
System BV without the Equalities for Unit

Ozan Kahramanoğulları

Computer Science Institute, University of Leipzig
International Center for Computational Logic, TU Dresden

ozan@informatik.uni-leipzig.de

Abstract. System BV is an extension of multiplicative linear logic with
a non-commutative self-dual operator. In this paper we present systems
equivalent to system BV where equalities for unit are oriented from left
to right and new structural rules are introduced to preserve complete-
ness. While the first system allows units to appear in the structures, the
second system makes it possible to completely remove the units from
the language of BV by proving the normal forms of the structures that
are provable in BV. The resulting systems provide a better performance
in automated proof search by disabling redundant applications of infer-
ence rules due to the unit. As evidence, we provide a comparison of the
performance of these systems in a Maude implementation.

1 Introduction

The calculus of structures is a proof theoretical formalism, like natural deduction,
the sequent calculus and proof nets, for specifying logical systems syntactically.
It was conceived in [6] to introduce the logical system BV, which extends mul-
tiplicative linear logic by a non-commutative self-dual logical operator. Then it
turned out to yield systems with interesting and exciting properties for existing
logics and new insights to proof theory [12, 1]. In [14], Tiu showed that BV is
not definable in any sequent calculus system. Bruscoli showed in [2] that the
non-commutative operator of BV captures precisely the sequentiality notion of
process algebra, in particular CCS.

In contrast to sequent calculus, the calculus of structures does not rely on the
notion of main connective and, like in term rewriting, it permits the application
of the inference rules deep inside a formula (structure) which are considered
equivalent modulo different equational theories (associativity, commutativity,
unit, etc.). This resemblance allows us to express systems in the calculus of
structures as term rewriting systems modulo equational theories [8].

In [9], we presented a Maude [3, 4] implementation of system BV. The lan-
guage Maude allows implementing term rewriting systems modulo equational
theories due to the built in very fast matching algorithm that supports different
combinations of associative, commutative equational theories, also with the pres-
ence of units. However, we observed that, often, units cause redundant matchings
of the inference rules where the premise and conclusion at the application of the
inference rule are equivalent structures.

In this paper we present systems equivalent to BV where rule applications
with respect to the equalities for unit are made explicit. By orienting the equal-
ities for unit, we disallow redundant applications of inference rules. Then, in
order to preserve completeness, we add structural rules that are instances of
the rules of system BV. This way, resulting systems, depending on the length of
the derivations, perform much better in automated proof search in our Maude
implementation.

The rest of the paper is organized as follows: we first summarize the notions
and notations of the calculus of structures and system BV. We then present the
systems that result from removing the equalities for unit from system BV. After
comparing the performance of these systems in our Maude implementation, we
conclude with discussions and future work.

2 The Calculus of Structures and System BV

In this section, we shortly present the calculus of structures and the system BV,
following [6].

In the language of BV atoms are denoted by a, b, c, . . . Structures are denoted
by R,S, T, . . . and generated by

S ::= ◦ | a | 〈S; . . . ;S
︸ ︷︷ ︸

>0

〉 | [S, . . . , S
︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | S ,

where ◦, the unit, is not an atom. 〈S; . . . ;S〉 is called a seq structure, [S, . . . , S] is
called a par structure, and (S, . . . , S) is called a copar structure, S is the negation
of the structure S. Structures are considered equivalent modulo the relation ≈,
which is the smallest congruence relation induced by the equations shown in
Figure 1.1 There R, T and U stand for finite, non-empty sequence of structures.
A structure context, denoted as in S{ }, is a structure with a hole that does
not appear in the scope of negation. The structure R is a substructure of S{R}
and S{ } is its context. Context braces are omitted if no ambiguity is possible:
for instance S [R, T] stands for S{[R, T]}. A structure, or a structure context,
is in normal form when the only negated structures appearing in it are atoms,
no unit ◦ appears in it.

There is a straightforward correspondence between structures not involving
seq and formulae of multiplicative linear logic (MLL). For example [(a, b), c̄, d̄]
corresponds to ((a² b)O c⊥ O d⊥), and vice versa. Units 1 and ⊥ are mapped
into ◦, since 1 ≡ ⊥, when the rules mix and mix0 are added to MLL. For a more
detailed discussion on the proof theory of BV and the precise relation between
BV and MLL, the reader is referred to [6].

In the calculus of structures, an inference rule is a scheme of the kind
T

ρ
R

,

where ρ is the name of the rule, T is its premise and R is its conclusion. A

1 In [6] axioms for context closure are added. However, because each equational system
includes the axioms of equality context closure follows from the substitutivity axioms.

Associativity

〈R; 〈T 〉;U〉 ≈ 〈R;T ;U〉

[R, [T]] ≈ [R,T]

(R, (T)) ≈ (R,T)

Singleton

〈R〉 ≈ [R] ≈ (R) ≈ R

Commutativity

[R,T] ≈ [T ,R]

(R,T) ≈ (T ,R)

Units

〈◦;R〉 ≈ 〈R; ◦〉 ≈ 〈R〉

[◦,R] ≈ [R]

(◦,R) ≈ (R)

Negation

◦ ≈ ◦

〈R;T 〉 ≈ 〈R;T 〉

[R, T] ≈ (R, T)

(R, T) ≈ [R, T]

R ≈ R

Fig. 1. The equational system underlying BV.

typical (deep) inference rule has the shape
S{T}

ρ
S{R}

and specifies the implication

T ⇒ R inside a generic context S{ }, which is the implication being modeled in
the system2. When premise and conclusion in an instance of an inference rule are
equivalent, that instance is trivial, otherwise it is non-trivial. An inference rule
is called an axiom if its premise is empty. Rules with empty contexts correspond
to the case of the sequent calculus.

A (formal) system S is a set of inference rules. A derivation ∆ in a certain
formal system is a finite chain of instances of inference rules in the system. A
derivation can consist of just one structure. The topmost structure in a deriva-
tion, if present, is called the premise of the derivation, and the bottommost
structure is called its conclusion. A derivation ∆ whose premise is T , conclusion

is R, and inference rules are in S will be written as
T

R

S∆ . Similarly,
R

SΠ

will denote a proof Π which is a finite derivation whose topmost inference rule
is an axiom. The length of a derivation (proof) is the number of instances of
inference rules appearing in it.

A rule ρ is derivable for a system S if for every instance of
T

ρ
R

there is

a derivation
T

R

S . Two systems S and S ′ are strongly equivalent if for every

derivation
T

R

S∆ there exists a derivation
T

R

S
′∆ , and vice versa. Two systems

S and S ′ are weakly equivalent if for every proof of a structure T in system
S , there exists a proof of T in system S ′, and vice versa. They are strongly
(weakly) equivalent with respect to normal forms if the above statements hold
for a normal form of T .

2 Due to duality between T ⇒ R and R̄ ⇒ T̄ , rules come in pairs of dual rules: a
down-version and an up-version. For instance, the dual of the ai↓ rule in Figure 2
is the cut rule. In this paper we only consider the down rules which provide a sound
and complete system.

◦↓
◦

S{◦}
ai↓

S [a, ā]

S([R, T], U)
s
S [(R,U), T]

S〈[R,U]; [T, V]〉
q↓
S [〈R;T 〉, 〈U ;V 〉]

Fig. 2. System BV

The system {◦↓,ai↓, s,q↓}, shown in Figure 2, is denoted BV and called basic
system V, where V stands for one non-commutative operator3. The rules of the
system are called unit (◦↓), atomic interaction (ai↓), switch (s) and seq (q↓).

3 System BVn

The system shown in Figure 3 is called BVn. Structures on which system BVn is
defined are as in the previous section, with the only difference that the equalities
for unit do not apply anymore.

Proposition 1. Every BV structure S can be transformed to one of its normal
forms S′ by applying only the rules {u1↓,u2↓,u3↓,u4↓} in Figure 3 bottom-up
and the equalities for negation in Figure 1 from left to right.

Proof: Observe that applying the rules {u1↓,u2↓,u3↓,u4↓} bottom up corresponds

to applying the equalities for unit in Figure 1 from left to right. The result follows from

the fact that the corresponding term rewriting system is terminating and confluent,

and applicability of these rules contradicts with a structure being in normal form. ¤

Proposition 2. The rules q1↓ , q2↓ , q3↓, and q4↓ are derivable for {q↓} . The
rules s1 and s2 are derivable for {s} .

Proof:

– For the rule q1↓ take the rule q↓.
– For the rule q2↓, q2↓, q4↓, respectively, take the following derivations, respectively:

〈R;T 〉
=
〈[R, ◦]; [◦, T]〉

q↓
[〈R; ◦〉, 〈◦;T 〉]

=
[R, T]

〈[R, T];U〉
=
〈[R, T]; [◦, U]〉

q↓
[〈R; ◦〉, 〈T ;U〉]

=
[R, 〈T ;U〉]

〈T ; [R,U]〉
=
〈[◦, T]; [R,U]〉

q↓
[〈◦;R〉, 〈T ;U〉]

=
[R, 〈T ;U〉]

– For the rule s1 take the rule s.
– For the rule s2 take the following derivation:

(R, T)
=

([◦, T], R)
s
[(◦, R), T]

= .
[R, T] ¤

3 This name is due to the intuition thatW stands for two non-commutative operators.

◦↓
◦

S{◦}
ai↓

S [a, ā]

S([R, T], U)
s1

S [(R,U), T]

S(R, T)
s2

S [R, T]

S〈[R, T]; [U, V]〉
q1↓

S [〈R;U〉, 〈T ;V 〉]

S〈R;T 〉
q2↓

S [R, T]

S〈[R, T];U〉
q3↓

S [R, 〈T ;U〉]

S〈T ; [R,U]〉
q4↓

S [R, 〈T ;U〉]

S{R}
u1↓

S [R, ◦]

S{R}
u2↓

S(R, ◦)

S{R}
u3↓

S〈R; ◦〉

S{R}
u4↓

S〈◦;R〉

Fig. 3. System BVn

Theorem 1. For every derivation
W

Q

BV∆ there exists a derivation
W ′

Q

BVn∆′ where

W ′ is a normal form of the structure W .

Proof: Observe that every derivation ∆ in BV can be equivalently written as a deriva-
tion where all the structures are in normal form. Let us denote with ∆ these derivations
where there are only occurrences of structures in normal form. From Proposition 1 we
get a normal form Q′ of Q going up in a derivation. With structural induction on ∆
we will construct the derivation ∆′

– If ∆ is ◦↓
◦

then take ∆′ = ∆ .

– If, for an atom a,
S{◦}

ai↓
S [a, ā]

is the last rule applied in ∆, then by Proposition 1

and by the induction hypothesis there is a derivation
W ′

T

BVn where T is a normal

form of S{◦}. The following cases exhaust the possibilities.

• If S [a, ā] = S′ [P, [a, ā]] then take the following derivation.

S′{P}
u1↓

S′ [P , ◦]
ai↓ .

S′ [P , [a, ā]]

• If S [a, ā] = S′(P, [a, ā]) then take the following derivation.

S′{P}
u2↓

S′(P , ◦)
ai↓ .

S′(P , [a, ā])

• If S [a, ā] = S′〈P ; [a, ā]〉 then take the following derivation.

S′{P}
u3↓

S′〈P ; ◦ 〉
ai↓ .

S′〈P ; [a, ā]〉

• If S [a, ā] = S′〈[a, ā];P 〉 then take the following derivation.

S′{P}
u4↓

S′〈 ◦ ; P 〉
ai↓ .

S′〈[a, ā];P 〉

– If
P

s
Q

is the last rule applied in ∆ where Q = S [(R, T), U] for a context S and

structures R, T and U , then by induction hypothesis there is a derivation
W ′

P

BVn .

The following cases exhaust the possibilities:
• If R 6= ◦, T 6= ◦ and U 6= ◦ , then apply the rule s1 to Q′.
• If R = ◦, T 6= ◦ and U 6= ◦ then Q′ = S′ [T, U] where S′ is a normal form of

context S. Apply the rule s2 to Q′.
• Other 6 cases are trivial instances of the s rule. Take P = Q′ .

– If
P

q↓
Q

is the last rule applied in ∆ where Q = S [〈R;T 〉, 〈U ;V 〉] for a context S

and structures R, T , U and V , then by induction hypothesis there is a derivation

W ′

P

BVn . The following cases exhaust the possibilities:

• If R 6= ◦, T 6= ◦, U 6= ◦ and V 6= ◦, then apply the rule q1↓ to Q′.
• If R = ◦, T 6= ◦, U 6= ◦ and V 6= ◦ then Q′ = S′ [T, 〈U ;V 〉] where S′ is a

normal form of context S. Apply the rule q4↓ to Q′.
• If R 6= ◦, T = ◦, U 6= ◦ and V 6= ◦ then Q′ = S′ [R, 〈U ;V 〉] where S′ is a

normal form of context S. Apply the rule q3↓ to Q′.
• If R 6= ◦, T 6= ◦, U = ◦ and V 6= ◦ then Q′ = S′ [[R;T], V] where S′ is a

normal form of context S. Apply the rule q4↓ to Q′.
• If R 6= ◦, T 6= ◦, U 6= ◦ and V = ◦ then Q′ = S′ [〈R;T 〉, U] where S′ is a

normal form of context S. Apply the rule q3↓ to Q′.
• If R 6= ◦, T = ◦, U = ◦ and V 6= ◦ then Q′ = S′ [R, V] where S′ is a normal

form of context S. Apply the rule q2↓ to Q′.
• Other 10 cases are trivial instances of the q↓ rule. Take P = Q′ . ¤

Corollary 1. System BV and system BVn are strongly equivalent with respect to
normal forms.

Proof: From Proposition 2 it follows that the derivations in BVn are also derivations

in BV. Derivations in BV are translated to derivations in BVn by Theorem 1. ¤

Remark 1. From the view point of bottom-up proof search, rule s2 is a redun-
dant rule since the structures in a copar structure can not interact with each
other. Hence, it does not make any sense to disable the interaction between two
structures by applying this rule in proof search. However, in order to preserve
completeness for arbitrary derivations this rule is added to the system.

4 System BVu

With the light of the above remark and observations that we made while prov-
ing Theorem 1, it is possible to improve further on the rules of system BVn: the
system BVu in Figure 4, like system BVn, does not allow the application of the
equalities for unit. Furthermore, in this system, we merge each one of the rules
for unit {u1↓,u2↓,u3↓,u4↓} in Figure 3 with the rule ai↓ since the rules for unit
are used only after rule ai↓ is applied in a bottom-up proof search. This way we
get the rules {ai1↓,ai2↓,ai3↓,ai4↓} .

ax
[a, ā]

S([R, T], U)
s1

S [(R,U), T]

S{R}
ai1↓

S [R, [a, ā]]

S{R}
ai2↓

S(R, [a, ā])

S{R}
ai3↓

S〈R; [a, ā]〉

S{R}
ai4↓

S〈[a, ā];R〉

S〈[R, T]; [U, V]〉
q1↓

S [〈R;U〉, 〈T ;V 〉]

S〈R;T 〉
q2↓

S [R, T]

S〈[R, T];U〉
q3↓

S [R, 〈T ;U〉]

S〈T ; [R,U]〉
q4↓

S [R, 〈T ;U〉]

Fig. 4. System BVu

Corollary 2. System BV and system BVu are equivalent with respect to normal
forms.

Proof: It is immediate that the rules ai1↓,ai2↓,ai3↓,ai4↓ and ax are derivable (sound)

for system BVn. Completeness follows from the proof of Theorem 1 and Remark 1. ¤

The following proposition helps to understand why BVu provides shorter
proofs than BVn.

Proposition 3. Let R be a BV structure in normal form with n number of positive
atoms. If R has a proof in BVn with length k, then R has a proof in BVu with
length k − n.

Proof: (Sketch) By induction on the number of positive atoms in R, together with the

observation that while going up in the proof of R in BVn, each positive atom must be

annihilated with its negation by an application of the rule ai↓ and then the resulting

structure must be transformed to a normal form by equivalently removing the unit ◦

with an application of one of the rules u1↓,u2↓,u3↓ and u4↓ . In BVn these two steps

are replaced by a single application of one of the rules ai1↓,ai2↓,ai3↓ and ai4↓ . ¤

5 Implementation and Performance Comparison

In an implementation of the above systems, the structures must be matched
modulo an equational theory. In the case of system BV this equational theory is
the union of the AC1 theory for par, the AC1 theory for copar and A1 theory for
seq structures, where 1 denotes the unit ◦ shared by these structures. However, in
the case of BVn the equalities for unit become redundant, since their role in the
rules is made explicit. This way, in contrast to the BV structures, the equivalence
class of BVn structures become finite and redundant matchings of structures
with rules are disabled. This results in a significant gain in the performance in
automated proof search and derivation search.

In [8], we showed that systems in the calculus of structures can be expressed
as term rewriting systems modulo equational theories. Exploiting the fact that
the Maude System [3, 4] allows implementing term rewriting systems modulo
equational theories, in [9], we presented a Maude implementation of system BV.
There we also provided a general recipe for implementing systems in the calculus
of structures and described the use of the relevant Maude commands. Then, we
implemented the systems BVn and BVu. All these modules are available for down-
load at http://www.informatik.uni-leipzig.de/~ozan/maude_cos.html .

Below is a comparison of these systems in our implementation of these sys-
tems on some examples of proof search and derivation search queries. (All the
experiments below are performed on an Intel Pentium 1400 MHz Processor.)

Consider the following example taken from [2] where we search for a proof
of a process structure.

search in BV : [a,[< a ; [c,- a] >,< - a ; - c >]] =>+ o .

search in BVn : [a,[< a ; [c,- a] >,< - a ; - c >]] =>+ o .

search in BVu : [a,[< a ; [c,- a] >,< - a ; - c >]] =>+ [A,- A] .

finds a proof search terminates

in # millisec. after # rewrites in # millisec. after # rewrites

BV 1370 281669 5530 1100629

BVn 500 59734 560 65273

BVu 0 581 140 15244

When we search for the proof of a similar query which involves also copar
structures we get the following results.

search [- c,[< a ; {c,- b} >,< - a ; b >]] => o .

finds a proof search terminates

in # millisec. after # rewrites in # millisec. after # rewrites

BV 950 196866 1490 306179

BVn 120 12610 120 12720

BVu 10 1416 60 4691

It is also possible to search for arbitrary derivations. For instance, consider
the derivation

〈d; e〉

[ā, 〈a; d; b̄〉, 〈b; e; c̄〉, c]

BVn

with the query below, which results in the table below.

search [- a , [< a ; < d ; - b > > , [< b ; < e ; - c > >, c]]]

=>+ < d ; e > .

finds a proof search terminates

in # millisec. after # rewrites in # millisec. after # rewrites

BV 494030 66865734 721530 91997452

BVn 51410 4103138 51410 4103152

BVu 10090 806417 10440 822161

In all the above experiments it is important to observe that, besides the
increase in the speed of search, number of rewrites performed differ dramatically
between the runs of the same search query on systems BV, BVn and BVu.

6 Discussion

We presented two systems equivalent to system BV where equalities for unit
become redundant. Within a Maude implementation of these systems, we also
showed that, by disabling the redundant applications of the inference rules, these
systems provide a better performance in automated proof search.

Our results find an immediate application for a fragment of CCS which was
shown to be equivalent to BV in [2]. Furthermore, we believe that the methods
presented in this paper can be analogously applied to the existing systems in
the calculus of structures for classical logic [1] and linear logic [12], which are
readily expressed as Maude modules.

However, termination of proof search in our implementation is a consequence
of BV being a multiplicative logic. Although, the new systems presented in this
paper improve the performance by making the rule applications explicit and
shortening the proofs by merging rule steps, due to the exponential blow up in
the search space, an implementation for practical purposes that allows “bigger
structures” will require introduction of strategies at the Maude meta-level [5],
in the lines of uniform proofs [11] and Guglielmi’s Splitting Theorem [6].

System NEL [7] is a Turing-complete extension of BV [13] with the exponen-
tials of linear logic. In [10], we employed system NEL for concurrent conjunctive
planning problems. Future work includes carrying our results to NEL and linear
logic systems in the calculus of structures [12].

Acknowledgments This work has been supported by the DFG Graduierten-
kolleg 446. I would like to thank Alessio Guglielmi, Steffen Hölldobler, Roy Dy-
ckhoff and anonymous referees for valuable remarks and improvements.

References

1. Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. PhD thesis,
Technische Universität Dresden, 2003.

2. Paola Bruscoli. A purely logical account of sequentiality in proof search. In Peter J.
Stuckey, editor, Logic Programming, 18th International Conference, volume 2401
of Lecture Notes in Computer Science, pages 302–316. Springer-Verlag, 2002.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 system. In Robert Nieuwenhuis, editor, Rewriting Techniques
and Applications, Proceedings of the 14th International Conference,, volume 2706.
Springer, 2003.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude 2.1 manual. Technical report, Computer Science Laboratory, SRI
International, 2004. http://maude.cs.uiuc.edu/manual/.

5. Manuel Clavel, Francisco Durán, Steven Eker, José Meseguer, and Mark-Oliver
Stehr. Maude as a formal meta-tool. In Jeannette M. Wing, Jim Woodcock,
and Jim Davies, editors, FM’99 — Formal Methods, World Congress on Formal
Methods in the Development of Computing Systems, Toulouse, France, September
20–24, 1999 Proceedings, Volume II, volume 1709 of Lecture Notes in Computer
Science, pages 1684–1703. Springer, 1999.

6. Alessio Guglielmi. A system of interaction and structure. Technical Report WV-
02-10, TU Dresden, 2002. to appear in ACM Transactions on Computational
Logic.

7. Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of MELL.
In M. Baaz and A. Voronkov, editors, LPAR 2002, volume 2514 of Lecture Notes
in Artificial Intelligence, pages 231–246. Springer-Verlag, 2002.

8. Steffen Hölldobler and Ozan Kahramanoğulları. From the calculus of structures to
term rewriting systems. Technical Report WV-04-03, TU Dresden, 2004.

9. Ozan Kahramanoğulları. Implementing system BV of the calculus of structures
in Maude. In Proceedings of the ESSLLI-2004 Student Session, Université Henri
Poincaré, Nancy, France. Kluwer Academic Publishers, 2004.

10. Ozan Kahramanoğulları. Plans as formulae with a non-commutative operator.
Technical report, TU Dresden, 2004.

11. Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. In Annals of Pure and Applied
Logic, volume 51, pages 125–157. 1991.

12. Lutz Straßburger. Linear Logic and Noncommutativity in the Calculus of Struc-
tures. PhD thesis, TU Dresden, 2003.

13. Lutz Straßburger. System NEL is undecidable. In Ruy De Queiroz, Elaine Pi-
mentel, and Lućılia Figueiredo, editors, 10th Workshop on Logic, Language, Infor-
mation and Computation (WoLLIC), volume 84 of Electronic Notes in Theoretical
Computer Science, 2003.

14. Alwen Fernanto Tiu. Properties of a logical system in the calculus of structures.
Technical Report WV-01-06, Technische Universität Dresden, 2001.

