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Abstract

In the field of artificial intelligence, research on knowledge representa-
tion and reasoning has originated a large variety of formats, languages,
and formalisms. Over the decades many different tools emerged to use
these underlying concepts and ideas. Each one has been designed with
some specific application in mind and are even used nowadays, where the
internet is seen as a service to be sufficient for the age of Industry 4.0 and
the Internet of Things. In that vision of a connected world, with these
many different formalisms and systems, it is imperative to have some
unified formal way to exchange information, such as knowledge and belief.
Alas, that alone is not enough, because even more systems get integrated
into the online world and nowadays we are confronted with a huge amount
of continuously flowing data. That means a solution is needed to both,
allowing the integration of information and dynamic reaction to the data
which is provided in such continuous data-flow environments.

This work is aiming to present a unique and novel pair of formalisms
to tackle these two important needs and propose an abstract and general
solution. We will introduce and discuss reactive Multi-Context Systems,
which allow one to utilise different knowledge representation formalisms,
so-called contexts which are represented as an abstract logic framework,
and exchange their beliefs through the means of bridge rules with other
contexts. These multiple contexts need to mutually agree on a common
set of beliefs, an equilibrium of belief sets. While different Multi-Context
Systems already exist, they are only solving this agreement problem once
and are neither considering external data streams, nor are they reasoning
continuously over time. reactive Multi-Context Systems will do this by
adding means of reacting to input streams and allowing the bridge rules
to reason with this new information. In addition we propose two different
kind of bridge rules, declarative ones which are used to find a mutual
agreement and operational ones to adapt the current knowledge for future
computations.

The second framework is even more abstract and allows computations
to happen in an asynchronous way. These asynchronous Multi-Context
Systems are aimed at modelling and describing communication between
contexts, with different levels of self-management and centralised man-
agement of communication and computation.

In this thesis, the reactive Multi-Context Systems, will be analysed
with respect to usability, consistency management, and computational
complexity, while we will show how asynchronous Multi-Context Systems
can be used to capture the asynchronous ideas and how to model a reactive
Multi-Context System with it. Finally we will show how reactive Multi-
Context Systems are positioned in the current world of stream reasoning
and that it can capture currently used technologies and therefore allows
one to seamlessly connect different systems of these kinds with each
other. Further on this also shows that reactive Multi-Context Systems
are expressive enough to simulate the mechanics used by these systems
to compute the corresponding results on its own as an alternative to the
already existing ones.
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For asynchronous Multi-Context Systems, we will discuss how to use
them and that they are a very versatile tool to describe communication
and asynchronous computation. In addition it will be shown that they
can capture the notion of reactive Multi-Context Systems and therefore
providing means to only synchronise groups of contexts while allowing
the other contexts to operate asynchronously.
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Chapter 1

Introduction

Research in the field of knowledge representation has originated a large variety
of formats and languages. To use those formal concepts a wealth of tools have
emerged (e.g. databases, ontologies, triple-stores, modal logics, temporal logics,
nonmonotonic logics, logic programs under nonmonotonic answer set semantics,
...). Those tools were designed for specific needs of certain applications. With
the idea of a “connected world”, nowadays we do not intend to divide information
over different applications. It is desirable to have all information available for
every application if need be. To express all of this knowledge, represented in
specifically tailored languages, in a universal language would be too hard to
achieve from the point of view of complexity as well as the troubles arising
from the translation of the representations.

A second issue in current knowledge representation, which is already ad-
dressed in different fields of knowledge representation (e.g. stream data process-
ing and querying [Zaniolo, 2012, Le-Phuoc et al., 2012], stream reasoning with
answer set programming |Gebser et al., 2012a], forgetting in general |[Lang and
Marquis, 2010, Cheng et al., 2006]), is the lack of online usage of KR tools and
formalisms. Most of the approaches only assume one-shot computations, which
are triggered by a user. This may be a specific request in the form of a query
to a computer. In practice there are many applications where knowledge is
provided in a constant flow of information and it is desired to reason over this
knowledge in a continuous manner. Such a constant flow of information can
be seen as some dynamic environment, where our formalism should be able to
deal with changed conditions and beliefs over time.

The concept of nonmonotonic Multi-Context Systems (MCS) [Brewka and
Eiter, 2007] is a promising approach to achieve a formalism which will not
suffer from any of the two shortcomings of current KR-languages. One context
may be seen as an encapsulation of one knowledge representation formalism.
There different knowledge formalisms may communicate by means of bridge
rules to exchange beliefs with each other. Equilibria are used as semantics
to ensure that none of the transferred beliefs may lead to changes in the
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knowledge base and belief sets of the contexts which result in inconsistencies.
The problem of connecting divided knowledge was the motivation of MCS and
its successor [Brewka et al., 2011b]. To generalise the concept of MCS such that
they can handle streams of information and react to those in an appropriate
way is one of the fundamental problems which shall be addressed by this thesis.
We aim to define and introduce so called reactive Multi-Context Systems,
picturing how they developed over the last few years. Together with the
presentation of this formalism we are also considering how to use this system
and show results on computational complexity, ways to simulate other existing
systems, and properties with respect to inconsistency management. Then
we will propose and discuss another framework, asynchronous Multi-Context
Systems, which use a more loosely coupled semantics compared to reactive Multi-
Context Systems. While one basic idea of a reactive Multi-Context System is
to get an agreement of every context via the usage of equilibrium semantics,
asynchronous Multi-Context Systems are tailored towards information spreading
in an asynchronous way, similar to the current web-technologies. We will discuss
how asynchronous Multi-Context Systems can be seen as a modelling tool to
describe communication and information exchange in modern KR and Al
systems. In addition we will show that reactive Multi-Context Systems may be
simulated with asynchronous Multi-Context Systems too, showing that this
formalism can indeed utilise the equilibrium semantics where it is needed.
The contributions of this thesis can be summarised as follows:

e Introduction of reactive Multi-Context Systems
— Two extensions of managed Multi-Context Systems, to model the

necessary concepts relevant to deal with dynamic environments

— An introduction of another type of rules, which allows the separation
between equilibria computation and dynamic changes of knowledge
over time

— A study of different forms of inconsistencies, together with plans
to ensure repairs or non-existence of inconsistent non-computable
paths

— Ways to model other reactive systems from the literature with
reactive Multi-Context Systems
e Introduction of asynchronous Multi-Context Systems
— The introduction of a paradigm shift regarding bridge rules (now
called output rules)

— An alternative model of computation, where each context produces
its beliefs on its own pace

— A language to pre-filter relevant from irrelevant data



— Methods to work on partial results and control the flow of computa-
tion based on these observations

This thesis is structured as follows. Chapter 2 will present our real world
related examples, which will be used through the introduction and introduction
of the contributions of this work.

All related and needed Background for later chapters will be presented in
chapter 3. The revisited topics in the Background section will first introduce a
general view on logics and show on basis of classical propositional logic how it
can be used. Afterwards we will refresh the knowledge about complexity theory,
which allows to classify computational problems based on their worst case
runtime. Another basic knowledge representation and reasoning formalism, the
argumentation theory will then be presented. The chapter will be concluded
by the formal introduction of managed Multi-Context Systems.

A short overview on different knowledge representation formalisms which are
nowadays used in business and research will be shown in chapter 4. There we
will focus on three concepts, ranging from monotone to nonmonotone reasoning
semantics. One important factor in this chapter is that each of the pictured
approaches have implementations and use-able software applications.

Then we will introduce reactive Multi-Context Systems in chapter 5. To
show how it has evolved we will have a discussion on the different versions
which got proposed till the final, most usable, and best analysed version will
be presented. There we will also discuss their properties and how to tackle
inconsistencies introduced by bridge rules.

Afterwards Chapter 6 will present asynchronous Multi-Context Systems
and discuss their relation to reactive Multi-Context Systems. In Chapter 7 we
discuss related work. Finally Chapter 8 will conclude the thesis and give an
outlook on future work as well.

The contributions of this work are based on the following publications:
Section 4.3 has been discussed in a handbook on argumentation! and has been
accompanied by a Journal publication in the IfC'oLog Journal of Logics and their
Applications |Brewka et al., 2017b|. Beside that many parts have been proposed
by various conference papers [Ellmauthaler and Strass, 2016, Ellmauthaler
and Strass, 2014, Brewka et al., 2013, Ellmauthaler and Wallner, 2012| and
different workshop and system description submissions [Ellmauthaler and
Strass, 2013, Strass and Ellmauthaler, 2017]. Note that this work is also
based on the work of my master’s thesis [Ellmauthaler, 2012|. Chapter 5
presents the results of the recently published ALJ (Artificial Intelligence Journal)
article [Brewka et al., 2018|. This work has been discussed before in different
conference publications |Brewka et al., 2016a, Brewka et al., 2014b], as well as
in workshop contributions |[Brewka et al., 2016b, Brewka et al., 2014a]. Finally,
Chapter 6’s work is based on two workshop papers [Ellmauthaler and Piihrer,

'The “Handbook of Formal Argumentation” (HOFA) is going to appear, further details
can be found at http://formalargumentation.org/
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2014, Ellmauthaler and Piihrer, 2016] and a contribution in the Advances in
Knowledge Representation, Logic Programming, and Abstract Argumentation
Festschrift, which has been published to celebrate the 60" birthday of Gerhard
Brewka |Ellmauthaler and Piihrer, 2015].



Chapter 2

Motivation

Nowadays our world is getting more connected and is filled with machine-
readable and semantically aware data. Internet of Things (IoT) [Want et al.,
2015, Atzori et al., 2010, Weiser, 1991] is one example which gets more important
and present in the daily life. There each thing in the real world gets its own
identification on the internet and may provide information about itself as well
as offering ways to manipulate their states. Together with this new level of
interconnections Industry 4.0 [Salkin et al., 2018, Bauer et al., 2016] gets more
prominent in business applications too. Industry 4.0 is a keyword for enhancing
the production and sales processes to utilise the current and future possibilities
of the connected virtual world. Another example is the Semantic Web as a
way to describe relations between information in the web and annotate it with
classifications and semantics to allow automatic reasoning on the content of
information. Beside the industry, medicine is aware of the possible gain of
quality and security by using the new technologies for their use cases too.

Eventually we can easily say that there is already a vast amount of machine-
processable information and knowledge available. This is a preparatory ground
for a new class of dynamic, rich, and knowledge-intensive applications, which
connect heterogeneous knowledge bases.

In most of these new applications, it is still the case that each component
does its own kind of computation without being aware of other observations or
conclusions. That is due to independent, sometimes overlapping, development
of languages and formalisms. They are not necessarily compatible to each other
and therefore their knowledge representation, reasoning, set of beliefs, and
other concepts may differ on a level where a direct integration is not practicable.
Information and therefore knowledge and beliefs are just exchanged as data
and it is often the case that each unit of the whole network is working and
reasoning on its own. In case of more complex reasoning units, which utilise
different knowledge representation and reasoning formalisms, this may lead to
inconsistent or not even realisable situations.

To overcome these communication issues Multi-Context Systems |Brewka

5
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et al., 2011a] have been developed. Such a system consists of various Contexts,
where each Context is some kind of reasoning engine (e.g. Answer Set Programs,
Argumentation Systems, Description Logic Bases, First Order Reasoner,. . .).
They provide a common formalism to exchange and integrate knowledge and
beliefs over different heterogeneous sources, such as different reasoner engines.
A way to ensure that this communication does not lead to inconsistencies due
to the integration of external sources is a strong semantics which ensures that
each part of the system agrees on the information which is transferred between
the contexts. This mutual agreement is gained by achieving an equilibrium
based on the transferred information. Later on that concept got enhanced
even more. Managed Multi-Context Systems [Brewka et al., 2011b] are not
only adequate to exchanging, and therefore adding, information. In addition
to adding information, they are capable of revising the knowledge bases of
the receiving context. That means that based on some external information,
knowledge might be added, removed or changed.

Many knowledge representation and reasoning systems follow the paradigm
of static knowledge based reasoning. Managed Multi-Context Systems are
no exception of that. In the real world we are situated in an environment
which confronts every individual thing continuously with new influences and
changing situations. Everything adapts to these external and even internal
changes over time which leads to ongoing dynamics. These dynamics can be
seen as a constant adjustment and evolving of parts of the environment to fit
the current situations. Of course it would be beneficial if our knowledge based
system which integrates information from different sources is also aware of this
continuous change of states. To observe the world, one is confronted with a
constant flow of information.

There are some examples of systems developed with the purpose of reacting
to streams of incoming information, such as Reactive ASP [Gebser et al.,
2011a, Gebser et al., 2012a|, C-SPARQL [Barbieri et al., 2010], Ontology
Streams |Lécué and Pan, 2013] and ETALIS [Anicic et al., 2012], to name only
a few. However, they are very limited in the kind of knowledge that can be
represented, and the kind of reasoning allowed, hence unsuitable to address
the need to integrate heterogeneous knowledge bases.

Our aim is to propose a system which might shift from the static knowledge
based approach to a point where it react and adapt over time to the continuous
data-flow of its environment. We will achieve this by generalising the managed
Multi-Context Systems approach to get a reactive formalism which is aware
of the dynamics and still allows the integration of other sources of knowledge.
As we are challenged with a stream of information about current observations,
it won’t be sufficient to only compute one equilibrium. So we will compute a
sequence of equilibria, where one equilibrium is based on its predecessor and
its current observations and influences from its environment. This will enable
one to present a logically traceable and formally clear way to incorporate the
environmental properties to the computing contexts and track the adaption

6



of knowledge and beliefs of the system over time. Inconsistencies which might
occur during such adaptions will need to be detected and we will need to find
ways to repair or avoid such events, as this might render the logical sound
approach to an halt. We will present such a generalised system, which we call
reactive Multi-Context System and investigate how to handle such inconsistent
cases.

While consistency is ensured by building an equilibrium, this means that for
the computation of such a result every context needs to finish its computations
and conclusions too. As every context needs to wait for all other contexts to
finish its reasoning, we will call this a strongly coupled semantics because the
semantics couple the contexts together and reduce their freedom of computation.
In contrast to that procedure we are interested in loosely coupled semantics
which allow more freedom in between the contexts. We are still interested
in a way to exchange information between different contexts. Obviously we
want some methods to get consistent behaviour and similar properties as
the equilibrium based approach combined with the possibilities to reason
on partial results of contexts. In case some computation may take way too
long for the computation of an agreement there should be some ways to
control the computation process from outside the context too. These ideas
are the conceptual basic thoughts of asynchronous Multi-Context System. An
asynchronous Multi-Context System should be capable of simulating the strong
coupling and computation of equilibria, while it should also allow decoupled
computations and reactions to streams of input data as it is handled nowadays
in the internet.

To illustrate how such systems might be used and how these are utilised for
usage in the real world, we will consider two different running examples. Both
of them are situated on possible real word applications, where computation
of reasonable solutions with robust conclusions and without inconsistencies
is necessary. To underline that importance we are choosing two applications
which are related to health-care. We are taking two different sets of examples
to underline once the importance of the strongly coupled semantics on one
hand, while we are also on the aspect of the necessity of fast interaction too.
In the latter case we are even considering problems where a consensus of all
contexts would not be very reasonable. Both example scenarios will use state
of the art knowledge representation and reasoning engines, to show how current
technology might be used in such ause-case. For better readability and easier
understanding of the newly introduced concepts we will also use tuned down
and simplified versions of current databases and data structures?. Note that we
are aware that such an application would need long medical quality studies and
may also be opposed by the question of responsibility or trust into computer

2Examples for such down-tuning are the description logic based ontologies which are huge
topologies for biomedical facts from the real world or argumentation systems which might
become very complex solutions to instantiate and propagate relations between arguments.
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based decisions in such delicate environments. Our incentive is to propose
possible applications and introduce ways to model interaction between different
knowledge based reasoning systems with a strong and robust formal basis.

Example scenarios

Assisted Living In this scenario we are considering some use-case from the
concept of assisted living. This is the idea to aid some person with assistance
in daily life to overcome some (in most cases medical) shortcoming. Such
treatment is often done proposed for people who suffer different physical or
mental restrictions. In our special case, we will consider John3, an elderly
person suffering from dementia. People with such a brain disease are not faring
well with big changes of their living environment, so it is beneficial to allow one
to stay at home and get assistance as long as possible before being forced into
some retirement and treatment home. Our idea is that John is living alone in
his apartment which is equipped with various sensors, e.g. smoke detectors,
cameras, state detectors (e.g. is the stove on, is the light turned on, etc.), and
body sensors (e.g. pulse, blood pressure, etc.).

An assisted living application in such a scenario could leverage the infor-
mation continuously received from the sensors, together with John’s medical
records stored in a relational database, a biomedical health ontology with
information about diseases, their symptoms and treatments, represented in
some description logic, some action policy rules represented as a non-monotonic
logic program, to name only a few, and use it to detect relevant events, suggest
appropriate action, and even raise alarms, while keeping a history of relevant
events and John’s medical records up to date, thus allowing him to live on
his own despite his condition. After detecting that John left the room while
preparing a meal, the system could alert him in case he does not return soon,
or even turn the stove off in case it detects that John fell asleep, not wanting
to wake him up because his current treatment/health status values rest over
immediate nutrition. Naturally, if John is not gone long enough, and no sensor
shows any potential problems (smoke, gas, fire, etc.), then the system should
seamlessly take no action.

Another application might be the adaption of reasoning about John’s
medical status, beside deciding whether some action should be concluded or
not. Lets assume the sensors report that John has tachycardia (i.e. a very
fast heart rate). The system checks the medical report of John, together with
the history of his taken drugs from an automated drug dispenser. Based on
the information and reasoning from the biomedical health ontology the system
concludes that the tachycardia is due to the recently taken decongestant drugs.
Due to the current policy rules and the high possibility that this is just a side
effect of John’s medication, the system update the medical report on John to

3John as in John Doe, to ensure that no one might be offended by the choice of the given
name.



add this knowledge, together with a note about the policy rules limits. On one
hand it is reasonable to log such actions for control of the system and on the
other hand it is easier to reason at the next time instant whether an action
should be taken because of the reoccurring event of tachycardia at the next
sensor cycle.

Note that we are not proposing a system where a computer does critical
decisions on medical cases. We are envisioning and describing an assisting
embedded solution to help making it easier to handle daily life. Actions to be
done are in most situations either an alert for John or a supervising medical
employee or some danger avoiding action like turning off the stove.

Computer-Aided Emergency Team Management Now we want to de-
scribe a scenario which has more focus on direct interaction between entities
of the real world and the system which provides the reasoning tasks. This
application is a recommender-system for the coordination and handling of
ambulance assignments. We consider the scenario, where some person is calling
the emergency number. During the rescue call many information regarding
the casualty is given and the emergency response employee needs to assess
the situation as quickly as possible. When the call is handled the information
is usually forwarded to some case dispatcher, which plans how to utilise the
accessible ambulance cars in the most effective way. The employee who does
this dispatching has to take many parameters into account, like free capacities
in hospitals, ambulance car availability and equipment, traffic, severity of the
individual cases, and much more. These employees have to react to additional
random events like a broken ambulance car, accidents on the streets, and similar
issues which may change previously totally acceptable preferences for the task
assignments.

Such a computer-aided emergency team management application can be
seen as one system which can deal with the dynamics we have described above
while it also incorporates the integration of information gathered from the
different employees. The emergency response employee can interact with the
system by seeing his input as a flow of sensor data and the computed conclusions
can be presented as part of the reasoning of the system. Information from the
call provided by the employee is directly given to a case-analyser, which starts
to annotate the case based on the given data. It might also pass some of its
conclusions on to a medical ontology context which checks the consistency of
the given information and provides additional assessment of severity of the
case. These conclusions are presented to the employee who can decide if the
proposed annotation is acceptable or if he wants to add or remove some of the
estimation. As soon as the case is rated it can be handed on to a task planner
context (e.g. some ASP planner) which computes optimal assignments for the
ambulance car. This context will take additional information into account, like
navigational data for estimated time of arrivals, real-time traffic ratings, or

9
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additional annotations from the medical ontology. Then it interacts with the
case dispatching employee and presents its optimal solution candidates. The
dispatcher might now choose its own solution, recycles some of the candidates
or just chooses one of these. Based on the interaction with the human employee
the system now might reassess its policies and rules for the decision making, but
more important it will inform the assigned ambulances about there cases too,
causing updates in the context for keeping track of the available ambulances.

Note that this example is tailored towards direct interaction and fast
reaction over time, underlining how the information flow of the sensors is
causing reassessment and additional information and knowledge flow inside
the system. Again we want to strongly emphasise that we are aiming on a
computer-aided solution which might learn from user interaction for a speed
up in decision making.

10



Chapter 3

Background

The following sections will give a short introduction to basic background
knowledge which will be required in further chapters of this work. Here we
will present mature concepts, formalisms, and ideas already introduced and
discussed by other authors.

3.1 Logics

Studies about Logics can be traced back to Greek philosophers like Aristotle
and Plato. It is an extensively analysed and discussed field of science and
got even more interest from the mathematical point of view since the early
twentieth century. Therefore a plethora of different approaches, formalisms
and methods emerged during the investigation of that field 4. We will use a
rather generalised and abstract view on logics, as it has been used as ’formal
concept of logic’ in [Brewka and Eiter, 2007]:

Definition 3.1.1 (Logic). A logic is a triple L = (KB, BS,acc), where
e KB is a set of knowledge bases,
e BS is a set of belief sets, and

e acc: KB — 289 the acceptance funtion is a function which assigns to
each knowledge base a set of belief sets.

Intuitively the set of knowledge bases for the logic may be seen as the
syntax of the described formalism. It defines which combination of knowledge
may be assumed as a working base. In that manner the acceptance function
can be seen as the semantics, as it defines which beliefs or conclusions shall be
drawn based on the given knowledge base.

4We want to point the interested reader towards the comprehensive series handbook of
philosophical logic [Gabbay and Guenthner, 2014] for a detailed overview on the landscape of
existing logics.
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This notion of a logic can represent different forms of logics. The biggest
advantage of that formalisation is, that it may model all common types of logics,
while it can also model other computational models and different problems
which may arise from handling formal logics.

In general we can say that L is monotonic if acc assigns to each kb € KB
a single belief set B € BS, and kb C kb’ of another kb’ € KB implies that
B C B’. Moreover it is possible to have have an acceptance function which
has more than one belief set as well as no result for a given knowledge base,
which leads to the possibility to also model a nonmonotonic logic. In the
remainder of this section we will show how this concept is instantiated with a
basic classical logic and how to model different formal problems and solutions
with that abstract notion of a logic..

3.1.1 Classical Logics

Classical propositional logic is a basic and well understood two-valued monotone
logic. For further information and a more exhaustive in-depth introduction we
would like to refer the interested reader towards handbooks about logics |[Gabbay
et al., 1993, Church, 1996, Rothmaler, 2000, Huth and Ryan, 2004].

As a binary logic every variable can only have one of two values (i.e. a
variable is either true or false). A well-formed formula is a syntactical valid
formulation of a proposition, consisting of a combination of variables, constants
and operations.

Definition 3.1.2 (Well-formed Propositional Formula). Given a signature
Y= (e, Xpy, Xop), where ¥ ={T, L} is a set of constant symbols, 3y, is a
set of propositional variables, and Yoy = {=,V, A, D15, is a set of operations, a
well-formed propositional formula is inductively defined as:

(1) Every p € ¥, is a formula.
(ii) Every p € 3. is a formula.
(iii) If ¢ is a formula, then (¢) is a formula too.
(i) If ¢ is a formula, then ¢ is a formula too.
(v) If ¢ and 1 are formulae and o € (X4, \ {—}), then ¢ o) is one too.

Formulae defined in (i) and (ii) are called atomic formulae. Atoms together
with their negation (—) are referred to as literals.

To give the well-formed formulae a meaning we are going to define the
semantics of propositional logic. First we need to identify the truth value of a
given formula. For such a computation it is needed to map the used variables
towards a truth value each. This mapping is called an interpretation.

®Note: It is just for convenience to use more than two operators for the semantics
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3.1 Logics

Definition 3.1.3 (Interpretation of a Formula). An interpretation I : ¥, —
{0,1} is a total function, which assigns to each variable a value.

Based on the given interpretation for a given formula it is now possible to
compute the valuation of the formula. The valuation of the formula can be seen
as the truth value of the given formula with respect to the given interpretation.

Definition 3.1.4 (Valuation of an Formula). Let 3 be a signature, ¢, be two
arbitrary formulae under 3, and I an interpretation of ¥, then

(7’.) U[(p) = I(p),p € Epvy

(ii) vi(T) =1 and vi(L) =0,
(iii) vi(=¢) =1 —vr(¢),

(
(
(v) vi(¢ AY) =min(vi(¢), vi(¥)),
UI(¢ \ w) max<v1(¢)7 U[(i/))), and
vi(¢ D ) = maz(l — v (@), vr(¥))-

We say that an interpretation is a model of a given formula, if the valuation
under the interpretation is true. Furthermore a formula is satisfiable if there
exists at least one model for it. A valid formula is a formula where every
interpretation is a model. Two formulae are equivalent if their models are
equivalent too. In addition we are interested in the logical consequences of a
given set of formulae. In other words, what does also hold if some formulae are
given to be holding?

Definition 3.1.5 (Entailment). Let I be a set of formulae under a signature
> and ¢ be a formula under 3.

I'= ¢ iff VI)(V(yp € Dvr(y) =1) = vi(¢) =1

Intuitively that means, that some formula ¢ is entailed by a set of formulae
T, if every interpretation which is a model for each formula in I" is also a model
for ¢. The logical consequence of some propositions (i.e. a set of propositional
formulae) is the set of all formulae which are entailed by the propositions.
As there are many different representations of the same formula, we are only
interested in the set of formulae which are unique with respect to their equality.

To consider propositional logic for the abstract notion of logic, we say
that Fy is the set of all well-defined formulae constructed by . We will
write L, = (KB, BSp,accy,) to denote that this logic representation is for
propositional logic. All the admissible knowledge bases are given by the set
KB, = 2F and the belief sets BS,, is the set of all deductively closed sets of
formulae over . acc, now maps to every kb € KB, to one B € BS, such
that each B is the corresponding logical consequence to kb. It is also easy
to model some of the above mentioned problems, though they are not really
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logical consequences. One could use Lpsar = (KBpsar, BSpsar,accpsar),
where KBpgar = F and BSpsar = {{0}, {1}} to encapsulate the SAT-problem.
accpsar is then mapping each formula ¢ € KBpsar to true or false, depending
on whether ¢ is satisfiable or not.

3.2 Complexity Theory

Computational complexity is aimed towards the analysis of the hardness of
problems and formalisms. The theory gives means to compare and classify
computational problems by the basic idea whether some problem may be
solved by another formalism. The idea of complexity classes is that every
problem of one class may be transformed in polynomial time into a problem
of the same class such that the answer of the transformed problem is dual to
the answer of the original problem. In this section we give an overview on
complexity theory and the common complexity classes. A brief overview is
given by Johnson |[Johnson, 1992| and for an in-depth insight in complexity
theory we refer to the book by Papadimitriou [Papadimitriou, 1994].

A problem in complexity theory is defined by an input description and a
question to be answered. We will speak of a decision problem if the question
requires to answer either “yes” or “no”. To assess the complexity we are now
interested in a function which only depends on the input and the method to
solve the problem. A complexity class is a set of functions which has a similar
magnitude in space or time growth, based in the input size.

An easy way to define decision problems is to use an universal Turing
machine.

Definition 3.2.1 (Turing Machine). A TM is a tuple (Q,T',.,%,6,qo, F),
where

e (Q CQ is a finite, non-empty set of states,
o I' C S is a finite, non-empty set of tape symbols, the alphabet,
o _ €I isthe blank symbol,

e X is a sequence of alphabet symbols, the input,

qo 1s the initial state,

F C @ is the set of final states, and
¢ 0:Q\F xT' = QxT x{«,—} is the (partial) transition function.

A Turing machine is literally a tape where the input is written on. Based
on the current state and the alphabet symbol on the current position on the
tape the transition function may change the state, the symbol on the tape as
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well as the position on the tape. Note that the position may only be one step to
the left or the right on the tape which is represented by +— and — respectively.

We will speak of a universal Turing machine U = (T'M) if and only if U
takes any turing machine as input and has the same answer as the specified
turing machine will give. A turing machine is deterministic if the transition
function is deterministic as well. We speak of a deterministic universal Turing
machine if the turing machine is a deterministic one.

Definition 3.2.2 (Complexity Class P). A problem P is in P if it can be
solved by a deterministic universal turing machine in polynomial many working
steps, with respect to the length of the input string.

In other words a problem in P needs, based on the input length, a polynomial
factor of time to compute a solution. One example for a problem in P is the
decision problem whether an interpretation I for a formula ¢ is a propositional
model I € mod,(¢) or not.

A non-deterministic Turing machine has a non-deterministic transition
function, i.e. one value might map to more than one result, where it is not
defined which one will be used.

Definition 3.2.3 (Complexity Class NP). A problem P is in NP if it can
be solved by a non-deterministic universal turing machine in polynomial many
working steps, with respect to the length of the input string.

To define NP we used a non-deterministic universal turing machine. That
means that the transition function is non-deterministic. Alas, with nowadays
means of technology it is only possible to construct a deterministic turing
machine. Intuitively we can see a non-deterministic turing machine as a
deterministic turing machine which is guessing the “right” value of the possible
ones to produce a computation path which leads to a result. Alternatively it can
be seen as a deterministic turing machine, which tries out every computational
path within one computation step. An example for a problem in the NP class is
the SAT problem for propositional formulae (i.e. is a given formula ¢ satisfiable
or not). Note that it is unknown if there exists an efficient way to compute
problems which are in NP, but current solutions to solve NP problems with
deterministic methods take exponential time in the worst case.

We will say a problem is NP-complete if we know that the problem has a
membership in this class and that the problem is NP-hard.

Definition 3.2.4 (Membership and Hardness). A problem P has a membership
in a complexity class C, if an algorithm exists, whose complexity function is in
the class of C.

A problem P is said to be C'-hard for a complezity-class C, if a program I1
exists, which transforms P’ to P, where P’ is known to be a C-hard problem,
and the answer to P’ equals the answer to P. Additionally the complexity of 11
must not be greater than P.
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One method to show the NP-membership is to use a “guess & check”
algorithm. This algorithm will guess a solution and afterwards checks whether
the solution is correct or not. Note that the algorithm only checks one guess.
If this “guess € check” algorithm has a polynomial runtime (i.e. has a P
membership), then the problem is in NP.

For each non-deterministic problem class a complement class exists (e.g.
coNP). There all answers are the complement of the original problem. One
example of two complement problems is the SAT and the UNSAT problem.
Note that the two complement problems can have a different difficulty to solve:
To answer the SAT question, it is only needed to test the interpretations till
one is a model, but to check for the UNSAT answer every interpretation must
be tested to show that no interpretation is a model.

On top of the classes P, NP, and coNP, we can now define one additional
type of classes. We will use so-called oracles. Let us assume we have an oracle
which can solve a problem in a complexity class with a constant computational
effort of one unit of time. If we use such an oracle in our program the overall
complexity of the program without the oracle would be higher than with the
oracle. In case we have an program in P and an oracle which solves a problem
in NP, we would have the complexity class PNP. Based on this notation for
algorithms with oracles we can build the polynomial hierarchy.

Definition 3.2.5 (Polynomial Hierarchy).

AF =3f =TIf =P;
and for all i >0 :
Azl')ﬂ = PE’P
$P, = NP

P
1Y, = coNP*

To get a better understanding on the hierarchy, Figure 3.1 is sketching
the relations of the different classes. Note that we have already mentioned
exponential time complexity EXPTime, which is defined like P. We had only
a look on computation time so far. It is easy to extend the notion by measuring
the needed size of the turing machine’s tape. In a similar way we can define
the notion of PSPACE such that the space requirements on the input tape
are a polynomial factor of the input size. In addition a less detailed notion
for computational complexity exists for computational problems. Here the
problems are assigned to be tractable or intractable. In general all problems in
P are said to be tractable problems while all problems which are in a higher
complexity class are intractable computational problems.

Note that it is currently an open problem whether the polynomial hierarchy
is a correct assumption or not. Indeed the question whether P # NP holds
or not is still not answered. Nevertheless we will assume that P C NP and
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EXPTime

PSPACE

Figure 3.1: Relations of the classes in the polynomial hierarchy

NP ¢ P. Following this assumption we will also stick to the notion of the
polynomial hierarchy as presented, which is the current point of view of the
scientific community.

3.3 Argumentation

Argumentation is an area at the intersection of Philosophy, Knowledge Repre-
sentation, nonmonotonic Reasoning, and Multi-Agent Systems, which receives
growing interest over the last decade. It is based around the idea to construct,
evaluate, and position arguments to model the (nonmonotonic) reasoning which
may arise during having an argument or discussion. Note the contrast towards
proof theoretic approaches, where everything which has been proven has to stay
admissible. In argumentation theory every argument is defeasible, which means
that their conclusion may change due to the influence of another argument. As
a result of such an argumentation some admissible set of arguments should be
found, which stand together as some conclusion which is not changed any more
by the other present arguments.

Formal argumentation can be seen as a three step process [Caminada and
Wu, 2011], which is tailored towards the very abstract concept of Argumentation
Frameworks (see Figure 3.2). Normally one has some kind of knowledge base
and a given problem to solve on top on it. The instantiation process takes the
knowledge base and produces different arguments. Note that arguments may
be very abstract and there is no necessity to keep any internal structure for
arguments. Then the arguments are set into relations to each other (e.g.’does
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one argument is in conflict with another one’, ’does one argument support
another one’, ...). With such a set of arguments and their positions to each
other constructed, we get an argumentation framework. In the next step, a set
of acceptable arguments is identified via different semantics which are defined
for the given framework. Such acceptable sets are in general called extensions.
In the last step, conclusions are identified. They are in a direct relation to the
given extensions and can be considered as the wanted result of the original
problem originated from the knowledge base.

Step 2: extensions of

arguments

framework for
argumentation

compute extensions

extensions of

knowledge base .
conclusions

Figure 3.2: Three-step argumentation process

In abstract argumentation we are only interested in the second step, namely
the computation of extensions and the representation of arguments with their
relations. One very simple, but still widely used and accepted argumentation
framework is Dung’s Argumentation Framework (Dung AF) [Dung, 1995]. While
the approach is pretty simple, it is still a nonmonotic reasoning formalism.
Intuitively every argument is seen very abstract. There is no more information
than that it is an argument and which other argument is attacked by it. Attack
is meant that there is a strong reason that the other argument shall not be
acceptable if the attacking argument is accepted too. Note that attacks are
not mutual and so this notion is directional.

Definition 3.3.1 (Dung’s Argumentation Framework). A Dung Argumenta-
tion Framework AF = (Arg, Att) is a tuple, where

e Arg is a set of arguments and
o Att C Arg x Arg is a binary relation

The intended meaning of (a,b) € Att for two arguments a,b € Arg, is that
a attacks b. It is trivial to see that the definition of a Dung AF is identical to
the definition of a directed graph. Therefore it is common to represent such a
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framework as a graph for easier visualisation, where arguments are the vertices
and the attack relations are the edges.

Example 3.3.2.
The AFy = ({a,b,c,d,e}, {(a,b),(c,b),(c,b),(d,c),(d,e),(e,e}) can be easily
represented by the following graph:

In that example the argument a is not attacked by any other argument and has
a point against b, which is also attacked by c. In addition ¢ and d are attacking
each other mutually. r is not only attacked by d, but is also attacked by itself.
That may result due to some inconsistency behind e.

Note that we will use AFy in further examples to show how the different
semantics for Dung Argumentation Frameworks work.

Dung has defined several semantics for his framework, which are all con-
sidered as “basic semantics”. Their connection between each other is well
investigated. Basically the semantics, so called Extensions, are acceptable sets
of arguments with respect to their relations between them. The most basic
notion which is also mandatory for most following semantics is conflict-freeness,
which means that no two arguments are allowed to be selected together if there
is an attack-relation between them.

Definition 3.3.3 (Conflict-free). Let AF = (Arg, Att) be a Dung Argumen-
tation Framework. A set S C Arg is called conflict-free if there are no two
arguments a,b € S, such that (a,b) € Att. The set cf(AF) denotes the set of
all conflict-free sets for AF.

In general one is not only interested in some kind of consistency between
the selected arguments, as it is achieved by conflict-freeness. We are also taking
into account those arguments which are not in the extension. Literally it is
our goal that arguments may also defend against other attacks, by providing
an attack towards the attacker itself. In other words we want to rebut all
arguments which are attacking those which are considered as acceptable.

Definition 3.3.4 (Defended Arguments). Let AF = (Arg, Att) be a Dung
Argumentation Framework. An argument a € Arg is said to be defended by a
set S C Arg, iff for each argument b € Arg : if (b,a) € Att, then there exists
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ac €S, such that (¢,b) € Att. We will write def(AF,S) for the set of all
arguments which are defended by S in AF.

Definition 3.3.5 (Extensions for Dung Argumentation Frameworks). Let
AF(Arg, Att) be a Dung Argumentation Framework. A conflict-free set S €
cf(AF) is called

e admissible if S C def(AF,S),
o complete if S = def(AF,S),

o preferred if S is a mazimal admissible extension with respect to set-
inclusion,

e grounded if S is the least complete extension with respect to set-inclusion,
and

o stable if for every a € Arg\ S exists a s € S, such that (s,a) € Att.

Intuitively the different extensions can be interpreted as follows. An admis-
sible extension needs to be able to defend itself against all other attacks from
other arguments, while the complete extension requires that every defended
argument inside the set too. The preferred extension is only interested in the
maximal admissible sets which sets the focus on those sets which have the most
arguments. In contrast to that the grounded extension is aiming towards all
sets which can be selected without doubt. Stable extensions take some kind of
the “safest way”, such that every argument which is not part of their extension
needs to be attacked by at least one argument from the extension.

Dung has also presented different properties for the extensions. For every
Dung AF there always exists an admissible, complete, preferred, and grounded
extension. In addition the grounded extension is always a unique set. The sets
of extensions are also in a special relation to each other, such that stable C
preferred C complete C admissible. Note that the grounded extension itself
is also a subset of every stable, preferred and complete extension.

Example 3.3.6. Assume AF| from FExample 3.3.2. Then the extensions are
as follows:

o admissible: 0,{a},{c},{d},{a,c},{a,d}
complete: {a},{a,c},{a,d}

preferred: {a,c},{a,d}

grounded: {a}

stable: {a,d}

20



3.4 Multi-Context Systems

3.4 Multi-Context Systems

Here we will present Multi-Context Systems [Brewka and Eiter, 2007, Brewka
et al., 2011a], more specifically their extended form which is called managed
Multi-Context Systems |Brewka et al., 2011b]. Multi-Context Systems pro-
vide means to exchange beliefs between different knowledge representation
formalisms. These different formalisms are encapsulated in so-called contexts.
To represent the flow of information (i.e. beliefs) between contexts, each con-
text has rules to define when actions need to be performed. One important
point of this concept is to provide strong semantics to only allow exchange of
information which does not result in inconsistencies for the individual context.
The basic version of Multi-Context Systems only allow addition of information
in the various contexts, while the managed version introduces the freedom to
use different operators to modify the underlying knowledge bases and semantics
of the contexts. That may be just addition or removal of distinct parts of
the knowledge base and may go as far as revision or enforcement of different
beliefs. Note that Multi-Context Systems use the notion of logics, as detailed
in Section 3.1, while managed Multi-Context Systems use logic suites, a more
flexible and abstracted version. These suites allow the definition of different
semantics for one logic where later one is chosen by the context.

Definition 3.4.1 (Logic Suite). A logic suite LS = (KBpg, BS1ps, ACCLgs)
consists of the set BSpg of possible belief sets, the set KBrg of well-formed
knowledge-bases, and a nonempty set ACC s of possible semantics of LS, i.e.
accrs € ACCrs implies accrg : KBrg — 285Ls

Each logic suite defines a set of formulae Frg = {s € kb | kb € KBrg}
which does represent all formulae which may occur in any knowledge base of LS.
To make the changes in the knowledge base, some operations need to be defined.
The set of allowed operations is handled through a management base OP. For
one logic suite LS and a management base O P, the set of operational statements
which can be built from OP and Frg is FOF = {o(s) | 0 € OP,s € Fpg}.
Next the semantics for each statement in F' ESP is specified via the management
function.

Definition 3.4.2 (Management Function). A management function over a

logic suite LS and a management base OP is a function mng : 2FES % KBrg —
2KBL5><ACCLS \ {@}

This function allows to modify the given knowledge base in any way which
results in another valid knowledge base. In addition it chooses one semantics
acc € ACC which should be used. Note that this management function is not
a deterministic one.
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Definition 3.4.3 (Managed Multi-Context System). A managed Multi-Context
System M s a collection (C1, . ..,Cy) of managed contexts where, for 1 <i <mn,
each managed context C; is a quintuple C; = (LS;, kb, br;, OP;, mng;) such that

o LS; = (BSLs,, KBrs,, ACCLs,) is a logic suite,

e kb; € KBrg, is a knowledge base,

OP; is a management base,

br; is a set of bridge rules for C;, with the form
opi < (c1:p1),-..,(¢j 1 pj),not(cjt1 : Pjg1)s .-, not(Cm : Pm)-

such that op; € FLOS%? and for all 1 < k < m there exists a context
cr € (C1,...,Cy) such that py € S € BSps,, , and

e mng; is a management function over LS; and OP;.

The introduced bridge rules are handling the exchange of information
between different contexts. Based on the (non) existence of beliefs of any
context (even the context itself) one or more operational statements may
become applicable and get executed by the management function associated to
the context. For one bridge rule r € br; the notion of op(r) denotes the operator
op; € FLOSI?, while body(r) is the set {(ck, : pr,) | 1 < k1 < jyU{not(ck, : pk,) |
J < ko < 'm} which represents the part right of the < sign of the rule.

How the applicable operators for the management function are selected and
whether the changes to the different contexts is still consistent is determined by
the equilibrium semantics. A belief state B = (by,--- , by,) for a given managed
Multi-Context System is a tuple which holds one belief set for each context.
Furthermore we use the set of applicable operators app;(B) = {op(r) | r €
bri A B = body(r)} to designate all operators for one context which can be
applied with respect to the given belief state.

Definition 3.4.4 (Equilibria for managed Multi-Context Systems). Let M =
(Ch,...,Cp) be a managed multi-context system. A belief state B = (b1, ..., by)
is an equilibrium of M iff for every 1 < i < n there exists some (kb},accrs,) €
mng;(app;(S), kb;) such that S; € accrg, (kD).

Intuitively the computation of an equilibrium is in such a way that first one
belief is guessed. Based on this guess the applicable operational statements are
determined and computed by the management function for each context. In
case the belief state is now acceptable by the modified knowledge bases under
the semantics chosen by the management function, then the belief state is an
equilibrium.
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Knowledge Representation
Formalisms

We have introduced Multi-Context Systems in Section 3.4. We are interested in
modelling Multi-Context reasoning where our examples are apprehended from
health care applications, therefore this chapter will facilitate on the introduction
of modern and nowadays used knowledge representation formalisms. The choice
for introducing these formalisms in favour against others is that each one has
systems which can be used to solve given reasoning tasks within the formalism.
In addition they are all based on methods and concepts which have been
accepted either in leading artificial intelligence conferences or from industry.
They are also ranging from monotonic, complex reasoning tasks (i.e. Description
Logics 4.1) to nonmonotonic reasoning (i.e. Answer Set Programming 4.2 and
Abstract Dialectical Frameworks 4.3). In the following chapters we will use
these concepts and formalisms in the ongoing examples of assisted living and
the emergency case handling application. We will analyse and present each
formalism in a formal manner first. Then we will give a short overview on
existing systems and general usability in the real world.

4.1 Description Logics and Ontologies

Description Logic [Baader, 2003 is a family of different attributive languages,
where the basic version is called AL (attributive language). This family of
languages is designed to represent knowledge in a monotonic way. Like the
name suggests, it captures the terminology of different concepts and their
roles to describe (or classify) concepts and individuals. Description logic uses
expressions from First Order Logic (or Predicate Logic; for more details see the
logic handbook [Huth and Ryan, 2004]) to form statements more expressive
than those propositional logic is capable of. While Predicate Logic is a powerful
and expressive tool, it has the shortcoming of being undecidable. This does
not hold for Description Logic because it restricts the expressiveness of the
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language, such that Description Logic is a decidable fragment of First Order
Logic. A specific collection of terminologies to some topic is called an ontology.
The following introduction will follow the Description Logic Handbook, using
some terminologies from the logic handbook.

4.1.1 The Language ALC

Intuitively the language AL consists of Concepts which can be seen as unary
Predicates in Predicate Logic, and Roles which are binary relations between
two Concepts. In addition knowledge is represented in two separated spaces.
The T'Box consists of all definitions of atomic Concepts, Concepts and Role
names, while the ABoz contains all assertions which connect individuals to the
different Concepts and sets them in relation to each other.

Definition 4.1.1 (Concept Descriptions for AL).

C,D — A | (atomic concept)
T (universal concept)
1] (bottom concept)
-A | (atomic negation)
CcnbD | (intersection)
VR.C | (value restriction)

JR.T | (limited existential quantification)

With the basic concept it is possible to already describe some basic ideas.
For example if Person and Male are a primitive concept, it is possible to describe
the concept which defines persons which are not male by Person M—-Male. In
addition with the atomic role isFriendof it is possible to have concepts like
Person M3isFriendof. T or Person MYisFriendof. Male which capture all persons
who have friends or those who have exclusively male friends respectively. To
define a formal semantics for the already intuitively described concepts we will
use the notion of an interpretation Z.

Definition 4.1.2 (Semantics of AL Concepts). The Interpretation Z is a
tuple (AT, val), where AT is a nonempty set which is called the domain of the

interpreation. wval is a valuation function which assigns to every atomic Concept
A a set AT € AT and to each atomic Role R a binary relation RT C AT x AT,
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For extended Concept descriptions the valuation function is defined as follows:

T _ AZ
17 =9
(A = AT\ A7
(cnbpY} = c*npD?
VR.CT = {ae AT |VY(b).(a,b) € RT - be CT}
IR.TLT = {ae AT|3(b).(a,b) € R}

Equivalence between concepts is defined over semantics in the usual manner,
such that two concepts C' and D are equivalent if and only if CT = D7 for all
interpretations Z.

One big advantage of the family of Description Logic is the option to extend
the language by different features. In general every feature is related to some
character of the alphabet and to denote that change the character is added to
the name of the language. One example might be the permission to also negate
arbitrary concepts. The language is then called ALC with C for Compliments.
For such an extension the valuation function needs also to be extended by

(-C)F = AT\ ¢,

where C' is some arbitrary concept.

Note that there are some extensions which do not change the expressiveness
of the language, but can be added as syntactic sugar for convenience. Two
most common used are the union of concepts and the full existential qualifier,
denoted by U and &£ respectively. Of course the union might be achieved by
simply applying De Morgan’s laws® and the full existential qualifier is gained
by utilising the duality of existential and universal quantifiers”. To still have
a sound valuation function the two definitions need to be added accordingly,
such that

(cuD)? = CTuD? and
JR.CT = {ae AT|3(b).(a,b) € READec CT}.

In general the most basically used Description Logic is ALC®, where it is
also common to include £ and U without further addressing these redundant
convenience additions further.

With syntax and semantics on arbitrary Concepts and Roles at hand, we
can now define a so-called Terminology. It allows to relate new Concepts and

fie. AMB = ﬁ(ﬁA ] ﬁB)
"i.e. 3IR.C = -VR.~C
8For that reason we will stick to ALC now, unless it is expressed differently
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Roles to others by relating them to each other. Informally spoken, it is a way
to say that one Concept (or Role) is another Concept(Role) too, either reflexive
(i.e. equality) or irreflexive (i.e. inclusions). We will write

CCD (respectively R C S)

C=D (respectively R = 5)

to denote that a Concept C is included by D, a Role R is included by S or that
they are equivalent respectively. A Terminology is a finite set of definitions (i.e.
equalities and inclusions). Due to its nature of being a collection of definitions
such a Terminology is also called a TBox T. We will say that Z satisfies the

inclusion if
cchDiftctcp?

and that 7 satisfies the equivalence if
C=Dif ¢t =D*

hold. In addition we say that Z is a model of T if Z satisfies every definition
inT.

The TBox describes how different kinds of concepts and roles relate to each
other. It is obvious that these Terminologies do not contain any information
about real world entities. The description of the world itself is done in the
ABoz. Inside such an ABoz are assertions about individuals to connect them
to the terminologies. We will denote individuals with lower letters. To express
that an individual a is part of a Concept C we write C'(a) and to denote that
the individuals a, b are in a Role R we use R(a,b) respectively. Like a T'Box
needs to be finite, also the ABox is a finite set of assertions. To include the
ABoz into the semantics, we need to extend the definition of the interpretation
7T such that Z = {AT, .7}, where AT remains unchanged and -7 maps each
individual name a to one element aZ € AZ. Note that in Description Logics
the Unique Name Assumption holds, which means that two different names a
and b need to be different elements in the Interpretation (i.e. a® # b%). An
interpretation Z satisfies an assertion C(a) if aZ € AT and it satisfies a Role
R(a,b) if (a*,b%) € RT. In addition an interpretation satisfies an ABox A if it
satisfies every assertion in A. Finally, the interpretation Z satisfies the A Box
A with respect to the TBox T if Z satisfies A and Z is a model of 7.

4.1.2 Reasoning with ALC

In the previous section we have defined how an interpretation Z satisfies an
ABox with respect to a TBox. Now we will have a closer look on different
ways for inference and reasoning for the family of Description Logics. Again
we will stick to ALC as it is one very prominent language in this family. First
we will recap about different inference types on a TBoz and how to reduce all
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of these problems into unsatisfiability questions, then we will present a tableau
algorithm to check satisfiability.
We can consider the following inference tasks for a TBox:

Satisfiability A concept C' is satisfiable with respect to 7T if there exists a
model Z of T, such that CZ is nonempty. That is when Z is a model of C.

Subsumption A concept C' is subsumed by a concept D with respect to 7
if C* C D? for every model T of T. We will write T = C T D or C C D.

Equivalence A concept C is equivalent to a concept D with respect to T if
CT = D? for every model Z of T. We will write T = C = D or C =7 D.

Disjointness Two concepts C and D are disjoint with respect to 7 if C N
DT = () for every model Z of T

Proposition 4.1.3 (Reduction to Unsatisfiability [Baader, 2003|). Let C' and
D be two Concepts, then

(i) C subsumes D <= CT1—D is unsatisfiable,

(ii) C is equivalent to D <= C T =D and DN C are unsatisfiable, and
(i1i) C is disjoint to D <= C 11D is unsatisfiable.
This also holds with respect to a terminology T .

Based on these transformations it is now possible to formulate each of these
inference types as an unsatisfiability question. This is a necessary preparation,
as the tableau algorithm we will present can answer the question of satisfiability
(and henceforth unsatisfiability) for a given ABoxz. Due to the latter restriction
of that algorithm we now have to transform the T'Box into an ABox, which
is done with the TBox-elimination. This technique instantiates 7, such that
individuals are connected to each concept and role. In this way an ABozx A is
constructed. The tableau algorithm is a method to generate a set of ABozes
which are consistent to the 7, such that there exists an interpretation which
satisfies the ABox with respect to the T'Box.

In the following we will expand the notion of an instance of a concept (or
role), such that C'(a) still means that a is an instance of C' but an arbitrary
ALC formula F'(a) means that the individual a is an individual which occur
in F. Intuitively it can be seen as a filler notion till all concepts and roles
are instantiated to an actual assertion. We call this step to transform a TBoz
into an ABox a TBoz-elimination. The tableau algorithm starts with an ALC
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formula in negated normal form? with an eliminated TBox. This eliminated
TBoz is then added to an existing A Box which may be empty though. So we
get that F'(a) € A. Starting with this ABoz, a set of Rules is then applied one
after another, till no further rule can be applied or an inconsistency appears in
the ABox. Each rule adds more information to the ABox and may also split
the ABox into two alternatives. Note that the algorithm may produce finitely
many ABozxes. If one ABox is inconsistent this one is said to have a clash.

Definition 4.1.4 (Tableau Algorithm Rules).

o — M—rule
Requires: A contains (C'11D)(a), but both C(a) and D(a) are not in A.
Action: A':= AU{C(a),D(a)}.

o — Li—rule
Requires: A contains (C'U D)(a), but neither C(a) nor D(a) is in A.
Action: A':= AU{C(a)}, A" := AU{D(a)}.

o — d—rule
Requires: A contains (3R.C)(a), but no b exists, such that C(b) and
R(a,b) are in A.
Action: A" := AU{C(b),R(a,b)}, where b does not occur in A as an
indwidual.

o — V—rule
Requires: A contains (VR.C)(a) and R(a,b), but no R(b).
Action: A':= AU{C(b)}.

If every ABox has a clash, then the ABox with respect to the original
TBox is inconsistent. Every ABoz which has no clash and no further rule can
be applied is a consistent ABox with respect to the T'Boz. In the following
Example, we will show how this tableau is applied to a small terminology.

Example 4.1.5. Assume a terminology T where we have the primitive concepts
S which means that a is a student and the primitive role K which describes
that a student a knows another student b. In addition the terminology includes
the following definitions

Sl= SN3IK.-S and
S2= SMN3IKVK.-S.

Now we want to prove or reject the following statement:

TESIC S2

9Negated normal form can be constructed as it is usual for propositional or predicate
formulae. Note that a transformation into negated normal form is always terminating and
every formula has a negated normal form.
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First we reduce the subsumption into an unsatisfiability problem, such that
S1M =852 should be unsatisfiable with respect to T. Then we use TBox elimi-
nation on the formula, to gain (S1M—=52)(a). Next we expand the definitions
into the formula:

(SM3IK.-STT—(SMIKVK.=S))(a)

To apply the tableau algorithm we now need to transform it into negated normal
form.:

(SM3IK.-ST(-SUVK.IK.S))(a)

Finally we can apply the tableauz algorithm.

1 (SM3IK.-S1(-SUVK.IK.S))(a) Query in NNF
2. (SM3K.=5)(a) — M(1)
3. (=S UVK.IK.S)(a) — M(1)
4 S(a) — M(2)
5 (3K.=S)(a) — M1(2)
T
6. =S(a) (VK.3K.S)(a) — L(3)
7. ® K(a,b) — 3(5)
8 -S5(b) — 3(5)
9. (3K.S)(b) — V(6)
10. K(b,c) —3(9)
11. S(c) — 3(9)

Figure 4.1: Tableau algorithm for Example 4.1.5

The algorithm ends with one clash and one clash-free ABox. Therefore the
formula is satisfiable which means that the subsumption does not hold. Note
that the clash-free ABox also provides a counter model, which shows that the
subsumption does not hold. The ABox

A = {S(a), ~S(b), S(c), K (a,b), K (b, )}

does satisfy S1, as a is a student and a knows b who is not a student. Further-
more it does not satisfy S2, as a is a student, who knows some person b, but b
does not exclusively know persons who are no students, as b knows ¢, which is
a student too.

4.1.3 Systems for Description Logic

The Description Logic formalism is generally used for biological, medical, and
biomedical applications (see overview articles like [Hoehndorf et al., 2015]).
Due to this pretty broad usage of this language, a standard for ontologies in
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the web has been worked out by the W3C' consortium. The Ontology Web
Language (OWL) [W3C OWL Working Group, 2009] is commonly used for
constructing ontologies and it has different kind of subclasses which are related
to the different sets of Description language families. They conceptualise
and classify real world knowledge about cells, molecules, drugs, health-care,
and similar structures. One of the most prominent ontologies in medicine is
SNOMED [Cornet and de Keizer, 2008]'°, which classifies drugs, disorders,

side-effects, synergies, diseases, and anatomy in one big set of terminologies.

To automatically solve queries given to an ontology there are also different
solvers available. It seems that each of them has due to different algorithms
used in the implementation their special fields where one outperforms the other.
One comparison of three very prominent solvers can be found in [Motik et al.,
2009], where they also introduce the HERMIT solver. The other two established
and used solvers are PELLET |Sirin et al., 2007] and FACT++ [Tsarkov and
Horrocks, 2006]. Note that OWL and therefore also these solvers operate on
more expressive description logics than ALC.

4.2 Answer Set Programming

Answer set programming is a logic programming formalism, which has some
common roots with logic programming languages like PROLOG |[Colmerauer
et al., 1973]. On the topic of logic programming in general we would like to
point the interested reader to Bob Kowalski’s overview article on the beginnings
of logic programming |[Kowalski, 1988|.

The basic idea of answer set programming is to produce stable models which
are grounded and closed under the given program, while in PROLOG a deduc-
tion of given rules is done to answer a query or produce some interpretation'!.
In the following we will first present answer set programming. First we will
have a look on the monotonic version of definite logic programs and afterwards
we will extend that notion to gain the nonmonotonic normal logic programs
which are the basic formalism of answer set programming. There are excellent
books about answer set programming, like Gelfond and Kahls book on KR with
answer set programming as an approach [Gelfond and Kahl, 2014| or Answer
Set Solving in Practice by the Group of the Potsdam University [Gebser et al.,
2012b|. A shorter insight to the topic can be done by having a look at one well
written overview journal article [Brewka et al., 2011c|. That introduction will
be followed by a short section about algorithms to compute models of answer
set programs. Finally we will describe some modelling techniques and conclude
with the discussion about some solvers on that topic.

Note that this is an overview article on over forty years of research on that topic
HThat also means that cycles may result in endless deductions in PROLOG, which is no
problem for answer set programming.
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4.2.1 Logic Programs

A normal logic program is a finite set of rules. Each rule can be seen as an
implication, which means that if the premise holds, then the conclusion should
hold too.

Definition 4.2.1 (Definite Logic Program Rule). A definite logic program rule
r 1s of the form
a<+by,...,b,

where a as well as by to b, are ground atoms. a is called the head of the rule,
denoted by hd(r) and by, ..., b, is the body of the rule, denoted by body(r). If
the body is empty, we call the rule a fact. In this case it is conventional to omit
the <+ symbol too.

The result of such a program is the set of atoms which are the consequences
of all of its rules. Of course we want that each atom from the rulehead of every
rule whose body is fulfilled will be part of the consequence of the program,
while we are not interested in any atoms, which are not resulting from any of
these ruleheads.

Definition 4.2.2 (Consequence of a Definite Logic Program). Let S be a set
of atoms and P be a definite logic program.

e S is closed under P if and only if a € S whenever a <— by,...,b, € P
and {b1,...,b,} C S.

e Let R = (r1,...,m) be a finite sequence of rules of P, such that each
atom in the body of a rule r; is a head of rule r;, where j <i. We call R
a deriwation of P and atomsg = {hd(r) | r € R} is the set of all atoms
derived by R.

e S is grounded in P if and only if a € S implies that a € atomsy(R) holds
in one derivation of P.

The consequence Cn(P) of P is a set, which is closed under and grounded in

P.

Note that this definition of the consequence of a program is pretty straight-
forward and easy to grasp. It is also reasonable to rewrite each implication in
a disjunction. The resulting set of horn formulas then has one minimal model,
which also happens to be a unique one. That one model corresponds to the
consequence of the program.

Obviously, there are only deterministic choices made, as everything which
can be directly deducted by the rules will be in the result. In the bodies of
rules are only positive atoms allowed, so the head will be added to the answer if
there is already a proof available for every atom in the body. It is not possible
to express that a rule body should be satisfied if there is no deduction for some
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atom. To allow this, we introduce the nonmonotonic (or weak) negation. If an
atom in the body is weakly negated, that means that there is no derivation for
that atom so far.

Definition 4.2.3 (Normal Logic Program Rule). A normal logic program rule
r is of the form
a<+bi,...,by,not cq,...,n0t ¢y

where a, by,...,b, and c1,...,cy are ground atoms. a is called the head of the
rule, denoted by hd(R). We write body™ (r) to denote the set of positive atoms
bi,...,bm and body~(r) to denote the set of negated atoms by41,...,b,. To
denote the whole body of a rule R, we use body(r) = body™ (r) Ubody~ (r). If
the body is empty, the rule is a fact. An empty head means that the rule implies
1.

Given the definition of normal logic program rules, we can now define the
stable model semantics for such a logic program. Due to the nature of the weak
negation, it may happen that a rule is derivable at first and then other rules
derive some of the negated atoms.

Example 4.2.4. This can be shown in a short example:

a +not b
b<+a

At first glance we can deduce a from the first rule, as b is not derived so far.
Next we can deduce b due to the second rule. With b deduced we would not be
allowed to apply the first rule at all.

The problem shown in the above example is the reason why it is not sufficient
to compute the consequence as it has been done for definite logic programs.
We need to extend the the definition for the semantics, such that the volatile
nature of the negation is taken into account.

Definition 4.2.5 (Stable Model Semantic for Normal Logic Programs). Let S
be a finite set of atoms and P a mormal logic program.

e S is closed under P if and only if a € S whenever there is a rule r € P

such that head(r) = a, body™(r) C S, and body~(r) NS = (.

o Let R be a derivation of rules of P. The set S defeats a rule r; € R if and
only if S Nbody~ (r;) # 0. A valid derivation in S contains no defeated
rules.

e S is grounded in P if and only if a € S implies that a € atomsy(R) holds
i one derivation of P valid in S.
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S is called a stable model of P if it is closed and grounded in P. Such a set
is also called an answer set. We will write AS(P) to denote the set of answer
sets of P.

Note that in the definition about the stable models only sets are used and
that the only sequence is only to check if it is derivable. Therefore we have no
direct ordering for which rule will be taken first into account if there are more
than one applicable. That means different choices are possible and each choice
with results in an answer set is a valid choice done.

Example 4.2.6. Lets assume the following program P;:

a <not b.
b +not a.

Its two answer sets are AS(Py) = {{a},{b}}. These are the only two sets which
are grounded in and closed under Py. Intuitively we can say that it matters
which rule is used first, as the “usage” of one is to inhibit the usage of the other
one. In addition it is also not allowed to not use any of these rules at all, as
this would be against the closedness property too.

Another extension of the formalism would be the disjunctive logic program,
which allows disjunctions in the head of rules. The idea behind that extension
is that if the rule is derived then any number of atoms from the head, but at
least one of them need to become true. Note that only minimal stable models
with respect to the set of possible chosen head atoms is considered to be a
stable model for disjunctive logic programs.

4.2.2 Algorithms for Answer Set Programming

With the definitions for an answer set program we will now go on and reca-
pitulate some algorithms, which have been proposed during the last decades.
These are either interesting as they provide an easy approach to check whether
a set is an answer set or they provide a deterministic way to compute (and
even enumerate) answer sets.

Gelfond-Lifschitz-Reduct

Michael Gelfond and Vladimir Lifschitz were the first who proposed the stable
model semantics for logic programs. They have introduced a usable algorithm to
check whether one set is a stable model or not too. This method has later been
named after the authors and is known as the Gelfond-Lifschitz-Reduct |[Gelfond
and Lifschitz, 1988].

Definition 4.2.7 (Gelfond-Lifschitz-Reduct). Let S be a set of atoms and
P be a normal logic program. To compute the Gelfond-Lifschitz-Reduct the
following steps need to be done:
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1) PP={r|rePAbody=(r)nS =0}

2) Rewrite all rules r € P’, such that the new rule v’ = head(r) < body™ (r)
only consists of positive rule bodies.

The resulting definite logic program is called the Gelfond-Lifschitz-Reduct. We
will write P to denote the Gelfond-Lifschitz-Reduct of P with respect to S.

The basic idea behind that approach is to eliminate all weak negations and
therefore get a definite logic program, which has exactly one deduction. In
order to stay valid, the reduct first removes all rules, which are invalid. To
check if a set S is a stable model of a program P, the consequence of the reduct
needs to be equal with the set S (i.e. if S = Cn(P®) holds, then S is a stable
model of P).

Smodels Algorithm

Checking whether one set is a stable model or not is a good approach, but we
are more interested in computing one or even enumerating all stable models
of a given program. There are other algorithms and theories available (e.g.
Faber-Leone-Pfeifer (FLP) reduct [Faber et al., 2004|), though we will present
one easy to understand approach: the Smodels Algorithm [Niemeld and Simons,
1996]. The basic idea is to use monotonic reasoning as long as possible. Then
one nondeterministic choice is done, followed by as much monotonic reasoning
as possible. To represent that computational flow, the whole algorithm is
represented as a binary tree. Each monotonic reasoning step will add exclusively
one child node to a given node in the tree, while the nondeterministic choice is
represented by two child nodes. They also use the antichain property of answer
sets, which means that an answer set cannot be a subset of another answer set.

Proposition 4.2.8. Let P be a normal logic program and the sets S and S’
are answer sets of P. Then S C S" implies that S = 5.

Proof. Assume that S C 8" hold. As both sets are answer sets of P, it holds
that S = Cn(P®) and that S’ = Cn(P*). S C S’ implies that PS D> P
because S has potentially fewer rules which will get removed by the first step of
the Gelfond-Lifshitz-Reduct than those potentially removed by the bigger set
S’. Therefore, due to the fact that the consequences of definite logic programs
are monotone, it also holds that Cn(P%) D Cn(P?"), what means that S D S’
holds too. From the first assumption S C S’ and the last conclusion S D S’ we
can follow, that if S C S hold, then S = S’ must hold too. O

Another idea of the algorithm is to find the biggest subset of atoms, which
has to be part of an answer set, while identifying those atoms which cannot be
part of an answer set. This idea is applied by the use of (LU )-answer sets.

34



4.2 Answer Set Programming

Definition 4.2.9 ((LU)-Answer Set). Let P be a normal logic program and
L C U be sets of atoms. S is a (LU)-answer set of P if S is an answer set of
Pand L CS CU hold.

By using Atoms(P) to denote all atoms occurring in a program P, it is easy
to see that every answer set of P is a (LU )-answer set of ((), Atoms(P)). Note
that the notion of L and U is chosen to denote the lower and upper bound for
answer sets which are in between these two boundaries. First we will provide
the expand algorithm, which is the monotonic reasoning part of the Smodels
algorithm.

Definition 4.2.10 (Expand).

Ezxpand(LU)

repeat
L':=L
U :=U

L:=LuUCn(PY)
U= U N Cn(PY)
until L=L and U =U"

Basically, elements in U are candidate atoms for elements of an answer set
and atoms in L are already necessary atoms to be in an answer set. All atoms
which are neither in U nor in L are those which are already refuted and shall
not be in an answer set. The overall algorithm works as follows.

Definition 4.2.11 (Smodels Algorithm).

1) Create a binary tree with the root node (), Atoms(P))
2) Expand each leaf node (L,U) to get an expanded child node (L',U")

3) Choose for each expanded leaf node an atom a € (U \ L) and branch the tree
with nodes (L U {a},U) and (L,U \ {a})

4) If L ="U holds after point 2), then an answer set is found

5) if U C L then an inconsistency of the branch occurred and the branch cannot
result in an valid answer set

Example 4.2.12. Lets assume the following normal logic program P:

a <+ b,not a
b+ not c

¢+ notb

We will compute the stable models with the help of the Smodels algorithm, as
presented above:
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(0,{a,b,c})

(0,{a,b,c})

. choose ¢

{c}{a,b,c}) (0,{a,b})

({ch {ch) ({b},{a,b})
/ \ . choose a
({a,b},{a,b}) ({o}, {o})

{{a, 0}, {b}) {{a, 0}, {b})

Ezpand (0, {a,b,c}): Ezpand ({a,b},{a,b}):
L=0ubd=10 L ={a,b} U{b} ={a,b}
U={a,b,c} Nn{a,b,c} ={a,b,c} U ={a,b}N{b} ={b}

L ={a,b} U{a,b} = {a,b}

Ezpand ({c},{a,b,c}): U={b}n{b} ={b}

L={cUb={c} ‘

U=fab =g PR

L= 1{e}Ufel = (0} L= (5} Ufa.b} = {ab)
U= (e i) = fe) U= (b)) = 1)

L ={a,b} U{a,b} = {a,b}
Ezxpand (0,{a,b}): U= ()1 (b} = {b)
L=0u{b} ={b}
U={a,b}N{a,b} ={a,b}
L= {byu{b} = {b}
U={a,b}N{a,b} ={a,b}
The algorithm produces the only answer set for P, which is AS(P) = {{c}}.

4.2.3 Answer Set Programming in Practice

We have introduced answer set programming on ground programs so far. For
better usability, the language of answer set programming has been standardised
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in the ASP-Core-2-Standard [Calimeri et al., 2015]. We will now have a look
at the most important additions with respect to the already presented formal
semantics.

In a real application someone would be interested in programs which do
feature the use of variables. As there are no algorithms to derive the answer
set directly from a program with variables, it is always imperative to ground
the program first. This grounding process is generally just the substitution
of each variable with all of its ground instances. To limit the domain for
each variable and to have better readability it is usual to use predicates
(i.e. as in first order logic). Another convention is to have the first letter of
the variable name in upper case, while predicates and grounded atoms start
with a lower letter. Most systems have the grounder as a feature of their
solver, while there are others, like GRINGO |[Gebser et al., 2011c| which is
only responsible for grounding. In addition to variables, most solvers support
the use of basic arithmetic functionality like basic arithmetic operators and
comparators. Another addition is the use of aggregates and pools of predicates,
from which some might be chosen or filtered out.

Note that different implementations of the same program may have huge
differences in the size of the grounded program. Therefore there are some
modelling techniques and design patterns which try to reduce the size of the
grounded program. In general it is a good idea to keep the arity of predicates
low to minimise cross-products instantiations of domains. It is also advised to
check inequalities for symmetric problems by using the < relation instead of
#. This is called diagonalisation and lets well written grounder remove about
half of the rules generated by the grounding process, as these cannot occur at
all(e.g. 5 < 4 may never happen, while 5 # 4 is still a valid possibility).

Most problems to solve with answer set programming are at least NP-hard.
To solve these problems the concept of guess & check is used. First all possible
(and roughly reasonable) solutions are guessed, where each answer set represents
one of these candidates. Then all wrong guesses, are removed by marking
them as inconsistent answer sets, such that they are no longer stable model
candidates. This is done by using constraints. Such a constraint is a rule, with
an empty head. If the rule may be derived, the whole answer set candidate is
no longer considered as valid and will not be part of the result of the program.

Example 4.2.13. To show how such an answer set program for an NP-hard
problem might look like, we will now try to solve the 3— colouring of an arbitrarily
given undirected graph. Fach vertex will be represented by the unary predicate
v, and each edge by the binary predicate e. So one example-graph might look as
follows:
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The representation for the answer set program would be:
graph = {v(a)., U(b)., U(C)'a U(d)'> e(a7 b)7 e(aa C)'v €(b, C)., e(bv d)7 €(C, d)}

To get an answer set program which solves the 3— colouring problem, we will
now guess a colouring and afterwards we will check if the condition for a valid
3—colouring, that is that two adjacent vertices are not allowed to be in the same
colour, hold.

3 — col-guess = {col(V,r) < v(V),not col(V,b),not col(V,g),
col(V,b) <= v(V),not col(V,r),not col(V, g),
col(V, g) <= v(V),not col(V,r),not col(V,b)}

3 — col-check = { L < e(A, B),col(A, X),col(B,X)}

AS(graph U3 — col-gquessU 3 — col-check) is the set of all possible 3— colourings
for the graph. Note that if there is no answer set, then no 3—colouring exists.

There are also further advanced techniques which may be used for answer
set programming. By utilising disjunctive logic programs one might also solve
problems in 25. A special technique, called saturation |Eiter and Gottlob,
1995] is especially handy for this kind of problems. There a nested NP-Problem
might be solved with the help of a disjunctive guess. To describe the idea
more intuitively we will use the tautology problem for a formula as an example
for the nested problem. At first each variable is guessed via a disjunction to
generate all possible interpretations. Then each interpretation is checked if
it is satisfiable. Note that no weak negation might occur during these checks.
If it is satisfiable a new atom “satisfied” is introduced via a rule. Afterwards
it is checked with weak negation if “satisfied” could be deduced. In case it
could not be deduced, the answer set is set unsatifiable (via a constraint). If
it is satisfiable, the answer set will be saturated, which means that all atoms
from the disjunctive guess are set to true. This works because the “satisfied”
atom is derived only by monontonic rules (i.e. no weak negation) and the
addition of more atoms does not change its outcome. In addition all “satisfied”
alternatives will collapse to one answer set. If all interpretations are satisfied,
only one answer set remains, the one where “satisfied” is true and all atoms are
considered true. If at least one interpretation is not satisfied, then this one is
not saturated and therefore a smaller (with respect to subset inclusion) answer
set for the disjunctive program. In that case this one, smaller (with respect

38



4.3 Abstract Dialectical Frameworks

to subset inclusion) would be the one answer set which should be chosen. As
this is due to the constraint inconsistent, there is no interpretation to go on.
That is the way to check if a nested tautology problem still holds. Note that
this technique may lead to exponential memory consumption of the solver, as
it has to check every (potentially exponential) interpretation.

Completing the part about logic programming, we will now have a look
at actually usable solvers. We will have a look at the two most commonly
used solvers in the scientific community. Both of them are implementing the
Core-ASP-2-standard as a basis and add different additional features on top
of it. CLASP, which is part of the Potsdam Answer Set Solving Collection
(PoTAssco) |Gebser et al., 2011b] utilises a similar but way more specialised
approach than the Smodels algorithm. The collection has a plethora of dif-
ferent tools, such as GRINGO for grounding, CLASP for solving, CLINGO as a
combination of the former two, different optimisation tools and much more.
The other system is to compute Answer Set Programs with external sources.
It is called DLV-HEX [Redl, 2014] and is an extension to classical answer set
programming. This paradigm allows it to use predicates which are externally
computed during the computation of the answer sets. In addition it might
use already derived information from the answer set solver. While PoTassco
also has some interaction with external sources in the form of online-clingo
(OCLINGO), they are focused on considering streamed information which are
taken into account during a sequence of succeeding computations of answer
sets.

We will mostly use CLINGO in following applications, but DLV-HEX is
an interesting approach which could be utilised very easily because its in-
frastructure changed and allows CLINGO to be used as the internal solving
engine.

4.3 Abstract Dialectical Frameworks

Abstract Dialectical Frameworks (ADF) [Brewka and Woltran, 2010| are a
natural generalisation of Dung’s Argumentation Frameworks. In Dung’s Frame-
works it is only possible to declare a conflict between two arguments as an
attack. One might ask, why another and more complicated formalism is of
interest if there is already a well established and accepted framework in the
form of Dung’s Argumentation Frameworks. We are aware of at least two
reasons, why a generalisation might be preferable:

e the generalisation is more expressive,
e the generalisation allows easier modelling of problems.

It is a fact, that both of these reasons are applicable for abstract dialectical
frameworks. We will have a look into both matters later on in this section (cf.
4.3.2).
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The basic idea of ADF's is to extend the possible relations between argu-
ments, such that any kind might be possible. That means it is possible to
define attack, support, and conditional behaviour. To give an easier to grasp
picture on that idea, lets suppose that we have some arguments a, b, ¢, and
d. Further we want to say that a supports d, b attacks the standpoint of d,
and ¢ will only support d if b is refuted. Figure 4.3 shows one possible visual

+ if —b

Figure 4.2: Visual representation of the idea of an ADF

representation of that idea and presented example of such an ADF. We can
now represent the acceptance of d as a propositional formula, where the atoms
correspond to the arguments of the framework. In our example, the formula
for d could be ¢ <= —b.0One can already see by the example that intricate
positions between different arguments can be defined and modelled in an easy
way. In addition it is possible to have direct support or conditional standpoints
to another argument, which allows more freedom to relate arguments to each
other.

The first work got further analysed by [Ellmauthaler, 2012] and based on
some of these insights it got revisited and was formally overhauled in a followup
paper |Brewka et al., 2013]. We will only focus on the revisited variant of the
framework, as it is described in the newly published handbook chapter [Brewka
et al., 2017b|'2. Building upon the algebraic framework for studying semantics
of knowledge representation formalisms, introduced by Denecker, Marek, and
Truszezynski [Denecker et al., 2000] the new semantics for ADF's have been
defined. This has been discussed, investigated, and defined by Strass in [Strass,
2013]. In the study of semantics for knowledge representation formalisms
objects of interest may be represented by elements of lattices. The important
and significant work of Denecker, Marek, and Truszczyniski was to approximate
an operator. Such operators will transform objects of interest into others,
based on the given knowledge base they are working on. A fixpoint of such an
operator is the point where the object is not transformed further by additional
applications of it. Informally speaking that means that the operator can neither
add or retract information from the object, based on the information taken from
the knowledge base. The interesting point on this approximation of fixpoints

12The chapter has been published as a Journal Paper because the book is to appear.
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is, that if the operator is operating on two-valued interpretation, then the
approximation will be defined upon a three-valued interpretation.

In the following, we will present the definitions for ADF's, followed by
a overview on computational aspects of ADF's. Afterwards we will discuss
existing systems and will have a detailed look at one of their systems. For more
detailed insights and proofs we refer the interested reader to the Journal-version
of the Argumentation-Handbook [Brewka et al., 2017b].

4.3.1 Syntax and Semantics

As already seen in the example above, an ADF can be seen as a directed graph.
Dung’s Argumentation Frameworks are a standard where this is done in a
similar way. We see vertices as a representation of arguments, statements, or
positions. Such a statement is an arbitrary item, which might be accepted or
rejected. The directed edges are representing some kind of dependency between
two statements. Acceptability of a statement s only depends on the status of
its parents (denoted by par(s)), which is done by an edge from each parent
to the statement in question. Unlike attack relations in Dung Argumentation
Frameworks, in ADF's the meaning of an edge may vary. To specify the exact
conditions for the statement s to be accepted, an acceptance condition Cy is
associated with each statement. This acceptance condition is a function, which
maps to each subset of par(s) one of the truth values t or f13.

Definition 4.3.1 (Abstract Dialectical Framework). An Abstract Dialectical
Framework is a tuple D = (S, L, C) where

e S is a set of statements,
e [ C S xS isa set of links, and

o O ={Cy}ses is a set of total functions Cs : 2P 5) — {t, £}, one for each
statement s. We call Cy the acceptance condition of s.

It is in many cases more convenient to use a different representation of
the acceptance condition. Therefore we will use a propositional formula to
define the function instead. So the logical representation of an ADF (S, L,C)
is as in definition 4.3.1, but C' is a collection {¢s}ses of propositional formulae.
Each acceptance condition Cy is then a propositional formula ¢, with par(s)
as its domain. Note that as the acceptance condition defines how the relation
between to linked statements look like, it is in general redundant information.
If not stated otherwise, we will omit L and say that all statements in ¢ for a
statement s € S are the set of all par(s).

3First the values In and Out has been used. For easier application of formal logic and
better readability, this has been changed
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Example 4.3.2. During this section we will use the following ADF, which will
act as some small and easy to grasp running example. We use the graphical
representation in Figure 4.3 of the ADF for better readability. Intuitively @, can

Yo =T op=">

Soc:a//\b @d:ﬁb

Figure 4.3: Example ADF

be read that a should always be acceptable. @y states some sort of self-support,
which can be seen as a gquess whether it should be accepted or not. Another
point of view might be that this statement has no external reason to be accepted
and it depends on the interpretation whether self-support is sufficient or not. @,
is representing that ¢ should be accepted if a as well as b is accepted. Finally, d
is only accepted if b is not accepted i.e. d is attacked by b.

To define the various semantics (i.e. the ADF' versions of those presented in
section 3.3 for Dung’s Argumentation Frameworks) of ADF's over statements
S we use the approximation fixpoint theory on the notion of a two-valued
model. The total function v : S +— {t,f} is a two-valued interpretation, which
maps to each statement either one of the truth values tor f. We call such an
interpretation a model, if for every statement s € S it holds that v(s) = v(gs).
In other words, a model is an interpretation which maps truth values to the
statements such that their acceptance condition evaluates to the same result
as it is for the value of the associated statement.

Semantics of ADF's via Approximation Fixpoint Theory

We will now utilise the Approximation Fixpoint Theory and will show how this
is done for ADF's. The theory is dealing with operator-based semantics and
provides a way to approximate them. We will start with a two-valued operator,

MNote that v(ps) is the valuation of that propositional formula under the given interpre-
tation
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which takes a two-valued interpretation and returns an updated two-valued
interpretation.

Definition 4.3.3 (Operator Gp). Let D = (S,{¢s}scs) be an ADF. The
operator Gp : Vo — Vo maps one interpretation v : S — {t,f} to an updated
interpretation, such that

Gp(v) : S — {t,f} where s — v(ps)

That operator takes some given interpretation, evaluates every acceptance
condition according to that interpretation, and returns an interpretation which
matches the results of the evaluations. This is in fact a characterisation of the
two valued model semantics we have defined above.

Proposition 4.3.4. Let D = (S, {ps}ses be an ADF and v : S — {t,f} be a
two wvalued interpretation. Then v is a two valued model of D if and only if
v=Gp(v).t?

To apply the definitions for an ultimate approximation in their approxima-
tion fixpoint theory from Denecker, Marek, and Trusczynsky [Denecker et al.,
2004|, we need to introduce the third value for three valued operators and
interpretations first. With two truth values, we have that something is either
true (t) or false (f). During computation or even on some occasions it is (still)
not decided which of these two values should be assigned. That is why we use
the value undecided (u) as our third possible valuation. It is easy to see that
while true and respectively false carry much information with each statement,
there is less information in the statement that something is undecided.

We will reflect that difference in information by introducing an information
ordering <;. This ordering will assign a direct information order {t,f}with
respect to u, such that u <; t and u <; f. <; is the symmetric transitive closure
of <;. Note that tand fare not comparable in <;, so neither f<; t nor t<; f
hold. The partially ordered set ({t, f,u}, <;) forms a complete meet-semilattice
with the meet operator ;.16 The meet operator evaluates two values such
that tM; t = t, £, f = f, and every thing else evaluates to u. It can be
seen as some kind of consensus operator, which needs both arguments to agree
on some truth value. Additionally we can now extend the partial order to
interpretations as well, such that

v1 <; ve if and only if Vs € S : vi(s) € {t,f} = v1(s) = va(s).
Therefore we can also extend the M;-operator to interpretations:

Vs €S (v1 M v2)(s) =wvi(s) M; va(s)

5For proof see [Strass, 2013]

6 A complete meet-semilattice is such that every non-empty finite subset has a greatest
lower bound, the meet; and every non-empty directed subset has a least upper bound. A
subset is directed iff any two of its elements have an upper bound in the set.
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We will write [v]2 to describe the set of all two valued valuations which have more
or equal information with respect to <; to a given three valued interpretation
.

Corollary 4.3.5. Let D be an ADF. The operator I'p : V3 — V3 is the
ultimate approximation of Gp and assigns thus: for an ADF D and a three
valued interpretation v, the revised interpretation I'p(v) is given by

Tp(v): S+ {t,f,u} with s — Mi{w(ps) | w € [v]o}.17

Based on this result we can now define the semantics for ADFs. Note
that there also exists an approximation fixpoint theory operator for Dung’s
Argumentation Frameworks, so we will use the dual definitions just with the
operator I'p for ADF's.

Definition 4.3.6 (Semantics for ADF's). Let D = (S, {ps}ses) be an ADF
and v : S — {t,f,u} be an interpretation.

(1) v is admissible for D if and only if v <; T'p(v)

(ii) v is complete for D if and only if v =Tp(v)
(iii) v is preferred for D if and only if v is <;-mazimal admissible
(iv) v is grounded for D if and only if v is the <;-least fizpoint of T'p

The operator I'p seems a little bit unintuitive at first glance. For the sake
of easier understanding it can be described with another approach. Given a
three-valued interpretation v, we will substitute in every ¢, for s € S of an
ADF the variables which are mapped to {t,f} with T and L respectively to
get ©¥. Then I'p can be defined as follows:

t if ¢! is a tautology
I'p(v): S+ {t,f,u} with s = < f if ¢! is unsatisfiable

u otherwise

To represent such three valued interpretations more easily, we will use the
following, more convenient notation. Such an interpretation is represented as a
set of literals, such that

e every statement which is mapped to t occurs as a positive literal,
e every statement which is mapped to f occurs as a negated literal, and

e every statement which is mapped to u will be omitted from the set.

"For proof see [Strass, 2013]
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Example 4.3.7. Assume one possible interpretation for the ADF from Exam-
ple 4.3.2 which might be

v ={am—t,b—t,c—ud— f}
The shortened convenience notation for that interpretation is
v = {a, b, —\d}

To define the stable model semantics for ADF's |[Brewka et al., 2013], we have
borrowed the idea from the Gelfond-Lifschitz-Reduct for Logic Programming.
We do need some similar approach as ADF's are not only utilising attacks,
but also support type relations. The reduct approach is utilised to exclude
self-justifying cycles. Similarly to logic programming, we start by guessing some
two valued model for the Framework. Then we eliminate all statements which
are evaluated to false by the model. Next we replace all occurrences of removed
statements in the acceptance conditions by 1. Depending on the representation
of the ADF', one also needs to revise the links as well. Finally we check if all
statements mapped to t by the two valued model coincide with the result of
the grounded interpretation of the reduct. As the grounded interpretation is
the least fixpoint, there is no possibility for any statement valuated to t might
be interpreted in another valid way.

Definition 4.3.8 (Reduced ADF). Let D = (S,L,C) be an ADF with C =
{@s}ses and v : S — {t,f} be a two-valued model of D. Define the reduced
ADF DY with D¥ = (S°, L*, C*), where

e SV={s|seSAuv(s)=t}
o ["=LN(SYxSY)
o OV ={pl}scsv where for each s € SV, we set ¢! = ps[b/ L : v(b) = f].

We denote w as the unique grounded interpretation of D¥. A two-valued
model v is a stable model of D if and only if for all s € S, it holds that
v(s) =t = w(s)=t.

Example 4.3.9. Consider the ADF D, given by the acceptance conditions
Y= T,0p="aVec,po.=D>.

This ADF has two models, which are vi = {a,b,c} and vo = {a,-b,—~c}. By
checking whether they are stable, we need to get the reduction D', which is
identical to D. The grounded interpretation of D is {a}, which implies that
vy 1s not stable. The other model produces the reduction D2 = (SV2, LV2 C"?)
with S¥?2 = {a}, LY = 0, and ¢, = T. The grounded interpretation of D"
is {a}, which implies that this is a stable model. Note that the first model is
rightfully no stable model, as the statements b and ¢ are in a self justifying
circle, such that b is only acceptable because of ¢ and c is only because of b
acceptable.
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Relation between Semantics

ADFs are a generalisation of Dung Argumentation Frameworks, therefore the
same relation between the semantics should hold for ADFs. First we will
have a look on the ADF from Example 4.3.2 and then we will present the
formalisation of the Theorem 4.3.11, as done in [Brewka et al., 2013|.

Example 4.3.10. For the ADF from Ezxample 4.3.2 we are going to present the
different interpretations in an easy to view manner in Figure 4.3.10. The figure

{a,b,c,~d} {a, b, ¢, d}
| |
{a,b,c} {a,b,~d} {a,—b,d} {a,—b, ~c} {=b, —c,d}
> > > |
{b,~d} {a, b} {a, b} {=b,d} {=b, ~c}
{o} {a} {-b}

Figure 4.4: admissible, ground, complete , and preferred interpretation, as
well as the models for the ADF from Example 4.3.2

shows all admissible interpretations of the ADF, which are ordered after the
number of u mappings. FEvery vertical level has the same number of statements
valuated to {t,£}. In addition if there is a line between two interpretations,
that means that <; holds between these two. Based on this visualisation of
admissible interpretations we have marked the unique grounded interpretation by
underlining it. Complete interpretations are coloured in red and have a darker
background . The preferred interpretations are all interpretations on the top
level. As the top level contains no u mappings in our example, that also means
that these interpretations are two-valued models. To visualise which of these
models are stable models, we have added a around the stable interpretation.

Theorem 4.3.11 (from [Brewka et al., 2013]). Let D be an ADF.
e Fach stable model of D is a two-valued model of D;
e Fach two-valued model of D is a preferred interpretation of D;
e Fach preferred interpretation of D is complete;

e FEach complete interpretation of D is admissible;
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o The grounded interpretation of D is complete.

Note that a Dung Argumentation Framework can be easily transformed
into an ADF', by constructing an associated ADF'.

Definition 4.3.12 (Associated ADF). For a Dung Argumentation Framework
F = (A, R), the associated ADF Dp = (A, R,C) with C' = {¢4}aca such that
for each a € A, the acceptance condition is given by

Pa = /\ —b

beA
(b,a)eR

4.3.2 Computational Aspects

We have discussed how ADF's allow different kind of relations between state-
ments. On an informal level we used the notion and concept of attack, support
and dependency. Indeed we are interested in a formal definition, which has
been done already in the first paper |[Brewka and Woltran, 2010|. Later
the additional notion of redundant and dependent links has been analysed
further |[Ellmauthaler, 2012].

Definition 4.3.13 (Link Types). Let D = (S,L,C) be an ADF. A link
(r,s) € L is

e supporting in D if and only if for all R C par(s), we have Cs(R) = t
implies Cs(RU{r}) =t,

e attacking in D if and only if for all R C par(s), we have Cs(RU{r}) =t
implies Cs(R) = t,

o redundant in D if and only if it is attacking and supporting in D, and
o dependent in D if and only if it is neither attacking nor supporting in D.

Lt C L denotes s the set of all supporting statements, and L~ C L is the set
of all attacking links in L.

An ADF is bipolar (a BADF) if all links in L are supporting or attacking
(or both) (i.e. L =L"UL™). In other words in BADFs no dependent links are
allowed. The interesting point about this class of ADF's is how it positions it
from the point expressiveness and computational complexity in between general
ADF's and Dung Argumentation Frameworks.

First let us formalise what we understand by expressiveness. Given a
formalism F we are interested in the set of structures which can be defined with
semantics o over a vocabulary A. This is called the signature of a formalism F
with respect to semantics o, which is

7 = {o(kb) | kb € F}.
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Intuitively it is a characterisation of what can (or cannot) be done with a
formalism F under semantics o |Gogic et al., 1995]. To analyse the relation
between two formalism F; and F> which share the same semantics o, we can
compare their sets to each other. If X% C 3% holds, that mean that F3 is
more expressive than Fj (i.e. can represent everything that F; can, and more).

Dung’s Argumentation Frameworks, BADF's, and ADF's have been investi-
gated and compared in various work [Strass, 2015b, Strass, 2015a].

Theorem 4.3.14. For o € {adm,com,prf,mod}, we find that
EAF C EBADF C EADF
o - g - o °

For the stable model semantics stm, we find that

EAF _ EAF C EBADF — EADF

mod — “stm = “stm stm

Furthermore, for the model semantics we have

SAPE — vy = {v: A {t,£}},

m

that is, ADF's under the model semantics are universally expressive.

Note that the model and stable model semantics is for Dung’s Argumentation
Framework the same, as there are no support cycles which need to be dealt
with. The results show that BADF's are almost universally more expressive
than Dung Argumentation Frameworks, and that in most instances they are
less expressive than ADF's.

Computational Complexity wise, there has been various work on analysing
the complexity of the Frameworks [Ellmauthaler, 2012, Brewka et al., 2013, Strass
and Wallner, 2015, Gaggl et al., 2015, Polberg and Wallner, 2017, Wallner, 2014].
As computational problems, one is interested in different kinds of reasoning
tasks, such as:

e Credulous acceptance of a statement: is there at least one interpretation
under semantics o, where statement a is assigned to be true?

e Sceptical acceptance of a statement: is it true in every interpretation
under semantics o, that statement a is assigned to be true?

e Interpretation verification: is a given interpretation an interpretation
under semantics o7

e Existence of an Interpretation: is there an interpretation under semantics
?
o'

In most cases ADF's are shown to be one level higher on the polynomial
hierarchy than Dung’s Argumentation Frameworks. For BADF's the com-
plexities are in the worst case the same as those for Dung’s Argumentation
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Frameworks, if the link-types are known (i.e. which links are attacking and
which are supporting). Note that computing the link-type of a link is itself
coNP-hard. Still, that complexity behaviour can be exploited if the link type
can be easily deducted during the instantiation of the Framework. In general
these results show that ADF's, and in specific cases BADF's are an expressive
modelling tool, despite its comparable pretty high computational complexity
(in comparison to Dung Frameworks).

4.3.3 Systems for Abstract Dialectical Frameworks

There have been developed several systems to compute interpretations for
ADFs. Here we also want to mention further development of ADF's into a
more graphical representation of acceptance conditions. GRAPPA [Brewka and
Woltran, 2014] uses a meta language to describe how acceptance conditions
might be deduced by labels given to each link. Shortly said this language
defines which kind of operations are allowed and how the preferences between
different links are computed. It is possible to transform a GRAPPA-instance
into an ADF.

compile to ASP/QBF
ADF sults
ASP/QBF solver results
(a)
( S (- - - TTTTT T === N )
ASP solver f----- >E ASP solver
ADF——— — T T e results
encoding of E encoding of |
semantics ' semantics |
| N M e /I
(b)

Figure 4.5: Approaches of the Workflow for different systems. (a) visualises the
instance based compliation approach and (b) is showing the static encoding
approach.

There are two different underlying formalisms, utilised by the different
systems. The first is declarative programming in the form of Answer Set
Programming and the latter is qualified Boolean formula satisfiability (QBF).
For the Answer Set Programming based language there have been two different
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workflows used. One is the instance-based compilation approach, where each a
new encoding is generated for every problem. The other is the static encoding
approach, which provides a set of static encodings which are combined with
the answer set programming representation of the ADF and compute on that
basis the stable models. Note that in both approaches the encoding is designed
in such a way that the stable model corresponds to the chosen ADF semantics
to compute. Due to the high computational complexity of ADF's there are
systems where for some semantics more than one solver call is needed, to get a
matching computational complexity of the solver. We also want to mention
that some solvers apply normal logic programs, while others utilise disjunctive
logic programs. The QBF approach also uses the instance based compilation
approach, utilising a QBF solver instead of an Answer Set Programming solver.
A graphical overview for better understanding these two logic programming
approaches can be seen in Figure 4.5

QADF!® [Diller et al., 2015] is a system which uses QBF formulae to compute
the semantics of an ADF utilising the instance-based compilation approach.
Based on the given ADF and the chosen semantics an encoding is gener-
ated, where the interpretations to the QBF formula are corresponding to the
interpretations of the semantics.

The system GRAPPAVIS!? [Heifenberger, 2016] is an implementation of the
shortly mentioned GRAPPA framework. It is a hybrid between the instance-
based compilation and the static encoding approach. First a given GRAPPA
input is compiled into a declarative Answer Set Programming representation
and then a static encoding computes the semantics.

Based on the static encoding of GRAPPAVIS, the system YADF?Y [Brewka
et al., 2017a| the system compiles an ADF-instance into one program to solve
the corresponding semantics.

Finally we want to introduce the DIAMOND-family?! (Dialectical Models
Encoding) of ADF solvers. It is the first ADF-solver done for the revisited
version of ADF's, is still being developed further, and was prominent during
the last years in the scientific community.DIAMOND is a set of static encodings
to compute the various semantics of ADF's. One feature of them is that they
implement the AFT directly and that each semantics encoding is a collection of
different modular encoding-files. That allows one to easily extend the featureset
of the tool like adding additional semantics, or using another operator for other
theories. In fact DIAMOND has a distinct operator for Dung Argumentation
Frameworks, ADFs, BADF's, and theorybases. For BADF's it also provides an
option to compute the link-types beforehand. Due to the big number of small
modular encodings which need to be used together to get the static encoding
for one semantic, the system is also providing some sort of wrapping system.

Bhttp://www.dbai.tuwien.ac.at/proj/adf/qadf
Yhttp://www.dbai.tuwien.ac.at/proj/adf/grappavis
Onttp://wuw.dbai.tuwien.ac.at/proj/adf/yadf
*'http://diamond-adf . sourceforge.net
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The first versions of DIAMOND [Ellmauthaler and Strass, 2013, Ellmauthaler
and Strass, 2014] used a PYTHON script to provide the needed usability. It
has a streamlined set of command-line options to compute semantics. Later
versions also allowed to answer the reasoning problems listed in the complexity
subsection of Section 4.3.2. In addition some semantics (e.g. preferred) are
realised by using two solver calls after another. This is for example done for
the preferred semantics, where the first call computes all complete semantics
and the second does the maximisation with respect to subsets. Instead the
system also offers a disjunctive encoding to solve that in one call. DIAMOND
3.0 [Ellmauthaler and Strass, 2016], also called ¢cDIAMOND has then been
implemented in C-+-. The decision for that language was also influenced by
the fact, that GRINGO and CLASP are realised in C++- too and that they provide
a native library to incorporate the solver engine directly into ones application.
Recently goDIAMOND [Strass and Ellmauthaler, 2017] has also been presented,
which is another fork in the family, which uses the script language GO instead
of PYTHON.

goDIAMOND recently participated in a competition about evaluating Dung
Argumentation Frameworks. To compete with other solvers an approximated
operator for Dung Frameworks has been used. Overall it seems that DIAMOND
performed pretty well. So far two tracks are evaluated and in both goDIAMOND
could claim the 4*" place??.

225ee http://www.dbai.tuwien.ac.at/iccmal7/results.html for further information

and the overall ranking
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Chapter d

Reactive Multi-Context Systems

In this chapter we will present the reactive Multi-Context Systems. They
are a generalisation of Multi-Context Systems which have been presented in
Section 3.4. Over the last years they got investigated and developed further. A
first and rough concept was presented by me during a Workshop [Ellmauthaler,
2013|. There the reactivity which should offer integration and dynamics in a
heterogeneous environment was called iterative Multi-Context Systems. Later
that year the approach was also considered in an invited talk by Gerhard Brewka
at the International Conference on Logic Programming and Nonmonotonic
Reasoning [Brewka, 2013|. These first steps have been further developed and
the first version of reactive Multi-Context Systems got introduced [Brewka
et al., 2014a, Brewka et al., 2014b|. At the same time, a similar approach has
been presented by the Lisbon University [Gongalves et al., 2014|, so called
evolving Multi-Context Systems. The biggest difference between both systems
has been that evolving Multi-Context Systems have a dedicated operator to
change the Multi-Context System over time (i.e. the next-operator) and that
the reactive Multi-Context Systems use a sequence called a run. The authors
of both systems came to the conclusion that both approaches have their appeal
and that it is preferable to combine both independent adaptions with each other.
So the reactive Multi-Context Systems [Brewka et al., 2018] got revamped in a
collaborative effort. We will first present the first and original version of reactive
Multi-Context Systems and then we will introduce the revamped version to
show how the formalism has developed during the last years®®. Note that we do
not unify the notation in between both adaptions, as the redefinition of many
aspects has been one of the efforts and contributions regarding the evolution of
reactive Multi-Context Systems.

23The original version is presented as a historical predecessor of the newer version, therefore
the original version introduction will be fashioned in an overview-like style, while the new
version will be investigated in a detailed manner
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Chapter 5: Reactive Multi-Context Systems

5.1 Original Reactive Multi-Context Systems

First, as for a managed Multi-Context System, we will need to define a con-
text. For a simpler representation we have chosen to omit the logic suite (see
Definition 3.4.1). The basic idea behind these logic suites is to allow different
semantics to be used for the evaluation of a given knowledge base of a context.
The decision for the option to have different kinds of semantics and limiting a
context to only one has been done to make the already very technical notations
easier to write. In addition it is generally possible to model different semantics
via different representations in the knowledge base. It is possible to simulate
that behaviour by using a more general semantics, which can be adjusted by
additional beliefs which represent the utilised semantics too. In other words, it
is straightforward to shift that semantics feature into the contexts semantics.

Definition 5.1.1. A contezt is of the form C = (L, ops, mng) where
e .= (KBy,BSy,accy) is a logic,
e OP is a set of operations,
® mng: 20P « KB — KBy, is a management function.

Basically one context consists of a logic, a set of operators to modify the
knowledge base of the context, and a management function which implements
the intended changes of the operators. The second adaption in contrast to the
managed Multi-Context Systems is to assume that the management function
is deterministic. Because we have restricted our contexts to only operate on
one semantics the management function no longer needs to prepare different
knowledge bases. That could have been needed, based on the different com-
putations regarding semantics?4. This case is no longer a priority and there
are still sources of non-determinism, such that the flavour of the semantics and
the Equilibrium will not be altered at all. Due to the changes one aspect of
the function shifts: The management function has to handle how overlapping
effects of two simultaneously applied operators will behave (e.g. addition and
deletion of the same knowledge, or revision paired with any other operator).
Beforehand it was not needed to warrant a definition of the order of application
for the different operators, as every permutation could be deduced by the
non-deterministic nature of the function. Still, this is only a minor issue, as
it is still possible to emulate the non-deterministic behaviour, which will be
shown later in Example 5.1.10.

To facilitate an information flow from the environment, we will need to
specify a source of data which contains the continuous stream of readings. We
assume that a sensor II is a device which is able to provide new information in

24 As an example a negation operator might need to differentiate between classical and
non-classical negation based on the used semantics
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5.1 Original Reactive Multi-Context Systems

a given language Ly specific to the sensor. From an abstract point of view, we
can identify a sensor with its observation language and a current sensor reading,
that is II = (L, m) where m C Ly. Given a tuple of sensors II = (ITy, ..., IIx),
an observation Obs for II (IT-observation for short) consists of a sensor reading
for each sensor, that is Obs = (1, ..., m) where for 1 <i <k, m; C Lyj,. Note
that such a reading represents only a slice of the data at a given point in time
and does not facilitate any continuous properties of changing information over
time.

We can now define a reactive Multi-Context System over sensors, where
we represent the connectivity between the contexts and the sensor input in a
static and noncontinuous way.

Definition 5.1.2. A reactive Multi-Context System over a tuple of sensors
IT = (Iy,..., 1) is a triple M = (C, BR, KB) consisting of:

e a tuple of Contexts C = (C1,...,Ch),

e a tuple BR = (BRy,...,BR,), where each BR; is a set of bridge rules
for C; over C. A bridge rule for C; over C is of the form

op < Q1,...,a5,N0t Aji1,...,N0t A,

such that op € OP; and every a;(1 <1 < m) is either an atom of form
¢ : b, where ¢ € {1,...,n}, and b is a belief for C., i.e. b € B for
some B € BS. or a sensor atom in the form oQs, where s is an index
determining a sensor (1 < s < k) and o € Ly, is some sensordata, and

o a tuple of Knowledge bases KB = (kby, ..., kby), such that kb; € KB,.

Intuitively, we extend the scope of a managed Multi-Context System, such
that each bridge rule may either refer to the beliefs of a given context, or the
information provided by a sensor. We have chosen to use ¢ : b to describe that b
is believed in C.. To stay intuitive to the meaning of the @-Symbol, we use a@s
to represent that a occurs in sensor s, such that it reads as “a at s”. In addition
the reactive Multi-Context System defines its initial set of knowledge bases for
each context. Again, in contrast to the managed Multi-Context System, here
the interconnection of the different contexts is managed by the multi-context
system, while in the managed version each “managed context” encapsulates this
information. This change is to reduce the number of indices for convenience, as
the bridge rules and later the equilibrium notion will need access to the initial
knowledge bases.

The combined view on the belief-states of all contexts in a reactive Multi-
Context System is called belief state.

Definition 5.1.3. Let M = (C, BR, KB) be a reactive Multi-Context System.
We call B = (b1, ..., by) a beliefe state of M if for each 1 < i < n,

B; € BSLJ‘, and BSLJ‘ S Li S Cz
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Chapter 5: Reactive Multi-Context Systems

The intended semantics for a bridge rule is to be applicable with respect to a
belief state and sensors, if every proposition about the sensor data is consistent
with the sensors. In addition the bridge rule still needs to satisfy the beliefs
from the belief state, as it has been necessary for the managed Multi-Context
System case before.

Definition 5.1.4. Let I be a tuple of sensors and Obs = (m1,...,7) a II-
observation. A sensor atom oQs is satisfied by Obs if o € ms; a negated literal
not 0@s is satisfied by Obs if o & 5.

Let M = (C,BR, KB) be an rMCS with sensors Il and B a belief state
for M. A bridge rule v in BR is applicable wrt. B and Obs, symbolically
B =ops body(r), if every context literal in body(r) is satisfied by B and every
sensor literal in body(r) is satisfied by Obs.

For easier representation we use app;(B, Obs) = {head(r) | r € br; A\B Eops
body(r)} to have a set of all operators which have been invoked by the bridge
rules of a given context with respect to a belief-state and the observations of
the sensors. It is now straightforward to define an equilibrium of an rMCS in a
similar way as for an mMCS:

Definition 5.1.5. Let M = (C, BR, KB) be an rMCS with sensors I and Obs
a IT-observation. A belief state B = (by, ..., by,) for M is an equilibrium of M
under Obs if, for 1 <i<mn,

b; € ACC;(mng;(appi(B, Obs), kb;)).

In other words, some belief state is an equilibrium if the beliefs and the
sensor data invoke such changes to the current knowledge base, such that the
elaborated changes will lead to a state where the semantics of the contexts
come to the same beliefs which have been assumed beforehand. It should be
easy to see, that observations can be seen as some kind of static, unchangeable
facts, while the belief state has a non-deterministic flavour, where the beliefs
to reach need to be supported by the applicable bridge rules and some sort of
agreement of the context semantics.

Till now we have extended the managed Multi-Context Systems to a point
where they are aware of sensor input, which needs to be seen as some sort
of real-world facts. To get towards reactivity to continuous computation,
reasoning and awareness on sensor data, we need to keep track of the changing
knowledge bases. For that goal we pair an equilibrium together with the
updated knowledge base which got induced by the management function and
the applicable bridge rules.

Definition 5.1.6. Let M = (C, BR, KB) be an rMCS with sensors II, Obs a
IT-observation, and B = (b1, ..., by) an equilibrium of M under Obs.

KBB = (mngy(app1 (B, Obs), kby), ..., mng,(appn(B, Obs), kb)) is the tuple
of KBs generated by B and Obs. The pair (B, KBB> 1s called full equilibrium
of M under Obs.
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The relation between the equilibrium and the newly constructed knowledge
bases now allows us to define a sequence of full equilibria. We now introduce
the notion of a run of an rMCS induced by a sequence of observations. This
sequence represents the flow of incoming information from sensor input over
time.

Definition 5.1.7. Let M = (C,BR, KB) be an rMCS with sensors Il and
O = (0bs°, 0bs', . ..) a sequence of Il-observations. A run of M induced by O
is a sequence of pairs R = ((B°, KB®), (B, KBY),...) such that

e (B KB°) is a full equilibrium of M under Obs®,

e for (B', KB') withi>0, (B!, KB’) is a
full equilibrium of (C, BRs, KB"™') under Obs'.

Modelling and Discussion

Following the definitions of the original reactive Multi-Context System we will
now illustrate how different basic modelling features can be implemented. In
addition we are also interested in discussing different difficulties or needed
workarounds to make some things working. We are interested in showing how
the mechanics of the interconnection of belief states, observations, and the run
are working together. Therefore very minimal examples will be shown. For
easy to understand toy environments we will stick to answer set programming
contexts, as they are under a non-monotonic semantics with good expressiveness.
Additionally it is straightforward how to manipulate a given logic program
with respect to basic operators like addition or deletion.

Example 5.1.8. An illustration on how an answer set program can be rep-
resented in the notion of a logic, as it is used for contexts is as follows. To
capture the logic Lasy = (KBgsp, BSasp, aCCqsp) for answer set programs we
need the set of all ground (i.e. variable free) atoms A which might appear in an
answer set program. KB,sp is the set of all answer set programs over A, the
possible belief states BS qsp = 24 is given by the set of all possible answer sets,
and acc,sp maps each answer set program to the set of its answer sets.

One field to explore in relation with multi-context systems is to understand
how the non-determinism of bridge rules is used and applied. In contrast to
the similar approach of answer set programming, the negation of literals is not
the source to consider the concept of non-deterministic choices.

Example 5.1.9. Assume a reactive Multi-Context System with two contexts Cq
and Co. Both are answer set programming contexts and the initial knowledge
bases are as follows: KB = ({a <},{b <}). Both contexts get the operations
add(X), and the semantics are defined by the management function such that
for every OP! C OP. and every x € A (as defined as in Example 5.1.8) it holds
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that mng(OP', kb) = kb U {x < | add(x) € OP'}. Now consider the following
bridge rule for BRy = {add(b) < 2 : b}. In this case the only equilibrium would
be By = <{CL,b}, {b}>

In addition we will now consider another bridge rule for the second context:
BRy = {add(a) < 2 : a}. If we check the previous equilibrium, we will see that
By is an equilibrium for the reactive Multi-Context System too. This time we
get a second equilibrium By = ({a,b},{a,b}).

By adding the rule {del(a) < not 1 : a} to the rules of BRy, and by
enhancing the management function to work with a delete operator too, such
that mng(OP’, kb) = kb U {z + | add(z) € OP'} \ {z < | del(z) € OP'}, we
get a similar behaviour: The belief sets are as follows:

BS = {({b}, {b}), ({a, b}, {b}), ({b}, {a, b}), ({a, b}, {a, b})}

The above example illustrates that notions of cyclic self-support and self-
negation both lead to non-deterministic behaviour and have a nonmonotone
flavour. Note that these cyclic constructs may be a reason for inconsistent
rules, if they are combined such that existence will imply the removal of the
information from the belief set or vice versa. Applications of rules, which use
only sensor data, or where the operation is not in direct relation to the used
beliefs in the body, are not considered to have non-deterministic features.

With these different ways to utilise non-deterministic rules, we want to show
how to model the non-deterministic behaviour of the managed Multi-Context
System management functions.

Example 5.1.10. Consider a reactive Multi-Context System with three answer
set programming contexts C1,Ca, and C3 with the initial knowledge bases KB =
({a <}, {b<«},{b<«}). The bridge rules for C1 are BRy = {add(b) « 2 :
b, del(b) < 3 : b}.

In words, we have the rule that if b is believed in context Co, then Cy should
add b to its knowledge base. The believe of b in context Cs on the other hand
will lead to the deletion of b in C1. The example leads us to the point where
it is not clear whether addition or deletion should be done first. How this is
handled is defined in the management function. Two different possibilities for
such a management function will be:

mngy (OP' kb) = (kbU{z + |add(z) € OP'})\ {x « | del(x) € OP'}
mngy(OP' kb) = (kb\ {x < | del(x) € OP'}) U{z + | add(x) € OP'}

Depending on the used management function the behaviour might be different
if both operators are deducted by the bridge rules. In the non-deterministic
version both options are possible. To simulate this we can introduce two new
bridge rules for C :
add(deloveradd) < 1 : deloveradd, and
pref(del) < 1 : deloveradd
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Note that this atom deloveradd needs to be a new atom, which does not inter-
fere with the reasoning of C1 and is not occurring in another bridge rule. Then
the management function needs to be adapted too:
mng1(OP’, kb) =
(kb U{x < |add(z) € OP'})\ {z < |del(x) € OP'} if pref(del) € OF'
(kb \ {z < | del(z) € OP'})U{x « | add(x) € OP'} otherwise
Through the two different belief sets which might be considered to be an equilib-
rium - the one where deloveradd is considered to be true and the one where
it is not - we can simulate that non-deterministic flavour of applying both
combinations of the operators.

To give the decision of possible preferences for the order of operators and
the specific implementation of the operators in the management function to
the modelling layer has been one additional motivation for using the non-
deterministic management function. Note that in many cases it might not be
desirable to allow every combination of operators. Sometimes it might even
be counter intuitive to allow some combinations (e.g. doing repairs to ensure
consistency of a given context should be done after all other operations on the
context, not beforehand). In addition there might not be a need for a specific
order of events. Example 5.1.10 had a setup where two contradicting operators
are used on the same knowledge. If different operators are not contradicting
each other, their order might not be an issue at all.

When reasoning is done over time, one might be interested in taking time
into account. This can be done in an easy way, by having a sensor, which just
provides the current time. Another option, as we have a discrete sequence of
sensor data which induces the discrete run, would be to use the same numbering
as the indexes for the sensor data observations. We will refer to that specific
point in time as a timestamp. To utilise such a numbering we have different
options to consider:

e Use a sensor, which observes the current timestamp,

e use a built-in command, which is used as a constant term, which is just
substituted with the current number, or

e utilise a context to model that behaviour.

While all three options are viable, we would like to have a solution where we
don’t need to add additional mechanics to the reactive Multi-Context System.
Therefore we are not interested in exploring the second option further. Utilising
a sensor observation is intuitive and trivial to use. So we will now investigate
how to model the behaviour with a context.

Example 5.1.11. The context Cy is a timing context, with exactly one fact,
such that KB = ({0 «-}). To implement such a step-timer we don’t need to use
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any additional bridge rules, but can use the management function as follows:
mngy (OP' kb) = {x + 1<+ |z <+ € kb}

Note that it is not needed to use bridge rules at all, as this operation should
be done during every step in a run. In some sense it can be seen as some
operation which is applied every time, independent of beliefs or knowledge of
other contexts or the context itself. This shows the versatility of this framework,
as it allows to reason over beliefs and sensor information in a global way, while
the management function allows to change the knowledge bases based on the
operators, as well as on basis of its own knowledge base, and in a static way,
without any dependencies at all.

In general we have discussed how to model some simple concepts with
reactive Multi-Context Systems. Modelling of things like forgetting (i.e. re-
moving information based on some knowledge or beliefs) or flipping values
seems easy and straightforward. Alas it gets more complicated if we want that
the forgettable or switched knowledge is part of the reasoning for doing that.
An easy example for such a scenario might be that some switches might be
turned on by some external sensor data. As a security protocol it should be
enforced that if all switches are turned on, one should be flipped off. To model
such an occurrence we will need to introduce an intermediate step, like adding
some knowledge such that the alert state has been triggered. In the next step
then the switch can be flipped backward because of the alert state, but not
because the switch itself is turned on. This kind of intermediate steps and
a high amount of cleanup actions to get rid of these alert states, makes this
original version of a reactive Multi-Context System pretty complicated.
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5.2 Reactive Multi-Context Systems

Due to the previously presented shortcomings of the original reactive Multi-
Context Systems, which has been mainly the inability to let bridge rules
change values of the knowledge base justified by the values itself, and the
quite complicated formalism, a complete rework of reactive Multi-Context
Systems has been done. This rework has been aiming towards an easier and
straightforward definition of concepts and the integration of the next-operator,
introduced by the research group in Lisbon. In addition it was our goal to
unify the two similar approaches from Lisbon [Gongalves et al., 2014] and
Leipzig [Brewka et al., 2014b| in a cooperative effort.

First we simplified our formalism by creating a uniform convention when
writing symbols in formal sections. That increases readability and makes
it easier to follow the concepts on a natural understanding of the different
components. We will use lower-case words to refer to single entities. Sets
of entities and structures with different components are in upper-case, while
sequences are written in sans serif. Temporal dimensions are upper-case only
and use calligraphic letters, like S or Z. Additionally, we will use bold letters
to denote functions and operators. Finally, to denote specific elements in
examples, we will use typewriter fonts.

We are still using the management function and bridge rules, to specify the
flow of information between contexts, which is additionally the way to allow
conflict resolution in case of contradictory context knowledge. The presentation
of this topic will be with original reactive Multi-Context Systems in mind, but
we will not discuss every small difference in a comparative manner.

In the next section we will discuss the different components of reactive
Multi-Context Systems. That means we will stick to the syntax and present the
intuitive ideas behind the different concepts. Afterwards, in Section 5.2.2, we
will present the precise and formal semantics of reactive Multi-Context Systems.
Then we will discuss how to model the assisted living example scenario from
the Motivation (cf. Chapter 2) in Section 5.2.3. In addition we will have
some considerations about variables in bridge rules too. Based on all these
considerations a discussion about different modelling concepts will be presented.
Section 5.2.4 is dedicated to the discussion of inconsistencies, how to avoid
them, and how to manage situations where they cannot be avoided. Then
Section 5.2.5 will discuss how to react if the inverse case happens, namely that
too many possible belief sets are valid equilibria. In the following section we
will show the expressiveness of reactive Multi-Context System by presenting a
way to simulate a turing machine by only using non-expressive context logic.
Finally, in Section 5.2.7, we will discuss the computational complexity of the
presented theory.
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5.2.1 Components of a Reactive Multi-Context System

Like before, a context will be built upon the abstract notion of a logic. To
build a heterogeneous scenery of contexts, we will not only stick to answer set
programming settings, as we have done it in Section 5.1.

Example 5.2.1. We illustrate how different formalisms are used and how they
can be represented by the notion of a logic.

To capture the description logic AL as Ly = (KBq4, BS4,accy), we consider
KBy as the set of all well-formed description logic knowledge bases over AL,
which are all ontologies. BSy is the set of deductively closed subsets in AL and
accy is a mapping which maps each kb € KBy to {E}, where E is the set of
formulas in AL, such that kb |= E.

Given a set of E of entries, we can construct a simple storage logic to store
elements from E by the logic Ly = (KBg, BS,,accg), such that KBy = BSs =
2F and acc, maps every set E' C E to {E'}. This is an easy way to use logic,
to represent a simple version of a database logic. Further on we will call this
logic a storage logic.

In Example 5.1.8, we have already presented how to realise a logic program-
ming logic by instantiating the answer set programming paradigm in terms of
the concept of an abstract logic.

Definition 5.2.2 (Context). A context is a triple C = (L, OP, mng) where
e .= (KB, BS,acc) is a logic,
e OP is a set of operations,
e mng : 297 x KB — KB is a management function.

As for the original version we use the context in the same way. For an
indexed context C; we will write L; = (KB;, BS;,acc;), OP;, and mng, to
denote its contexts. Operations are as before just labels for intended semantics,
which will be carried out and computed by the management function.

Example 5.2.3. We will now consider the assisted living example scenario
from the Motivation chapter (cf. Chapter 2). In that case we want to detect and
recognise different potential threats to the inhabitant which may be caused by
items in the flat. One such source of a threat can be the stove (e.g. overheating,
inflaming leftover stuff if forgotten to turn off,...).

First we will use a stove monitor context Cg. For that easy monitor we will
utilise our simple storage logic from Ezample 5.2.1. Cl,s logic Lg is a storage
logic, using E = {pw, tm(cold),tm(hot)} as the set of possible entries. pw will
denote whether the power is on or off. If the entry is existing, the power is
on, and off otherwise. The temperature tm on the other hand has a qualitative
value, to reflect that the stove is either cold or hot.
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The context keeps track of the current state of the stove by having the
corresponding entries in its knowledge base. To manipulate the value, the
following operations are used:

OP 4 = {setPower(of f), set Power(on), setTemp(cold), setTemp(hot)}

The semantics for a set of operators OP' C OPg is given by

mng,, (OP', kb) = {pw | set Power(on) € OP'V
(pw € kb A setPower(off) ¢ OP')}uU
{tm(t) | setTemp(t) € OP'}.

With these semantic definitions we assume that there is a temperature
sensor, which will provide the context constantly with the given temperature
of the stove. It will trigger all the time the current qualitative value for the
setTemp operation. The operator is implemented in such a way that the given
value will just be inserted with every management function call and we do not
need to care about the possibility of conflicting information or non-persistent
temperature values. For the power switch we are thinking about a switch, which
will toggle the stove to be on or off. We consider the stove to be on if there is
no information about it being off. In addition the fluent pw will stay on if it
is on and not turned off. pw can only be deducted if it is already on and not
turned off by the corresponding operator, or if it is turned on by the matching
operator. Note that due to the formalisation of the management function, that
in case of conflicting information about the switch (i.e. setPower(on) and
setPower (off) are both in OP’, then the stove is considered to be on. That is
a distinct choice, because it might be much more harmful if the stove stays on
unattended than sounding an alarm or turning off the electricity for the stove
unnecessarily.

To illustrate how the management function will work, we assume the
knowledge base kb = {tm(cold)}, together with the assumed set of operators
OP = {setPower(on), setT'emp(hot)}. The update on the knowledge base with
respect to the given operations is mng. (OP, kb) = {pw,tm(hot)}.

Next we will need to introduce the bridge rules. They allow communication
between different contexts and as an important core mechanic of Multi-Context
Systems, we will define them in a stand-alone way which is not directly embed-
ded to the Multi-Context System. As bridge rules are an abstract approach to
model the exchange of beliefs between different contexts and integrate infor-
mation from the outside world, we will need to have a distinct understanding
of this outside world. To keep it simple, but still expressive, we will require
inputs from the outside world to be elements of some formal language IL. In
addition we want to differentiate between different sources of input (i.e. differ-
ent sensors if spoken from the point of view of original reactive Multi-Context
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Systems). That will be done by speaking of a tuple of different input languages
IL = (ILy, ..., ILy) which are considered to be associated with the different
outside world sources.

Definition 5.2.4 (Bridge Rule). Let C = (CY,..., Cy,) be a tuple of contexts
and IL = (ILy, ..., ILg) a tuple of input languages. A bridge rule for C; over C
and IL, ¢ € {1,...,n}, is of the form

op ¢ai,...,aj,not ajyq,...,not an, (5.1)

such that op = op or op = next(op) for op € OP;, j € {0,...,m}, and every
atom ag, £ € {1,...,m}, is one of the following:

e a context atom c:b with c€ {1,...,n} and b € B for some B € BS., or
e an input atom s::b with s € {1,...,k} and b € ILj.

For a bridge rule r of the form (5.1) head(r) denotes op, the head of r, while
body(r) = {ai1,...,aj,not aji1,...,not a,} is the body of r. A literal is
either an atom or an atom preceded by not, and we differentiate between context
literals and input literals.

Intuitively, these bridge rules will still consider some abstract operation
to be executed on the different knowledge bases of contexts based on some
beliefs. In addition to the already known concept, we are now defining them
only for different contexts and input languages, totally unrelated to a reactive
Multi-Context System. We have chosen to represent input atoms with the same
intuition as context atoms: With a different symbol but the same intended
semantics. Note that this way we avoid using unintended meaning of some
letters (i.e. the "@"-Symbol). Here we introduce the intuition of the next
operator too. In simple words we are going to differentiate between temporary
operators used for the computation of the equilibrium only (i.e. those which
are without next) and those which will be used to permanently change the
knowledge bases (i.e. the next-operations). This is just a intuitive primer and
the precise semantics will be presented later in Section 5.2.2.

Definition 5.2.5 (Reactive Multi-Context System). A reactive Multi-Context
System s a tuple M = (C,IL, BR), where

e C=(Cy,...,Cy) is a tuple of contexts;
o IL=(ILy,...,ILg) is a tuple of input languages;

e BR = (BR1,...,BR,) is a tuple such that each BR;, i € {1,...,n}, is a
set of bridge rules for C; over C and IL.

The final syntactic definition of a reactive Multi-Context System is now
pretty easy to read and understand. It is just a set of contexts and input
languages, connected with the newly introduced bridge rules.
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Example 5.2.6. We are using the reactive Multi-Context System Meyq =
((Cst), (ILeza), (BRega)) which is a Multi-Context System utilising the context
Cst from Ezxample 5.2.3. Note that we will use the names of contexts (e.g. Cy)
instead of its numerical indices for better readability. These are just labels and
do not extend the concept of the presented indices. We will now show how to
define bridge rules with the mext operator to implement the switch behaviour
discussed before for the stove: ILeyqa = {switch} is used to report the outside
world event of whether the switch of the stove has been pushed or not. The
corresponding bridge rules in BR.yq are

next(set Power(on)) <—eza::switch, not st:pw and

next(set Power(off)) <—exa::switch, st:pw.

It is easy to understand what is meant by these two bridge rules. Both can only
be triggered if there is some input from the outside, which states that the switch
has been pushed. Then, depending on the current belief of the stove context, the
knowledge of the context about the power state of the stove is set permanently.?®
Note that this is an application of the next-operator, where we really need it.
As setPower will change the knowledge on st:puw, the cyclic dependency from
the discussion on the original reactive Multi-Context Systems is in place.

5.2.2 Semantics of Reactive Multi-Context System

The definition of the semantics of reactive Multi-Context Systems will be done
step by step. Which means we will first define the different pieces and then
puzzle them together. First, only the static case with the computation of one
single time instant will be shown. There we will discuss and show how the
bridge rules are evaluated and how the equilibria are computed. After the
interplay between next operators and non-next operators is pictured, we will
advance to the subsequent introduction of the dynamic notions, where the
system may react to changes over time.

To evaluate a bridge rule, we need to know how the current state of beliefs
for each context is. This is pooled together as a belief state.

Definition 5.2.7 (Belief State). Let M = ((C4,..., Cy,),IL,BR) be a reactive
Multi-Context System. Then, a belief state for M is a tuple B = (B1,...,By)
such that B; € BS;, for each i € {1,...,n}. We use Belys to denote the set of
all belief states for M.

To capture the current external information too, we introduce the notion of
an input. Note that input and belief sets follow the same basic concept, once
for the contexts and once for the external information sources.

25We use permanently in a deliberate manner to underline the difference between next
and “normal” operators. It should be intuitively clear that the knowledge base may change
again at the next computation step
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Definition 5.2.8 (Input). Let M = (C,(ILy,...,ILy), BR) be a reactive Multi-
Context System. Then an input for M is a tuple | = (I1,...,I}) such that
I; CIL;, i € {1,...,k}. The set of all inputs for M is denoted by Inp,;.

With a distinct overview of the current state of beliefs for the contexts
and the information provided by the external sources, we can investigate the
semantics of bridge rules. Intuitively we want a bridge rule to be applicable if
the belief sets and external information are satisfying every literal in the body
of the bridge rule.

Definition 5.2.9 (Satisfaction of Literals). Let M = (C,IL,BR) be a reactive
Multi-Context System, such that C = (C,...,Cy) and IL = (ILy,..., ILg).
Given an input | = (I1,...,I) for M and a belief state B = (By,...,By) for
M, we define the satisfaction of literals as:

e (I,B) = ay if ag is of the form c:b and b € Be;
e (I,B) = ay if ag is of the form s::b and b € I5;

e (I,B) = mnot ay if (I,B) [~ ay.
Let r be a bridge rule for C; over C and IL. Then

e (I,B) = body(r) if (I,B) =1 for every I € body(r).

We will say that a bridge rule is applicable under (I, B) if and only if
(I, B) = body(r) holds. It is now straight forward that we want to know which
operators are applicable, based on the bridge rules.

Definition 5.2.10 (Applicable Operators). Let M = (C,IL,BR) be a reactive
Multi-Context System, such that C = (Cy,..., Cy) and BR = (BRy,...,BR,).
Given an input | for M and a belief state B for M, we define, for each i €
{1,...,n}, the sets

e app!?”(l,B) = {head(r) | r € BR;,(l,B) = body(r), head(r) € OP;};
e app?“!(1,B) = {op | r € BR;,(I,B) = body(r), head(r) = next(op)}.

Here we can see that we strictly distinguish between the next-operator
and the others. As already hinted before, we are going to have temporary
operators, which will be used for volatile changes on the knowledge bases for
the semantics during one time step. For the transition and permanent change
of information between two time steps, we will use the next operators.

The thoughtful reader might have perceived that in the new definition of
reactive Multi-Context Systems, we have not defined the current knowledge
bases as part of the Multi-Context System. The continuous change of knowledge
bases over time and the interplay between volatile and permanent changes
on knowledge bases is the reason we consider the knowledge bases in another
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way. To associate distinct knowledge bases to the contexts of a reactive Multi-
Context System, we use the concept of a configuration structure to store them
as additional information. In addition this approach is more modular and might
allow future changes or tweaks for different components without the need to
change the whole system.

Definition 5.2.11 (Configuration of Knowledge Bases). Let M = (C,IL, BR)
be a reactive Multi-Context System, such that C = (C, ..., Cy). A configuration
of knowledge bases for M is a tuple KB = (kby, ..., kby), such that kb; € KB;,
for each i € {1,...,n}. We use Conys to denote the set of all configurations of
knowledge bases for M.

With all the different pieces from this section, we have all information we
will need to compute a meaningful semantics, which is faithful to the basic
concepts of equilibria from previous Multi-Context Systems. The semantics
for a reactive Multi-Context System for a single time instant is given as an
equilibrium.

Definition 5.2.12 (Equilibrium). Let M = ((C1,..., Cy),IL, BR) be a reactive
Multi-Context System, KB = (kb1, ..., kb,) a configuration of knowledge bases
for M, and | an input for M. Then, a belief state B = (By, ..., By) for M is
an equilibrium of M given KB and | if, for each i € {1,...,n}, we have that

B; € acc;(kb'), where kb’ = mng;(app}°*(l, B), kb;).

Basically, the definition of an equilibrium does not change at all. We are still
using the applicable operators from all the rules without the next-operator and
apply the management function on the knowledge base. If the newly computed
knowledge base has the belief set as an accepted result of its semantics, the
belief set is considered to be an equilibrium.

Example 5.2.13. We will use the reactive Multi-Context System Meyq from
Example 5.2.6. Consider the configuration of knowledge bases for Meyq as
KB = (kbst) = (0), an input | = ({switch}), and the belief state B = (().
This represents that the stove is currently off, since the current configuration
has not pw in the knowledge base of the stove context. In addition the input
represents that the switch has been pressed and the belief set is considering
that nothing has changed so far. As the bridge rules BRo., only use next-
operators in the heads, app™°™l,B = () are the applicable operators and following
the definition of mng,, from Example 5.2.3, the knowledge base for the stove
context does not changes(i.e. mng, (app™™(l,B), kbs;) = kbs) Therefore
accy(mng, (app™(l,B), kbs)) = {0}. Thus, B is an equilibrium of Meyq
given KB and .

Now we are still missing how to make the permanent changes to the
knowledge base for the transition to get a new configuration after an equilibrium
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is computed. Basically, we are utilising an update function to produce a new
configuration of knowledge bases to emphasise the updates which are concluded
by a given belief state.

Definition 5.2.14 (Update Function). Let M = (C,IL, BR) be a reactive Multi-
Context System such that C = (Cy, ..., Cp), KB = (kby, ..., kby) a configuration
of knowledge bases for M, | an input for M, and B a belief state for M.
Then, upd,; (KB, I,B) = (kb),... kb]) is the update function for M, such that
for each i € {1...,n}, kb, = mng,(app**'(l, B), kb;) holds.

Note that we define the update function on the belief state and not an
equilibrium. The connection between equilibrium and update function will be
done in the following by the investigation of the role of reactive Multi-Context
Systems in the dynamic setting over time. To refer to different time instances,
we will utilise the idea of logical time instants. That means we label each time
instance, where we will do reasoning, with a natural number. These logical
instances are not representing physical time points and we do not require that
pairs of consecutive natural numbers represent equidistant physical time spans.
Still, we do require that every natural number is utilised as a cardinal number
(i.e. a (infinite) sequence starting with 1 and a step size of 1).

Definition 5.2.15 (Input Stream). Let M = (C,IL,BR) be a reactive Multi-
Context System such that IL = (ILq,...,ILy). An input stream for M (until
7) is a function T : [1..7] — Inpy; where 7 € NU {o0}.

The term “until 77 is written in parentheses to denote that we will omit it,
whenever the upper limit is irrelevant for a given aspect. In addition it is clear
that an input stream for M until 7 will determine an input stream for 7’ too,
if 1 <7/ < 7. For easier usage, we will use Z' to denote that Z(¢) for any input
stream Z and ¢ € [1..7]%°. In addition we will use a subscript index to refer on
the input function for a single input language IL;, such that Z; : [1..7] s 2751
which is fully determined by Z. Note that Z; encapsulates input from one input
language for every time instant, while Z* is encapsulating data for every input
language of M from one time instant. That implies that the input stream
contains information for every input language at every time instant. It is
required to have this kind of synchronicity of the external information sources,
as the reasoning with bridge rules is defined over different inputs and combines
them with positive and negative literals. Due to that reliance on awareness
between existence and non-existence of information from one or more inputs,
we need a way to model that an input source did not provide data too. A
simple way would be to set Z! to the empty set if IL; has not provided any data
at time instant ¢. We will stick to that solution, though it might be necessary

26Further on we will use the supscript to refer to logical time points for a uniform
presentation and notation
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27

to introduce special symbols or some artificial input to represent no answer”’,

opposed to the empty set which might be some kind of answer or information
too.

To define the semantics of a reactive Multi-Context System for a given
initial configuration of knowledge bases and an input stream for the system we
will use the notion of equilibria streams.

Definition 5.2.16 (Equilibria Stream). Let M = (C,IL,BR) be an reactive
Multi- Context System, KB a configuration of knowledge bases for M, and Z an
input stream for M until T where T € NU {oo}. Then, an equilibria stream of
M given KB and Z is a function B : [1..1] — Belys such that

o B! is an equilibrium of M given KB' and I*, where KB' is inductively
defined as

—~ KB' =KB
— KB = upd,, (KB, T, BY).

In a dual manner, we will refer to the function KB : [1..71] — Conys as the
configurations stream of M given KB, Z, and B.

The limit 7 of the input stream is the same limit as for the equilibria stream.
In addition if 7 # oo we will extend the configurations stream by one element,
such that B : [1..7/] — Conps where 7/ = 7 + 1. This is done to produce
some kind of final configuration of knowledge bases, because otherwise the last
input in the input stream would trigger the computation of an equilibrium, but
would not apply the next operators. We call this last configuration in this finite
configurations stream result configuration of M given KB, Z, and B. Based on
the definition it is easy to observe that an equlibria stream B of M given KB
and Z with size 7 will imply that a substream B’ of size 7/, with 7/ < 7 is an
equilibria stream of M given KB and 7', such that Z’ is the substream of 7
of size /. Note that an equilibria stream does identify one solution and the
configurations stream can be deduced distinctly.

Example 5.2.17. In FExample 5.2.13 we have shown how the equilibrium
1s computed for Meyo. We will use the same Meya, as well as the initial
configuration of knowledge bases KB = (kbs) = (0). Now assume that we
have an input stream T of size 3, such that T' = ({switch}), IT* = (D), and
73 = ({switch}). In words, we will push the power button of the stove in the
first and third time instance. We will now compute the equilibria stream B of
Moy, given KB and . The input | is equal to the one given in I', therefore

2"These adaptions can be made by adapting the input languages and would not change
the semantics further.
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B! = B from Ezample 5.2.13. Therefore the new configuration for time instant
2 18 computed as

,CBQ = udeexa(,CBlvzlvBl) = <mngst(app?text<2;t7B;t)JCB;t» = <{pw}>

That easy example shows that the intuition of the next-operator indeed works
as described before. It can be seen how the power state of the stove changes
from one time instant to the other, although the reasoning about the power state
relates information about the state itself.

K:Bt It Bt app?te;ct (It7 Bt)
(@) ({switch}) (0) {setPower(on)}
{pw}) @) {pw}) 0

(ow}) | ({switch}) | ({owh) | {setPower(off)}
0) - - -

W N~

Figure 5.1: Streams and applicable operations for M.,

Figure 5.1 is presenting the configurations of knowledge bases, input stream,
equilibria stream and the set of applicable next operators for each time instant in
a tabular form. Note that the final configuration would be at time point 4. That
is a good example why the computation of a final configuration is important.
Without the application of the next-operator to the knowledge base, the last
button push to turn off the stove would have been used for reasoning, but would
not been realised in the configuration of knowledge bases.

5.2.3 Modelling with Reactive Multi-Context Systems

With the definition of syntax and semantics for a reactive Multi-Context System
we now have good understanding how to present some knowledge and reaction
to outside influences in a formal way. This section will focus on how to model
different important use cases. In addition we will present a bigger example
based on the assisted living scenario to give an intuitively accessible insight on
our idea of modelling for reactive Multi-Context Systems.

Rule Schemata

Till now we only had a look at bridge rules, which used literals built upon
elements from the knowledge bases and input languages. Compared to other
formalisms (like answer set programming) that means we are only using ground
terms. For convenience, and usability in bigger scale, it is imperative for a
system like a reactive Multi-Context System to allow the use of variables. Again,
we are aiming for an abstract and easily adaptable approach. That is where rule
schemata are becoming handy. Intuitively, we use a parametrised bridge rule
where every instance of the parameters is a bridge rule as presented beforehand.
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To have more control over the set of represented bridge rule instances, we want
to use conditions to constrain that set. These constraints and conditions will
be used to allow concepts like arithmetic operations and comparison relations.

Definition 5.2.18 (Rule Schemata). Given a tuple of input languages IL =
(ILy,...,ILy,) and the tuple of contexts C = (Ch,..., C,). Let A be the alphabet
of symbols occuring in all possible bridge rules for all contexts C; € {Ch, ..., Cy}
over C and IL, the set of symbols P be a set of parameters, such that ANP = ().

e An instantiation term is a string built upon the alphabet A for C and IL,
and

e an instantiation condition for C and IL is a predicate ic(1, ..., T,), where
T, to T, are strings constructed over the alphabet AU P.

A rule schemata R for C and IL with parameters P is of the form
H <+ Ay,...,Ap,not Apyq,...,n0ot Ay, Dy,..., D, (5.2)

such that H, Ay, ..., Aq are strings over AUP and Dj is an instantion condition
for each j € {1,...,r}.

Intuitively we have now a definition on how to write and construct a rule
schemata. In Definition 5.2.19 we are now describing the semantics to ensure
that only these rules are instantiated which can be constructed by a uniform
transformation.

Definition 5.2.19 (Rule Instantiation). A bridge rule
r=o0p<ai,...,a;,not ajyi,...,n0t a;

for C; over C = (C4,...,Cy) and IL = (ILy,...,ILy) is called an instance
of a rule schemata R of the form (5.2) for C and IL with parameters P if
r=(H <+ Ai,...,Ap,not A, 1,...,not Ay)o holds for a uniform substitution
o, such that o substitutes every parameter with its instantiation terms, and for
each D; = ic(Ty,...,T,), j € {1,...,r}, the predicate ic(To,...,Too) holds.

For better readability we will utilise the same convention which is used
for logic programming, such that parameters will start with uppercase letters.
Another convenience is to utilise infix notation for comparisons and arithmetic
functions for the instantiation conditions.

Example 5.2.20. In FExample 5.2.3 we have introduced the idea about using
qualitative values for the temperatures of the stove. For a complete example we
will assume that there is a thermostat which will just report the temperature in

71



Chapter 5: Reactive Multi-Context Systems

degree Celsius at each time step. We will now illustrate how this could be done
by using rule schemata:

setTemp(cold) < thermostat:: X,0 < X < 42
setTemp(hot) < thermostat:: X,150 > X > 42

These rules express that the operation to set the temperature to be cold if the
measured temperature is below 42 and above 0 degree, while the temperature is
considered to be hot if the stove has 42 degree or more (up to a limit of 150
degree).

Note that we assume that the instantiation is done in a smart way. That
means if we substitute X in Example 5.2.20, it will only be substituted by
values which will evaluate the instantiation condition to true. Therefore in the
first rule, there are only instances where X is substituted by 1 to 41, and in
the second one with 42 to 150 respectively. In addition it might be usable to
substitute the rules on demand, based on the given input stream, because the
input stream is static during one time instant.

Example Scenario

Our examples so far have been tailored to show the basic concepts and ideas
of the different parts of reactive Multi-Context Systems. To show how the
whole system might be used, considering everything we have discussed and
defined so far, we will present an extensive example settled in the already
illustrated assisted living scenario. It will show how to weave contexts and sensor
information from outside sources together into one framework for knowledge
integration and dynamic reasoning over time.

Figure 5.2 illustrates the basic environment and configuration of our reactive
Multi-Context System M,; to model the reasoning over the patient living in the
flat. We have four different providers of outside data, which monitor different
things in the daily life of John. That is represented by four input languages
IL = (ILgt, ILpos, ILps, ILqq). Note that we have already shown some parts
related to the stove during the examples in Sections 5.2.2 and 5.2.1. To present
the whole picture we will refine these given definitions and reiterate them here.
Our goal with this example is to model a heterogeneous system, which will do
dynamic reasoning over John, a patient suffering dementia. We will model the
system to avoid forgetting the stove, as well as a reasoning system which takes
the medication and vital signs of John into account to support the patient
without bringing him into harms way. In the following we will now present the
different parts of the reactive Multi-Context System M,;.

Sensors and their Input Language: The stove sensors are still reporting
if the power button is pressed. In addition it has thermostat readings for the
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Figure 5.2: Structure of My

temperature of the working field. This is represented by the input language
ILg = {switch} U {tmp(7T) | T € N}.

The position tracking can be seen in a very abstract way. It could be some
camera based approach, or just a wrist band to pinpoint the position of John.
We do not want to go into further detail for how the position is acquired,
but we will consider that some measurement is taken to identify the current
whereabouts of John. In our example we will get a notification when the
supported person enters a room. That leads to the following input language:

ILyos = {enters(kitchen), enters(bathroom), enters(bedroom)}

Medical sensors attached to John will report about his current state. Again we
will simplify the complex nature of such a dedicated and clinically important
sensor device, to get abstract, but useful information provided. The sensors
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are able to read the current blood pressure of the patient. Additionally it is
possible to find out whether he is asleep or not.

IL,,s = {asleep} U {bpReading(R) | R € (N,N)}

Note that blood pressure is measured for the systolic and diastolic pressure,
which is normally written by two natural numbers separated by a slash (e.g.
120/70). For easier readability we will stick to that notation when utilising
these values further on. Finally we have the drug dispenser. This device is
some automated tool to give John the right amount of medication. We keep it
simple and assume that the doses can be retrieved and are consumed directly.
When that happens, the sensor will report that some drug has been provided
to John. Again, for simplicity we will not delve deeper into the medical topics
where the amount would be important too. Therefore the input language for
this sensor is as following?®:

IL4; = {dispensed(drugA)}

Contexts with their Bridge Rules To get a better understanding on how
the bridge rules intertwine with the context definitions, we will present them
together, although in theory they cannot be defined while all contexts are not
settled down already. Note that we will use rule schemata in the same style as
bridge rules, to shorten the amount of needed rules In the following we will
consider the following reactive Multi-Context System:

Mal = <<Csta Cpos; Chm Chma Cec>7
<ILst7 ILpos; ILms; Ide>7
<BRst7 BRp057 BRho-; BRhm; BRec>>

The context for the stove Cs; = (Lgt, OP g, mng,,) has not changed from the
introductory examples for reactive Multi-Context System. To give the reasoning
of the context more depth, we will assume that the power control of the stove is
indeed controlled by the knowledge base of the context. In other words, only if
pw € kbg holds, the stove will be active. As the used logic, we will still utilise
the storage logic Es; = {pw, tm(cold), tm(hot)} and the allowed operators are

OP 4 = {setPower(of f), set Power(on), setTemp(cold), setTemp(hot)}.
The management function has not changed either, such that it is defined as

mng,, (OP', kb) = {pw | setPower(on) € OP'V
(pw € kb A set Power(off) ¢ OP")}U
{tm(t) | setTemp(t) € OP'}.

28To show the mechanics it is enough to just assume one drug being used. It is not hard
to extend the example.
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The bridge rules will first define the behaviour with the power switch and
afterwards we will have the quantification of the current temperature. In
addition we add some further functionality, which allows the emergency control
context to initiate a power shutdown of the stove if it beliefs that it should be
turned off. Therefore BR, will be set as follows:

next(setPower(on)) < st::switch, not st:pw,

)
next(setPower(off )) «st::switch, st:pw,
)

(
next(setPower (off
setTemp(cold) «st::tmp(7T), T < 42, and

)
)
) <—ec:turnOff (stove),
)
setTemp(hot) <—st::tmp(7'),42 < T.

The position tracker context Cpos = (Lpos, OPpos, mngpos> will monitor the
currently reported position. This straightforward task will be settled by another
storage logic Epys = {pos(P) | P € {kitchen, bathroom,bedroom}}. Its
allowed operators are to set a new position whenever it gets reported anew,
such that OP,,s = {setPos(P) | P € {kitchen, bathroom,bedroom}}. To
represent that behaviour we will keep old information as long as there is no
new information about the current position of John.

mng,,, (OP', kb) = {pos(P) | setPos(P) € OP'} U{k | k € kb A OP' = (}

For the bridge rules, we want that for every newly reported position the rules
will assume that this new position is considered the current position. As this
might be interesting for other contexts, we want to have this information during
the computation of the equilibrium, as well in the updated knowledge base for
the next time instant. Therefore we will have the following two rule schemata
for BRpos:

next(setPos(P)) «—pos::enters(P),
setPos(P) «—pos::enters(P)

Note that we use the same rule twice. Once without the next-operator and
once with it. That represents that the information should be utilised during
the equilibria computation and then it is important to keep that information in
the knowledge base too. Intuitively that is important to avoid reasoning on old
information, like some reasoning about John not being in the kitchen, although
the sensor reported already that he moved on during the current time instant.

The health monitor Ch,, = (Lpm, OPpm, mng,,.) will collect all the im-
portant information about John and stores it for further reasoning. Again we
will consider this as a simple storage logic which is instantiated by E},, =
{status(asleep), m(drugA), bp(high),bp(normal)} . The different used predi-
cates are pretty self explanatory. Status will signal if John is asleep, m stands
for active medication and tracks if some drugs should be in John’s blood

75



Chapter 5: Reactive Multi-Context Systems

cycle, and bp has a quantified value for the blood pressure. Note that get-
ting a reading of the blood pressure cannot be done all the time, therefore it
is imperative to store this information. In addition it is important to keep
track of the current medication, as this is only reported once by the drug
dispenser. A total contrast to that is the sleeping information, as the med-
ical sensor will provide that data continuously while John is sleeping. The
allowed operations for the context are to set the different readings, such that
OPp,, = {setStatus(asleep), setBP(high), setBP(normal), setMed(m(drugA))}.
The management function will capture the different properties of the operators.
Blood pressure has to be either high or low, asleep will need to be added every
time anew, and the medication needs to be added only for our example.

mng,,,. (OP' kb) =
{status(asleep) | setStatus(asleep) € OP’ V status(asleep) € kb} U
{bp(high) | setBP(high) € OP'\ bp(high) € kb} U
{bp(normal) | (setBP(normal) € OP’ V bp(normal) € kb)A
setBP(high) ¢ OP'} U
{m(drugA) | setMed(m(drugA)) V m(drugA) € kb}

Note how we have defined that high blood pressure has priority over normal
blood pressure information in case both might be triggered in some case. An
additional remark should be given to the management function on the status.
We have chosen to use keep the information in the knowledge base by the
operator use, to show that our desired behaviour can be achieved by the use of
bridge rules too. BRp,, are defined as follows:

+hs::asleep
+hs::bpReading(R), R > 140/90
+hs::bpReading(R), R < 140/90
<—dd::dispensed(drugA)

setStatus(asleep
next(setBP(high)
next(setBP(normal)
next(setMed(m(drugA))

~— ~— ~— ~—

The status of being asleep is just used for reasoning during the current reasoning,
while all other information will be incorporated in the next knowledge base. Note
that this means that the medication as well as the blood pressure reading will not
be taken into consideration for the computation of the current equilibrium, but
needs to be considered in later equilibria due to the fact that this information
is directly added for the next time instant.

To have reasoning about the correlation of medical readings and medication,
we will utilise a health ontology Ch, = (Lpo, OPpo, mng;,, ). Due to the expert
system like touch, which will only give information, this context does not take
any information from the outside world. In addition it does not need to have any
considerations about the current belief state of the other contexts. Therefore it
has no operators (such that OPj, = () and the management function is just
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the identity (i.e. mng;,,(OP’, kb) = kb). The used logic will be a description
logic, which will be implemented as shown in Example 5.2.1. We will use a
very simplified ontology, to show how such a system might be consolidated?’.
The description logic will consist of the following two rules:

drugA C3contains.ephedrine

decontains.ephedrine CcausesHighBP

In words, this ontology says that drugA contains ephedrine. For medical
applications it is important to know that this substance might cause high blood
pressure.

The last context, which is the emergency control Ce. = (Lec, OPce, mng,,.),
will be responsible to detect emergencies in the environment. The reasoning
system is an answer set program, so the logic is used as shown in Example 5.1.8.
We will use one single operator OP.. = {add(R)}, which will allow to add any
string R to the answer set program. It is considered that R should only consist
of answer set rules. Each rule is added by the management function, such that
mng,.(OP' kb) = kb U {R | add(R) € OP’}. Because the other contexts are
already incorporating and quantifying the information from the input stream,
the bridge rules of this context will only utilise beliefs from other contexts.
This will illustrate how the system can query other formalisms to get to its
own conclusions. The bridge rules are as follows:

add(oven(on, hot).) < st:pw, st:tm(hot)
add(humanPos(P
add(status(asleep
add(highBP.
add(highBPMed.

)

).) <—pos:pos(P)

).) <—hm:asleep

) <—hm:bp(high)

) <—ho:causesHighBP (D), hm:m(D)

Note that we use the oven information from the first rule only to have the
information in case there might be an emergency (e.g. the oven is on and
hot, while no person is in the kitchen). In the second rule use rule schemata
to keep track of the position of the human (i.e. John) in every case. As the
initial configuration for that context, we will use the answer set program kb,
as follows:

alert(stove) <—oven(on, hot), not humanPos(kitchen), not status(asleep).
turnOff (stove) <—oven(on, hot), status(asleep).
call(medAssist) «+highBP, not highBPMed.

29We want to show that such a DL reasoner can be used, of course a real ontology would be
a massive pool of knowledge and we would like to manipulate the A-Box with the management
functions and operators. For the sake of simplicity and easily graspable examples we will
stick to this very simplistic representation.
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In words, that program will be controlling if some emergency is occurring. First,
it will come to the conclusion that some alarm should be sounded, if the oven
is turned on and John is awake but not in the kitchen. Because John should
not be bothered if he falls asleep, the second rule will derive that the stove
should be turned off if the stove is turned on, but John sleeps. Note that this
predicate turn0£ff, is the same which is used for the second power-off bridge
rule of the stove context. So if the answer set program concludes that the stove
should be turned off, it will be done by the interplay of the bridge rules. The
last rule will call a medical assistant in the case that high blood pressure is
detected, but no good explanation (i.e. a medication that causes it) is present.

Example of an Equilibria Stream Now with all set up, we will present
on how this entire reactive Multi-Context System will react to a given input
stream of seven different time instants. Figure 5.3 shows how the different
contexts change over time. We do omit from CB' and B! all fixed information,
such as the answer set program encoding for Ce., to make it easier to read and
compute. Our example starts with John at time ¢ = 1 being in the kitchen and
he turns the stove on. This effect is then visible at ¢ = 2, together with an
increase in the temperature of the stove. In addition he gets his medication
from the drug dispenser. Because the blood pressure reading is not done in
every time instant, we see that this time instant is one of these occurrences
where this is the case. After getting his drugs, John goes into his bedroom at
time ¢t = 3. The information is stored via a next room, so his position change
is reflected in the configuration too. Here his blood pressure is measured again,
which is still normal. John might have forgotten the stove already or maybe he
waits till it is hot enough to cook something. Now at time instant ¢ = 4 a high
blood pressure reading occurs. Because the bridge rules for this reading are
next-rules, the equilibrium is not reflecting that change. We do see that in
the next time instant the pressure is changed to be recognised as being high.
During ¢t = 5 the system does reasoning about the high blood pressure. It
is very likely to be caused by the recently taken pills, therefore no medical
assistant is called here. At t = 6 the oven got heated up and is hot now.
Alas, John fell asleep too and should not be woken up again. Therefore the
emergency context decides to turn the stove off. Because we are looking at a
finite substream, we will look at ¢ = 7 as the result of that input stream, where
we can see that the command from the emergency control has been executed
by the stove context.

Modelling Aspects of Reactive Multi-Context Systems

With the running example one can see how natural it can deal with knowledge
integration of different formalisms and dynamic environments. Now we want to
focus on different aspects for which we will discuss how to model them. This
discussion will eventually lead into generic modelling techniques for reactive
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Multi-Context Systems which should be very helpful in the typical application
area. Of course, for specific needs these approaches may still need refinements
and fine tuning, but these would be very domain specific.

We will discuss how to incorporate stream data in general. Afterwards the
difference between operational (i.e. next-operator rules) and declarative (i.e.
the other operator rules) bridge rules with their different intended uses will be
focused on. Then we will discuss the usage of time, similar to the discussions
already done for original reactive Multi-Context Systems in Section 5.1, followed
by a concept to handle inconsistent stream data. In the end a discussion on
forgetting and data retention will be given. Note that we have already used
many of these concepts in the previous example and we will refer to already
presented rules as examples for the different methods, where applicable. In
addition we will give hints and ideas and we may omit the whole definition of
additional operators and tweaks to the management function if it would make
the example too unclear and unfocused.

Incorporating Stream Data The main idea of Multi-Context Systems has
been to see bridge rules as a way to translate information and knowledge from
one context to another. For reactive Multi-Context Systems we have used this
view on bridge rules and extended the concept to allow that translation for
external sources, represented by input languages and their respective input
streams. One such bridge rule might just incorporate and translate the infor-
mation from an input stream. Moreover it allows one to pass information to
the context in other ways than it is represented in the body. This enables us to
focus on different aspects of the given information, such as relevant parts of the
information, adding further meta-information, execute arithmetic operations
on the data, and much more. In the previously shown example we had many
different input streams. Especially Context Cg utilised this abstraction and
focus on important information in the rules about the temperature:

setTemp(cold) <—st::tmp(T), T < 42, and
setTemp(hot) <—st::tmp(7T),42 < T.

In that specific case the rules only translated the relevant information for the
context, namely whether the stove is hot or not. Therefore we are only focusing
on the relevant part, while we are using meta-information too (i.e. when does
something start to be hot). In contrast to that we could use some slightly
different rule to store specific values in some cases:

addTemp(T) < st:tmp(7T),42 < T

This rule would just ignore the temperature of the stove if it is cold and report
the current temperature in degree Celsius to the context otherwise.

80



5.2 Reactive Multi-Context Systems

Operational and Declarative Bridge Rules The main goal of this part
is to give a better understanding on the difference between next-operator
rules (i.e. operational rules) and those which are not next-operator rules (i.e.
declarative rules). Very briefly said, the declarative bridge rules utilise the
provided information in order to decide which set of belief sets are equilibria,
while operational bridge rules are only operated on afterwards to update the
knowledge base itself. Considering the switch behaviour of our example, we
had this switch for the stove which acted as an impenetrable truth which
cannot be discussed by the contexts. To model this change of truth we used
the operational bridge rules

next(setPower(on)) «st::switch, not st:pw, and
next(setPower(off )) <+ st::switch, st:pw

to model this switch logic. In this case the value gets flipped every time the
switch is used during a time instant. Note that such a flip cannot be done for
declarative bridge rules, as discussed in Section 5.13Y. Lets assume we need to
incorporate the knowledge about the fact that the switch has been used, then
some rule like

switchpressed < st::switch

can be used to express this. Of course, in some cases it is helpful and desired
to use the same bridge rule in its operational and declarative version, as it has
been shown for Context Cps. There the current position is updated for the
equilibria computation by the rule

next(setPos(P)) <+ pos::enters(P)
and it is stored by
setPos(P) « pos::enters(P)

because this information is not provided in a continuous manner.

Time in Reactive Multi Context Systems Due to the explicit use of the
discrete logical time for the definition of the input stream, the whole reactive
Multi-Context System uses these time instants implicitly for the equilibria
stream, update functions, and stream of configurations. In the following bridge
rule examples, we will consider this logical time of time instants, although
it might be necessary to operate on explicit physical time or other kinds of
logical time. Both of these additional time concepts can be incorporated on
the level of bridge rule modelling. In fact in both cases it is just a matter of
incorporating stream data to get this information integrated into the reactive

30As a simple rule one can say, that every direct flipping cannot be done by declarative
rules, as the flip itself would prevent every equilibrium candidate to be an equilibrium
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Multi-Context System. Then the overall handling is the same as the usage of
the time instants. To show how to incorporate time into some reasoning, we
will consider some monitoring context Cj,q, which will have a history on the
temperatures of the stove.

next(add(tmpAtTime( Temp, T'))) < st::tmp(Temp), c:now(T)

is an operational bridge rule, which utilises an input stream Z., which acts as a
clock. It will add the temperature at the current time to the knowledge base
and therefore collects the different temperatures over time. The expression
tmpAtTime(Temp, T') should be read such that at time 7" the temperature
Temp has been measured. Such a logging context, together with the time
aspect now allows to do reasoning which includes queries on the past. One
example for that might be a query whether the stove has been hot during the
last 10 minutes>!:

add(recentlyHot) < log:tmpAtTime( Temp, T'), Temp > 42,
ccnow(T), T > T — 10

If there is no external clock, it is viable and simple to create a clock context,
which will keep track of the current time instant. Note that this was one of
the more delicate problems discussed for the original reactive Multi-Context
Systems. Our Context Cg,r Will start with an empty knowledge base and
might be modelled with a simple storage logic. The following set of bridge rules
will be all needed in terms of mechanics to model such a time instant clock:

setTime(now(0)) <—not clock:timeAvailable
next(add(timeAvailable)) <—clock:mow(0)
next(setTime(now(T + 1))) +clockmow(T)

Rule one is there to ensure that if the context is not initialised, it will get
initialised with the time instant O for the first computation of the equilibrium.
Then the second rule will set a flag that the context is initialised because it is
believing that the current time instant is 0. In the third rule the time instant
is advanced by one for each computation of a new configuration for the reactive
Multi-Context System.

The elegant thing of this kind of solution is that awareness of time can
be modelled by the bridge rules. Therefore the system does not need any
mechanics to provide time on its own. That also allows mixing of different time
concepts in an independent and general way.

31Note that we just figuratively call this 10 minutes. It is completely clear that this would
either need a specific time concept, like a physical time clock, or some assumptions towards
the computation time of the equilibria stream
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Handling Inconsistent Stream Data When dealing with input streams,
all the information provided by them are facts, which cannot be changed or
altered any more. After incorporating them into the system, they got translated
into the Contexts and start to be debatable point of views. There are many
situations where it might happen that sensor data is inconsistent. In the
following we will consider one specific example on how to model conflicting
sensor data, with specific properties. Assume some set of sensors, where
reliability and detail level are inversely proportional (i.e. the most reliable
context has the least level of detail).

The reactive Multi-Context System M;ss = (Cjss, ILiss, BRiss) for handling
inconsistent sensor streams should collect as much detailed and consistent
sensor readings from such a set of sensors as possible. IL = (ILy,..., L)
represent the £ number of sensors, and C., € C;ss is a consistency verifying
context, which should provide consistent sensor readings to other contexts.
First we define a bridge rule for the context to incorporate all of the sensor
data of the form

addC((C), (j)) «+ j::D

for every j € {1,...,k}. The management function will use the operator
addC(C,j) to add every sensor reading together with its source into the
knowledge base. We now assume that we have a reliability preference relation
< over the sensors, such that IL; > ... > IL;, that means that IL; has
the highest priority in terms of reliability. To have a way of justification of
consistency between information, we will consider the property cons(kb) which
holds if kb € KB, is consistent®?. Given a set of operations OP, we define
sets of input data from each sensor such that inp; = {d | addC(d,j) € OP} for
j€{1,...,k}. Then we assume for the case where no sensor data is available
that inp§(OP) = () and let

inp,(OP) = {inp?l(OP) U inpg- if cons(inpgfl(OP) U mp;)

inp§_,(OP) otherwise.

Finally the management function then can just add inpf to the knowledge
base of the context to have the set of reliable and precise data integrated.
Intuitively the idea is to start with no information and then start to add
reliable information. Further on every next iteration will be more and more
unreliable and will only be added if the more exact information is still in line
with the previously collected information.

Without much change it would be possible to utilise additional meta data,
by just changing the semantics of the consistency check. In the case where no
preferences are available, this method can be easily adapted. If, for example,
one is interested in using a subset-maximal consistent subset of all sensor

32This notion of consistency is meant to be with respect to the represented domain of the
sensor data, not overall consistency
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data, the management function would add this maximal set inp,,, to the
knowledge base. inp,,, is a maximal set where inp,,, C {d | addC(d,j) € OP}
for j € {1,...,k} and consinp,,, holds.

Note that we are dealing with inconsistent stream data in this section, while
Section 5.2.4 will provide means to deal with inconsistencies on the formalism
level. There it will be discussed on how to avoid situations which will lead to a
non-existence of equilibria due to inconsistent belief states.

Forgetting, Data Retention, and Filtering During the span of time
instants, a reactive Multi-Context System will collect and store a huge diversity
of data. That may lead to an unnecessary high number of already deprecated
information, which may only slow down the computation of currently important
decisions. Therefore it is desirable to have mechanics to forget old knowledge
again when it is no longer needed, while keeping notable possibly even older
information. Note that by the usage of the operational bridge rules it is easy
to remove any information already stored, so the basic problem of removing
data is not an issue. The technique of time windows over some span of time is
usually used in such scenarios. So we will model a context which will use such
windows. We will further show that we can adjust the window size via bridge
rules.

Again, we consider the assisted living scenario. We extend the input
languages to have IL. which provides the current time. In addition we use
a further context Cgp, which logs emergency alerts raised by the emergency
control Cg.. This context will log the stove alerts with a time stamp. In
addition it manages its own time window with the element winE(t) as part of
its knowledge base. The basic idea is, to log how long the current alert is in
place and if the alert is consistently unaddressed over some time it will lead to
an emergency situation. This behaviour is represented by the following rule
schemata:

next(add(alert(stove, T'))) < c:now(T), ec:alert(stove).
next(del(alert(stove, T'))) + stE:alert(stove, T'), not ec:alert(stove).
add(emergency(stove)) < c:mow(T), ec:alert(stove), st E:alert(stove, T'),
stE:winE(Y),|T —T'| >Y.

In rule one the current alert state, together with the current time, will be
added to the knowledge base of the emergency logging context. Then if the
alert is resolved and no longer emerging, the second rule will clean up again
and remove all the other tracked alerts in the next time instant. The third rule
is now checking the alert history. If the currently tracked alert for the stove
is for the set window or longer in place, then an emergency state should be
deduced. Note that the other contexts now may inform some medical assistant
or just turn off the stove as it is done if John is asleep.
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We have shown how to use a history and forget information based on the
current state of other contexts. Now we want to figure a situation where the
window size is changed based on some reasoning. To consider such a case
we will stick to the idea of emergency tracking again. We will use a context
Ceq, which has the task to detect emergencies. In this example the emergency
detection is done in two steps. First some information might hint towards an
emergency, that is when an emergency is suspected. Based on this suspicion
more information is collected to confirm or retract the emergency, which is
the second step. To keep it simple, we will assume an input language ILs to
represent the sensor data of possible observations. Each of these observations
might trigger one or more emergencies ey, . .., e, to be suspected or confirmed.
Ceq is then adjusting the window of one or more families of observations. How
the context works internally is not crucial to present the mechanics, but we
will assume the following properties:

e (4 can signal that an emergency e; is suspected (susp(e;)) or confirmed
(conf(e;)).

e (.4 has information about default and actual window sizes for an obser-
vation p in the form of defWin(p, w) and win(p, w) respectively.

e (.4 has information on the relevant time window, in case an emergency
is suspected, represented by rel(p, e, w).

To model the change of window-sizes based on these assumptions can be
modelled by the following rule schemata:

next(set(win(P, X))) < ed:defWin(P, X ), not ed:susp(E).
next(set(win(P, Y))) < ed:rel(P, E, Y), ed:susp(E).
alarm(FE) < ed:conf(E).

Intuitively the rules mean that if no emergency is suspected, the default window
is set for the observation. In case some emergency is suspected, then the second
rule will set the emergency based window for the observation. Finally the last
rule will raise an alarm if the emergency could be confirmed. Note that it might
happen that one property is part of different windows. Then it is important
to have the management function handle that situation (e.g. only adding the
biggest window?3).

What is missing now, is how to add sensor data and how retention and
deletion of different observation is handled. We will present an easy way to do
that, such that the information is added by

next(add(P(T))) < c:now(T), s:: P.

330ne might add priorities to the windows too, such that the highest priority value for
each observation is used instead
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We don’t need to do anything to keep information. To remove observations, we
will utilise the set window and the current time, such that

next(del(P(T"))) < ed:P(T'), c:mow(T), ed:win(P, Z), T < T — Z.

5.2.4 Inconsistency Management

When working with different knowledge representation formalisms, it is a
indisputable fact that inconsistencies can occur. Especially in a dynamic
setting, where the knowledge bases of the contexts change over time and
the input stream contains incontestable facts. If some inconsistency occurs
during the computation of the equilibria stream, it is possible that due to that
inconsistent state no belief states for the reactive Multi-Context System is an
equilibrium. In that case the whole formalism is hindered and rendered totally
useless, because it is not possible to go on towards the next time instant without
an equilibrium. Therefore no new knowledge bases for the contexts can be
processed and the computation ends prematurely. Inconsistency management is
the general topic which is dealing with such problems by providing solutions,that
either no inconsistencies can occur or the reason of inconsistencies is found
and repaired. In other words, the equilibria stream requires the existence of an
equilibrium at every time instant.

We need to classify the many reasons of inconsistencies in reactive Multi-
Context Systems. In general we can distinguish between local inconsistencies
and global inconsistencies. The former type occurs if one context is inconsistent
and the cause for that purely emerges from the embedded context logic. These
embedded formalism issues are highly dependent from the used logic and
therefore we will not focus on this kind of inconsistencies. On the other hand,
the latter type of inconsistency is caused by the mechanics of the reactive
Multi-Context System. Reasons for global inconsistencies include

e the absence of a belief state which can be accepted by every context,

bridge rules whose operations lead to inconsistencies in the context,

bridge rules which propose changes such that the bridge rule itself is no
longer applicable, and

input streams which force bridge rules to model a flow of information
which cannot lead to an equilibrium.

In this section we will focus mainly on the non-existence of equilibria.
Related work on managed Multi-Context Systems |Eiter et al., 2014, Weinzierl,
2014] has addressed inconsistency management before and our ideas are based
on their approaches toward that topic. They have established two notions,
diagnosis and explanations, where the former focuses on identifying adaptions
and alterations of rules to restore consistency, while the latter is dedicated to
analyse which combination of rules is responsible for an inconsistency. Our
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approach here will be fashioned after the diagnosis notion. We can omit
explanations, because it has been shown that the both notions are the dual of
each other34,

To achieve a common ground where we can focus solely on the global
consistency, we will first need some condition for the existence of equilibria.
Therefore we define the notion of consistency for a given reactive Multi-Context
System.

Definition 5.2.21 (Consistency). Let M be a reactive Multi-Context System,
KB a configuration of knowledge bases for M, and Z an input stream for M.
Then, M is consistent with respect to KB and T if there exists an equilibria
stream of M given KB and Z. M 1is strongly consistent with respect to KB if,
for every input stream I for M, M is consistent with respect to KB and Z.

Note that we introduced two versions of global consistency, depending
on whether a particular input stream is assumed or every input stream is
considered. In addition it is obvious that for a given configuration of knowledge
bases a strongly consistent reactive Multi-Context System is consistent for one
input stream too, but not vice versa. To verify consistency in general is highly
complex, because every possible equilibria stream needs to be verified to ensure
that this property holds. Therefore we are introducing sufficient properties
of a given reactive Multi-Context System to ensure its consistency, without
the need of this by-case verification.. First we need to ensure that the context
formalism will be coherent in such a way that its logic accepts every knowledge
base in its semantics. We call this property total coherence.

Definition 5.2.22 (Total Coherence). A context C; is totally coherent if
acc;(kb) # 0, for every kb € KB;.

Intuitively, if some context is not totally coherent, it might happen that
one knowledge base does not compute into a belief set. That would imply that
this context cannot produce a belief set and making it therefore impossible for
any belief state to be an equilibrium for that reactive Multi-Context System.
Now that we have a notion where such a behaviour is not an issue, we need to
take a look at bridge rules. As listed above, bridge rules can have a manifold
impact on consistency, therefore we will disallow rule constructs which may
interfere with the computation of an equilibrium. It has been part of different
previous discussions that self dependent bridge rules might cause problems. So
a notion of dependence is needed.

Definition 5.2.23 (Information Dependence). Given a reactive Multi-Context
System M = ((C1,..., Cy),IL,BR), <ps is the binary relation over contexts of
M such that (Cj, Cj) € < if there is a bridge rule r € BR; and j:b € body(r)

34We invite the interested reader to have a look at the PhD-thesis of Antonius
Weinzierl [Weinzier], 2014] for further information on the duality and on explanations.
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for some b. If (C;, Cj) € <, also denoted by Cj <y Cj, we say that C; depends
on Cj in M, dropping the reference to M whenever unambiguous.

This relation defines that some context is receiving information from some
other context and therefore its knowledge base is altered based on this depen-
dence on this data. If this dependence is resulting in a cycle, it might turn out
to be such an instance, where the operators are triggered by values they will
change afterwards.

Definition 5.2.24 (Acyclicity). An reactive Multi-Context System M is called
acyclic if the transitive closure of <ps is irreflexive.

With acyclic reactive Multi-Context Systems we can now propose that this
property, together with total coherence is sufficient to ensure strong consistency.

Proposition 5.2.25. Let M = ((Cy,...,Cy),IL,BR) be an acyclic reactive
Multi-Context System such that every Cj, 1 <1i < n, is totally coherent, and
KB a configuration of knowledge bases for M. Then, M is strongly consistent
with respect to KB.

Proof. Let M = ((C4,...,Cy),IL,(BRy,...,BR,)) be a reactive Multi-Con-
text System that is acyclic with totally coherent contexts. We first prove that
M has an equilibrium given KB and |, for any knowledge base configuration
KB = (kby,..., kby) for M and input | for M.

We prove this by induction on the number of contexts of M, making use of
the following simple observation: if M does not have cycles, then there exists
some i € {1,...,n} such that ref,(j,i) does not hold for any j € {1,...,n}
and r € BR;, where ref,.(j,i) holds precisely when r is a bridge rule of context
C; and 7:b occurs in the body of r. It is quite easy to see that if this condition
is violated then a cycle necessarily exists.

Let n = 1. Then, since there are no cycles, no bridge rule in BR; contains
atoms of the form 1:b in its body. Thus, app}°*“(l,B) does not depend on B.
Total coherence then immediately implies that M has an equilibrium given KB
and I.

Let n =m + 1. We use the above observation, and assume, w.l.o.g., that
() is a context for which ref,(j,1) does not hold for any j € {1,...,m + 1}
and r € BR;. Then, the reactive Multi-Context System

M* = {(Cy,...,Cpnt1),IL, (BRo, ..., BRn+1))

has m contexts and it is still acyclic. By induction hypothesis, we can conclude
that M* has an equilibrium given KB* = (kbg, ..., kby,+1) and |. Let B* =
(Ba,...,Bmn+1) be such equilibrium. Then, since () is assumed to be a totally
coherent context, there exists By € BS; such that B = (By, B, ..., By,) is an
equilibrium of M given KB and |. This follows easily from the fact that no set
app;°”(l, B) depends on the choice of Bj.
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We have shown that the existence of an equilibrium for M is independent
of the given knowledge base configuration KB for M and input | for M. This
immediately implies that for any input stream Z for M (until 7), and any
knowledge base configuration KB for M, there exists an equilibria stream of
M given KB and 7. O

This result is limiting the modelling options for reactive Multi-Context
Systems very much. In many cases it is not practical to be that restricting,
as cyclicity in bridge rules has proven to provide useful mechanics in previous
examples (see Example 5.1.9, 5.1.10 and the example scenario of Section 5.2.3).
So it is desirable to allow and utilise cyclic bridge rules and break cycles
when they are causing inconsistencies and hindering the computation of an
equilibrium. We will do this by introducing a repair function R, which will
remove bridge rules in a local and selective way to recover the broken equilibria
stream. To formulate this kind of repair, one needs to remove a set of bridge
rules from the reactive Multi-Context System M. The reactive Multi-Context
System M’ which is the same reactive Multi-Context System as M, but without
the set of bridge rules R, will be denoted as M|[R].

Definition 5.2.26 (Repair). Let M = (C,IL,(BR1,..., BR,)) be a reactive
Multi-Context System, KB a configuration of knowledge bases for M, T an
input stream for M wuntil T where T € NU {oo}, and ABRy = |Jy<;<,, BRi
the set of all bridge rules of M. Then, a repair for M given KB and T is a
function R : [1..1] — 24BEM sych that there exists a function B : [1..7] — Belys
such that

o B is an equilibrium of M[RY] given KB' and I!, where KB is inductively
defined as

— KB' = KB
- ICBt—H = ude[Rt] (ICBt,It,Bt).

We refer to B as a repaired equilibria stream of M given KB, Z and R.

The introduced notion is very general, as it considers every set of bridge
rules whose removal lead to a valid equilibrium to be a repair. Therefore this
will include these repairs, which would either remove an unnecessary amount
of bridge rules or none at all. We will call the latter one an empty repair and
denote it by Ry.

Proposition 5.2.27. Every equilibria stream of M given KB and Z is a repaired
equilibria stream of M given KB, Z and the empty repair Ry.

Proof. M[Rp] = M, therefore the conditions of an equilibria stream (Defini-
tion 5.2.16) of M coincide with the definition of a repaired equilibria stream
(Definition 5.2.26) of M. O
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This result shows that every equilibria stream is a repaired one too, therefore
it is viable to use the repaired one instead. Because we have a notion to still
allow cycles, we now need to show that total coherence is sufficient to ensure
the existence of an repair.

Proposition 5.2.28. Let M = ((Ci,...,Cy),IL,BR) be a reactive Multi-
Context System such that each Cj, i € {1,...,n}, is totally coherent, KB
a configuration of knowledge bases for M, and T an input stream for M until
7. Then, there exists R : [1..7] — 2"™™ and B : [1..7] — Belys such that B is a
repaired equilibria stream given KB, Z and R.

Proof. Since each context of M is totally coherent, Proposition 5.2.25 guarantees
the existence of an equilibrium if M is acyclic. Now just note that if we take
R : [1..7] — 2™ such that R! = bry, for every ¢, then each M[R!] does not
have bridge rules and it is therefore acyclic. Then, for every ¢, M[R'] is strongly
consistent. Therefore we can easily inductively construct B : [1..7] — Beljs such
that B is a repaired equilibria stream given KB, Z and R. O

Total coherence is still a very restricting property and it is only a sufficient
one. This can be easily seen, as it disallows every context formalism, which may
lead to have no belief set, based on any possible knowledge base. Note that
for managed Multi-Context System there is a characterisation based on omni-
coherence [Weinzierl, 2014| too. The approach uses the idea that total coherence
has to hold for every possible combination of bridge rules. Omni-coherence and
total coherence are the same, but their inverse is not. Therefore it is possible to
say that there is a repair if and only if no omni-incoherent contexts are in place.
This approach won’t work, because in managed Multi-Context System bridge
rules are purely satisfied by the belief state, while in reactive Multi-Context
System we have to take the input stream into consideration too.

Repairs allow us to recover the equilibria stream, but we have not seen how
we can measure the quality of the repair. In related literature about repairs,
e.g. in the context of databases [Arenas et al., 1999], there are always minimal
repairs considered to be the most optimal. Intuitively the idea behind that
reasoning is that the smallest number of removed elements will change the
intuition of the original, but inconsistent, solution the least. As we know that
cycles are the cause of inconsistencies this strategy is very viable too, because
we are interested in breaking only these cycles which are responsible for the
non-existence of an equilibrium.

Definition 5.2.29. Let R, and Ry be two repairs for some reactive Multi-
Context System M given a configuration of knowledge bases for M, KB and Z,
an input stream for M until . We say that R, < Ry if R, C Ri for every
i <7, and that Ry < Ry if Ra < Ry and RY, C Rz for some i < 1.

We will use this relation to order the possible repairs and check which
repairs are minimal. In the following we will discuss different versions of repairs,
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which will focus on different ways of optimising repairs over a given input
stream.

Definition 5.2.30 (Types of Repairs). Let R be a repair for some reactive
Multi-Context System M given KB and Z. We say that R is a:

Minimal Repair if there is no repair Rq for M given KB and Z such that
Roe < R.

Global Repair if R\ =R/ for everyi,j < 7.

Minimal Global Repair if R is global and there is no global repair R, for
M given KB and Z such that R, < R.

Incremental Repair if R' C R7 for everyi < j < 7.

Minimally Incremental Repair if R is incremental and there is no incre-
mental repair R, and j < 7 such that R:, C R" for every i < j.

Basically the minimal Repair follows the idea of having as few rules removed
during a repair step as possible. This corresponds to an ideal solution where no
unnecessary bridge rules are kept out during the computation of the equilibria.
Nevertheless this might not be always desirable. Maybe one rule is always
involved in producing an inconsistency. In this case it would be smart to not
use this one rule at all. This consideration leads towards the idea of a global
repair. Again it would be a refinement over global repairs to minimise them too,
in order to remove the least amount of always removed rules in the managed
Multi-Context System. To compute a global repair it is necessary to know
the whole input stream in advance. In case we want to decide the repairs
on demand, without knowledge of future computations, we can either stick
to minimal repairs or refine the idea of the global repair further. The base
intuition behind the global repairs is to remove a problematic bridge rule in
every time instant. With incremental repairs we recycle that idea under the
assumption that we cannot analyse the whole input stream. In simple words,
we only permit future repairs which repair at least the same as previously. With
minimally incremental repairs we are now limiting the number of additionally
repaired rules to be minimal.

We want to discuss some further ideas, which have been discussed for
managed Multi-Context Systems too. There we don’t want to repair and
remove rules, but make more rules applicable. For managed Multi-Context
Systems [Eiter et al., 2014, Brewka et al., 2011b| this is easily doable by just
removing literals from the body, or even eliminating the whole body. This is
much more complicated for reactive Multi-Context Systems, because we have
to keep faithful to the input stream. Following the idea of eliminating the whole
body would one allow to assume any input stream information, no matter if
it is available or not. It might be a first good idea to limit it only to context
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atoms, but then it is questionable if the information of the input stream will
not be too biased. One good suggestion would be to make this strengthening of
rules only for those which contain no input atoms. This will underline the idea
that input streams are definitive while the internal belief states are a subject
to change and discussion.

For now we have discussed how to ensure the existence of an equilibria
stream in two ways. First we defined sufficient properties to enforce its existence
and limited the reactive Multi-Context System very much. Then we released
some of the limitations and presented repairs as a way to still deduce some
valid equilibrium. We could release the limitation on total coherence with some
workaround too. By adding a consistency restoring repair to the management
function of a not total coherent context, such that some belief set can be
computed for this particular context (e.g. the management function could
return {"unsat”} instead of (). In addition consider that These repairs, while
easily defined, are very complex to compute on demand, because each repair
candidate needs to be tested if it is a valid repair. When using more sophisticated
repairs, like a global, incremental, or minimised approach it will need even
more computations to find the right candidate. So even under the existence of
ways to work around cyclic and totally incoherent contexts, one might still not
be intrigued to use that much computational effort to get the system consistent
all the time.

One solution to that problem is to relax the notion of an equilibria stream
In detail we want to remove the necessity of an equilibrium in every time instant
and allow the stream of equilibria to be undefined at certain points.

35

Definition 5.2.31 (Partial Equilibria Stream). Let M = (C,IL,BR) be an
reactive Multi-Context System, KB = (kby, ..., kb,) a configuration of know!l-
edge bases for M, and I an input stream for M until 7 where 7 € NU {oc0}.
Then, a partial equilibria stream of M given KB and Z is a partial function
B : [1..7] - Belys such that

o B! is an equilibrium of M given KB and I?,
e or Bt is undefined.

KBt is inductively defined as
e KB'=KB

upd,, (KB, I, Bt), if B is not undefined.

° ICBt-i—l —
KB, otherwise.

35Note that the idea of relaxing the notion of an equilibria is not new. In their work [Dao-
Tran et al., 2015] the authors relaxed the notion of an equilibrium by only computing the
equilibrium over a set of contexts instead of all.
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Of course this definition is chosen in such a way that every stream of
equilibria is a partial equilibria stream as well. Therefore it is a proper
generalisation of the notion of equilibria streams.

Proposition 5.2.32. Every equilibria stream of M given KB and Z is a partial
equilibria stream of M given KB and I.

Proof. This result follows easily from the observation that for an equilibria
stream B of M given KB and Z, and every ¢, B! is never undefined. Therefore,
in this case the conditions in the definition of partial equilibria stream coincide
with those for equilibria stream. ]

In contrast to equilibria streams, we can now ensure that under every
circumstance a partial equilibria stream exists. This enables one to relax all of
the previously discussed properties and mechanics for the price of having the
possibility to undefined and therefore non existent equilibria.

Proposition 5.2.33. Let M be an reactive Multi-Context System, KB a con-
figuration of knowledge bases for M, and I an input stream for M until T.

Then, there exists B : [1..1] - Belys such that B is a partial equilibria stream
given KB and Z.

Proof. We just need to note that if we take B : [1..7] -» Belys such that, for
every t, B! is undefined, then B is trivially a partial equilibria stream given KB

and Z. ]

Note that a partial equilibria stream is not only useful for (acyclic) reactive
Multi-Context Systems which have totally incoherent contexts. This concept
becomes handy in other settings too. Sometimes it might be unwanted to
compute the equilibria at every time instant. That could be because no new
information arrived via the input stream and no further computation is wanted.
Another reason is that the computation of the equilibrium could not be finished
in a set amount of time. Of course we can strengthen the notion of partial
equilibria streams to force the reactive Multi-Context System to finish the
computation and only relax equilibria streams if it is impossible to compute
a equilibrium. To accomplish that, we need to refine the definition of B? in
Definition 5.2.31, such that B! is undefined if and only if there is no equilibrium
of M given KB and Z.

During this section we have only considered declarative bridge rules, because
we were only interested in computing a valid equilibrium. From the formal
point of view this discussions are completely sound, but due to the decoupled
nature of operative and declarative bridge rules it might lead to unintended side
effects with respect to repairs. Intuitively reactive Multi-Context Systems are
designed in such a way that the declarative bridge rules allow, with the notion
of an equilibrium, a setting where each context needs to agree towards the
beliefs and their caused temporal changes to their knowledge bases. On basis
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of this agreement the operational bridge rules will perform changes on behalf of
the agreed beliefs. In other words, the operational changes are approved by the
equilibrium, computed by the declarative bridge rules and the contexts. Repairs
are designed to remove declarative bridge rules which cause inconsistencies and
make it impossible for the contexts to agree on any result. They do not take
into consideration that the operational bridge rules are not aware of the removal
of some, or even all declarative rules. Because the two rule types are totally
distinct from each other, it is not possible to relate every operational rule to
a declarative one. That can be seen in the example scenario of Section 5.2.3.
There are contexts which have operational rules which are totally unrelated to
the declarative ones (e.g. the stove contexts rules for reacting on the power
switch).

Nevertheless we want to present an idea on how to solve this problem for
these rules which rely on the reasoning from the equilibrium computation. We
will make a connection between the operational and the declarative bridge
rules, such that the operational rule can only be satisfied if the declarative
has been triggered beforehand. To model this directly in the framework of
a reactive Multi-Context System, we will adapt all the operators such that
they are aware of their calling bridge rule. The management function will
be changed accordingly to add a list of all the triggered bridge rules into its
knowledge base. In addition each declarative bridge rule gets its own unique
designation with respect to the context. Then each bridge rules body gets
an additional positive context literal which, namely that the rule can only be
applied if the context believes that the rule has been triggered. Now it is easy
to enhance each dependant operational rule such that it only is utilised if the
context believed in the equilibrium that the needed declarative rules have been
used.

5.2.5 Limiting Non-Deterministic Effects

The previous section has discussed on how tho ensure the existence of at
least one equilibrium during each computation step. This section will focus
on a slightly different problem, namely the reduction of possible equilibria,
which has been considered before in an early stage of reactive Multi-Context
System [Ellmauthaler, 2013]. It is obvious that more than one belief states are
valid equilibria and due to the definitions of the reactive Multi-Context System,
it is one source of non-determinism that it is not defined which equilibrium is
chosen for the equilibria stream. Though, it is not given that each equilibrium
has the same amount of quality, with respect to the other valid candidates.
To achieve this goal, some kind of measurement will be needed to find the
best equilibrium. Due to the need of a comparison of different computations, it is
not possible to just use some modelling techniques, like we have done it for other
things before. Therefore the introduction of preferences is a straightforward
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solution to this issue. Still, it is not entire clear how these preferences should
be added. Some viable options are

(i) adding weights to the declarative bridge rules and optimise the weights,

(ii) allowing the contexts to rate their result and optimise the individual or
global score, or

(iii) adding preference relations over sets of belief sets,

which offer different kind of advantages. By using option (i), it is pretty easy
and straight forward to just sum up the weights and only allow these equilibria
which have either the minimal or the maximal value in total. Basically that is
an easy approach, but on the other hand it might be a tricky task to foresee
the impact of the usage of one operator, based on the triggered bridge rule.
In addition it might become challenging to properly prefer combinations of
used bridge rules over others. Option (ii), which allows each context to give
its (possibly weighted) score for the found equilibrium makes it very intuitive.
Every context has to agree to the belief state, so it is not very awkward that
the context can state how optimal that solution is from its point of view. This
approach can simulate the former one too, by letting the operators and the
management function track which rule has triggered the changes and add this
information to the context. In contrast to that, option (iii) will prefer some
answers over others on the global level. The biggest disadvantage of this concept
is that it would need many different preferences to impose an ordering of the
different equilibria. Additionally it this information needs to be changed every
time some contexts or rules are changed.

Because of the above discussion we conclude that option (ii) seems to be an
easy to adapt and easy to use way to introduce preferences and optimisation
to reactive Multi-Context Systems. The evaluation of the equilibrium is done
by every context in an independent manner and it is possible to easily add
weights to each context. This approach can take information about bridge rule
usage, knowledge on the computation of the equilibria from the point of view
of each context, and meta-knowledge about the different contexts into account.

5.2.6 Expressiveness

Here we will show that our approach is at least as expressive as an universal
Turing machine. This will be done by illustrating a way to simulate the working
processes of a Turing machine with a reactive Multi-Context System. To show
that the concepts of the reactive Multi-Context System are doing the simulation
we will only use a simple logic and the management-function will only perform
basic operations on sets (i.e. set difference \ and union U). That means the
computation of the states of the Turing machine are solely handled by the
interaction of bridge rules and their corresponding equilibria stream. We use
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the definition of a Turing machine, already presented in Section 3.2, which is
recapitulated below.

Definition 3.2.1. A TM is a tuple (Q,T', ., %, 9, qo, F'), where

Q C Q s a finite, non-empty set of states,

I' €S is a finite, non-empty set of tape symbols, the alphabet,

- €T is the blank symbol,

e X is a sequence of alphabet symbols, the input,
e qq s the initial state,

o I C Q is the set of final states, and

0 0:Q\F xI'— QxT x{«,—} is the (partial) transition function.

My is a reactive Multi-Context System with four contexts. Context
C; simulates a tape of a TM, C, contains information about TM states, C}
encodes a transition function, and C. is a control context for operating the
TM simulation and presenting results. All contexts use a storage logic as in
Example 5.2.1, where the set of entries is respectively given by

e = |J {t(p,s),curP(p)},
PEZ,SES

* by = LEJQ{ﬁnal(Q),curQ(Q)},

o Er={f(g,s,¢,s,m)|q,¢d € Q5,5 €S,me {L,R}}, and

e FE. = {computing, answer(yes), answer(no)}.

The input of My is provided by four input streams over the languages

o [L; = Ei,
o IL,=F,
° ILf = Ef, and

IL, = {start, reset},

where IL; allows for setting an initial configuration for the tape, IL, the allowed
and final states of the TM to simulate, IL; the transition function, and input
over IL. is used to start and reset the simulation.
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The bridge rule schemata of the tape context C; are given by:
next(add(t(P,S"))) <« q¢f(Q,S,Q", S, D), t:curP(P), q:curQ(Q),

t:t(P,S),S # S, c:computing.
next(rm(t(P,S))) «+ ¢f(Q,S,Q", 5", D), t:curP(P), q:curQ(Q),
t:t(P,S),S # S’ c:computing.
add(nextP(P — 1)) <+ ¢f(Q,S,Q", 5", <), qcurQ(Q),
t:t(P,S),t: curP(P), c:computing.
add(nextP(P + 1)) « ¢f(Q,S,Q", S, —),q:curQ(Q),
t:t(P,S),t: curP(P), c:computing.

add(nextPdefined
next(add(curP(P))

) t:nextP(P), c:computing.

)
next(rm(curP(P)))

)

)

t:nextP(P), c:computing.
t:curP(P), t:nextPdefined, c:computing.

T Tt

next(add(X)

next(clear

t:: X, not c:computing.
< cureset.

The bridge rule schemata for the state context C, are the following:
next(add(curQ(Q"))) + ¢f(Q,S,Q", 5", D), t:curP(P), g:curQ(Q),
t:t(P,S),Q # Q', c:computing.
next(rm(curQ(Q))) <« ¢f(Q,S,Q', S, D), t:curP(P), ¢:curQ(Q),
t:t(P,S),Q # Q', c:computing.
next(add(X)) <« ¢:X,not c:computing.
next(clear) <« c:reset.

The state C} for the transition function has the bridge rules schemata given

next:
next(add(X)) <« f:X,not c:computing.

next(clear) <« c:reset.

Finally, the schemata for C, are:

add(answer('Y”")) «+ qeurQ(Q), ¢:finalQ(Q), c:computing.

add(answer('N’)) «+ not t:nextPdefined(Q), ¢:curQ(Q),

not ¢:finalQ( @), c:computing.

next(add(answer(X))) < canswer(X),c:computing.

next(rm(computing)) < c:answer(X ), c:computing.
next(clear) <« cireset.

next(add(computing)) < c:start.
All contexts use the following management function:
0 if clear € OP
mng(OP,kb) = < kb \ {X | rm(X) € OP}U
{X | add(X) € OP}

else
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Let T = (Q,T,.,%,0,q0, F) be a TM and w € ¥* an input word for 7.
We want to use My with input stream Z to simulate 7. Assume we start
at time t. We first make sure that all knowledge bases are empty by setting
T! = {reset}. This activates the bridge rules in all contexts of Mty that derive
next(clear). As a consequence, at time ¢ 4+ 1 the contents of all knowledge
bases are deleted. Next, we feed T' and w to MTy by sending

e final(q) for all ¢ € F and curQ(gp) on the input stream g,
o f(q,s,q,s") iff 6(q,s) = (¢, ') on stream f, and

e curP(0) and t(p, s) iff s = s, for w = s, 51, 52, ... on the tape stream t.

Note that it does not matter whether we do this all at once at time ¢t + 1 or
scattered over multiple time points greater than ¢. Assume that we finished
to incorporate all this information to the knowledge bases at time ¢. Then,
we set I = {start} to initiate the simulation of 7. At time ¢’ + 1 the entry
computing is contained in the knowledge base of context C., activating the
bridge rules in all contexts that are responsible for the simulation. From now
on, depending on the current state curQ(q) and the transition function, the
bridge rules of tape context C; always change the content of the tape on the
current tape position indicated by curP(p). A new position p’ of the tape head
indicated by the transition function is reflected by deriving nextP(p’). If such
a belief is in the equilibrium so is nextPdefined and curP(p’) is added at the
next time point. For context C, the current state is updated according to the
transition function. Note that the auxiliary belief nextPdefined is also used in
the bridge rules of context C, for indicating that if the current state is not final
and the transition function is undefined for the current state and input symbol,
then the answer of the TM is no, indicated by answer(’N’). Conversely, if we
arrive at a final state then answer(’Y”’) is derived. If T does not halt on input
w, then also the simulation in M7y will continue forever, unless we stop the
computation by sending reset on input stream Z. once more.

5.2.7 Complexity

In this part of the section we will conclude the discussion on reactive Multi-
Context Systems with a complexity analysis of the introduced theory. Strictly
speaking we are interested in the complexity of answering queries over equilibria
streams of a reactive Multi-Context System. We will stick to the case where
the input is finite, because in the infinite case the decision problem turns out to
be undecidable (see Proposition 5.2.35). Therefore we will consider a reactive
Multi-Context Systems with a finite input stream, such that 7 € N. In addition
we will not consider rule schemata, because they are capable of generating an
infinite amount of rules in general. The third restriction we impose is, that
every knowledge base for the contexts of the reactive Multi-Context System as
well as every input is finite. We will call a reactive Multi-Context System finite

98



5.2 Reactive Multi-Context Systems

if these two confinements on knowledge bases and inputs hold. We are also
assuming that the management function is working in P. Note that we need
to introduce these limitations because the framework of reactive Multi-Context
Systems offers many different degrees of freedom and we are mostly interested in
the computational complexity of the core mechanics and ideas of the framework.
To define a specific set of decision problems, we will tackle two different ones,
which are commonly used for managed Multi-Context Systems.

Definition 5.2.34 (Decision Problems). The problem Q3, respectively QY, is
deciding whether for a given finite reactive Multi-Context System M, a belief b
for the k-th context of M, a configuration of knowledge bases KB for M, and
an input stream T until T, it holds that b € By for some Bt = (By,...,By),
(1 <t <), for some, respectively all, equilibria stream(s) B given KB and Z.

Intuitively these two decision problems cover the question of whether some
belief might hold at some time in at least equilibria stream or if it can be
deduced in every equilibria stream. It is important to note that for these
settings it is not important at which time instant that belief has been holding.

Proposition 5.2.35. Given a finite reactive Multi-Context System M, the
problems Q7 and Q¥ are undecidable for infinite input streams (when T = 00).

Proof. In Section 5.2.6 it is shown that a reactive Multi-Context System with
simple context logics can simulate a Turing machine. Deciding Q" or Q2 for
an infinite run would solve the halting problem, therefore these problems need
to be undecidable too. O

To speak about the complexity of the whole reactive Multi-Context System,
we will need to take the complexity of the contexts too. We will use the
notion of context complexity (CC 5.2.37), first used in analysing Multi-Context
System |Eiter et al., 2014|. For a definition of the context complexity, we will
only focus on the relevant parts of the bridge rules, which will decide Q7 or Q".

Definition 5.2.36 (Relevant Beliefs). Given M, b, k, and T as in Defini-
tion 5.2.3/4, the set of relevant beliefs for a context C; of M is given by

RB;(M, k:b) ={b' | r € BRp,,i:b' € body(r) V not i:b’ € body(r),
he{l,...,n}}U
{b|k =i}

Then, a projected belief state for M and k:b is a tuple
Bfi7 = (B1 N RB1(M, k:b), ..., B, N RB, (M, k:b))

where B = (B1,...,By) is a belief state for M. If B is an equilibrium, then we
call this tuple projected equilibrium.
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CC(M, k:b) Q- Q"

P NP coNP
AP(i>2) | 5P P
(=1 | =P Iy
PSPACE | PSPACE PSPACE
EXPTime | EXPTime EXPTime

Table 5.1: Complexity results of checking Q3 and QY

Now we can formulate the context complexity, which is defined for each
context individually and for a given reactive Multi-Context System. Note that
for the complexity of the reactive Multi-Context System, we will only need to
take a look at the highest complexity context, as their computations are not
dependent on the computation of the other contexts.

Definition 5.2.37 (Context Complexity). The context complexity of C; in
M with respect to k:b for a fixed input | is the complezity of deciding the
context problem of Cj, that is, whether for a given projected belief state B =
(Bi,...,By) for M and k:b, there is some belief set B, for C; with B; = B/ N
RB;(M,k:b) and B} € acc;(mng;(app;(l,B), kb;)). The context complexity
CC(M, k:b) of an entire reactive Multi-Context System is a (smallest) upper
bound for the context complexity classes of its contexts.

Table 5.1 is now specifying the complexity for both decision problems under
a given context complexity for a given finite reactive Multi-Context System.
Note that this shows pretty easily that the overall complexity always depends
on the most complex context formalism and might move up to one level in the
polynomial hierarchy. This is to be expected, considering how the equilibrium
is computed. While this behaviour is unsurprisingly, it has some conclusions
to consider. If one context has a high computational complexity compared to
the others (e.g. description logic has decision problems in EXPTime, while
answer set programming is usually at most at %), the whole system might
need to wait for the computation of the belief set of one of the computational
harder to compute problems. Of course it might not be as severe as it sounds
like, as these complexities are worst case scenarios and in general one can
try to utilise easier to compute sub-classes of the problems or use intelligent
pre-processing steps and algorithms, but it is still something to consider.

Theorem 5.2.38. Table 5.1 summarizes the complexities of membership of
problems Q3 and Q" for finite input steams (until some 7 € N) depending on
the context complexity. Hardness also holds if it holds for the context complezity.
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Proof. The membership results for the Q7 cases (with the exception of the
case where CC(M, k:b) = EXPTIME) can be argued for as follows: a non-
deterministic Turing machine can be used to guess a projected belief state
Bt = (By,...,By,) for all 7 inputs in Z in polynomial time. Then, iteratively
for each of the consecutive inputs Z¢, first the context problems can be solved
either polynomially or using an oracle for the context complexity (the guess of
B! and the oracle guess can be combined which explains why we stay on the
same complexity level for higher context complexity). If the answer is 'yes’,
B! is the projected equilibrium. We can check whether b € B;, compute the
updated knowledge bases and continue the iteration until reaching the last
input. For PSPACE the same line of argumentation holds as PSPACE =
NPSPACE. In the case of CC(M, k:b) = EXPTIME, we iterate through
the exponentially many projected belief states for which we solve the context
problem in exponential time and proceed as before. The argument is similar
for the co-problem of QY. Hardness holds because being able to solve Q7,
respectively the co-problem of QY, one can decide equilibrium existence for
managed MCSs which is hard for the same complexity classes [Brewka et al.,
2011b] given hardness for the context complexity of the managed Multi-Context
System. O
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Chapter O

Asynchronous Multi-Context
Systems

Now we want to introduce and discuss another framework for Multi-Context
Systems. The concept of asynchronous Multi-Context Systems has already
been considered in the paper about ways to generalise Multi-Context Systems
towards stream reasoning |Ellmauthaler, 2013]. There only the idea of ‘“reactive
Bridge Rules” has been introduced and discussed. Intuitively the idea was
to move away from the strong semantics of managed Multi-Context Systems
and allowing these kind of rules to exchange their beliefs based on their own
beliefs without the need of approval of other contexts. Further research on this
basic concept has led towards the introduction of asynchronous Multi-Context
Systems [Ellmauthaler and Piihrer, 2014, Ellmauthaler and Piihrer, 2015] and
later it got refined by a way to control the flow of information even more in
terms of information packaging [Ellmauthaler and Piihrer, 2016].

The motivation for developing asynchronous Multi-Context Systems was
based on three different observations.
First, reactive Multi-Context Systems are a very powerful formalism to model
integration of information between different context formalisms and means to
react dynamically to external data over time. Nevertheless, all the contexts need
to do their reasoning together and therefore every embedded formalism is kind of
synchronised to each other. This fact is reflected by the overall computational
complexity of reactive Multi-Context Systems too (see Section 5.2.7). In
addition each belief state which needs to be checked for being an equilibrium
needs to be communicated to every context beforehand, which might lead
to a vast amount of communication overhead. Here the idea of a paradigm
shift emerged, which allows each context to compute its belief sets on its own
pace and inform the others about the results. Due to this basic different and
more loosely coupled, asynchronous approach the framework has been named
asynchronous Multi-Context System.
The second motivational reason is a severe lack of some easy to use concept
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to define exchange of information between intelligent systems in a dynamic
environment. We tried to design these asynchronous Multi-Context System
in such a way that it consists out of different modules which can be defined
as independently as possible. Therefore we created a way to define the whole
information flow, the computation of beliefs, and reasoning on behalf of them in
a uniform pattern. This allows one to settle a basic ground for definition, testing,
and evaluation of systems which are tailored towards knowledge integration as
well as reasoning in dynamic environments.

Third, it is not very common in the current world of the world wide web, that
information is synchronously spread during computations of different services.
It is more common that requests and responses are sent in between the different
services to transfer information (e.g. RESTful web services [Richardson and
Ruby, 2008]). So it is a reasonable step to change the flow of information such
that the information is sent towards other contexts, which are interested in the
given data. In other words, we don’t want the information being spread out to
every context, but delivered to these contexts which need it.

Note that we want to introduce asynchronous Multi-Context Systems as
a language formalism to standardise communication and knowledge exchange
between intelligent reasoning contexts. This approach has enough expressiveness
to model the integration of knowledge between different formalisms and can
still handle the dynamic responses needed for reasoning over time with external
information. In addition it allows for loosely coupled reasoning between contexts
to reduce communication overhead and neglecting the need of synchronous
reasoning. Still, the framework will be able to have groups of contexts which
behave like a reactive Multi-Context System, which will be shown later in this
chapter.

The remainder of this chapter is structured as follows: First we will introduce
asynchronous Multi-Context Systems in Section 6.1. Then we will give a brief
modelling example, based on the second scenario given in Chapter 236, To relate
the whole concept to reactive Multi-Context Systems, a simulation approach
will be presented in Section 6.3 and finally we will discuss a method to manage
the incoming information of a context via a technique called declarative data
set packing.

6.1 Syntax and Semantics of Asynchronous
Multi-Context Systems

For the formalism used inside the contexts, we will utilise the more expressive
and adaptive version of a logic suite (see Section 3.4 for further details). For
easier readability we recall the previously given Definition 3.4.1 again.

36Note that this example is only marginally updated from the one given in [Ellmauthaler
and Piihrer, 2015] and some passages are taken directly from my own work done there
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Definition 3.4.1. A logic suite LS = (KBps, BSrs, ACCLg) consists of the
set BSs of possible belief sets, the set KBrg of well-formed knowledge-bases,
and a nonempty set ACCrg of possible semantics of LS, i.e. accpg € ACCrg
implies accrg : KBrg — 2B5Ls

An asynchronous Multi-Context System will use the context of sensors as
external incoming information streams and output streams to deliver concluded
information to the outside world. We will assume a set Nof names that will
act as labels for sensors, contexts, and output streams in a given asynchronous
Multi-Context System. Note that the naming will be under the unique name
assumption, which means that two different individuals will have different
names.

Definition 6.1.1 (Asynchronous Context). A context is a pair C = (n, LS)
where n € N is the name of the context and LS is a logic suite.

In analogy to previous notations we will use n¢g and LS respectively to
denote the two members of a context C' = (n, LS). With the contexts defined,
we can now get an understanding of an asynchronous Multi-Context System.

Definition 6.1.2 (Asynchronous Multi-Context System). An asynchronous
Multi-Context System (of length n with m output streams) is a pair M = (C, O),
where C = (C4, ..., Cy,) is an n-tuple of contexts and O = (o1, ...,0p,) with
0j € N for each 1 < j < m is a tuple containing the names of the output
streams of M.

To denote the names used in the set {n¢,,...,n¢,,01,...,0n}, we will
write N (M), which is a collection of all names used in an asynchronous Multi-
Context System for contexts and output streams. One basic idea behind the
asynchronous Multi-Context Systems is to model communication with other
contexts and the outside world by means of streams of data. To do so, we
will assume that every context has an input stream on which information can
be written from external sources which we call sensors and internal sources
(i.e. other contexts). These input streams are populated by some pieces of
abstract information i € IL which is part of some communication language IL.
In our framework, the handled information is provided towards the different
contexts and output streams via information buffers which model the incoming
information.

Definition 6.1.3 (Data Package). A data package is a pair D = (s, I), where
s € N is either a context name or a sensor name, stating the source of D, and
I C IL is a set of pieces of information. An information buffer IB is a sequence
of data packages.

Intuitively we assume that this information buffer is filled on the fly, when-
ever some abstract information in form of a data package is arriving. This will of
course happen in an asynchronous way, as we do not have any synchronisation
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or ordering process for them. Due to this asynchronous handling of information,
our system needs a way to decide whether important information for further
processing is still missing or enough data has arrived already. This decision is
done by the computation controller.

Definition 6.1.4 (Computation Controller). Let C' = (n, LS) be a context, and
SIB the set of all possible finite information buffers.. A computation controller
for C is a function cc : KB¢ x SIB — {0, 1} mapping either true or false to
every possible knowledge base kb € KB and information buffer 1B € SIB.

In this presented version the function computes only a binary decision,
namely whether the information of the input buffer has enough information
for computation or a computation should be postponed till more information
is available. Of course it would be easy to add additional decisions for this
function, by allowing additional values which are representing that a computa-
tion should be cancelled and started with new information or that the system
should pause and postpone some computational work. Depending on the used
formalism, another extension might be to allow some late delivery of additional
information3”.

Next we will have a look on how to transfer beliefs between contexts. For
reactive Multi-Context Systems we have used bridge rules, but these are not
applicable because we do not want to construct some notions of an equilibrium.
Therefore we will use output rules, which will only allow atoms with respect to
their own context. Note that a rule will be satisfied based on the independently
computed beliefs of this one context. The basic idea is now, that the head
of such a rule will define to which other buffer what pieces of constructed
information are sent to.

Definition 6.1.5 (Output Rule). Let C = (n,LS) be a context. An output
rule r for C' is an expression of the form

<t,i> <b1,...,bj,not bji1,...,n0t by, (6.1)

such that t € N is the name of a context or an output stream, i € IL is a piece
of information, and every by (1 < k < m) is a belief for C, i.e. by € B for
some B € BSg.

To refer to these buffers which get information delivered from one context,
we say that t is a stakeholder of n. So intuitively, a stakeholder is an address
reference to the receiver of some information i. In addition we will use the
notions of head(r) and body(t) to refer to the head and body part in the same
way as it has been done for reactive Multi-Context System.

3TFor some formalisms concepts of lazy or on-demand reasoning are currently developed,
like incremental clingo [Gebser et al., 2011e] or online clingo [Gebser et al., 2012a| for Answer
Set Programming encodings.
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Now it might get useful to have means to know which information gets
delivered from one context to one other stakeholder. This is defined by the
relevant output of a context with respect to the set of output rules and the
computed belief sets of the context.

Definition 6.1.6 (Output). Let C = (n, LS) be a context, OR a set of output
rules for C, B € BSs a belief set, and n’ € N a name. Then, the data package

dc(B, OR,n") = (n,{i | r € OR, head(r) = (n',i), B = body(r)})
is the output of C' with respect to OR under B relevant for n’.

In the same manner as it has been done for the revised reactive Multi-
Context Systems, we still have no knowledge base defined for the different
contexts of the asynchronous Multi-Context System. For the same reasons of
dynamics over time, we have chosen to define them outside the base formalism.
We will wrap this concept, together with computation control, translation from
input buffer to knowledge bases, and passing information through to other
stakeholders into the notion of a context configuration.

Definition 6.1.7 (Configuration of a Context). Let C = (n, LS) be a context.
A configuration of C' is a tuple CF = (kb, acc, |B, CM), where kb € BS1g, acc €
ACCrg, IB is a finite information buffer, and CM is a context management
for C which is a triple CM = (cc, cu, OR), where

e cc is a computation controller for C,
e OR is a set of output rules for C, and

e cu is a context update function for C which is a function that maps
an information buffer IB = D1,...,Dy and an admissible knowledge
base of LS to a configuration CF' = (kb' acc’,IB',CM’) of C with IB' =
Di,...,Dy, for some k > 1.

Again, we will use ceccm, ORcm, and cucm to refer to the components
of the context management. Note that this notion of a context management
can be seen as a more powerful counterpart to the management function
used for reactive Multi-Context System. One configuration holds the current
knowledge base, the currently chosen semantics for the context formalism,
and the currently accumulated input stream. In addition it has the context
management, whose purpose it is to modify the context based on the given
information of the input buffer. First it can be decided via the computation
controller if something needs to be done. The context update function allows
the context management to produce a new configuration based on the current
knowledge base and the input buffer. That allows the whole context to change
over time to react to the dynamics of the whole asynchronous Multi-Context
System. In the easiest version the context update function will only remove the
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information from the input buffer which has been taken into account already
and is translating the input buffer data into updates to the knowledge base
or the used context semantics. The latter one can become particularly handy,
because it might happen that two problems might be solved by the same
semantics, but a specialised algorithm or variation of the semantics might
perform better on one of the problems. Due to the high adaptive nature of
this formalism, we think that fast on-demand change of semantics makes much
more sense than for reactive Multi-Context Systems. Still, it is possible to do
even more, like changing the output rules to register or remove stakeholders,
change the quantity and quality of information given to them, and even change
the computation controllers behaviour.

Definition 6.1.8 (Configuration of an Asynchronous Multi-Context System).
Let M = ((C4,...,Cp),(01,...,0m)) be an asynchronous Multi-Context System.
A configuration of M is a pair

CF = ((CFy,...,CF,),(0OBq,...,0B;,)),
where

e foralll <i<mn, CF; = (kb,acc,IB,CM) is a configuration for C; and
for every output rule r € ORcm we have n € N(M) for (n,i) = head(r),
and

e OB; = ...,D;_1,D; is an information buffer with a final element D,
that corresponds to the data on the output stream named o; for each
1 < j <m such that for each h <1 with Dy, = (n,i) we have n = n¢; for
some 1 <1 <n.

Similar to the context configuration, we have now a configuration of an
asynchronous Multi-Context System. Intuitively it consists of one configuration
for each context and a set of output buffers. In addition it is ensured that each
output rule is referring to some context or output buffer and we do formalise
that one output buffer is in fact just an input buffer which is not attached to a
context.

These definitions now lead to the concept of a run structure, which will
represent the changes over time in the dynamic environment. Note that we do
not define how much time is between two different points in time and that we
do not state any more assumptions towards this concept.

Definition 6.1.9 (Run Structure). Let M = ((C1,...,Cy),(01,...,0m)) be
an asynchronous Multi-Context System. A run structure for M is a sequence

R=...,CFt, CF**L CcFi*2, ... |

where t € 7 is a point in time, and every CF" in R (t' € Z) is a configuration
of M.
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Because we want to take into account that computation takes time and
that belief sets might need some time to be completely enumerated or put
out, it is not enough to have such a notion of run structure. To model this
computation, together with concurrent generation of answers and verification of
non-existence of further belief sets, we will additionally introduce the boolean
variable busy for each configuration in a run structure. Hence, context Cj is
busy at time ¢ if and only if busy is true for this context in this time instant.
While one context is busy it will not process input stream data further, till
all answers of the current computation are processed. As soon as one belief
set is computed, the output rules determine which information is passed on
to the different stakeholders (i.e. other contexts or output buffers). We will
represent this by the notion of a stakeholder buffer. An information buffer B is
the stakeholder buffer of C; (for n) at time ¢ if

e B= IB’;/ for some 1 < ¢ < n such that n = n¢; is a stakeholder of some
output rule in OR¢y or

e B= OBE, for some 1 < j/ < m such that n = oj is stakeholder of some
output rule in ORcpt.

Another newly used concept is that we want to provide a way to notify the
contexts stakeholders about the end of a computation. To achieve this, we
introduce the symbol EOC € IL that will be sent to other contexts stakeholders
as a notification that no more computation will be done3®. Together with all
these concepts, we will now define how an asynchronous Multi-Context System
should behave during a run.

Definition 6.1.10 (Run). Let M be an asynchronous Multi-Context System
of length n with m output streams and R a run structure for M. R is a run for
M if the following conditions hold for every 1 <i <n and every 1 < j < m:

(i) if CF! and CFﬁJrl are defined, C; is neither busy nor waiting at time t,
then

— C; is busy at time t + 1,
— CF™t = cugy (1B, kb)
We say that C; started a computation for kbfJrl at time t + 1.
(ii) if C; started a computation for kb at time t then

— we say that this computation ended at time t', if t' is the earliest time
point with t' >t such that (nc,,EOC) is added to every stakeholder
buffer of C; at t'; the addition of do, (B, ORy,,n) to the buffer is

called an end of computation notification.

38Note that if some stakeholder only gets this EOC-token, it can deduce that either no
output rule fired for the context or that that it could be verified that no belief set exists at all
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— for all t' > t such that CFY is defined, C; is busy at t' unless the
computation ended at some time t” with t < t" < t'.

— if the computation ended at time t' and CFf/+1 is defined then Cj is
not busy at t' + 1.

(ii1) if C; started a computation for kb at time t that ended at time t' then for
every belief set B € accl there is some time " with t < t" <t such that

— dc; (B, OR e, n) is added to every stakeholder buffer of C; forn
at t. 1

We say that C; computed B at time t”. The addition of the output
dc; (B, OR e, n) to some buffer is called a belief set notification.

(iv) if OB; and OB;Jrl are defined and OB;- = ...,D;_1,D; then OB;TH =
...,Di—1,Dy, ..., Dy for somel’ > 1. Moreover, every data package Dy
with I < 1" < I’ that was added at time t + 1 results from an end of
computation notification or a belief set notification.

(v) if CFt and CF™ are defined, C; is busy or waiting at time t, and B! =
D1,...,D; then we have |B§Jrl = Dy,...,Dy,...,Dy for some ' > L.
Moreover, every data package Dy with I < 1" <1’ that was added at time
t+ 1 either results from an end of computation notification or a belief set
notification or n ¢ N(M) (i.e. n is a sensor name) for Dy = (n,i).

Condition (7) describes how the transition from the idle phase to an ongoing
computation is handled. How such a computation ends is formalised in (7).
There the behaviour about sending the EOC-token is defined too. In Condition
(#3) it is stated that stakeholders are notified with the corresponding piece of
information as soon as the belief set is computed. Additionally that means it
might take variable amounts of time in between information deliveries about
the same computation if it has more than one belief set. Finally, the addition of
data towards an output stream or an input stream are expressed in Condition
(iv) and (v) respectively. The transition of sensor data into input streams is
implicit, which means that this information is just added from the outside and
the system is modelling this mechanics any further. That implies that data
from one sensor may appear at any time on some input streams and the only
trace to the sensor is by its name appearing in the data package.

In summary the run is characterised as follows: Whenever a context C
is not busy, its context controller cc is computed to check whether a new
computation should be done. If that is the case, the current configuration
of the context is replaced by the newly generated one of the context update
function cu of C'. This newly generated configuration needs to ensure that the
newly generated input buffer is a suffix of the old one and a new computation
for the updated knowledge base and semantics will start. After some undefined
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span of time, belief sets are computed and based on the output rules of C,
data packages are sent to stakeholder buffers. Then at some point of time, all
stakeholders are notified by the context that the computation is finished, which
is done with the EOC-token. After this notification the context is no longer
busy.

Based on these definitions, it is obvious to see that many decisions have
been deliberately abstract, like the undefined spans of time, the high dynamics
of changing configurations, and the adaptive change of semantics. Neverthe-
less, we think that this is an easy to use formalism to model communication
efforts between parts of other systems. In addition it is possible to express
communication needed for stronger coupled semantics, like the one used for
reactive Multi-Context Systems and might help to find bottlenecks for actual
implementations and a common language ground to design and develop different
parts of big interconnected systems.

6.2 Modelling an Example

Based on the suggestion in the previous section, which have proposed asyn-
chronous Multi-Context Systems as a way to define communication paths and
ways to formalise flow of information, we will now take a look on the second ex-
ample scenario from Chapter 2. Our example deals with a recommender-system
for the coordination and handling of ambulance assignments. The suggested
asynchronous Multi-Context System supports decisions in various stages of an
emergency case. It gives assistance during the rescue call, helps in assigning
priorities and rescue units to a case, and assists in the necessary communication
among all involved parties. The suggestions given by the system are based
on different specialised systems which react to sensor readings. Moreover, the
system can tolerate and incorporate overriding solutions proposed by the user
that it considers non-optimal. We will try to show the intuition behind the
system, therefore we will not go into detail for every context and system3?.

Figure 6.1 depicts the example asynchronous Multi-Context System which
models such a Computer-Aided Emergency Team Management System (CAET
Management System). It uses @ for sensor input, e ssE== for input
streams. Green full arrows represent output rule related communication, while
blue dotted arrows depict data flow from sensors. Note that interaction with a
human (e.g. ER employee) is modelled as a pair containing an input stream
and an output stream. The system consists of the following contexts:

Case Analyser (ca) This context implements a computer-aided call handling
system which assists an emergency response employee (ER employee) dur-

39Tis choice is deliberately done to show how such a system can be described on different
levels of detail in real life. Again, this stresses the fact that we want to use this framework
as a language for specifications and not as a formal system which competes on one system to
be used as a solution to different reasoning problems
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Figure 6.1: The Computer-Aided Emergency Team Management asynchronous
Multi-Context System

ing answering an emergency call. The system utilises reasoning methods
to choose which questions need to be asked based on previous answers.
In addition, it may check whether answers are inconsistent (e.g. amniotic
sac bursts when the gender is male). For these purposes the case analyser
context may also consult a medical ontology represented by another
context. The communication with the ER employee is represented, on the
one hand, as a sensor that reads the input of the employee and, on the
other hand, by an output stream which prints the questions and results
on a computer screen.

To present the dialogue between the computer and the employee the
system might use some kind of argumentation representation as additional
graphical support for the human. The computed acceptable sets of
arguments can then be used to communicate further on. Output rules
would then use argument names as atoms to decide which information
shall be forwarded to stakeholders and which should not.

During the collection of all the important facts for this emergency case,
the analyser computes the priority of the case and passes it to the task
planner.

Med Ontology (mo) This medical ontology can be realised, e.g. by a de-

scription logic reasoner which handles requests from the case analyser and
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returns more specific knowledge about ongoing cases. This information
may be used for the prioritisation of the importance of a case.

Task Planner (tp) This context keeps track of emergency cases. Based

on the priority and age of a case and the availability and position of
ambulances it suggests an efficient plan of action for the ambulances to
the (human) case dispatcher (cd). The dispatcher may approve some of
the suggestions or all of them. If the dispatcher has no faith in the given
plan of action, she can also alter it at will. These decisions are reported
back to the planning system such that it can react to the alterations and
provide further suggestions. Based on the final plan, the task planner
informs the ambulance about their new mission.
The knowledge base of the context is an answer-set program for reasoning
about a suggested plan. It gets the availability and position of the
ambulances by the ambulance manager. In addition, the cases with their
priority are provided by the case analyser. With this information, the
task planner gives the locations of the ambulances together with the
target locations of the cases to a navigation system which provides the
distances (i.e. the estimated time of arrival (ETA)) of all the ambulances
to all the locations.

Amb Manager (amb) The ambulance manager is a database, which keeps
track of the status and location of ambulance units. Each ambulance team
reports its status (e.g. to be on duty, waiting for new mission, ...) to the
database (modelled by the sensor “Ambulance” (amb)). Additionally, the
car periodically sends GPS-coordinates to the database. These updates
will be pushed to the task planner.

Navigation (na) This part of the asynchronous Multi-Context System gets
traffic information (e.g. congestions, roadblocks, construction zones, ...)
to predict the travel time for each route as accurate as possible. The task
planner may push a query to the navigation system, which consists of a
list of locations of ambulance units and a list of locations of target areas.
Based on all the given information this context will return a ranking for
each target area, representing the ETAs for each ambulance.

Now we want to have a closer look on the instantiation details of some aspects
of our example. At first we investigate the CC function of the case analyser.
It allows for the computation of new belief sets whenever the ER employee
pushes new information to the analyser. In addition, it will also approve of a
new computation if the medical ontology supplies some requested information.
Recall that the case analyser also assigns a priority to each case and that
we want to allow the employee to set the priority manually. Let us suppose
that such a manual override occurs and that the case analyser has an ongoing
query to the medical ontology. Due to the manual priority assignment, the
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requested information from the ontology is no longer needed. Therefore, it
would be desirable that CC does not allow for a recomputation if all conclusions
of the ontology are only related to the manually prioritised case. With the
same argumentation in mind, the context update function cu will ignore
this information on the input stream too. This kind of behaviour may need
knowledge about past queries which can be provided by an additional output
rule for the case analyser which feeds the relevant information back to the
context.

Next, we will have a look at the task planner that is based on answer-set
programming. We will only present parts of the program, to show how the
mechanics are intended to work. To represent the incoming information on the
input stream, the following predicates can be used:

case(caseid,loc,priority) represents an active case (with its location and
priority) which needs to be assigned to an ambulance.

avail (amb,loc) states the location of an available ambulance.

eta(caseid,amb,value) provides the estimated time of arrival for a unit at
the location of the target area of the case.

assign(amb,caseid) represents the assignment of an ambulance to a case by
the dispatcher.

These predicates will be added by the context update function to the knowledge
base if corresponding information is put on the input stream of the context.
Based on this knowledge, the other components of the answer-set program
will compute the belief sets (e.g. via the stable model semantics). Note that
an already assigned ambulance or case will not be handled as an available
ambulance or an active case, respectively. In addition, cu can (and should)
also manage forgetting of no longer needed knowledge. For our scenario it may
be suitable to remove all eta, avail and case predicates when the cases or the
unit is assigned. The assign predicate can be removed when the ambulance
manager reports that the assigned ambulance is available again.

The set OR of output rules of the task planner could contain the following
rules: 0

(cd,assign(4,C)) sugassignment (A, C)
+ avail(A),not assign(A, ),loc(A, L)
+ case(C, P),loc(A, L),not assign(A, )

assign(4, C)

)
(na,queryA(L))
(na,queryC(L))

(amb,assigned(A, C)) <

The first rule informs the case dispatcher (cd) about a suggested assignment
that has been computed by the answer-set program. Rules two and three

4OKeep in mind that in an actual implementation one may want to provide further
information via communication.
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prepare lists of ambulances and cases for querying the navigation context.
Recall that the latter needs a list of ambulance locations (generated by rule
two) and a list of target area locations (generated by rule three). Also keep
in mind that for each belief set a data package with all information for one
context or output stream is constructed. So the whole list of current target
areas and free ambulance units will be passed to the navigation context at
once. The last rule notifies the ambulance team that it has been assigned to a
specific case.

Related to this example we want to mention privacy aspects as a real world
policy which is especially important to applications in public services and health
care. As the multi-context system is a heterogeneous system with different
contexts, a completely free exchange of data may be against privacy policies.
This issue can be addressed by the adequate design of output rules, which can
also be altered with respect to additional information in the input stream (e.g.
some context gains the permission to receive real names instead of anonymous
data). So each context may decide by its own which parts of the belief sets are
shared and exchanged with other contexts.

Another interesting aspect about asynchronous Multi-Context Systems is
the possibility to easily join two asynchronous Multi-Context Systems together,
outsource a subset of contexts in a new asynchronous Multi-Context System,
or to view an asynchronous Multi-Context System as an abstract context for
another asynchronous Multi-Context System in a modular way. This can be
achieved due to the abstract communication by means of streams. With respect
to our scenario there could be some asynchronous Multi-Context System which
does the management of resources for hospitals (e.g. free beds with their
capabilities). The task planner might communicate with this system to take the
needed services for a case into account (e.g. intensive care unit) and informs
the hospital via these streams about incoming patients. It would be easy to
join both asynchronous Multi-Context Systems together to one big system or
to outsource some contexts as input sensors paired with an output stream. In
addition, one may also combine different contexts or a whole asynchronous
Multi-Context System to one abstract context to provide a dynamic granularity
of information about the system and to group different reasoning tasks together.

6.3 Simulating Reactive Multi-Context Systems

To show that asynchronous Multi-Context Systems are expressive enough to
handle the complexities of a reactive Multi-Context System, we will now show
how to simulate an arbitrary reactive Multi-Context System by means of an
asynchronous Multi-Context System. Of course one might just define one
context which computes the equilibria and therefore be done, but that would
not be very meaningful. Therefore we will only use context formalisms which
are on par with the reactive Multi-Context System in question. Note that a
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simulation in the other direction (i.e. simulating an asynchronous Multi-Context
System by means of a reactive one) is not feasible, as the synchronised nature
of the equilibrium would not allow concurrent computation of information. In
addition it would not be possible to deliver results just as they emerge for
the same reasoning. Another difference is that each context can utilise the
computation controller and the context update function to choose whether one
or all answers of other contexts are relevant for computation.

Due to this big set of differences, asynchronous Multi-Context Systems
have another source of non-determinism. As computation time, communication
time, and deliberate decision-making for input stream conversion and start
of computations are completely asynchronous but still allowed to be different
each time, it is not possible to present a deterministic outcome in a general
setting®!.

The simulation of a reactive Multi-Context System will also demonstrate
that asynchronous Multi-Context Systems are a viable language frame to
describe other formalisms with respect to communication and computation
efforts. In other words, the asynchronous approach on the reactive system will
give insight into possible implementation details for such a system. Additionally
we get an example where some (in this case all) contexts get synchronised
by means of a management contert which controls the flow of computation
between different contexts and tells them via specific input stream information
that a computation needs to be started.

Lets assume we have some arbitrary reactive Multi-Context System

M, = <CT‘7 ”—ra BRT>

with n different contexts (C1, ..., Cy,) and sets of bridge rules (BR;1, ..., BR,),
as well as k different input languages for streams (IL1, ..., IL;), we will con-
struct an asynchronous Multi-Context System M, with one output stream. To
simulate the behaviour of each context C; € C,., we introduce for every C; the
following contexts:

e a context Cjp, that stores the current knowledge base of context C; and
will only change if the knowledge base is updated due to an equilibrium
and an updated knowledge base due to next-operator changes,

e a context Cge; Which accepts a knowledge base candidate and computes
its semantics, and

e a context C),, that implements the bridge rules and the management
function of the context.

41 Although, due to thoughtful modelling of the contexts and their management methods,
control is possible, as shown by the simulation of a reactive Multi-Context System.
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In addition we will need some global contexts, which control the flow of
information and enforce that the semantics of reactive Multi-Context Systems
are followed:

e (;, is receiving all the input for M, and distributes these information
to every context C,, where at least one bridge rule is dependant on
the given input language information. It is keeping track of the current
computation status and will only send information to the other contexts
after the next operation has been finished.

e (, guesses equilibrium candidates for M, and passes them to the man-
agement contexts Cp,,.

e (. compares every belief set it gets from Cgc.; and the one guessed by Cj.
In case it is not matching, it notifies C; to guess a new candidate. If an
equilibrium is found, then the management contexts Cj,, are informed to
apply the next operator bridge rules and send their updated knowledge
base to their respective Cip,. In addition the input context Cj, is informed
to distribute the new input and C; gets informed that it needs to start
a new round of guessing equilibria candidates. Finally the context will
write the equilibrium to the output stream to inform the outside world
about the result of the computation.

6.4 Declarative Data Set Packing

In this final section about asynchronous Multi-Context Systems, we will now
take a further look into the principles of input streams for contexts. In general,
when dealing with stream data, it is always important to keep track of the
information buffered in the input stream. Data might be already outdated, not
completely represented by the pieces in the current stream, or just not relevant
for the current state of computation. The basic idea of declarative data set
packing is to combine the incoming data into packages, which should either be
kept or directly used for computation, while dismissing other not relevant data*?.
This can be seen as some kind of preemptive filter on incoming information,
before the actual computation controller and the context update function
is triggered. Note that this filter can be seen as some part of a combined
computation controller and context update function which makes a rough
approximation to make it easier for them to process the input buffer data. As
this kind of task can be seen as a combination of classification and configuration
task, we think that answer set programming is an easy to utilise and powerful
formalism to use. Answer set programming has in many cases the advantage
that small changes in the requirements will imply small changes in the problem

42Note that we are calling the packages of information data set and not data package, as
it can be some information provided by an input stream as well as by a context output rule.
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encoding for solving the described problem. In addition configuration problems
have been solved efficiently with answer set programming tools too [Soininen
et al., 2001, Gebser et al., 2011d]. This is why we use a answer set programming
point of view on this data packaging. In other words, we will use some answer
set programming encodings and the deduced predicates from the stable models
of the program will control on how to deal with the data from the input buffer.

The basic intuitive idea about the packaging is that we do not inspect
the content of the data, but do reasoning on behalf of the meta-data around
the package. This meta data can either be produced during the packaging
step or on the other hand it can be provided by the sending context to make
it easier for its stakeholders to parse the given information. Some of this
information is already implicit in the system, like that a computation can
have more than one data package and that each computation is finished by
sending the EOC-token. In this approach we will extend this notion and give
every computation a unique identifier, so it is clear whether one data package
belongs to a current computation or is just some delayed piece of information
from previous computations. To give additional information about some set
of data can be done by tagging the information. These tags are just normal
ground information associated with one or more data packages generated by
output rules. It might be some information about a given computation (e.g.
the current optimum value of an optimisation task or priorities of some given
information). An important aspect on this concept is, that it can be added to
the current concept of asynchronous Multi-Context Systems per context and
that this filter system can be used in a very modular and optional way.

Table 6.1 provides an overview on the different built-in atoms which can be
used to define the data packaging. The associated type reflects whether these
atoms are expected to be part of the input provided in the input buffer or as a
directive. Note that the usage of other atoms and predicates is allowed, but only
these defined directives will cause some action from the context on the input
buffer. We have chosen to have two different variants of computations. The first
variant packs one so-called package schema per answer set, while the second
one allows for multiple schemata per answer set. We are aware that the kind of
lists used for the second variant is not supported in answer set programming in
a native way. Still it is possible to nest binary and unary predicates to simulate
a list*3. This allows us to treat packs from different schemata differently with
only one computation of an answer set. In the following we will discuss some of
the basic design choices and options we need to take into account when using
data set packing.

Triggering Computation When and how often such a computation shall
be done to filter the input buffer depends highly on the needs of the application.

43Tn the following sections we will use an answer set programming style notation of
#list{elements} to represent some language feature to construct these lists
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Atom Type Description
dsAvail(ds) Input Data set ds is available on the input buffer
dsComp (ds, comp) Input Data set ds belongs to computation comp
source (comp, ctxt) Input Computation comp is a computation of con-
text ctxt
source(ds, ctxt) Input Data set ds originates from context ctxt
source(ds,therm) Input Data set ds originates from sensor therm
eoc (comp) Input Computations comp has ended.
tag(comp,solves(probll)) Input Computations comp is tagged with function
solves (probll)
tag(ds,"optimum") Input Data set ds is tagged with string "optimum"
time (1000) Input An external clock provides 1000 as current
time
ignore (comp) Directive | Ignore future data sets of computation comp
addTag(comp,best(3)) Directive | Tag computation comp with function
best (3)
rmTag(comp, "trusted") Directive | Remove the tag "trusted" from computa-
tion comp
rm(comp) Directive | Remove all data sets of computation comp
from the input buffer
rm(ds) Directive | Remove data set ds from the input buffer
rmPack Directive | Remove all data sets of processed packages
from the input buffer
rmPack(sch) Directive | Remove all data sets of processed packages
in schema sch from the input buffer
Variant: one package schema per answer set
inPack(ds) Directive | Data set ds is considered part of the package
process(sch) Directive | The data sets defined by in_pack/1 atoms
form a package of schema sch and are
passed on for processing
Variant: multiple package schemata per answer set
process(sch, [ds1,ds3,ds7]) | Directive | The data sets in the list [ds1,ds3,ds7]
form a package of schema sch and are
passed on for processing

Table 6.1: Input and directive atoms for package specifications. Atoms of other
predicates can be used as needed and are considered auxiliary.

It might make sense to re-evaluate the conclusions every time new data arrives
on the input stream if the evaluation is fast enough or can be done in an
iterative way, and if it is imperative that the context reacts as fast as possible
to new information. Sometimes it is sufficient to wait till a computation is
completely done and the EOC-token is received and in other instances some
interval-based check is sufficient. We will not decide which version should be
used and therefore let it open to be decided on a per context basis.

Number of Answer Sets As we are executing the directives based on the
answer sets of the corresponding encoding, we need to keep in mind that there
might be multiple stable models in place. There are different ways on how to
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handle this fact and how to utilise this kind of feature. In general we can see
every computed answer set equally valid, therefore the easiest way of handling
that issue is to only allow the asynchronous Multi-Context System-engine to
compute one answer set and process the input buffer based on the concluded
directives. It might sound very ignorant to dismiss the other results, but as
there is no order of answer sets and every one is grounded as well as sound
with respect to the rules, there is a good and comprehensible reason for each
answer set to be one. Of course it is still possible to compute multiple answer
sets and apply the directives on every answer set. Another possible solution
might be to introduce optimisation to find the optimal set of directives for the
filtering. The last option is to design the answer set program in such a way
that all different directives are pooled together in one answer set. Again we
want to let the modeller of the system decide which way is the best for the
application. In addition the choice of the used option will depend on how the
computation is triggered too.

To allow these different ways of implementation, we do provide two different
kinds of directives to do the schema packing. In the first one, we only state that
some data set is part of a schema package and we then just decide that this one
should be processed. The second one allows to define different schemata per
answer set, where different data sets might be part of one or more schemata.

In the following examples we will show how input and programs might look
for different contexts. There we will use the computer aided emergency team
management system, which we have introduced in Section 6.2.

Example 6.4.1. As seen in the introduction of the task planner, we will get
information about the availability of ambulances from the ambulance manager
context. The case analyser context is providing information about the current
cases. We assume that each data from the case analyser represents exactly one
case, which has been prioritised and categorised already. A possible input buffer
for the task planner might contain the following facts:

dsAvail(ca_ds11). dsAvail(ca_ds12).

dsAvail (amb_ds54) . dsAvail(am_ds55). dsAvail (am_ds56).
source(ca_ds11l,ctxt_case_anl). source(ca_dsl12,ctxt_case_anl).
source (amb_dsb4,ctxt_amb_mng) . source(amb_ds55,ctxt_amb_mng) .
source (amb_ds56,ctxt_amb_mng) .

Each data set which is available has a unique name and one of the two contexts
as a source. Note that this is just another representation of the information
which is already sent by means of the output relevant for one stakeholder (see
Definition 6.1.6). To pack the incoming information together, we might use an
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answer set program, like

auxCaseAvail < dsAvail(X), source(X, ctxt _case_anl).
aux AmbAvail < dsAvail(X), source(X, ctxt _amb_mng).
process(schl) < aurCaseAvail.
process(sch2) < auz AmbAvail, not aurCaseAvail.
inPack(X) < dsAvail(X), source(X, ctxzt _amb_mng).
inPack(X) <+ dsAvail(X), source(X, ctxt case_anl).
rmPack < .

The first two rules use auxiliary predicates to project that some information
is available from the case analyser or the ambulance manager respectively. Then
some package schema schl is produced if at least one new data on a case from
the case analyser is available. If no new case data is available, but some updates
on the ambulances, the schema sch2 is instead packaged. Both schemata will
pack ambulance manager and case analyser data into a package, but schl will
only be created if only a new case is available. This kind of meta information
can be used for different handling of the two cases and due to the semantics of
answer set programs it is still ensured that only one answer set is computed.
Rules 5 and 6 are then collecting the data sets into the package and finally the
directive from the last rule will remove all the packaged data sets from the input
buffer. Note that the third rule which produces the schema schl will also do
some processing, which means that it is safe to remove the packaged raw data
from the input buffer.

This example has shown how to use the basic information which is already
implicitly available by asynchronous Multi-Context Systems. In the next one
we will go further and include reasoning about computations.

Example 6.4.2. Before we have assumed that the case analyser computes only
one belief set. We will now assume that it is instead trying to find better case
classifications by doing some kind of optimisation process. The current best
data package will be sent, but it will only be ensured to be an optimal one if the
EOC-token is received too. This can be represented by the following input:

dsAvail(ca_ds21). dsAvail(ca_ds22). dsAvail(ca_ds23). dsAvail(ca_ds25).
dsAvail (amb_ds54). dsAvail(amb_ds55). dsAvail (amb_ds56).

dsComp (ca_ds21,comp9) . dsComp(ca_ds22,comp9). dsComp(ca_ds23,comp9).
dsComp(ca_ds25,compl0) .

eoc(comp9) .

source(ca_ds21,ctxt_case_anl). source(ca_ds22,ctxt_case_anl).
source(ca_ds23,ctxt_case_anl). source(ca_ds25,ctxt_case_anl).

source (am_ds54, ctxt_amb_mng) . source(am_dsb5,ctxt_amb_mng) .

source (am_ds56,ctxt_amb_mng) .

source (comp9, ctxt_case_anl). source(compl0,ctxt_case_anl).
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Here we can now see that the information from the case analyser is organised
in different computations. Computation comp9 has already finished, because
the EOC-token is already represented. The other computation complO is still
running and has not come to a conclusion so far. Because we know that the
case analyser uses an optimisation enumeration, we are only interested in the
newest package from the finished computation. This can be expressed by the
following set of rules:

finishedComp(X) + eoc(X).
inPack(X) < #mazx{X : dsAvail(X), finishedComp(Y),
dsComp(X,Y), source(Y, ctxt _case_anl)}.
inPack(X) < dsAvail(X), source(X, ctxt _amb_anl).
process(sch) < inPack(X).
rmPack < process(X).

We have changed the rules a little bit up to show how this could work out in
a simple and straightforward way. First we collect all the information about
already finished computations and then in the second rule we pool only these
packages together which have the maximal number in the computation (i.e.
the one with the highest number and therefore the last one which got sent).
In addition we are still collecting the information about ambulances on the
fly. Then we process a schemata if at least one data set got packaged and if
something got processed on, we will remove all processed packages.

Another feature we have not shown in examples so far is that some informa-
tion might be tagged by either a context or by the answer set encoding. This
tagging adds additional flat information on top of the given meta information
for the different data sets getting fed into the input buffer.

Example 6.4.3. To see how tagging might be utilised we will have another
look at the example we are developing so far. Normally it can happen that some
of the cases are so severe that it would be dangerous to wait for an optimal
classification of the case (e.g. in case of an heart attack every second counts).
Therefore the case analyser might add a priority tag to the data set, to notify
about a severe emergency. To represent this for computation complO, we will
just add the following fact to the set input: tag(compl0,severe). To be able
to react to this severe case in a special way we will now update the encoding to
show how the program can handle multiple packaging schemata at once.
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finishedComp(X) + eoc(X).
inPack(X) < #max{X : dsAvail(X), finishedComp(Y"),
dsComp(X,Y), source(Y, ctxt_case_anl)}.
inPack(X) < dsAvail(X), source(X, ctxzt _amb_anl).
process(sch, L) < inPack(X), L = #list{Y : inPack(Y)}.
auxEmerg(C) < not eoc(C),tag(C, severe).
process(em, L) < L = #list{Y : dsAvail(Y),dsComp(Y, C),
auxEmerg(C)}.
rmPack(sch) < process(sch, ).
rm(X) < auzEmerg(C), dsAvail(X),dsComp(X, C).

The parts on packaging the finished computation remains the same, except that
the packaged data sets are pooled into a list, to be still processed under the
schemata sch. Based on the tag, a new auziliary predicate is generated, if its
computation is not already done. Then an emergency schemata em 1is packaged
with a list of all the importantly tagged data sets. Note that in case that more
than one data set of the computation is already arrived this solution would
package both data sets into it. The last two rules will be responsible to clean
up all the packaged data sets. It should be mentioned that the data sets for the
severe computations are removed on the fly, which means that at the point when
the computation is done, no more available data sets are there and it will not
be packaged a second time.

Although we have presented asynchronous Multi-Context Systems as a
formalism to describe communication between different other contexts and
knowledge representation formalisms, we have chosen to introduce this data
set packing. We think that these examples and the concept of declarative data
set packing is again an argument for this view on asynchronous Multi-Context
Systems. The problem of fast and easy to define filtering of stream data is a
problem that occurs in almost every other stream reasoning related work. By
using an asynchronous Multi-Context System to define this declarative method
of information filtering we are allowing other researchers and developers to
adapt this technique for their own systems and we could introduce a declarative
and easy to adapt solution for this overall problem.
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Related Work

In this thesis we have introduced two systems which are handling the integration
of different belief sets from heterogeneous contexts and are reacting dynamically
to changes over time represented by streams. This overall idea and motivation
is not new though, so there exist several systems which are modelling the
dynamics of knowledge and the flow of information. We will present the most
relevant approaches to reactive reasoning formalisms in this section and compare
them with reactive Multi-Context Systems in particular. Of course there are
other systems, like abstract modular systems [Lierler and Truszczynski, 2016],
which present approaches to model communication between different reasoning
modules. This system uses some joint vocabularies instead of bridge rules
for the exchange of communication, but it is only providing a solution to the
knowledge integration problem and not the dynamics over time. Therefore we
will focus on these systems which allow reasoning over time and incorporation
and exchange of information.

When presenting these alternatives to reactive Multi-Context Systems we
will also show whether our system is capable to model the concepts of these other
systems in an comparative matter. This will be done in some comparative study
about the most prominent related formalisms. Note that this section is more
focused towards reactive Multi-Context Systems than on asynchronous Multi-
Context Systems, because we have already demonstrated that the asynchronous
ones are more general and we still see them as a modelling language and not
as an actual implemented framework.

Nevertheless, we do want to mention that asynchronous Multi-Context
Systems have similarities in common with the concept of Multi-Agent Sys-
tems [Ferber, 1999] because these systems are interested in communication
between different artificial intelligence based agents. In a nutshell the biggest
difference between context and agent systems is that an agent has its own
motivation and goals. Therefore concepts like trust, liability, and personal
goals are very important key components in Multi-Agent Systems, while we
are more interested in the underlying problem of modelling and integrating
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the information between the contexts. It can be seen as a more basic and
general approach to formalise the communication, integration of knowledge,
and dynamic reaction to events before getting to the point where the different
components start to compete for their own intrinsic goals and schemes.

Section 5.2.4 is dealing with inconsistency management on a global scale
for reactive Multi-Context Systems. The concepts have already been studied
for managed Multi-Context Systems [Weinzierl, 2014, Eiter et al., 2014] and
are based on the seminal work on inconsistency handling by Reiter [Reiter,
1987|. A further extension of these concepts has only recently been introduced
and discussed, where some measurements of inconsistency are used to find
and classify inconsistencies |Ulbricht et al., 2018|. It is some interesting topic
to check whether and how these measurements can be adapted and used for
reactive Multi-Context Systems, which we will see as a promising direction of
further work.

In the following we will discuss two recent approaches to implement stream
reasoning, which are LARS [Beck et al., 2015 and STARQL [Ozgep et al.,
2013]. Then we will have a look on reactive logic programming, which has been
proposed in the form of EvOLP [Alferes et al., 2002| and reactive answer set
programming |Gebser et al., 2011a|. Finally we will discuss recently introduced
Multi-Context Systems, like streaming Multi-Context Systems [Dao-Tran and
Eiter, 2017] and timed Multi-Context Systems [Cabalar et al., 2017].

7.1 Stream Reasoning Approaches

The task of reasoning over stream data becomes a topic which gets an increased
measure of interest. One reason for that is because concepts like the Internet
of Things [Want et al., 2015, Atzori et al., 2010] got more prominent in the
past years and the Internet is seen more and more as a provider of services
than merely a collection of different websites.

Reactive Multi-Context Systems are a well-suited formalism to do stream
reasoning, because they can address the important challenges which are arising
in this environment. The most important feature is that the system can decide
by itself whether some information should be kept for later usage or not, as it
has been shown in Section 5.2.3. In addition we have shown that we can utilise
the common practice of sliding windows, which are used for temporal reasoning,
but are not limited to that concept of temporal methods of forgetting and
allows more sophisticated methods** of decisions to forget.

LARS

The formal framework Logic-based framework for Analyzing Reasoning over
Streams (LARS) [Beck et al., 2015| provides a formal logic-based language to

#48ee [Lin and R.Reiter, 1994] for an overview of formal forgetting.
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reason with streams over time windows. Basically it is utilising a rule-based
concept to provide mechanisms to do reasoning over streams. By introducing a
novel window operator working and allowing to use different levels of abstraction
of time, this whole framework is an elegant way for flexible representation and
reasoning on streaming data. LARS has its semantics defined for a fixed input
data stream and is based on the FLP computation [Faber et al., 2004]| for a
fixed point in time. In detail, the basic LARS language is built over a set of
atoms A which are defined over disjoint sets of predicates P and constants C.
In addition to this usual definition, the predicates are divided into two disjoint
sets of extensional predicates P to represent input streams and intensional
predicates P which are used for intermediate and output streams.

Given i,j € N, the set of the form [i,j] ={k € N| i <k < j} is called an
interval. An evaluation function over an interval T is a function v : N — 24,
such that v(t) = 0 if ¢ € T. Further on, LARS defines a stream as a tuple
s = (T,v) with T being an interval and v an evaluation function over T'. If
a stream only contains extensional predicates it is called a data stream. A
stream S = (T",v') is a substream of a stream S = (T,v) if T/ C T and
Vierr = v(t) C v'(t) holds. This is denoted by S C S. The syntax of LARS
formulae is defined by the following grammar:

a=a|-alarNa|aVa|a—al|da|Oa| Qo | B

where a € A and t € N. For the connectives (i.e. =, A,V, and —) the usual
classical intention is used. The {» and [ operators are utilised in the same
way as in modal logics, such that a formula holds for some or every time
instant during some interval. To represent some specific formula at a given time
instant, the exact operator @, is introduced. The novel operator H allows one
to have a focus on recent substreams. Here ¢ is representing the window type
used for the substream and x is a tuple of parameters to specify the range of
the substream. Two examples of this time-based window operators presented
in [Beck et al., 2015| are H”, which allows to represent the substream of the
last n time instants of a stream and Hy" that allows one to first split the
stream into substreams on basis of the evaluation function to later only refer
to the last n time instants of that substream.

A LARS program is based on the concept of rules in a similar way as Answer
Set Programming is utilising them. In detail, a LARS rule is of the form

a < B1,...,85,n0t Bjt1,...,not B,

where a, 1, ..., B are formulae and « consists only of intensional predicates.

The semantics of LARS are based on the FLP semantics of logic programs.
For a LARS program P with a given input stream D = (T,v) the answer
streams of P for D are computed for each time instant ¢ € T and the associated
substream of D with the static semantics of answer set programming techniques
over the fixed windows which are implicitly given for each operator. Note that
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the { and [ operators can only be checked over the associated substream of D,
which means that the window size for the substreams will dictate how long the
history of previous stream data will be and how general (respectively abstract)
the statements of these operators are.

For getting a better idea on how such a rule might look like, we will use
a simplified version of the example used in [Beck et al., 2015]. There some
reasoning over a network of trams in a public transport network is modelled
with LARS.

Qrexp(Id, V) + B! Qr, tram(Id, X), line(Id, L), not B2 Hjam(X),
plan(L, X, Y, Z), T =T, + Z.

The predicate plan represents that a line L has two consecutive stops X and
Y with a planned travel time of Z, while line expresses that one specific tram
train with an Id is operating on line L. jam is representing the information that
some station X is jammed and the expression not B2 {jam(X) formalises
that during the last twenty time instants there should have been no frame
where a jam has been reported. The last used expression in the body tram is
stating that the tram train Id is at station X. EEI'Z?X’I@TItram(Id, X) utilises
the window operator to focus only on the last report of tram(Id, X) and Qp,
is formulating that this event should have been at time 7. On an intuitive
level the whole rule states that the tram Id can be expected to be at station Y
at time 7T if the tram has been on the previous station X at Z minutes of the
estimated travel time ago and no jam has been reported for the station X in
the last 20 minutes.

Now we want to show that a reactive Multi-Context System can be con-
structed which is simulating such a LLARS reasoning process in a native way.

More precisely, we assume fixed sets of predicates P and constants C, a
fixed window size w € N and a LARS program P over A, the set of atoms
obtained from P and C. Let A¢ be the set of atoms that include only extensional
predicates from P, and AT be the set of time-tagged atoms, i.e., AT = {{a,t) |
a€ Aandte N}

Consider M = ({Crgs), (IL1,Clock),(BR¢, ,..)) as a reactive Multi-Con-
text-System obtained from P and w in the following way:

e CLars = (L, OP, mng) where

e [ = (KB, BS,acc) is such that

e KB={PUAU{now(t)} | AC AT and t € N}
e BS ={S| S is a stream for A}

acc(kb) = {S | S is an answer stream of P for D* at time t*}

— t** = ¢ such that now(t) € kb
O —
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¥(t) = {a | (a,t) € kb}, for each t € N
DM — (Thb_ykby

OP = {add(5) | 6 € AT} U {del(6) | § € AT} U {add(now(¢)) | t € N}
mng(kb,op) = (kbU {4 | add(d) € op}) \ {4 | del(d) € op}

IL, = Af

Clock =N

BR¢; ,,. contains the following rules for managing history:

add(now(T)) « clock::T
add((A,T)) < 1::A, clock::T
del((A,T)) « clock:T", T <T' —w
next(add((A4,T))) < 1::A, clock::T
next(del((A,T))) + clock:T', T <T —w

Given an input stream Z for M and a time point ¢ € N, we consider ttz,
the unique element of stream Clock at step ¢, which represents the current
time at step t. We also consider the LARS input data stream at time ¢,
D} = (T, v), such that T = [t} —w,tI] and v(t') = {a € A% | there exists t" <
t such that ¢ = tZ, and a € Z{"} for t € T, and v(t') = () otherwise. Then,
given an input stream Z for M, at each time point ¢ € N, each equilibria stream
B for M given KB = ({P}) and Z is composed of an answer stream of P for
D} at time 7.

Note that at each time instant the knowledge base contains only the relevant
part of the (possibly infinite) input stream, meaning that information no longer
valid is really discarded, and that the current time, given by the stream Clock,
is decoupled from the time steps at which equilibria are evaluated. For the sake
of an easier to read presentation, we have assumed a fixed time window w, yet
an extension in the spirit of what we presented in Section 5.2.3 on forgetting
can easily be used to allow dynamic windows.

STARQL

To represent data from different sources in an useful way, the Resource De-
scription Framework(RDF)-Standard [W3C RDF Working Group, 2014] is
maintained by the World Wide Web Consortium. A prominent language to
answer queries on these structured data is the SPARQL Protocol and RDF
Query Language(SPARQL*) [W3C SPARQL Working Group, 2013|. An ex-
tension of this concept is continuous SPARQL (C-SPARQL) [Barbieri et al.,
2010], which allows to do queries over time. Alas, this language is only focusing
on answering queries in a very basic way. The Optique Project |[Rodriguez-Muro

®SPARQL is a recursive acronym.
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et al., 2013] has aimed on adding intelligent reasoning on top of this query
language and proposed the Streaming and Temporal ontology Access with a
Reasoning-based Query Language(STARQL 46) STARQL [Ozcep et al., 2013]
which allows reasoning on base of Description Logic assertions.

In more detail, every stream utilised in the STARQL framework consists
of timestamped ABox assertions, which will be used for input streams, as well
as output streams which are considered the answers of the queries. A query on
such a stream is structured in the following way:

SELECT selectClause(Z, ¥)

FROM listOf WindowedStreamEzxpressions
USING listOfResources

WHERE (7

SEQUENCE BY seqMethod

HAVING (&, )

We would invite the interested reader for extensive descriptions of semantics and
syntax of STARQL to read the Optique Deliverable 5.1 [Ozcep et al., 2013]. For
a better intuition on the core aspects as well as the usage of this formalism we
will take one of the examples used by the authors of the Deliverable document
to explain the components of STARQL queries.

We assume that there is a 7Box located at http://example.org/TBox*’
which contains

BurnerTipTempSensor C TempSensor

as an axiom. That axiom is stating that every Burnertip temperature sensor is
a temperature sensor too. An additional .ABox is located at http://example.
org/staticABox, which defines that some sensor sg is a Burnertip temperature
sensor by BurnerTipSensor(sp). We consider the following input stream of
sensor readings:

= {rd(s0,90)(0s)
rd(s1,30)(0s)
rd(s0,93)(1s)
rd(sy,32)(Ls)
rd(s0,94)(2s)
rd(s0,91)(3s)
rd(so, 93)(4s)

rd(so,95)(5s)}

The stream .S contains time-tagged information from two sensors sg and sj.
Note that the ontology only defines sy as a sensor and does not provide any

46pronounced Star-Q-L
4"Note that these are just example domains. This file does not exist there, but the
STARQL-standard makes it mandatory that resources are located at specific URIs.
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classification on s1. A valid STARQL-query on this ontology and the given
stream could be a follows:

CREATE STREAM S_out AS

SELECT {7sens rdf:type MonIncTemp}<NOW>

FROM S 0s<-[NOW-2s, NOW]->1s

USING STATIC ABOX <http://example.org/staticABox>,
TBOX <http://example.org/TBox>

WHERE { ?sens rdf:type TempSensor }

SEQUENCE BY StdSeq AS SEQ1

HAVING FORALL i<= j in SEQ1 ,x,y:
IF ( { 7sens rd ?7x }<i> AND { 7sens rd 7y }<j> )
THEN 7x <= 7y

In words, this query will have a stream S,,; as its output. This stream will
consist of assertions of the type MonlncTemyp, which states that the temperature
of sensor readings has increased monotone. The FROM statement now defines
that the data for the reasoning should be taken from the stream S and utilising
a sliding window, such that the current time instant and the preceding two
seconds will be used. It is specifying the width of steps too,i.e. that the query
should be evaluated every second. Afterwards the static ABox and the utilised
TBox is specified. The line with the WHERE command is then filtering the
input stream to only analyse sensor data which is classified as a sensor (i.e.
only sensor sp in the current example). The last two statements are then
forming a sequence structure over the remaining stream data and use the
built-in arithmetical functions to describe the concept of monotone increasing
sensor readings. Note that during the query different variables get bound via
the WHERE, SEQUENCE BY, and HAVING parts explicitly, while binding,
naming, and classification based on the ontology is implicitly done.

In a more detailed manner, we will now have a look on how the data is
partitioned step by step by this query. First the input stream gets aligned
to the current time points into a so-called temporal ABox. How the different
time-stamped axioms are gathered into the corresponding window is shown in
Table 7.1. When the data is filtered towards the description logic classification
and reorganised into a sequence, the data is represented as a sequence of
timestamped ABoxes. In an example where more sensor data per timestamp
would be still available it would be easy to see that all these pooled information
is gathered into one ABox, which is tagged with the associated timestamp.
Our example has the windowed stream

{{rd(s0,93)}(1s), {rd(so, 94)}(2s), {rd(se,91)}(3s)}

at time point 3 after applying the sequencing method, and the classification
from the description logic reasoner. If we run the STARQL-query as intended
at every second, it will produce the following output stream S out:
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Time | Temporal ABox
0s | {rd(s0,90)(0s), rd(s1,30)(0s)}
1s | {rd(so,90)(0s), rd(sl, 30)(0s), rd(s0,93)(1s), rd(s1,32)(1s)}
2s | {rd(so, 90)(03), rd(s1,30)(0s), rd(so,93)(1s), rd(s1, 32)(1s), rd(so, 94)(2s) }
3s | {rd(s0,93)(1s), rd(s1,32)(1s), rd(s0,94)(2s), rd(s0,91)(3s)}
4s | {rd(so,94)(2s), rd(so,91)(3s), rd(so, 93)(4s)}
5s | {rd(s0,91)(3s), rd(s0,93)(4s), rd(s0,95)(5s)}

Table 7.1: Temporal ABox of the input stream S

S _out = {MonIncTemp(sp)(0s)
(s0) (1)

(50) (25)

MonIncTemp(so)(5s)}

MonIncTemp(sg

MonIncTemp(sg

We will now present one possible way to design a reactive Multi-Context
System which is capable of realising STARQL queries as introduced just
beforehand. Note that this illustration will be more on a meta-level than the
one previously shown for LARS, because the standard of STARQL has many
different options and ways to manipulate the queries, which can be realised on
different ways due to the abstract and general style of reactive Multi-Context
Systems. First, we assume that one computed equilibrium correlates directly to
one STARQL-query evaluation for one time point. In addition we will design
this reactive Multi-Context System with an external clock in mind to keep
track of the current time. The given input stream is realised as a sensor input
which gets the sensor readings directly at the current time instant. Therefore
the incoming sensor information does not need to be timestamped any more in
this setup and we will omit this information in our input stream. Note that it
is easy to add the timestamps, but that would also allow to send sensor data
for other timestamps, which might not be intended for the current example
and needs to be decided per application. We see this big amount of possible
ways to implement such a system as a feature, because it can be decided by
the modeller which variant is the best fitting for the given problem.

Figure 7.1 illustrates which contexts we are assuming to implement a
STARQL-query. The input stream Zg is representing the stream data on which
the query should be evaluated and Z. is just a clock to inform the reactive Multi-
Context System about the current point in time. Their information is packed
together in a simple storage context C;4 to represent the temporal ABox of
the input stream (as pictured in Table 7.1). Further on that context is keeping
track of the current window size, such that it deletes already obsolete data
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W v

storage

temporal
ABox Cia

HAVING
storage reasoning

static contexts
TBox Cr storage
result C,

-
-
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—
- |
—

storage
static WHERE
ABox Cy reasoning C,,

Figure 7.1: A reactive Multi-Context System to capture the semantics of a
STARQL-query-engine

from its knowledge base. In addition cut out data (i.e. the data which is not
related due to the WHERE part of the query) which is not used and therefore
not visible from the original stream. The classification and variable binding,
which stems from the WHERE part is handled by the context C,. It gets the
ontology from the two contexts Cr and C4 and delivers the variable bindings
to the other contexts which need to have knowledge about the variables used
in the query. The imported assertions and axioms from these two description
logic contexts which is defined via the bridge rules of C,, are derived from the
USING directive of the query and implement the whole semantics of it by the
different bridge rules. Note that these information is imported into the contexts
responsible for the HAVING directive too. To implement it, we are assuming a
set of contexts, utilising description logic to compute the HAVING semantics
per one piece of the sequence given by the SEQUENCE BY statement. That
means we are assuming one context per sequence instance. In our example we
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have a window size of three, so the operator stdSeq can only generate up to
three sequences. Therefore we show three different contexts in the figure. Each
reasoning context will evaluate one time instant of the variable. To evaluate
the for all expression in the HAVING part, we utilise the last context C, which
evaluates all the results of the HAVING contexts with respect to the variable
bindings, provided by C, to compute the result of the query at the current
time. The knowledge base of C,, will represent the results of the query at the
given point in time.

7.2 Reactive Logic Programming

EvoLp

Evolving logic programs (EvoLp [Alferes et al., 2002|) are an extension of logic
programs, to allow a program to evolve over time, such that it can alter its
rules over a sequence of computations. In addition they can handle external
information in the form of events, which are seen as a sequence of other evolving
logic programs that are added to represent additional external input. Intuitively
EvoLp utilises logic programs as discussed in Section 4.2, with the addition
that default negation is allowed in the head of the rules. Such a program can be
seen as a program over the language £, which is extended by a set of assertion.
Assertions are noted by an unary atom assert. These assertions may be atoms
and rules as well, which allows nesting of rules in the assertion extension. £
combined with the assertions creates an extended language L,ssert Which is
formally inductively defined by the following steps:

(i) All propositional atoms in £ are atoms in Lyssert;
(ii) If R is a rule over Lagsert, then assert(R) is an atom in Lagsert;
(iii) nothing else is considered to be an atom in Laggert-

EvVOLP is a logic program with default negation in its head over Lagsert. ToO
denote the set of all rules over L,gseert, we will write R . The basic idea behind
these evolving logic programs is that they change over time such that the
program starts with its basic program over the language L. If some assertion
assert (R) is considered true by the evaluation of the program, the rule R has
to be considered as a rule in the next evaluation of the program. In addition
the newly introduced rule is considered more important then the other rules,
such that older rules will only be used if they do not conflict to the newer ones,
which is the idea behind the similar concept of dynamic logic programs |[Alferes
et al., 2000].

The semantics of this concept is based on sequences of interpretations for the
changing logic program. Formally, an evolution interpretation of length m of an
evolving logic program P over a propositional language L is a finite sequence
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I = (I',...,I™) of sets of propositional atoms of Lassert. The evolution trace
associated with an evolution interpretation I is the sequence of programs
Pr = (P',..., P™) such that P! = P and, for each 2 < j < m, P/ = {r |
assert(r) € I['71}.

To allow reaction to external events, which are in the form of external
rules which are going to be considered in further computations, we need to
show how they are related too. In a more formal matter, given an evolving
logic program P over L, a sequence of evolving logic programs over L is
called an event sequence over P. Let P be an evolving logic program over L,
I={(I',...,I"™) an evolution interpretation of length m of P with evolution
trace P; = (P',...,P™),and E = (E',..., EY) an event sequence over P such
that £ > m. Then, I is an evolution stable model of P given E iff for every
1 < j < m, we have that I’ is a stable model of P' @ P2 @ ... ® (P/ U E7).
EvoLp calls this the notion of a central model of evolving logic programs.

It is easy to see that the idea of assertions is close towards the concept of the
next-Operator, because both allow for changes on the knowledge base, based on
the previous computation step. Another similarity is the integration of external
knowledge, which is directly modelled for reactive Multi-Context Systems by
the bridge rules. The biggest difference is that EvOLP is only considering
answer set programming as the formalism to do the reasoning, while reactive
Multi-Context System allows an arbitrary heterogeneous environment of context
formalisms and more kinds of manipulation of the knowledge base through a
more general management function.

To show this, we are going to present a reactive Multi-Context System
Mp, which will simulate the behaviour of a EvOLP-system. The system
Mp = ((C),(IL),(BR¢)) contains exactly one context C' = (L, OP, mng),
where

e [ = (KB, BS,acc) is a logic such that

— KB is the set of pairs (D, E) where D is a dynamic logic program
over L, and F is an evolving logic program over L
— BS is the set of all subsets of Lassert
— acc((P'@...@® P E)) is the set of stable models of P! @ ... ®
Pi—l g (PIUE)
e OP ={as(r)|r e Re}U{ob(r)|re R}

e mng(op,(D,E)) ={(D®U,E')} where U = {r € Rz | as(r) € op} and
E' ={re R |ob(r) € op},

and the input stream language is defined as IL = R . The used bridge rules
are defined such that

BR ¢ ={next(as(s)) < l:assert(s) | assert(s) € Lagsert} U
{ob(s) + 1u:s | s € IL}
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hold. The intuitive idea behind that context is that it takes via an input stream
the currently applied events. In the knowledge base, the logic consists of a pair,
where one element is the current evolution trace of the evolving logic program
and the second one is the currently applied set of event rules. Its semantics
is then just the semantics of the dynamic logic program, constructed by the
trace and the current program combined with the events. Note that because
the events are only added for the equilibria computation, we do not need to
remove them after they have been in effect and the next-operator based bridge
rule will update the evolution trace with respect to the computed equilibrium.

This leads to a direct correspondence between the equilibria stream and the
models for EvoLp: Given an event sequence E = (E1, ..., Ey) over P consider
its associated input stream Zg = ((E1),...,(E,)). Then, I = (I',... I is
a evolution stable model of P given FE iff I is an equilibria stream for Mp
given KB = ((P,0)) and Zg. This is no big surprise, because the conception of
assert and the next-operator are very similar, and the context formalism of
the reactive Multi-Context System is just utilising a slightly extended version
of a dynamic logic program solver.

Reactive Answer Set Programming

Other closely related reactive logic programming frameworks are the imple-
mented solver oclingo [Gebser et al., 2012a| and one theoretically described
in [Brewka, 2013|. The oclingo-system extends the answer set programming
solver such that it can handle external modules which are provided during
runtime by a controller. These external modules are producing output which
is fed into the reasoner for the reactive program in similar ways than it is
done in EvoLP. The biggest difference is that only atoms are allowed to be
communicated. On the other hand oclingo allows to decide on the number
of enumerated answer sets and therefore allows better tuning of the results
and the solving time than EvOLP. Because reactive Multi-Context Systems
allow a simulation of EVOLP and the reactive addition of oclingo only uses
atoms, which is a subset of whole rules, it is not complicated to adapt the given
simulation to work for oclingo too. In addition we can use either different
ways to define the semantics of the context logic, as well (as shown in Section
5.2.3) as making adjustments due to bridge rules to the reasoning mode of the
semantics. One big advantage on the side of oclingo is that it is an actual
system, while for our presented systems an implementation can be considered
as an interesting aspect of future work.

For the basic concept of reactive answer set programming from [Brewka,
2013, reactive Multi-Context System can capture that too, because the pro-
posed evolutionary operators for the reactive answer set programming system
can be captured by the operators of the reactive Multi-Context System.
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7.3 Other Multi-Context Systems

Before we are discussing other Multi-Context Systems in the literature, I want
to mention the joint work about reactive Multi-Context Systems [Brewka et al.,
2018|. One section in this paper is considering another semantics, namely the
well-founded semantics. Unlike the other presented parts, I had no share of
work on this concept, this is why it was not presented in Section 5.2. The
basic idea is to reduce the reactive Multi-Context System in such a way that
a comparatively easy fix-point computation on an easy to compute operator
can be used to approximate the result of the equilibria stream. It is not trivial
to check for the property of being reducible and the reduction is only in few
circumstances easily computed. Nevertheless in those cases where it is doable,
the complexity for the Q7 is shown to be in P if CC(M, k:b) is in P too.

Now we will investigate other recently introduced Multi-Context Systems
with the aim to tackle the handling of dynamics over time.

Streaming Multi-Context Systems

The concept of streaming Multi-Context Systems [Dao-Tran and Eiter, 2017|
starts with the same idea as it has been for this work. They take the concept of
managed Multi-Context Systems and extend it towards a data-flow environment
for reactive reasoning. A very big conceptional difference between reactive
Multi-Context Systems and streaming Multi-Context Systems is the focus of
its point of view. While we have been focused on the integration of external
information on the basis of stream data, which can be utilised in bridge
rules, together with the concept of the next-operator to distinguish between
declarative and operational manipulations, streaming Multi-Context Systems
are more focused on the notion of reasoning over time. The design choice of
using a deterministic management function as well as a logic instead of a logic
suite, in contrast to the base contributions on Multi-Context Systems [Brewka
and Eiter, 2007] and managed Multi-Context Systems [Brewka et al., 2011b],
is similar for both stream reasoning frameworks.

Intuitively a streaming Multi-Context System has no language for integrat-
ing external sensor and stream data into their framework. Instead contexts are
defined which just hold the information from such sensors as their knowledge
base. Conception wise this is a very good idea with respect to the inconsistency
management, because the omni-incoherence property, which has been men-
tioned in Section 5.2.4 is still holding with the right intention 4%. On the other
hand, a way to model different trust mechanics on basis on the actual data
and providing means for handling them in bridge rules enables one for more
freedom and expressiveness at the level of the framework, without the need

4®Because streaming Multi-Context Systems shift the stream handling into contexts, the
knowledge and their conclusions may be seen as beliefs rather than constant facts as it is
seen in reactive Multi-Context Systems
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to manipulate other context formalisms. Note that the streaming approach
is sticking to the concept of the old reactive Multi-Context Systems, where
the knowledge bases used for the verification of the equilibrium are reused
as the knowledge bases of the next computation step (i.e. the case where all
declarative rules are duplicated to be operative rules too for reactive Multi-
Context Systems). Another difference is, that the bridge rules in a streaming
Multi-Context System are allowing LLARS-expressions. That is showing the
different focus of the work very well, because the system is very specialised on
doing temporal reasoning and allowing the user to easily define assumptions and
assertions on basis of sliding windows. Additionally this system is allowing to
take computation time into account. Which means asynchronous computation.
Similar to asynchronous Multi-Context System, they consider computation
time, output time, as well as data transfer times into the formal model. The
approach is pretty straightforward, such that each context is computing its
local equilibrium on basis of all already known belief sets and using the old ones
if another context is still computing. To some extent this approach is similar
to asynchronous Multi-Context Systems, but we are considering methods for
contexts to wait on each other and decide on itself (or by some management
context) on when to do new computations (i.e. computation controller cc).

Streaming Multi-Context Systems are introducing the concept of idealized
runs, where the contexts are bound to the steps again. In this setting it has
been shown that streaming Multi-Context Systems can simulate the old reactive
Multi-Context Systems and evolving Multi-Context Systems |Gongalves et al.,
2014] if the declarative bridge rules are the same as the operational ones.
Therefore streaming Multi-Context Systems can still simulate reactive Multi-
Context Systems with the idealized runs if the declarative and operational bridge
rules are the same, but nevertheless they will suffer the same shortcomings which
have been discussed on the old reactive Multi-Context Systems in Section 5.1.
Compatibility wise we have shown that reactive Multi-Context Systems can
simulate LARS, therefore it would be possible to simulate that behaviour in
the bridge rules too. We see that as an advantage, because by that way we
can control where the system needs to keep track of histories for the sliding
windows and even use dynamic sliding windows (see Section 5.2.3 for examples
and discussion).

In the bottom line all three systems, namely streaming Multi-Context
Systems, reactive Multi-Context Systems, and asynchronous Multi-Context
Systems have the same ideas in common, but are still different enough because
they are focusing on different baseline problems. Additionally streaming Multi-
Context Systems and reactive Multi-Context Systems are providing features
which cannot be simulated by the other one directly.
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Timed Multi-Context Systems

The timed Multi-Context Systems [Cabalar et al., 2017] are a recently proposed
draft on another take on the field of reasoning over time with Multi-Context
Systems. A very big difference is, that external input is handled separated
from the notion of an equilibrium. The system allows external information to
be proposed to the system, and then the knowledge base is updated by a non-
deterministic function. Based on this updated knowledge base, the management
function is applied, as for declarative bridge rules and then an equilibrium
is computed. In addition a timed Multi-Context System only allows totally
coherent contexts with respect to the naming used by Definition 5.2.22. We
would propose that it is a good sign that there are many different approaches
which are very similar to the one we have already presented. This shows
that the field has increased interest in the scientific community and that our
presented concept has its merits.

From our point of view, there is one point of critique on this system, namely
that the changes based on observations are not based on any reasoning or
beliefs of the different contexts, but all the contexts have to adjust accordingly.
In a general setting, where one needs to react to the outside world, this is a
totally fine way of reasoning, but when taking thoughts about inconsistent
sensor data, unreliable sensor information, and similar real word problems
into account, we think that the idea to reason about this information within
the framework of equilibria is more appropriate and foremost more adaptable
than limiting one to applying these information beforehand and introducing
possible inconsistencies into the knowledge base in a non-deterministic way.
Note that in comparison with asynchronous Multi-Context System, we allow
translation of the information via the context update function, which should
handle and tackle such inconsistent events and even allows the function to
adjust the output rules and other parts of the context management to adapt
the context towards the incoming information.
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Conclusion

We have tackled two very prominent problems in the field of knowledge represen-
tation and reasoning in this work. This has been the integration of knowledge
between different formalisms and the communication and exchange of beliefs
between heterogeneous reasoners, and the handling of dynamics from environ-
ments where data flows potentially continuous over time in such a way that
the framework can modify itself and the context knowledge to provide some
stream of information which can be seen as a reaction to these environments.

One contribution is the overall introduction and discussion of reactive Multi-
Context Systems, where we have presented and shown that the system can
handle different problems which may arise in different real world scenarios. We
have discussed on how to model different methods of reasoning and how to
simulate different aspects we have changed compared to previous work (e.g.
usage of a deterministic management function). In addition we provided some
insight on how to maintain consistency during the computation of the equilibria
stream by either restricting the context formalisms and bridge rules or by
utilising repair techniques as well as partial equilibria semantics. For handling
the already addressed knowledge integration part, like it has been done with
managed Multi-Context Systems |Brewka et al., 2011b|, we stood faithful with
the already existing work and just added new methods and redefined most of the
formalism to make it easier to use and to still make all the important properties
of consistency and computational complexity applicable to the newly introduced
work, which we consider as one of the main contributions; A formal step forward
to allow integration and handling of dynamics, as a proper generalisation of the
single computation formalism and enough expressiveness to control the flow of
information between the contexts and over time.

In addition we have proposed another framework, which is even more
general than reactive Multi-Context Systems, that allows for asynchronous
communication between the different contexts and even more adaptation over
time by changing its means to communicate over time. asynchronous Multi-
Context Systems are also allowing for self-managed decisions about the right
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time for computation and changes of the knowledge base on basis of the input.
Due to the high abstraction level of this formalism we have chosen to present it
more as a modelling language and framework to describe (and possibly unify)
communication between intelligent reasoning systems on a data driven level.

Based on a variety of different newly emerged proposals for different Multi-
Context Systems, as presented in Section 7.3, it is easy to see that the current
field of knowledge representation and reasoning is interested in further advances
into the direction of Multi-Context Systems, and due to a decent level of
similarities between the systems the direction we have chosen and presented
is justified very well. That the systems can capture different already existing
solutions for more specialised applications, like window based stream reasoning
and ontology based stream querying, is another good indication that our system
is actually usable and well defined.

The frameworks introduced are highly abstract and it is needless to say that
this has been on purpose. Without this intention it would not be possible to
capture a broad range of situations and systems without imposing restrictions
to the used knowledge representation formalisms. We have produced and
illustrated the tool which allows the application to choose which formalism
and modelling approach is the best suited for the task. Of course that makes
it imperative that many things need to be instantiated at first hand before a
running system is available. It begins with the choice of context formalisms and
semantics, continues to the choice of operators and their actual implementation
and order of importance in the manage function towards the design of the
declarative and operational bridge rules. That holds for the dual case of
asynchronous Multi-Context System too, where one needs to design the context
management and needs to think about the whole communication protocol
which is explicitly designed by the output rules, computation controller, and
the context update function. But I still believe that these approaches deliver
valuable and unique solutions to the problems outlined in the introduction and
the motivation of this work.

Future Work

One very important point of future work would be to see whether it is feasible
to implement reactive Multi-Context Systems, especially because there is very
much communication overhead, which could be seen in the simulation example
at Section 6.3. This problem has already been encountered for [Dao-Tran et al.,
2015], where they have investigated that the whole distributed guess and check
semantics needs very much communication between the contexts. Another
interesting implementation task would be to produce some black box testing
related implementation for an asynchronous Multi-Context System, where one
can check whether some implementation of a context does what is defined by
the formal model. In addition to that some best practice packages would be
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very helpful for developers, that they have some kind of library to get short
implementations of reoccurring tasks.

Further future work would be an in-depth investigation of inconsistency
measurement [Ulbricht et al., 2018]| for further results to ensure consistency on
computations. In addition some additional studies about applicability of the
asynchronous Multi-Context System framework for already developed stream
reasoning systems and big data applications would be interesting and would
allow to additionally appeal to the commercial applications too.
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