6. The π -Calculus

June 21-29, 2022

The π -Calculus – Syntax

Let \mathcal{N} be a set of names.

For names $x,y,z\in\mathcal{N}$, a **prefix** is an expression π of the form

$$\pi ::= \overline{x}\langle y\rangle \mid x(z) \mid [x=y]\pi \mid \tau.$$

The set of all process expressions of \mathcal{P}^{π} (the π -calculus) is defined by the following grammar:

$$P ::= \sum_{i \in I} \pi_i . P_i \mid P_1 \parallel P_2 \mid (\nu a) P \mid !P$$

The π -Calculus – Structural Congruence

Structural congruence \equiv is the smallest process congruence on \mathcal{P}^{π} , such that

- 1. $[x = x]\pi . P \equiv \pi . P$;
- 2. $P \equiv_{\alpha} Q$ (α -conversion) implies $P \equiv Q$;
- 3. $P + \mathbf{0} \equiv P$, $P + Q \equiv Q + P$, $P + (Q + R) \equiv (P + Q) + R$;
- 4. $P \parallel \mathbf{0} \equiv P$, $P \parallel Q \equiv Q \parallel P$, $P \parallel (Q \parallel R) \equiv (P \parallel Q) \parallel R$;
- 5. $(\nu x)(P \parallel Q) \equiv P \parallel (\nu x)Q$ if $x \notin \mathsf{fn}(P)$, $(\nu x)\mathbf{0} \equiv \mathbf{0}$, $(\nu x)(\nu y)P \equiv (\nu y)(\nu x)P$;
- 6. $!P \equiv P || !P$.

Note: Case 2, α -conversion, is often assumed as the default case, meaning that processes P and Q are not distinguished if $P \equiv_{\alpha} Q$ holds. We refrain from doing so for the procedure of this class and keep α -conversion inside structural congruence.

The π -Calculus – Reduction Semantics

The reduction relation for \mathcal{P}^{π} is the smallest relation $\longrightarrow \subseteq \mathcal{P}^{\pi} \times \mathcal{P}^{\pi}$, satisfying the following rules:

$$(\text{tau}) \xrightarrow{} P \xrightarrow{} P \xrightarrow{} Q \xrightarrow{} Q \equiv Q'$$

$$P' \Longrightarrow P \xrightarrow{} Q \xrightarrow{} Q \equiv Q'$$

$$P' \Longrightarrow Q'$$

$$(\text{react}) \xrightarrow{} (\overline{x}\langle y \rangle.P_1 + M) \parallel (x(z).P_2 + N) \longrightarrow P_1 \parallel P_2\{y/z\}$$

$$(\text{par}) \xrightarrow{} P \xrightarrow{} P'$$

$$P \parallel Q \longrightarrow P' \parallel Q$$

$$(\text{res}) \xrightarrow{} P \xrightarrow{} P'$$

$$(\nu x)P \longrightarrow (\nu x)P'$$

Mobility - Scope Extrusion

$$Q = (\nu z)(\overline{x}\langle z \rangle.P \parallel R) \parallel x(y).Q$$

with $z \notin \operatorname{fn}(P) \cup \operatorname{fn}(Q)$.

Then $Q \longrightarrow P \parallel (\nu z)(R \parallel Q\{z/y\})$ since

- 1. $(\overline{x}\langle z\rangle.P) \parallel (x(y).Q) \longrightarrow P \parallel Q\{z/y\}$ due to (react) and (struct);
- 2. $(\overline{x}\langle z\rangle.P) \parallel (x(y).Q) \parallel R \longrightarrow P \parallel Q\{z/y\} \parallel R$ due to 1 and (par);
- 3. $\overline{x}\langle z\rangle.P\parallel R\parallel x(y).Q\longrightarrow P\parallel R\parallel Q\{z/y\}$ due to 2 and (struct);
- 4. $(\nu z)(\overline{x}\langle z\rangle.P \parallel R \parallel x(y).Q) \longrightarrow (\nu z)(P \parallel R \parallel Q\{z/y\})$ due to 3 and (res);
- 5. $(\nu z)(\overline{x}\langle z\rangle.P\parallel R)\parallel x(y).Q\longrightarrow P\parallel (\nu z)(R\parallel Q\{z/y\})$ due to 4 and (struct).

Such a behavior is also called **scope extrusion**.

The Polyadic π -Calculus

Every name $n \in \mathcal{N}$ has an arity $ar(n) \in \mathbb{N}$. A polyadic input prefix is an expression $x(y_1,\ldots,y_k)$ where ar(x)=k. A polyadic output prefix is an expression $\overline{x}\langle z_1,\ldots,z_k\rangle$ where ar(x)=k.

The **polyadic** π -calculus $\mathcal{P}_{\text{poly}}^{\pi}$ is the π -calculus using polyadic input/output prefixes. The reduction semantics is lifted to account for polyadic reactions.

Encoding $\mathcal{P}^{\pi}_{\text{poly}} \mapsto \mathcal{P}^{\pi}$:

1. $x(z_1,\ldots,z_{ar(x)}).P\mapsto x(z_1).x(z_2).\cdots.x(z_{ar(x)}).P'$ and $\overline{x}(y_1,\ldots,y_{ar(x)}).Q\mapsto \overline{x}\langle y_1\rangle.\cdots.\overline{x}\langle y_{ar(x)}\rangle.Q'$ (where P' and Q' are likewise translated processes)

The Polyadic π -Calculus

Every name $n \in \mathcal{N}$ has an arity $ar(n) \in \mathbb{N}$. A polyadic input prefix is an expression $x(y_1,\ldots,y_k)$ where ar(x)=k. A polyadic output prefix is an expression $\overline{x}\langle z_1,\ldots,z_k\rangle$ where ar(x)=k.

The **polyadic** π -calculus $\mathcal{P}^{\pi}_{\text{poly}}$ is the π -calculus using polyadic input/output prefixes. The reduction semantics is lifted to account for polyadic reactions.

Encoding $\mathcal{P}^{\pi}_{\mathsf{poly}} \mapsto \mathcal{P}^{\pi}$:

- 1. $x(z_1,\ldots,z_{ar(x)}).P\mapsto x(z_1).x(z_2).\cdots.x(z_{ar(x)}).P'$ and $\overline{x}(y_1,\ldots,y_{ar(x)}).Q\mapsto \overline{x}\langle y_1\rangle.\cdots.\overline{x}\langle y_{ar(x)}\rangle.Q'$ (where P' and Q' are likewise translated processes)
- 2. $x(z_1,\ldots,z_{ar(x)}).P\mapsto x(w).w(z_1).\cdots.w(z_{ar(x)}).Q'$ and $\overline{x}\langle y_1,\ldots,y_{ar(x)}\rangle\mapsto (\nu a)(\overline{x}(a).\overline{a}\langle y_1\rangle.\cdots.\overline{a}\langle y_{ar(x)}\rangle.Q')$

π -Calculus with Process Calls

Additional processes to the ones in $\mathcal{P}^{\pi}_{\mathsf{poly}}$ are process constants $A\langle \vec{x} \rangle$. Such a process constant comes with a defining equation $A(\vec{y}) := Q_A$, for which

$$Q_A = \cdots A \langle \vec{u} \rangle \cdots A \langle \vec{v} \rangle \cdots$$

and A may be called within a process

$$P = \cdots A \langle \vec{w} \rangle \cdots A \langle \vec{z} \rangle \cdots$$

Encoding Process Calls in $\mathcal{P}_{\text{poly}}^{\pi}$:

- 1. invent new name $call_A$ for each process constant A;
- 2. in every process R, replace $A\langle \vec{w} \rangle$ by $\overline{call_A}$, yielding \widehat{R} ;
- 3. replace the definition of P by

$$\widehat{\widehat{P}} = (\nu \mathit{call}_A)(\widehat{P} \| ! \mathit{call}_A(\vec{x}).\widehat{Q_A})$$

Visible Actions

The set of π -calculus actions is given by

$$\pi ::= \overline{x}y \mid xy \mid \overline{x}(z) \mid \tau$$

where $x, y, z \in \mathcal{N}$.

Free Output: represented by action $\pi=\overline{x}y$, where x is the so-called **subject of** π (subj $(\pi)=x$), y its **object** (obj $(\pi)=y$), $\operatorname{fn}(\pi)=\{x,y\}$, $\operatorname{bn}(\pi)=\emptyset$, $\operatorname{n}(\pi)=\{x,y\}$, $\pi\sigma=\overline{x}\overline{\sigma}y\sigma$.

Input: $\pi=xy$, where $\mathrm{subj}(\pi)=x$, $\mathrm{obj}(\pi)=y$, $\mathrm{fn}(\pi)=\{x,y\}$, $\mathrm{bn}(\pi)=\emptyset$, $\mathrm{n}(\pi)=\{x,y\}$, and $\pi\sigma=x\sigma y\sigma$.

Bound Output: $\pi=\overline{x}(z)$, where $\mathrm{subj}(\pi)=x$, $\mathrm{obj}(\pi)=z$, $\mathrm{fn}(\pi)=\{x\}$, $\mathrm{bn}(\pi)=\{z\}$, $\mathrm{n}(\pi)=\{x,y\}$, and $\pi\sigma=\overline{x}\overline{\sigma}(z)$.

Let us denote the set of all π -Calculus actions by \mathcal{A}^{π} .

LTS Semantics of the π -Calculus

 \mathcal{P}^{π} defines an LTS $(\mathcal{P}^{\pi}, \mathcal{A}^{\pi}, \rightarrow)$ where \rightarrow is the smallest transition relation, satisfying the following rules.

$$\begin{array}{c} \text{(out)} & \overbrace{\overline{x}\langle y \rangle. P \xrightarrow{\overline{x}y} P} & \text{(inp)} & \overbrace{x(z). P \xrightarrow{xy} P\{y/z\}} & \text{(tau)} & \overbrace{\tau. P \xrightarrow{\tau} P} \\ \\ \text{(mat)} & \overbrace{\overline{x}(z). P \xrightarrow{xy} P\{y/z\}} & \text{(sum-r)} & \overbrace{P \xrightarrow{\alpha} Q'} \\ \hline \\ \text{(par-l)} & \overbrace{P \xrightarrow{\alpha} P' & \text{bn}(\alpha) \cap \text{fn}(Q) = \emptyset} \\ \text{(par-l)} & \underbrace{P \xrightarrow{\alpha} P' & \text{bn}(\alpha) \cap \text{fn}(Q) = \emptyset}_{P \parallel Q \xrightarrow{\alpha} P' \parallel Q} & \text{(par-r)} & \underbrace{Q \xrightarrow{\alpha} Q' & \text{bn}(\alpha) \cap \text{fn}(P) = \emptyset}_{P \parallel Q \xrightarrow{\alpha} P \parallel Q'} \\ \hline \\ \text{(comm-l)} & \underbrace{P \xrightarrow{\overline{x}y} P' & Q \xrightarrow{xy} Q'}_{P \parallel Q \xrightarrow{\tau} P' \parallel Q'} & \text{(comm-r)} & \underbrace{P \xrightarrow{xy} P' & Q \xrightarrow{\overline{x}y} Q'}_{P \parallel Q \xrightarrow{\tau} P' \parallel Q'} \end{array}$$

LTS Semantics of the π -Calculus (cont'd)

$$(\text{close-I}) \xrightarrow{P \xrightarrow{\overline{x}(z)}} P' \quad Q \xrightarrow{\overline{xz}} Q' \quad z \notin \text{fn}(Q) \\ P \parallel Q \xrightarrow{\tau} (\nu z)(P' \parallel Q') \qquad (\text{close-r}) \xrightarrow{\dots} \\ (\text{res}) \xrightarrow{P \xrightarrow{\alpha}} P' \quad z \notin \text{n}(\alpha) \\ (\nu z)P \xrightarrow{\alpha} (\nu z)P' \qquad (\text{open}) \xrightarrow{P \xrightarrow{\overline{x}z}} P' \quad x \neq z \\ (\nu z)P \xrightarrow{\overline{x}(z)} P' \qquad \\ (\text{rep-act}) \xrightarrow{P \xrightarrow{\alpha}} P' \\ P \xrightarrow{\alpha} P' \parallel P \qquad (\text{rep-comm}) \xrightarrow{P \xrightarrow{\overline{x}y}} P' \quad P \xrightarrow{xy} P'' \\ P \xrightarrow{\tau} (P' \parallel P'') \parallel P \qquad \\ (\text{rep-close}) \xrightarrow{P \xrightarrow{\overline{x}(z)}} P' \quad P \xrightarrow{xz} P'' \quad z \notin \text{fn}(P) \\ P \xrightarrow{\tau} (\nu z)(P' \parallel P'') \parallel P \qquad \\ (\text{alpha}) \xrightarrow{P \equiv_{\alpha}} P' \quad P \xrightarrow{\alpha} Q \quad Q \equiv_{\alpha} Q' \\ P' \xrightarrow{\alpha} O'$$

Properties of LTS

Theorem 6.1: The LTS $(\mathcal{P}^{\pi}, \mathcal{A}^{\pi}, \rightarrow)$ is image-finite

The following result is known as the **Harmony Lemma**:

Theorem 6.2: (1) $P \equiv \xrightarrow{\alpha} P'$ implies $P \xrightarrow{\alpha} \equiv P'$. (2) $P \longrightarrow P'$ if, and only if, $P \xrightarrow{\tau} \equiv P'$.

Proof Structure: For (1), we show that $Q \equiv R$ and $Q \xrightarrow{\alpha} Q'$ implies there is an R' with $R \xrightarrow{\alpha} R'$ and $Q' \equiv R'$.

For (2) and (\Rightarrow), $P \longrightarrow P'$ implies a standard form. For (2) and (\Leftarrow), argue by the inference rules for $P \xrightarrow{\tau} P'$ that $P \longrightarrow P'$.

Observations in the π -Calculus

Definition 6.3: For each name or co-name μ , define the **observability predicate** \downarrow_{μ} by

- 1. $P \downarrow_x$ if $P \xrightarrow{xy}$ for some $y \in \mathcal{N}$;
- 2. $P \downarrow_{\overline{x}}$ if $P \xrightarrow{\overline{x}y}$ or $P \xrightarrow{\overline{x}(z)}$ for some $y, z \in \mathcal{N}$.

Definition 6.4: Strong barbed bisimilarity is the largest symmetric relation \sim^{\bullet} , such that $P \sim^{\bullet} Q$ implies

- 1. $P\downarrow_{\mu}$ implies $Q\downarrow_{\mu}$ and
- 2. $P \xrightarrow{\tau} P'$ implies $Q \xrightarrow{\tau} \sim^{\bullet} P'$.

Strong barbed congruence is the largest relation $\sim^c \subseteq \sim^{\bullet}$, such that $P \sim^c Q$ implies $C[P] \sim^{\bullet} C[Q]$ for each context $C[\cdot]$.

Theorem 6.5: $P \sim^c Q$ if, and only if, for all substitutions σ and processes R, $P\sigma \parallel R \sim^{\bullet} Q\sigma \parallel R$.

The Asynchronous π -Calculus

The asynchronous π -calculus \mathcal{P}^{π}_a is the following fragment of \mathcal{P}^{π} :

$$P \quad ::= \quad \overline{x}\langle y\rangle.\mathbf{0} \ \big| \ M \ \big| \ P \parallel P' \ \big| \ (\nu z)P \ \big| \ !P$$

$$M ::= \mathbf{0} \mid x(z).P \mid \tau.P \mid M + M'$$

Definition 6.6: Asynchronous barbed bisimilarity is the largest symmetric process relation \sim_a^{\bullet} , such that $P \sim_a^{\bullet} Q$ implies

- 1. $P\downarrow_{\overline{x}}$ implies $Q \Downarrow_{\overline{x}}$ and
- 2. $P \xrightarrow{\tau} P'$ implies $Q \Rightarrow \sim_a^{\bullet} P'$.

Asynchronous barbed congruence is the largest relation $\sim_a^c \subseteq \sim_a^{\bullet}$, such that $P \sim_a^c Q$ implies $C[P] \sim_a^{\bullet} C[Q]$ for each process context C.