretations of a given program with the interpretation ordering forms a complete lat-
tice. This follows readily from the fact that the underlying truth value set T forms a complete lattice with the truth value
ordering ^.

Definition 3.1 (Model). Let P = (R,D,T) be a fuzzy logic program.

For a clause r 2 R of the form A c;Fc FðB1; . . . ;BnÞ we say that I is a model of the clause r and write
6 Not
I � A c;Fc FðB1; . . . ;BnÞ
iff for all valuations r, we have6:
if IðrðBiÞÞ ¼ ziv i
? for all i then6 IðrðAÞÞ<z0v 0;
where z0 = z1� � � � �zn and v 0 ¼cFc ðc; bFðv1; . . . ; vnÞÞÞ.
For a clause r 2 R of the form A v we say that I is a model of the clause r and write
I � A v
iff for all valuations r, we have IðrðAÞÞ < Nv .
For a default value declaration d 2 D we say that I is a model of the default value declaration d and write
I � defaultðpðX1; . . . ;XnÞÞ ¼ ½d1if u1; . . . ; dm if um�
iff for all valuations r, we have:
IðrðpðX1; . . . ;XnÞÞÞ < Ndj;
where uj is the only formula that holds for r(uj)(1 6 j 6m). Notice that, as di 2 [0,1] for all i (see Definition 2.2) and zv = Ndj,
we force the truth values defined in defaults to be different from ? and lower than �0.

We write I � R if I � r for all r 2 R and similarly I � D if I � d for all d 2 D. Finally, we say that I is a model of the program P
and write I � P ,I � R and I � D.
Proposition 3.2. Let P = (R,D,T) be a well-defined fuzzy logic program and I a model of P, I � P. For all ground atoms A in TBP,R,V

we can assume that
IðAÞ
 ? :
Proof. Trivial from the definitions of well-defined fuzzy logic program and model: For being a well-defined fuzzy logic pro-
gram every predicate has a default value declaration for every ground atom A in TBP,R,V, so we have a default value
declaration
defaultðpðX1; . . . ;XnÞÞ ¼ d1if u1; . . . ; dm if um½ �
such that r(p(X1, . . . ,Xn)) = A and r(ui) is the only ui that holds. By I � D, this implies that
IðAÞ ¼ Ndi:
As for I � P we need I � D and this implies I � d for every d, we have that IðAÞ <.di, and Ndi
\. h

Note that this proposition allows us to assure that a computation will not stop when the truth value of some atom is un-
known in some interpretation. It is not possible (due to default value definitions) to have a truth value unknown for an atom.
The following proposition affirms that a default value declaration is not used when a clause can be used to determine the
truth value of an atom.
e that here we use ‘then’ and not ‘iff’, so if I(r(Bi)) = zivi = \ then the value of I(r(A)) is not restricted but I � A c;Fc FðB1; . . . ;BnÞ.

S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970 1957
Proposition 3.3. Let P = (R,D,T) be a well-defined fuzzy logic program, I a model of P, I � P and A0 a ground atom such that
A0 2 TBP,R,V. For a clause r 2 R of the form
7 Not
calculat
A c;Fc FðB1; . . . ;BnÞ 2 R or A v 2 R
and a default declaration
defaultðpðX1; . . . ;XnÞÞ ¼ ½d1if u1; . . . ; dmif um� 2 D
such that for some valuations r1 and r2 we have
r1ðAÞ ¼ A0 ¼ r2ðpðX1; . . . ;XnÞÞ
and the rule r 2 R (if r is of the form A c;Fc FðB1; . . . ; BnÞÞ fulfills
Iðr1ðBiÞÞ ¼ ziv i
 ? for all i
and the default declaration fulfills
r2ðuiÞ holds
then
IðA0Þ < z0v 0
 Ndi;
where z0v0 are obtained as in Definition 3.1.
Proof. Trivial from the definition of model of well-defined fuzzy logic program and the definition of the operator �. As the
image of the operator � is {�,.} and for rules r 2 R of the form A v we have that z0 = . it is easy to see that z0 2 {�,.}. So,
truth values obtained from clauses (when applicable) have always a truth value higher than the one obtained by the appli-
cation of defaults:
r
 N and .
 N: �
This is the intended meaning, so the lack of information on the truth value of some atom never stops a computation if an
approximate value for it (obtained from a default declaration) can be used, but the approximate value is never preferred over
a truth value determined by a rule.
3.1. Least model semantics

Every program has a least model, which is usually regarded as the intended interpretation of the program, since it is the
most conservative model. The following proposition will be an important prerequisite to define the least model semantics. It
states that the infimum (or intersection) of a non-empty set of models of a program will again be a model. The existence of a
least model is then obvious and easily defined as the intersection of all models.

Proposition 3.4 (Model intersection property). Let P = (R,D,T) be a well-defined fuzzy logic program and I be a non-empty set
of interpretations. Then
I � P for all I 2 I implies w
I2I I � P:
Proof. We start by defining J ¼w
I2I I. From Definition 3.1 we know that we have three cases to check:

1. Let A c;Fc FðB1; . . . ;BnÞ 2 R be a fuzzy clause and r a valuation. From Proposition 3.2, the premise that for each I 2 I we have
that I � P and the definition of w it is clear that for all ground atoms C in TBP,R,V we have JðCÞ ¼w

I2I
IðCÞ
 ?. As r(Bi) is

a ground atom in TBP,R,V, J(r(Bi))i21. . .n
\.
As J(r(Bi))i21, . . . , n
\, for J to be model of P it has to be true that
JðrðAÞÞ < z0Jv
0
J ;
where z0J ¼ z1 � � � � � zn;v 0J ¼cFc ðc; bFðv1; . . . ;vnÞÞÞ and ziv i ¼ JðrðBiÞÞ ¼w
I2I IðrðBiÞÞ. As each I 2 I makes true I � P we have
IðrðAÞÞ < z0Iv
0
I;
where z0I ¼ z1 � � � � � zn, v 0I ¼cFc ðc; bFðv1; . . . ; vnÞÞÞ and zivi = I(r(Bi)).7

It is easy to see from J(r(Bi)) ^ I(r(Bi)) and the fact that Fc,F and ‘‘�” are non-decreasing functions that z0Jv 0J^z0Iv 0I , so
e that we use two different definitions for zivi in the same proof. There is no clash as one of them is used for calculating z0Jv 0J and the other one for
ing z0Iv 0I .

8 TR(I)

1958 S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970
JðrðAÞÞ<z0Iv
0
I < z0Jv

0
J;
ziv i ¼w
I2I

IðrðBiÞÞmakes \ ^ zivi ^ I(r(A)) for every I 2 I since \ ^ J(r(Bi)) ^ I(r(Bi)) for every I 2 I and from the fact
that Fc, F and ‘‘�” are non-decreasing functions we can assure that IðAÞ<JðAÞ < z0v 0, so J � P.

2. Let A v 2 R be a fuzzy clause and r a valuation. From the premise that for each I 2 I we have that I � P we know that
IðAÞI2I <.v
and, from the definition of w , it is clear that
JðAÞ ¼w
I2I

IðAÞ <.v;
so J � P.
3. Let default(p(X1,. . .,Xn)) = [d1if u1,. . .,dmifum] 2 D be a default declaration and r a valuation such that for a ground atom

A in TBP,R,V we have A = r(p(X1, . . . ,Xn)).
From the premise that for each I 2 I we have that I � P we know that for exactly one ui it must be that r(ui) holds and
this implies that
IðrðpðX1; . . . ;XnÞÞÞI2I < Ndi
and, from the definition of w , it is clear that
JðAÞ <w
I2I IðAÞ < Ndi; �
so J � P.
Definition 3.5. Let P be a well-defined fuzzy logic program. The least model of P is defined as lm(P) :¼ w I �P I.

3.2. Least fixpoint semantics

Definition 3.6 (TP operator). Let P = (R,D,T) be a well-defined fuzzy logic program, I an interpretation, and recall that
ground(R) denotes the set of all ground instances of clauses in R. The operator TP is defined as follows:
TPðIÞ :¼ TRðIÞ t TDðIÞ;
where
TDðIÞ :¼ A # Ndj

defaultðpðX1; . . . ;XnÞÞ ¼ ½d1if u1; . . . ; dm if um� 2 D;

A ¼ rðpðt1; . . . ; tnÞÞ and
there exists a 1 6 j 6 m such that rðujÞ holds:

�������
8><>:

9>=>;
TRðIÞ :¼
G

r2R
fA # zv jconditiong

� �
;

where {A ´ z vjcondition} can be
A # zv
A c;Fc FðB1; . . . ; BnÞ 2 groundðRÞ;
IðBiÞ ¼ ziv i
 ? for all i;

z ¼ z1 � � � � � zn and v ¼cFc ðc; bFðv1; . . . ; vnÞÞ

��������
8>><>>:

9>>=>>;

or
A # zv
A v 2 groundðRÞ and
z ¼ .

����� �
:

Note that if for a ground atom A both a program clause with body atoms from I’s domain and a default value declaration
exist, the truth value that comes from the clause is preferred, since TR(I)
 TD(I)8.

As it is usual in the logic programming framework, the semantics of a program is characterised by the pre-fixpoints of TP.

Theorem 3.7. Let P be a well-defined fuzzy logic program and I an interpetation.
I � P iff TPðIÞ v I:
TD(I) comes from the fact that TR(I)
 N1,TD(I) 	 �0 and .
 �
 N.

S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970 1959
Proof. ‘‘if”: Let TP(I) v I and A0 2 HB be an arbitrary ground atom. For I � P we need I � R and I � D, so we have to check both
cases.

Before starting, note that for all ground atom C 2 HB we have TP(I)(C)
\ since TP(I)(C) = TR(I)(C) t TD(I)(C) and for a well-
defined fuzzy logic program TD(I)(C)
 \. As TPðIÞðCÞ v IðCÞ; IðCÞ < TPðIÞðCÞ
 ?.

I � R: We need I � r for every r 2 R, and r can be of the form
A c;Fc FðB1; . . . ;BnÞ 2 R or A v 2 R:
c;F

Let A c FðB1; . . . ;BnÞ 2 R be a fuzzy clause and r a valuation such that A0 = r(A). The ground clause used to evaluate
TP(I)(A0) will be rðA c;Fc FðB1; . . . ;BnÞÞ 2 groundðRÞ.
As I(C)
\ for all C 2 HB; IðrðBiÞÞ ¼ ziv i
 ? for all i. So, for I � R we need IðA0Þ < z0v 0, where z0 ¼
z1 � � � � � zn;v 0 ¼cFc ðc; bFðv1; . . . ;vnÞÞÞ and z0 2 {.,�}. By definition of TP we have TP(I)(A0) = TR(I)(A0) = z0v0, where
z0 ¼ z1 � � � � � zn;v 0 ¼cFc ðc; bFðv1; . . . ;vnÞÞÞ and z0 2 {.,�}. From the premise TP(I) v I we get IðA0Þ < z0v 0, so I � R.
Let A v 2 R be a fuzzy clause and r a valuation such that A0 = r(A). The ground clause used to evaluate TP(I)(A0) will be
r(A v) 2 ground(R). So, for I � R we need IðA0Þ < z0v 0, where z0 = . and v0 = v. By definition of TP we have
TP(I)(A0) = .v
\. From the premise TP(I) v I we get IðA0Þ < .v .

I � D: Let default(p(X1, . . . ,Xn)) = [d1 if u1, . . . ,dm if um] 2 D, r be a valuation, and let A0 :¼ r(p(X1, . . . ,Xn)) be well-typed.
Since P is well-defined, there exists a j such that r(uj) holds and thus TP(I)(A0) = Ndj. From the premise TP(I) v I, we again
get IðA0Þ < Ndj.

‘‘only if”: Let I � P and A0 2 HB be an arbitrary ground atom. From I � P we have that I � R and I � D.

from I � D: for A0 we know that there are a default declaration default(p(X1, . . . ,Xn)) = [d1 if u1, . . . ,dm if um] 2 D, a val-
uation r such that A0 :¼ r(p(X1, . . . ,Xn)) is well-typed and, since P is well-defined, a j such that r(uj) holds and makes
IðA0Þ < Ndj. From definition of TD in TP it is easy to see that TD = Ndj, but for TP we can only say (for now, we continue below)
that TPðIÞðA0Þ ¼ TRðIÞðA0Þ t TDðIÞðA0Þ < Ndj. The important fact that is derived from I � D is that for every A0 we have
IðA0Þ<Ndj < ?.
from I � R: for A0 we know that if there is a rule r 2 R of the form A c;Fc FðB1; . . . ;BnÞ 2 R or A v 2 R and there exists a r such
that A0 = r(A) then

c;F

if r is of the form A c FðB1; . . . ;BnÞ 2 R: From I � D we know that for every r(Bi) we have IðrðBiÞÞ < ?, so IðA0Þ < z0v 0,
where z0 = z1� � � � �zn, z0 2 {.,�} and v 0 ¼cFc ðc; bFðv1; . . . ;vnÞÞÞ.
From definition of TR it is easy to see that if there is such a rule, there will be a ground version of that rule
rðA c;Fc FðB1; . . . ;BnÞÞ 2 groundðRÞ such that we can assure that TRðIÞðA0Þ < z0v 0.
if r is of the form A v 2 R: IðA0Þ < z0v 0, where z0 = N and v0 = v.
From definition of TR it is easy to see that if there is such a rule, there will be a ground version of that rule
r(A v) 2 ground(R) such that we can assure that TRðIÞðA0Þ < z0v 0.

Note that we have only proved that for d 2 D a default declaration TDðIÞðA0Þ < Ndj and that if there is a rule r 2 R then
TRðIÞðA0Þ < z0v 0. This is caused by the fact that in model definition we have to check that for every rule r 2 R it holds that
IðA0Þ < z0v 0, while in TP definition we collect each one of the values of each rule and evaluate the maximum value between
them.

So, if there is no rule r 2 R of the form A c;Fc FðB1; . . . ;BnÞ 2 R or A v 2 R such that for some valuation r we have A0 = r(A)
then TP(I)(A0) = TR(I)(A0) t TD(I)(A0) = \ t Ndj = Ndj, and this results in TP(I)(A0) = Ndj ^ I(A0), so TP(I)(A0) v I(A0).

But if there are k clauses r 2 R of the form A c;Fc FðB1; . . . ;BnÞ 2 R or A v 2 R such that for some valuations r1, . . . ,rk we
have A0 = rl(A) for 1 6 l 6 k, then from I � P we have IðA0Þ <maxl2½1;...;k�ðz0lv 0lÞ, where z0l ¼ z1 � � � � � zn; z0l 2 fN; rg;
v 0l ¼cFc ðc; bFðv1; . . . ;vnÞÞÞ and I(Bi) = zivi.

Instead of this procedure of finding the maximum value in model definition, in TP this is achieved by using the join
operator t:
TPðIÞðA0Þ ¼ TRðIÞðA0Þ t TDðIÞðA0Þ ¼
G

l¼1;...;k

z0lv 0l

 !
t Ndj ¼

G
l¼1;...;k

z0lv 0l:
As
F

l¼1...kz0v 0l^IðA0Þ, we have TP(I)(A0) v I(A0). h

Thus, if I is a model of P, then for every A occurring in the program we have that TP(I)(A) ^ I(A), which means that I is a
pre-fixpoint of TP.

Proposition 3.8 (TP is monotonic). Let P be a well-defined fuzzy logic program and Ii and Ii+1 two interpretations.
if Ii v Iiþ1 then TPðIiÞ v TPðIiþ1Þ

1960 S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970
Proof. From definition of Ii v Ii+1 we have that Ii(A) ^ Ii+1(A) for all A 2 HB, and from definition of TP we have
9 As
TPðIÞ :¼ TRðIÞ
G

TDðIÞ:

Since the operator t is monotonic and the value of TD(I) depends only on the default declarations in the program (it is shared
by both interpretations Ii and Ii+1), TD(Ii) = TD(Ii+1). For the value of TR(I) it is rather different, since
TRðIÞ :¼
G
r2R

A # zv jconditionf g
 !

;

where {A ´ z vjcondition} can be
A # zv
A c;Fc FðB1; . . . ; BnÞ 2 groundðRÞ;
IðBiÞ ¼ ziv i
 ? for all i;

z ¼ z1 � � � � � zn and v ¼cFc ðc; bFðv1; . . . ; vnÞÞ:

��������
8>><>>:

9>>=>>;

or
A # zv
A v 2 groundðRÞ and
z ¼ .

����� �

For those clauses in the program with the form A v 2 R the mapping A ´ z v remains untouched, but for clauses with the
form A c;Fc FðB1; . . . ;BnÞ 2 R the mapping depends on the values Ii(Bj) and Ii+1(Bj), j 2 [1 ,. . . ,n].

As t is monotone, for those clauses we need to justify that Ii(A) ^ Ii+1(A) for all A 2 HB implies that the mappings
obtained for Ii;A#ðzvÞIi

, and Iiþ1;A # ðzvÞIiþ1
, fulfill ðzvÞIi

^ ðzvÞIiþ1
.

We use for that the knowledge about the truth functions for the connectives F and FC. We know that both are monotone
and non-decreasing, so from the premise Ii(Bj) ^ Ii+1(Bj) for all Bj 2 HB we can deduce ðzvÞIi

^ðzvÞIiþ1
. h

Due to the monotonicity of the immediate consequences operator, the semantics of P is given by its least model which, as
shown by the Knaster–Tarski fixpoint theorem [44,15], is exactly the least fixpoint of TP.9

We now prove that our TP is continuous, so Kleene’s fixpoint theorem [13] can be used to prove that the least fixed point
can be reached in x steps.

Proposition 3.9 (TP is continuous). Let P be a well-defined fuzzy logic program and I0 v I1 v . . . a countably infinite increasing
sequence of interpretations. Then
TP

G1
n¼0

In

 !
¼
G1
n¼0

TPðInÞ:
Proof. We use the following facts:

1. Since I0 v I1 v . . . and from definition of v we have that Ii(A) ^ Ii+1(A) for every ground term A 2 HB. As
F

takes by def-
inition the maximum interpretation,

Fn
i¼0Ii ¼ In.

2. We have that TP(I0) v TP(I1) v . . . since I0 v I1 v . . . and TP is monotonic (Proposition 3.8). Again by using definitions of v
and

F
we obtain

Fn
i¼0TPðIiÞ ¼ TPðInÞ.
TP

G1
n¼0

In

 !
¼1 TPðI1Þ ¼2

G1
n¼0

TPðInÞ: �
We now recall the definition of ordinal powers of an operator. Let T be an operator and a be an ordinal number. The ordi-
nal power is defined as follows:
T " a :¼
TðT " a� 1Þ if a is a successor ordinalF
a0<a

T " a0 if a is a limit ordinal:

8<:

Theorem 3.10. Let P be a well-defined fuzzy logic program. Then the least fixpoint of TP exists and is equal to TP "x.
Proof. The existence of the least fixpoint of TP follows from the facts that ðI P;vÞ forms a complete lattice, TP is monotone
(Proposition 3.8), and the Knaster–Tarski fixpoint theorem [44,15].

Its equality to TP "x follows from the facts that ðIP ;vÞ forms a complete lattice, TP is continuous (Proposition 3.9), and
the Kleene fixpoint theorem [13]. h

Since the least fixpoint always exists, we can define a semantics based on it.
usually, the least fixpoint of TP can be obtained by transfinitely iterating TP from the least interpretation \.

S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970 1961
Definition 3.11. Let P be a well-defined fuzzy logic program. Then the least fixpoint semantics of P is defined as
lfp(P) = TP "x(\). Here, \ denotes the interpretation mapping everything to \ (thus being the least element of the lattice
ðIP;vÞÞ.
Theorem 3.12. For a well-defined fuzzy logic program P, we have
10 Not
lmðPÞ ¼ lfpðPÞ:
Proof
lmðPÞ ¼w
I�P

I ðby definitionÞ
¼w

TP ðIÞvI
I ðby Lemma ð3:7Þ

¼ TP " xð?Þ ðby the Kleene fixpoint theoremÞ
¼ lfpðPÞ ðby definitionÞ: �
4. Operational semantics

The operational semantics will be formalised by a transition relation that operates on (possibly only partially instanti-
ated) computation trees. Here, we will not need to keep track of default value attributes {N,�,.} explicitly; they will be en-
coded into the computations.

Definition 4.1. Let X be a signature of connectives and W a set of variables with W \ V = ;.10

A computation node is a pair hA, ei, where A 2 TBP,R,V and e is a term over [0,1] and the set of variables W with function
symbols from X. We say that a computation node is if e does not contain variables. A computation node is called if e 2 [0,1].
A final computation node will be indicated as hA, ei.

We distinguish two different types of computation nodes: C-nodes, that correspond to applications of program clauses,
and D-nodes, that correspond to applications of default value declarations.

A computation tree is a directed acyclic graph whose nodes are computation nodes and where any pair of nodes has a
unique (undirected) path connecting them. We call a computation tree ground (final) if all its nodes are ground (final). For a
given computation tree t we define the
zt ¼
. if t contains no D-node
r if t contains both C-and D-nodes
N if t contains only D-nodes:

8><>:

Computation nodes are essentially generalisations of queries that keep track of connective usage. Computation trees as

defined here should not be confused with the usual notion of SLD-trees. While SLD-trees describe the whole search space for
a given query and thus give rise to different derivations and different answers, computation trees describe just a state in a
single computation. The computation steps that we perform on computation trees will be modelled by a relation between
computation trees.
Definition 4.2 (Transition relation). For a given fuzzy logic program P = (R,D,T), the transition relation ? is characterised by
the transition rules below. In these rules the notation t[A] means ‘‘the tree t that contains the node A somewhere”. Likewise,
t[A/B] is to be read as ‘‘the tree t where the node A has been replaced by the node B”.

� Clause:
If there is a (variable disjoint instance of a) program clause
e that V is the set of variables used when building the term base TBP,R,V of our program.

11 Not

1962 S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970
A c;Fc FðB1; . . . ;BnÞ 2 R and l ¼ mguðA0;AÞ:
(Take a non-final leaf node and add child nodes according to a program clause; apply the most general unifier of the node
atom and the clause head to all the atoms in the tree.)
Note that we immediately finalise a node when applying this rule for a fuzzy fact.
� Default:
If A does not match with any program clause head, there is a default value declaration default(p(X1, . . . ,Xn)) = [d1

ifu1, . . . ,dm ifum] 2 D, l is a substitution such that l = mgu(p(X1, . . . ,Xn), A), p(X1,. . .,Xn)l (or Al) is a well-typed ground
atom, and there exists a 1 6 j 6m such that ujl holds. (Apply a default value declaration to a non-final leaf node thus
finalising it.)
� Finalise:
(Take a non-final node whose children are all final and replace its truth expression by the corresponding truth value.)

Asking the query hA,vi corresponds to applying the transition rules to the initial computation tree hA,vi. The computation
ends if a final computation tree is created; the truth value of the instantiated query can then be read off the root node.11 We
illustrate this with an example computation.

Example (continued). We start with the tree
Applying the Clause-transition to the initial tree with the program clause
good-destination ðXÞ 1:0; ðnice-weatherðXÞ; many-sights ðXÞÞ;
yields
Now we apply Clause to the left child with nice-weatherðmoscowÞ 0:2:
e that infinite computations lead to no answer as in the operational semantics of SLD-resolution.

S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970 1963
Since there exists no clause whose head matches many-sights(moscow), we apply the Default-rule for many-sights to the
right child.
In the last step, we finalise the root node.
The calculated truth value for good-destination(moscow) is thus 0.04.
The actual operational semantics is now given by the truth values that can be derived in the defined transition system.

This ‘‘canonical model” can be seen as a generalisation of the success set of a program.

Definition 4.3. Let P be a well-defined fuzzy logic program. The canonical model of P for A 2 HB is defined as follows:
cmðPÞ :¼ A # ztv
there exists a computation starting with hA;wi
and ending with a final computation tree t with
root node hA;vi

�������
8><>:

9>=>;:

It can be verified that the canonical model cm(P) is indeed a model of P.
5. About multi-adjoint logic programming

Generalised logic programs’ semantics require a different notion of consequence (implication) which satisfies a gen-
eralised modus ponens rule. It is described as natural in [49] to look for a semantic basis as a common denominator of
the residuated lattices and fairly general conjunctors and their adjoints. Different implications and several modus
ponens-like inference rules are used. So, the principal point of this extension naturally leads to considering several
adjoint pairs in the residuated lattice, leading what [49] calls multi-adjoint algebra and [33] calls multi-adjoint (semi-
)lattice.

During the last years there have been many theoretical publications about multi-adjoint framework semantics
[49,33,31,29].

RFuzzy is able to model multi-adjoint logic; but, as its algebraic structure seems to be difficult to understand for a not-so-
theoretical reader (potential RFuzzy programmer), we have not used multi-adjoint definitions in Sections 3 and 4 when
describing RFuzzy semantics for the sake of simplicity. In this section we explain in an intuitive way the relation of RFuzzy
with the multi-adjoint framework.

Multi-adjoint logic is a theoretical framework developed to give support to the use of a number of different implications
in program rules. The underlying structure used to capture such information is a multi-adjoint algebra, which is straightfor-
ward from the definitions of adjoint pair and multi-adjoint lattice. The definitions of these three concepts are taken from
[31].

Definition 5.1 (Adjoint Pair, from [31]. Firstly introduced in a logical context by Pavelka [35]). Let <P, � > be a partially ordered
set and (, &) a pair of binary operations in P such that:

(i) Operation & is increasing in both arguments, i.e. if x1, x2, y 2 P such that x1 � x2 then (x1&y) � (x2&y) and
(y&x1) � (y&x2);

1964 S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970
(ii) Operation is increasing in the first argument (the consequent) and decreasing in the second argument (the anteced-
ent), i.e. if x1, x2, y 2 P such that x1 � x2 then (x1 y) � (x2 y) and (y x2) � (y x1);

(iii) For any x, y, z 2 P, we have that x � (y z) holds if and only if (x&z) � y holds.

Then (,&) is called an adjoint pair in <P, � >.
Definition 5.2 (Multi-adjoint lattice, from [31]). Let < L, � > be a lattice. A multi-adjoint lattice L is a tuple
(L, � , 1,&1, . . . , n, &n) satisfying the following items:

(i) <L, � > is bounded, i.e. it has bottom ð?Þ and top (>) elements;
(ii) (i,&i) is an adjoint pair in <L, � > for i = 1,. . .,n;

(iii) >&iv = v&i> = v for all v 2 L for i = 1, . . . ,n.
Definition 5.3 (Multi-adjoint X-algebra, from [31]). Let X be a graded set containing operators i and &i for i = 1, . . . , n and
possibly some extra operators, and let L ¼ ðL; IÞ be an X-algebra whose carrier set L is a lattice under � .

We say that L is a multi-adjoint X-algebra with respect to the pairs (i,&i) for i = 1, . . . ,n if
L ¼ ðL;�; Ið 1Þ; Ið&1Þ; . . . ; Ið nÞ; Ið&nÞÞ is a multi-adjoint lattice.

There are similar definitions in [31,32,29]. They are used to build the framework of multi-adjoint logic programming in
[11,26], but the relevant fact is the relation between adjoint pairs (i, &i), which makes it possible to evaluate in the many-
valued modus ponens the truth value of the head of a rule from the truth value of the body and the weight of the rule:
ðB; zÞ; ðB! A; xÞ
ðA; yÞ ;

x � ðy zÞ () ðx&zÞ � y:
So, this can be used to define from satisfaction the immediate consequences operator, as illustrated below. Note thatbIðBÞ ¼ z;bIðB! AÞ ¼ x;bIðAÞ ¼ y, so v � bIðA iBÞ () v&i
bIðBÞ � bIðAÞ.

Definition 5.4 (Satisfaction, from [31]). Given an interpretation I 2 IL, where IL is the set of all interpretations of the
formulas defined by the X-algebra F in the X-algebra L, a weighted rule <A iB, v> is satisfied by I iff v � bIðA i BÞ.
Definition 5.5 (Immediate consequences operator T LP , from [31]). Let P be a multi-adjoint logic program. The immediate con-
sequences operator T LP : IL ! IL, mapping interpretations to interpretations, is defined by considering
T LPðIÞðAÞ ¼ supfv&̂i
bIðBÞjA v

i B 2 Pg:

We provide an example from FLOPER [27] (Fuzzy LOgic Programming Environment for Research) to illustrate an execu-

tion in which this relation between the adjoint pairs is used to calculate the truth value of the head of the rules.

R1 : p(X) P q(X,Y) &G r(Y) with 0.8

R2 : q(a,Y) P s(Y) with 0.7

R3 : q(b,Y) L r(Y) with 0.8

R4 : r(Y) with 0.7

R5 : s(b) with 0.9

The labels P, G and L in the program mean Product logic, Gödel intuitionistic Logic and Łukasiewicz logic, respectively. The
goal for the previous program is p(X)&Gr(a). Each underlined expression in the execution below is the one selected in each
admissible step (Definition 2.1 in [27]).
hpðXÞ&GrðaÞ;idi
!AS1R1 hð0:8&PðqðX1; Y1Þ&GrðY1ÞÞÞ&GrðaÞ;r1i

!AS1R2 hð0:8&Pðð0:7&PsðY2ÞÞ&GrðY1ÞÞ&GrðaÞ;r2i

!AS1R2 hð0:8&Pðð0:7&P0:9Þ&GrðbÞÞÞ&GrðaÞ; r3i

!AS1R2 hð0:8&Pðð0:7&P0:9Þ&G0:7ÞÞ&GrðaÞ; r4i

!AS1R2 hð0:8&Pðð0:7&P0:9Þ&G0:7ÞÞ&G0:7;r5i
where r1 = {X/X1}, r2 = {X/a,X1/a,Y1/Y2}, r3 = {X/a,X1/a,Y1/b,Y2/b},r4 = {X/a, X1/a, Y1/b, Y2/b, Y3/b}, r5 = {X/a,X1/a,Y1/b,Y2/b,Y3/
b,Y4/a} and, as the only variable appearing in the query is X, the only substitution associated with the result is {X/a}. So, the
admissible computed answer (Definition 2.2 in [27]) is <((0.8&P((0.7&P 0.9)&G0.7))&G0.7;{X/a} > , that can be simplified, after
evaluating the arithmetic expression, to < 0.504;{X/a} > .

S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970 1965
Being a rule of the form ‘‘A iB with v”, where A is the head, B the body, v the weight of the rule and ‘‘i” is the used logic
(e.g. P, G, L), the interesting point is that to calculate the truth value of the head of a rule we use the relation between the
adjoint pairs previously exposed,
v � bIðA i BÞ iff v&i
bIðBÞ � bIðAÞ:
Notice that the elements of the adjoint pair (i,&i) have different uses in an evaluation process. While i is used to obtain
the weight of a rule from the truth values of the body and the head of the rule (e.g. for inducing fuzzy rules weights from data
in a data mining process), &i is used to obtain the truth value of the head of a rule from the truth values of the elements of the
body and the weight of the rule.

This second deductive process is the one that is modelled by RFuzzy. To this end, we let RFuzzy programmers code dif-
ferent &i while i is not explicit in our syntax. In our rule syntax, that is used in Definitions 3.1 and 3.6,
A c;Fc FðB1; . . . ;BnÞ 2 groundðRÞ
it is always deduced that v, the resultant truth value for the clause head, is
v ¼cFc ðc; bF ðv1; . . . ;vnÞÞ;
where instead of ‘‘ i . . . with c” we use ‘‘ c;FC” and FC is &i if (i,&i) is an adjoint pair.
The previous example from FLOPER [27] translated to the RFuzzy syntax used in the semantics sections is below.

R1 : p(X)
0:8;P

q(X,Y) &G r(Y)

R2 : q(a,Y)
0:7;P

s(Y)

R3 : q(b,Y)
0:8;L

r(Y)

R4 : r(Y) 0.7

R5 : s(b) 0.9

Let us, finally, explain the adequateness of RFuzzy default rules to the multi-adjoint framework. We are going to provide a
clarifying example where we define a type city and a predicate nice-weather/1 with one argument of type city.

Example 2

madrid : City

sydney : City

moscow : City

nice-weather : (City)

A program with a default truth value 0.5 for cities whose information about nice weather is not explicit

default(nice-weather(X)) = 0.5

nice-weather(madrid) 0.8

nice-weather(moscow) 0.2

is semantically equivalent to the following plain program

nice-weather(madrid) 0.8

nice-weather(moscow) 0.2

nice-weather(sydney) 0.5

This works in the general case: default value declarations in RFuzzy programs are indeed just syntactic sugar and can be
compiled away. Hence, also general RFuzzy programs can be considered to model multi-adjoint semantics.

6. Using the framework. Implementation details

Obviously, when coding in Prolog it is not possible to write the symbols we have used in Section 2. Here we expose the
syntax used to write programs and some details of the implementation of the framework.

6.1. The programs syntax

Types are coded according to the following syntax:
:- set prop pred=ar ¼ type pred 1=1 ½; type pred n=1 ��; ð1Þ

19 20 age
0

9 10

teenager

1

Fig. 1. Teenager truth value continuous representation.

1966 S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970
where set_prop is a reserved word, pred is the name of the typed predicate, ar is its arity and type_pred_1, type_pred_n
(n 2 2,3, . . . ,ar) are predicates used to define types for each argument of pred. They must have arity 1. This definition of types
constrains the values of the nth argument of pred to the values accepted by the predicate type_pred_n. This definition of types
ensures that the values assigned to the arguments of pred are correctly typed.

The example below requires that the arguments of predicates has_lower_price/2 and expensive_car/1 have to be of type
car/1. The domain of type car is enumerated.

:- set_prop has_lower_price/2 =>car/1, car/1.
:- set_prop expensive_car/1 =>car/1.
car(vw_caddy).
car(alfa_romeo_gt).
car(aston_martin_bulldog).
car(lamborghini_urraco).

The syntax for fuzzy facts is
12 Con
for the
predðargsÞ value truth val: ð2Þ
where arguments, args, should be ground and the truth value, truth_val, must be a real number between 0 and 1. The exam-
ple below defines that the car alfa_romeo_gt is an expensive_car with a truth value 0.6.
expensive carðalfa romeo gtÞvalue0:6:
Fuzzy facts are worth for a finite (and relatively small) number of individuals. Nevertheless, it is very common to repre-
sent fuzzy truth using continuous functions. Fig. 1 shows an example in which the continuous function assigns the truth va-
lue of being teenager to each age.

Functions used to define the truth value of some group of individuals are usually continuous and linear over intervals. To
define those functions there is no necessity to write down the value assigned to each element in their domains. We have to
take into account that the domain can be infinite.

RFuzzy provides the syntax for defining functions by stretches. This syntax is shown in (3). External brackets represent
the Prolog list symbols and internal brackets represent cardinality in the formula notation. Predicate pred has arity 1, val1,
. . . , valN should be ground terms representing numbers of the domain (they are possible values of the argument of pred) and
truth_val1,. . . , truth_valN should be the truth values associated to these numbers. The truth value of the rest of the elements
is obtained by interpolation.
pred : #ð½ðval1; truth val1Þ; ðval2; truth val2Þ½; ðvaln; truth valnÞ���Þ: ð3Þ
The RFuzzy syntax for the predicate teenager/1 (represented in Fig. 1) is:
teenager : #ð½ð9;0Þ; ð10;1Þ; ð19;1Þ; ð20;0Þ�Þ:
Fuzzy clauses or rules have a simple syntax, defined in (5). There are two connectives, op2 for combining the truth values
of the subgoals of the rule body and op1 for combining the previous result with the rule’s credibility. The user can choose for
any of them a connective from the list of the available ones12 or define his/her own connective.
predðarg1½; argn��Þ½credðop1;value1Þ� :
 op2pred1ðargs pred 1Þ½;predmðargs pred mÞ�: ð4Þ
The following example uses the operator prod for combining truth values of the subgoals of the body and min (Gödel logic
is used here) to combine the result with the credibility of the rule (which is 0.8). ‘‘cred(op1,value1)” can only appear 0 or 1
times.
nectives available are: min for minimum, max for maximum, prod for the product, luka for the Łukasiewicz operator, dprod for the inverse product, dluka
inverse Łukasiewicz operator and complement.

S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970 1967
good playerðJÞcredðmin;0:8Þ :
 prod

swiftðJÞ;tallðJÞ;
has experienceðJÞ:
Default truth values syntax is defined in (5) and (6),
:- defaultðpred=ar; truth valueÞ; ð5Þ
:- defaultðpred=ar; truth valueÞ ¼ membership predicate=ar; ð6Þ
where pred/ar is in both cases the predicate to which we are defining default values. As expected, when defining the three
cases (explicit, conditional and default truth value) only one will be given back when doing a query. The precedence when
looking for the truth value goes from most to least concrete.

The code from the example below added to the code from the previous examples assigns to the predicate expensive_car a
truth value of 0.5 when the car is vw_caddy (default truth value), 0.9 when it is lamborghini_urraco or aston_martin_bulldog
(conditional default truth value) and 0.6 when it is alfa_romeo_gt (explicit truth value).

:- default(expensive_car/1, 0.9) => expensive_make/1.
:- default(expensive_car/1, 0.5).
expensive_make(lamborghini_urraco).
expensive_make(aston_martin_bulldog).

6.2. Constructive answers

A very interesting characteristic for a fuzzy tool is being able to provide constructive answers for queries. The regular
(easy) questions ask for the truth value of an element. For example, how expensive is an Volkswagen Caddy?

?- expensive_car(vw_caddy,V).
V = 0.5 ?;

no

But the really interesting queries are the ones that ask for values that satisfy constraints over the truth value. For example,
which cars are very expensive? RFuzzy provides this constructive functionality:

?- expensive_car(X,V), V > 0.8.

V = 0.9, X = aston_martin_bulldog ?;

V = 0.9, X = lamborghini_urraco ?;

no

6.3. Implementation details

RFuzzy has to deal with two kinds of queries, (1) queries in which the user asks for the truth value of an individual, and (2)
queries in which the user asks for an individual with a concrete or a restricted truth value.

For this reason RFuzzy is implemented as a Ciao Prolog [47] package: Ciao Prolog offers the possibility of dealing with a
higher order compilation through the implementation of Ciao packages.

The compilation process of a RFuzzy program has two pre-compilation steps:

(1) the RFuzzy program is translated into CLPðRÞ constraints by means of the RFuzzy package and
(2) the program with constraints is translated into ISO Prolog by using the CLPðRÞ package.

Fig. 2 shows the sequential process of program transformation.
RFuzzy
package
preprocessing

package
preprocessing

RFuzzy
program program

CLP(R)
program
ISO Prolog

CLP(R)

Fig. 2. RFuzzy architecture.

1968 S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970
7. Real application cases

Although there are plenty of theoretical approaches related to fuzzy reasoning, just few of them are used by people dif-
ferent from the developers. It is a challenge to produce a tool that can be used by any person that is interested in modelling a
real (fuzzy) problem. From the beginning, the goal of RFuzzy has been to combine expressivity and a simple syntax, thus
facilitating its usage in different fields of application. In this section we show two examples of applications that are currently
using RFuzzy for modelling real-world problems.
7.1. Emotion recognition

Emotion recognition is a very interesting field in modern science and technology but it is not an easy task to automate.
Many researchers and engineers are working to recognise this prospective field, but the difficulty is that emotions are not
clear, not crisp. In [4], fuzzy reasoning is used for emotion recognition.

After studying the specific characteristics of voice speech for each human emotion (speech rate, pitch average, intensity
and voice quality), that paper presents a prototype that implements emotion recognition using a fuzzy model expressed in
RFuzzy. The resulting prototype is simple, yet efficient, and is able to identify the emotion of a person from his/her voice
speech characteristics. The studied emotions are sadness, happiness, anger, excitement and plain emotion. According to their
experiments, the prototype has a 90% of success in its deductions. The tool inherited the constructivity of RFuzzy, so it can be
used not only to identify emotions automatically but also to recognise the people that have an emotion through their dif-
ferent speeches. It analyses an emotional speech and obtains the percentage of each emotion that is detected. So, it can pro-
vide many constructive answers according to a query demand. The prototype is an easy tool for emotion recognition that can
be modified and improved by adding new rules from speech and face analysis. So, other similar implementations using RFuz-
zy for any kind of recognition is very straightforward.

The methodology used for this application can be generalised for any deduction of information from data records. For
example, emotion recognition could take data from face analysis plus speech record; deduction of age from physical data,
deduction of interest in buying from shopping records, etc. The general methodology is represented in Fig. 3.
7.2. Robocup control implementation

The RoboCupSoccer domain has several leagues which vary in the rules of play such as specification of players, number of
players, field size and match duration. Nevertheless, each RoboCup league is a variant of a soccer league and therefore they
are based on some basic rules of soccer.

In [9,8] a generalised architecture was proposed by offering flexibility to switch between leagues and programming lan-
guage while maintaining Prolog as cognitive layer. The system architecture of this proposal is represented in Fig. 4. Prolog is
a perfect tool to design strategies for soccer players using simple rules close to human reasoning. Sometimes this reasoning
Data Record

Data Synthesis

Var1
...

Var2 VarN

Convert crisp

Recognition
process through
RFuzzy

Recognition result

to fuzzy data

Fig. 3. Methodology of data recognition.

Fig. 4. System architecture for RoboCupSoccer server.

S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970 1969
needs to deal with uncertainty, fuzziness or incompleteness of the information. These issues are solved in [9,8] by using Fuz-
zy Prolog [5,23,21,41]. Fuzzy Prolog is so expressive that the syntax of its answers is represented using constraints, so a great
amount of information can be provided in a compact formula. Nevertheless, for the same reason it is a notation difficult to
understand for the potential users.

Nowadays we are working on another proposal that uses a combination of Prolog and RFuzzy to implement the cognitive
layer in RoboCupSoccer, which has the advantage of incorporating fuzzy logic as conventional logic in this layer [20]. The
advantage with respect to former approaches is the expressivity and simplicity of RFuzzy that allows to represent all infor-
mation of the problem and, at the same time, provides understandable results for the queries.

8. Conclusions

We presented a fuzzy logic programming framework called RFuzzy. RFuzzy is a serious attempt to provide a useful tool
for modelling real problems and applying fuzzy reasoning to them. It is a very expressive tool with a simple syntax that
makes it adequate for modelling real application cases. Some of RFuzzy’s characteristics are representation of default
(and conditional default) values, types and syntax for functions and (continuous and discrete) rules. After some years of fer-
tile research in this field, we provide in this work a complete compilation and reformulation of all previous publications re-
lated to syntax and operational semantics of RFuzzy. Interesting novel contributions are also included: we discuss some real
applications for which our framework is currently being employed (Section 7). Most importantly, we provide the formal
declarative semantics of our approach (Section 3) along with a soundness and completeness result that links operational
and declarative semantics.

Acknowledgements

Work supported by the Research Staff Training Program BES-2008-008320 (Ministry of Science and Innovation) and pro-
jects DESAFIOS10 – TIN 2009-14599-C03-01 (Ministry of Science and Education) and PROMESAS – S-0505/TIC/0407 (Madrid
Regional Government).

References

[1] J.M. Abietar, P.J. Morcillo, G. Moreno, Designing a software tool for fuzzy logic programming, in: G. Maroulis, T.E. Simos, (Eds.), Computational Methods
in Science and Engineering, American Institute of Physics Conference Series, vol. 963, December 2007, pp. 1117–1120.

[2] J.F. Baldwin, T.P. Martin, B.W. Pilsworth, Fril-Fuzzy and Evidential Reasoning in Artificial Intelligence, John Wiley & Sons, Inc., New York, NY, USA, 1995.
[3] Stefano Bistarelli, Francesca Rossi, Semiring-based constraint logic programming: syntax and semantics, ACM Trans. Program. Lang. Syst. 23 (1) (2001)

1–29.
[4] Mahfuza Farooque, Susana Muñoz-Hernández, Easy fuzzy tool for emotion recognition: Prototype from voice speech analisys, in: J. Kacprzyk J. Filipe, A.

Dourado, (Eds.), Proceeding of ICFC 2009 – First International Conference on Fuzzy Computation, Madeira, Portugal, INSTICC Press, October 2009.
[5] S. Guadarrama, S. Mu ~noz-Hernández, C. Vaucheret, Fuzzy prolog: a new approach using soft constraints propagation, Fuzzy Sets Syst. (FSS) 144 (1)

(2004) 127–150. Possibilistic Logic and Related Issues.
[6] Siegfried Gottwald, A Treatise on Many-Valued Logics, Studies in Logic and Computation, vol. 9, Research Studies Press, 2001.
[7] Siegfried Gottwald, Mathematical fuzzy logic as a tool for the treatment of vague information, Inform. Sci. 172 (1–2) (2005) 41–71.
[8] Susana Muñoz-Hernández, Wiratna Sari Wiguna, Fuzzy cognitive layer in robocupsoccer, in: 12th International Fuzzy Systems Association World

Congress (IFSA 2007), Foundations of Fuzzy Logic and Soft Computing, Springer, Cancún, México, 2007, pp. 635–645.

1970 S. Munoz-Hernandez et al. / Information Sciences 181 (2011) 1951–1970
[9] Susana Muñoz-Hernández, Wiratna Sari Wiguna, Fuzzy prolog as cognitive layer in robocupsoccer, in: IEEE Symposium on Computational Intelligence
and Games (2007 IEEE Symposia Series in Computational Intelligence), IEEE, Honolulu, Hawaii, 2007, pp. 340–345.

[10] Mitsuru Ishizuka, Naoki Kanai, Prolog-elf incorporating fuzzy logic, in: IJCAI’85: Proceedings of the 9th international Joint Conference on Artificial
Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1985, pp. 701–703.

[11] Pascual Julián, Ginés Moreno, Jaime Penabad, On fuzzy unfolding: a multi-adjoint approach, Fuzzy Sets Syst. 154 (1) (2005) 16–33.
[12] F. Klawonn, R. Kruse, A Łukasiewicz logic based prolog, Math. Soft Comput. 1 (1) (1994) 5–29.
[13] Stephen Cole Kleene, Introduction to Metamathematics, D. Van Nostrand, New York, 1952.
[14] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers, 2000.
[15] B. Knaster, Un théorème sur les fonctions d’ensembles, Ann. Soc. Polonaise 6 (1928) 133–134.
[16] R.C.T. Lee, Fuzzy logic and the resolution principle, J. Assoc. Comput. Mach. 19 (1) (1972) 119–129.
[17] Deyi Li, Dongbo Liu, A Fuzzy Prolog Database System, John Wiley & Sons, Inc., New York, NY, USA, 1990.
[18] John Wylie Lloyd, Foundations of Logic Programming, second ed., Springer, 1987.
[19] Yann Loyer, Umberto Straccia, Any-world assumptions in logic programming, Theor. Comput. Sci. 342 (2–3) (2005) 351–381.
[20] Susana Munoz-Hernandez, Robot Soccer, Chapter RFuzzy: an easy and expressive tool for modelling the cognitive layer in RoboCupSoccer, INTECH,

January 2010, pp. 267–284, ISBN: 978-953-307-036-0.
[21] Susana Muñoz-Hernández, Jose Manuél Gómez-Pérez, Solving collaborative fuzzy agents problems with CLP(FD), in: Manuel V. Hermenegildo, Daniel

Cabeza (Eds.), PADL, Lecture Notes in Computer Science, vol. 3350, Springer, 2005, pp. 187–202.
[22] Susana Muñoz-Hernández, Vı́ctor Pablos-Ceruelo, Hannes Strass, Rfuzzy: an expressive simple fuzzy compiler, in: Joan Cabestany, Francisco Sandoval,

Alberto Prieto, Juan M. Corchado (Eds.), IWANN (1), Lecture Notes in Computer Science, vol. 5517, Springer, 2009, pp. 270–277.
[23] Susana Muñoz-Hernández, Claudio Vaucheret, Extending prolog with incomplete fuzzy information, in: Proceedings of the 15th International

Workshop on Logic Programming Environments, CoRR, abs/cs/0508091, 2005.
[24] S. Muñoz-Hernández, C. Vaucheret, S. Guadarrama, Combining crisp and fuzzy logic in a prolog compiler, in: J.J. Moreno-Navarro, J. Mariño (Eds.), Joint

Conference on Declarative Programming: APPIA-GULP-PRODE 2002, Madrid, Spain, September 2002, pp. 23–38.
[25] Robin Milner, A theory of type polymorphism in programming, J. Comput. Syst. Sci. 17 (1978) 348–375.
[26] Pedro J. Morcillo, Gines Moreno, Programming with fuzzy logic rules by using the floper tool, in: RuleML ’08: Proceedings of the International

Symposium on Rule Representation, Interchange and Reasoning on the Web, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 119–126.
[27] Pedro José Morcillo, Ginés Moreno, Floper, a fuzzy logic programming environment for research, in: Fundación Universidad de Oviedo (Eds.),

Proceedings of VIII Jornadas Sobre Programación y Lenguajes (PROLE’08), Gijón, Spain, October 2008, pp. 259–263.
[28] Alan Mycroft, Richard A. O’Keefe, A polymorphic type system for prolog, Artif. Intell. 23 (3) (1984) 295–307.
[29] Jesús Medina, Manuel Ojeda-Aciego, Peter Vojtáš, A multi-adjoint approach to similarity-based unification, Electronic Notes in Theoretical Computer

Science 66 (5) (2002) 70–85. UNCL’2002, Unification in Non-Classical Logics (ICALP 2002 Satellite Workshop).
[30] Jesús Medina, Manuel Ojeda-Aciego, Peter Vojtás, A completeness theorem for multi-adjoint logic programming, in: FUZZ-IEEE, 2001, pp. 1031–1034.
[31] Jesús Medina, Manuel Ojeda-Aciego, Peter Vojtás, Multi-adjoint logic programming with continuous semantics, in: Thomas Eiter, Wolfgang Faber,

Miroslaw Truszczynski (Eds.), LPNMR, Lecture Notes in Computer Science, vol. 2173, Springer, 2001, pp. 351–364.
[32] Jesús Medina, Manuel Ojeda-Aciego, Peter Vojtás, A procedural semantics for multi-adjoint logic programming, in: Pavel Brazdil, Alı́pio Jorge (Eds.),

EPIA, Lecture Notes in Computer Science, vol. 2258, Springer, 2001, pp. 290–297.
[33] Jesús Medina, Manuel Ojeda-Aciego, Peter Vojtás, Similarity-based unification: a multi-adjoint approach, Fuzzy Sets Syst. 146 (1) (2004) 43–62.
[34] Ginés Moreno, Building a fuzzy transformation system, in: Jirí Wiedermann, Gerard Tel, Jaroslav Pokorný, Mária Bieliková, Julius Stuller (Eds.),

SOFSEM, Lecture Notes in Computer Science, vol. 3831, Springer, 2006, pp. 409–418.
[35] Jan Pavelka, On fuzzy logic I, II and III, Z. Math. Logik Grundlagen der Math. 25 (5) (1979) 45–52. 119–134, 447–464.
[36] Vı́ctor Pablos-Ceruelo, Susana Muñoz-Hernández, Hannes Strass, Rfuzzy framework, in: Paper Presented at the 18th Workshop on Logic-based

Methods in Programming Environments (WLPE2008), CoRR, abs/0903.2188, 2009.
[37] Vı́ctor Pablos-Ceruelo, Hannes Strass, Susana Mu noz Hernández, Rfuzzy—a framework for multi-adjoint fuzzy logic programming, in: Fuzzy

Information Processing Society, 2009, NAFIPS 2009, Annual Meeting of the North American, pp. 1–6, June 2009.
[38] Ana Pradera, Enric Trillas, Tomasa Calvo, A general class of triangular norm-based aggregation operators: quasi-linear t-s operators, Int. J. Approx.

Reason. 30 (1) (2002) 57–72.
[39] Z. Shen, L. Ding, M. Mukaidono, Fuzzy resolution principle, in: Proceedings of the 18th International Symposium on Multiple-valued Logic, vol. 5, 1989.
[40] Ehud Y. Shapiro, Logic programs with uncertainties: a tool for implementing rule-based systems, in: IJCAI’83: Proceedings of the Eighth International

Joint Conference on Artificial intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1983, pp. 529–532.
[41] S. Mu noz-Hernández, C. Vaucheret, (Eds.), Default values to handel incomplete fuzzy information, IEEE Computational Intelligence Society Electronic

Letter, vol. 14, IEEE, 2006, ISSN 0-7803-9489-5.
[42] Hannes Strass, Susana Muñoz-Hernández, Vı́ctor Pablos-Ceruelo, Operational semantics for a fuzzy logic programming system with defaults and

constructive answers, in: João Paulo Carvalho, Didier Dubois, Uzay Kaymak, João Miguel da Costa Sousa, (Eds.), IFSA/EUSFLAT Conference, 2009, pp.
1827–1832.

[43] Tom Schrijvers, Vı́tor Santos Costa, Jan Wielemaker, Bart Demoen, Towards typed prolog, in: ICLP ’08: Proceedings of the 24th International Conference
on Logic Programming, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 693–697.

[44] Alfred Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math. 5 (1955) 285–309.
[45] George Theodorakopoulos, John S. Baras, Trust evaluation in ad-hoc networks, in: WiSe ’04: Proceedings of the 3rd ACM Workshop on Wireless

Security, ACM, New York, NY, USA, 2004, pp. 1–10.
[46] Enric Trillas, Susana Cubillo, Juan Luis Castro, Conjunction and disjunction on ([0,1], 6), Fuzzy Sets Syst. 72 (2) (1995) 155–165.
[47] The CLIP Lab. The Ciao Prolog Development System WWW Site. <http://www.clip.dia.fi.upm.es/Software/Ciao/>.
[48] Claudio Vaucheret, Sergio Guadarrama, Susana Muñoz-Hernández, Fuzzy prolog: a simple general implementation using CLP(R), in: Matthias Baaz,

Andrei Voronkov (Eds.), LPAR, Lecture Notes in Artificial Intelligence, vol. 2514, Springer, 2002, pp. 450–464.
[49] Peter Vojtás, Fuzzy logic programming, Fuzzy Sets Syst. 124 (3) (2001) 361–370.
[50] Xizhao Wang, Eric C.C. Tsang, Suyun Zhao, Degang Chen, Daniel S. Yeung, Learning fuzzy rules from fuzzy samples based on rough set technique,

Inform. Sci. 177 (20) (2007) 4493–4514.
[51] Yingjie Yang, Chris Hinde, A new extension of fuzzy sets using rough sets: R-fuzzy sets, Inform. Sci. 180 (3) (2010) 354–365.
[52] Lotfi A. Zadeh, Is there a need for fuzzy logic?, Inform Sci. 178 (13) (2008) 2751–2779.

http://www.clip.dia.fi.upm.es/Software/Ciao/

	RFuzzy: Syntax, semantics and implementation details of a simple and expressive fuzzy tool over Prolog
	Introduction
	Fuzzy approaches in logic programming
	Fuzzy Prolog
	RFuzzy approach motivation

	Syntax
	Declarative semantics
	Least model semantics
	Least fixpoint semantics

	Operational semantics
	About multi-adjoint logic programming
	Using the framework. Implementation details
	The programs syntax
	Constructive answers
	Implementation details

	Real application cases
	Emotion recognition
	Robocup control implementation

	Conclusions
	Acknowledgements
	References

