
Faculty of Computer Science Institute of Artificial Intelligence Knowledge Representation and Reasoning

Sharing Information in Parallel Search with Search Space

Partitioning

Davide Lanti Norbert Manthey

KRR Report 13-01

Mail to Bulk mail to Office Internet

Technische Universität Dresden Technische Universität Dresden Room 2006 http://www.wv.inf.tu-dresden.de

01062 Dresden Helmholtzstr. 10 Nöthnitzer Straße 46

01069 Dresden 01187 Dresden

Sharing Information in Parallel Search with

Search Space Partitioning

Davide Lanti and Norbert Manthey

Knowledge Representation and Reasoning Group
Technische Universität Dresden, 01062 Dresden, Germany

norbert@janeway.inf.tu-dresden.de

Abstract. Recent computing architecture turned parallel. A single CPU
now provides up to 16 cores. These computing resources should also be
exploited for solving search problems, for example the well researched
SAT problem. In this paper we show how information can be shared in a
parallel SAT solver that relies on search space partitioning via iterative
partitioning. With improved clause sharing, 12 more instances out of
600 instances can be solved. We further show that the new approach
also results in a higher performance with respect to alternative rankings.

1 Introduction

Search problems arise from various domains, ranging from small logic puzzles
over scheduling problems like railway scheduling [1] or vehicle routing [2] to
large job shop scheduling problems [3]. As long as the answers to these prob-
lems need not to be optimal, these problems can be translated into a constraint
satisfaction problem [4], or into satisfiability testing (SAT) [5]. Usually, SAT
instances are solved with DPLL [6] style SAT solvers [7]. The best improve-
ment of the DPLL algorithm is learning information during search [8,9], which
is called clause learning where learnt clauses are added to the formula. Solv-
ing search problems with SAT usually results in increased performance, because
SAT is a highly researched area and available SAT solvers are very sophisti-
cated. For example scheduling railway trains has been improved by a speedup
up to 10000 compared to the state-of-the-art domain specific solver [1]. For the
optimization variant of scheduling problems, the maximum satisfiability problem
(MaxSAT) [10] can be used. State-of-the-art MaxSAT solvers rely on SAT as a
back end, such that the search for an optimal solution inside these solvers heavily
depends on the search process of the underlying SAT solver [11,12].

With the advantage of parallel computing resources, for example multi-core
CPUs, also parallel SAT solvers have been developed [13,14,15]. Since modern
CPUs start to receive more and more cores, scalability studies of parallel SAT
solvers become important. Parallelizing the SAT solving algorithm itself has
been studied in [16]. However, the approach studied there does not scale beyond
two cores, because structured SAT algorithms are very similar to a depth-first
search, which in the worst case cannot be parallelized [17], and also practical
instances do not provide enough parallelism.

Other parallel SAT solving approaches combine the search of different solver
incarnations. Hyvärinen et.al. [18] study scalability of the three most common
parallelization approaches, namely parallel portfolio search, plain search space
partitioning, and iterative search space partitioning. Portfolio search gives the
whole search space to different solvers and runs them in parallel. The fastest
solver returns the result to the user. This technique is widely used [13,14] and
yields a good performance for small numbers of cores. Plain partitioning search
first divides the search space into partitions and then gives each partition to a
solver. Finally, all solver results are combined and an answer is given. Unfortu-
nately, this approach suffers from a theoretical slow down [18]. An improvement
is iterative search space partitioning: the initial problem is solved with a se-
quential solver and limited resources, e.g. limited run time. Additionally, the
search space is divided into sub-spaces. If solving a sub-space is not finished
within the given resources, this sub-space is partitioned again. Comparing the
presented three approaches, Hyvärinen et.al. conclude that iterative search space
partitioning gives the best scalability. However, this technique is not researched
much. While for portfolio solvers there exists many improvements, for example
sharing learned information according to some filter heuristics [19,13] or con-
trolling the diversification and intensification among the solvers [20], iterative
search space partitioning received little attention; for a grid implementation of
the parallel solver, only a study on how to divide the search space and on limited
sharing has been done [21,22]. As for portfolio solvers [13,23], Hyvärinen et.al
report that in average even this limited sharing results in a speedup.

In this paper we present an improved clause sharing mechanism for the par-
allel iterative partitioning approach. To divide the search space of a formula
into sub-spaces, Hyvärinen et.al. add so called partition constraints to the for-
mula [22]. Only learnt clauses that do not depend on these partition constraints
are shared with other solvers, and clauses are only sent after a solver finished
to work on a sub-space. A computing grid is used as underlying computing re-
sources. To further improve the scalable parallel algorithm, we contribute a more
general sharing mechanism for the iterative partitioning approach and evaluate
this scheme on multi-core CPUs. First, we share learnt clauses that also depend
on partition constraints, but send them only to solvers where these clauses are
valid. Additionally, learnt clauses are sent during search so that other solvers
may benefit immediately.

Our evaluation reveals interesting insights. First, sharing clauses introduces
almost no overhead in computation. Furthermore, the performance of the overall
search is increased. Two different rankings [24,25], the first being used in interna-
tional competitions and the latter being more stable than the first ranking, show
that the new approach has a higher performance compared to sharing no clauses
or restricted sharing. One of the reasons for this improved behavior is that the
number of shared clauses increases, strengthening the cooperation among the
parallel running solvers. Finally, the approach scales with more cores; when the
number of cores is increased from 4 to 16, the performance of the overall system
also improves.

2

After giving more detailed preliminaries on SAT solving in Section 2, we
show how the iterative partitioning approach can be improved by sharing learned
information in Section 3, and afterwards, we evaluate our approach in Section 4.
Finally, we conclude and give an outlook in Section 5.

2 Preliminaries

After providing the necessary notations for satisfiability testing, we show how
the depth-first like search algorithm to solve SAT instances is enhanced with
clause learning. Finally, we discuss related work on parallel SAT solving.

2.1 Satisfiability Testing

Let V be a finite set of Boolean variables. The set of literals V ∪ {x | x ∈ V } con-
sists of positive and negative Boolean variables. A clause is a finite disjunction of
literals and a formula (in conjunctive normal form (CNF)) is a finite conjunction
of clauses. We sometimes consider clauses and formulae as sets of literals and
sets of clauses, respectively, because duplicates can be removed safely. A unit
clause is a clause that contains a single literal. We denote clauses with square
brackets and formulae with angle brackets, so that ((a∨b)∧(a∨c∨d)) is written
as 〈[a, b], [a, c, d]〉. Furthermore, we define two helper functions: lits(F) returns
the set of literals that occur in the formula F . Similarly, atoms(F) returns the
set of variables that occur in the formula F .

An interpretation J is a (partial or total) mapping from the set of variables
to the set {⊤,⊥} of truth values; the interpretation is represented by a sequence
of literals, also denoted by J , with the understanding that a variable x is mapped
to ⊤ if x ∈ J and is mapped to ⊥ if x ∈ J . If a variable x is neither mapped to
⊤ nor to ⊥ by J , we say the variable is undefined. This notion is also lifted to
literals. One should observe that {x, x} 6⊆ J for any x and J .

A clause C is satisfied by an interpretation J if l ∈ J for some literal l ∈ C.
An interpretation satisfies a formula F , if it satisfies every clause in F . If there
exists an interpretation that satisfies F , then F is said to be satisfiable, otherwise
it is said to be unsatisfiable. An interpretation J that satisfies a formula F is
called model of F . We also say J models F and write J |= F . Given two formulae
F and G, such that all models of F are also models for G, then, we say that the
formula F models G and write F |= G. Two formulae F and G are equivalent, if
they have the same set of models. This relation is denoted by F ≡ G. Assume,
the formula F models the formula G: F |= G. By adding G to F , the resulting
formula is equivalent to F : F ∪G ≡ F . Thus, adding a formula G that is modeled
by F to F does not change the set of models for the formula F . The reduct F |J
of a formula F with respect to an interpretation J is the formula obtained from
F by evaluating F under J and simplifying the formula as follows: all satisfied
clauses are removed, and from all the remaining clauses all literals x with x ∈ J

are removed. Let C = [x, c1, . . . , cm] and D = [x, d1, . . . , dn] be two clauses. We
call the clause E = [c1, . . . , cm, d1, . . . , dn] the resolvent of C and D, which has

3

been produced by resolution on variable x. We write E = C ⊗ D. Note, that
〈C,D〉 |= 〈E〉, and therefore 〈C,D〉 ≡ 〈C,D,E〉.

2.2 Solving the SAT Problem

Satisfiability testing tries to answer the question whether there exists an inter-
pretation J that satisfies a given formula F . For a formula F with n propositional
variables this problem can also be stated as a search problem, where the search
space is the set of all possible interpretations and the solutions space is the set of
all models. The search space contains 2n solution candidates. Even if the num-
ber of variables in formulae from applications raises up to half a million, modern
SAT solvers usually can solve them in reasonable time.

Instead of working with total interpretations, where all variables of a formula
F are defined, structured SAT solvers create a partial interpretation based on
the Davis-Putnam-Loveland-Logemann (DPLL) algorithm [6]. This process can
also be understood as creating a binary search tree and traversing it in depth-
first manner. Regarding the whole search tree, each of its branches represents
a (partial) interpretation. Let F be the given formula and J the interpretation
represented by a branch B. We distinguish the following cases: (i) If J evaluates
F to ⊤, then a model has been found and F is satisfiable. (ii) If J does not map
F to a truth value (and no clause in F is mapped to ⊥), then B is expanded
by the so-called decide rule: a currently unassigned variable is assigned a new
truth value and a backtrack point is recorded. Afterwards, J is extended by all
the implications that can be found with respect to the formula. Extending the
interpretation is mainly done by the unit propagation rule. (iii) If a clause of
F is mapped to ⊥ by J , then this clause is called conflict (clause) and B can
be closed. Thereafter, naive backtracking is applied to explore the most recent
alternative branches in the search tree.

2.3 Learning Information during Search

The idea to further analyze the conflict clause led to the conflict driven clause
learning (CDCL) algorithm that was first presented in the SAT-solver grasp [8].
By applying resolution to the conflict clause and to the clauses which have been
used in the implications, new clauses are learned. Adding these learnt clauses to
the formula leads to an improved backtracking behavior, where many branches
of the search tree are closed by a single conflict.

Describing the CDCL algorithm in full detail is beyond the scope of this
paper. However, four rules to traverse the search tree given in Table 1 are neces-
sary for the rest of the paper. Solver implementations schedule these rules in a
predefined order. A state in this rule system is defined as a pair of a formula F

and an interpretation J , which represents the current branch in the search tree:
F :: J . The rules can be understood as transition rules from the current state
F :: J to a successor state F ′ :: J ′, which triggers under certain conditions. The
full algorithm description based on these rules can be found in [26].

4

Table 1. Abstract Reduction System for CDCL algorithm

(1) F :: J dec F :: J l̇ iff l ∈ atoms(F) ∪ atoms(F)

and l /∈ J and l /∈ J
(2) F :: J unit F :: J l iff [l] ∈ F |

J
.

(3) F :: J learn F,C :: J iff F |= C and C ⊆ lits(F).

(4) F :: J ′ l̇ J back F :: J ′ l′ iff [l′] ∈ F |
J′ .

The first rule dec guides the search by creating a new branch on the current
path in the search tree and assigns an undefined literal l of the formula F . Deci-
sion literals l are labeled with a dot: l̇. The next rule unit performs deduction,
and at the same time prunes the search tree, because the only way to satisfy a
clause [l] ∈ F |J is by extending J as J ∪ l. The clause C, whose reduct C|J = [l]
led to this unit propagation, is called the reason (clause) of the literal l. In case
the algorithm hits a branch that contains a conflict, a new clause is learned with
 learn. This clause C is obtained by resolving the current conflict clause with
the reasons of the literal assignments that led to the conflict. The rule back

can be applied to escape from the current part of the search tree.
Besides clause learning, other improvements have been added to the CDCL

algorithm to achieve a better performance. These techniques include restarts [27],
advanced branching heuristics [28] and simplifications during search [29]. Katebi
et.al. show in [9] that among all the major improvements to SAT solvers, clause
learning is the most beneficial technique. Furthermore, it has been shown in [30,31]
that CDCL solvers can answer the SAT question with a lower complexity than
the DPLL algorithm. These two results demonstrate that learning new informa-
tion is beneficial for the search process of SAT solvers.

2.4 Parallel SAT Solving

With the availability of parallel hardware, parallel SAT solvers have been in-
vented, starting in 1994 [32]. An overview of parallel SAT solving since that
time is given in [33,34]. Parallelizing the search process inside the DPLL algo-
rithm has been done in [16], however this approach does not scale beyond two
cores. Since modern hardware provides many more cores, we focus on techniques
that are more promising, namely:

◮ parallel portfolio search [13], where different solvers solve the same input
formula in parallel

◮ plain partitioning [21], where the input formula is partitioned into sub-
formulae and afterwards each sub-formula is solved by a solver

◮ iterative partitioning [21], where a formula is partitioned iteratively into
a tree of sub-problems and every sub-problem is solved in parallel.

Portfolio parallelization is the most common approach and many parallel SAT
solvers rely on this technique, e.g. [13,35]. Plain partitioning is a basic partition-
ing approach: The formula F is divided into n sub-problems F1, . . . , Fn where the

5

F

F1 F2

F11 F12 F21 F22

K1 K2

K11 K12 K21 K22

Fig. 1. The tree shows how a formula can be partitioned iteratively by using a
partitioning function that creates two child formulae.

following constraint has to be met: F ≡ F1 ∨ · · · ∨Fn. Usually, the search spaces
of sub-formulae are disjunct: i.e. Fi ∧ Fj ≡ ⊥, where 1 ≤ i < j ≤ n. Hyväri-
nen et.al. show that plain partitioning suffers from a theoretical slow down [18].
The third parallel solving approach, iterative partitioning, solves a given formula
and creates sub-problems that are solved in parallel as well. Iterative partitioning
does not have the theoretical slow down of plain partitioning. Furthermore, this
approach seems to scale better than plain partitioning or the portfolio search,
if the number of available cores increases [18]. A more formal description of the
iterative partition approach is given in the next section.

3 Sharing Information in Parallel Search

The partitioning of the search space of a formula F is illustrated by the partition
tree in Figure 1. A partition function splits a formula F into n sub-problems
F1, . . . , Fn meeting the following constraints: F ≡ F1∨· · ·∨Fn and Fi∧Fj ≡ ⊥,
for each 1 ≤ i < j ≤ n. W.l.o.g one can assume that every partition Fi is of
the form F ∧Ki, for some cnf constraint Ki. A partition tree for a formula F

w.r.t. a partition function φ is a tree T rooted in F such that, for every node
F ′ in T , the set of its direct successors is φ(F ′). A more convenient notation for
nodes in a tree is given by marking them with their positions: the root node has
the empty position ǫ, whereas the node at position pi is the i-th successor of the
node at position p. The set of all positions in T is pos(T). With F p we denote
the node at position p of a tree rooted in F . Observe that, for every position
p ∈ pos(T), it holds F p = F ∪Ki1 ∪Ki1i2 ∪ . . .∪Ki1...in , if p := i1...in and each
ij ∈ {1, . . . , |φ(F i1...ij−1)|}. Since a partition tree is created upon a partition
function, clearly F p ≡

∨
i F

pi and ∀i 6=jF
pi ∧ F pj ≡ ⊥, for every p ∈ pos(T),

i, j ∈ {1, . . . , |φ(F p)|}. Sharing learned clauses among solvers that solve child
formulae has been considered briefly in [22]. There, Hyvärinen et.al. introduce
an expensive mechanism called assumption-based (learned) clause tagging and a
fast approximation method flag-based (learned) clause tagging.

6

F := 〈[x1, x2, x5], [x3, x4], [x2, x6, x1], [x2, x6]〉

F 1 := 〈[x2, x5], [x3, x4], [x2, x6], . . .〉

〈[x1]〉

F2 := 〈[x3, x4], . . .〉

〈[x1]〉

Fig. 2. Partition tree for F . The successor F pi of a node F p is created by applying
resolution on each clause in F p with each unit clause in partition constraint Kpi.

3.1 Flag-Based Clause Tagging

Consider the formula F 1 = 〈[x2, x5], [x3, x4], [x2, x6], [x2, x6]〉 in the partition
tree of Figure 3.1 and the following local sequential run:

F 1 :: () dec F
1 :: (ẋ5) unit F

1 :: (ẋ5, x2) unit F
1 :: (ẋ5, x2, x6)

Observe, this run leads to a conflict after the decision ẋ5 and unit propagations
x2 and x6 so that the clause [x2] := [x2, x6]⊗ [x2, x6] is learned. Since F 2 [x2],
this clause cannot be added to the clauses of F . This example motivates related
work [36]: If the clause to be shared does not depend on a partition constraint
the problem can be avoided. To keep track of these clauses, Boolean flags have
been introduced in [36], which indicate whether a clause can be shared “safely”.
This approach is called flag-based tagging.

Definition 1 (Unsafe clauses). Consider a node F p of a partition tree rooted
in F . Then a clause C ∈ F p is unsafe if and only if:

1. C belongs to a partition constraint,
2. C is a learned clause obtained as the result of a resolution derivation involv-

ing unsafe clauses.

A clause that is not unsafe is called safe.

If a clause C is safe, then for every position p we have that F p |= C. Figure 3
shows an example of a partition tree in which unsafe clauses are underlined. Con-
sider the following CDCL execution for F 21, which yields the conflict [x4, x2, x5]:

F 21 :: () unit F
21 :: (x2) dec F

21 :: (x2, ẋ4) unit F
21 :: (x2, x4, x5)

The learnt clause is D = [x4, x2] = [x4, x2, x5] ⊗ [x4, x2, x5]. Since only safe
clauses have been used in the resolution, D is a safe clause and thus it can
be shared among every node in the partition tree. Observe that clause [x4, x2]
speeds-up the computation on node F 1. Consider Figure 3, and the following
sequential execution over node F 1 after incorporating the shared clause [x4, x2]:

F 1 :: () dec F
1 :: (ẋ4) unit

F 1 :: (ẋ4, x2) back F 1 :: () learn F 1, [x4] :: ()

7

F := 〈[x1, x2, x3], [x3, x2], [x2, x4, x1], [x2, x4, x1], [x4, x2, x5], [x4, x2, x5]〉

F 1 := 〈[x3, x2], [x2, x4], [x2, x4], [x4, x2], . . .〉

〈[x1]〉

〈[x2, x3], [x3, x2], . . .〉

F 21 := 〈[x2], [x4, x2, x5], [x4, x2, x5]〉

〈[x3]〉

F 22

〈[x3]〉

〈[x1]〉

Fig. 3. Partition tree over F with clause-tagging. Unsafe clauses are underlined.
The overlined clause [x4, x2] ∈ F 1 is a shared clause that has been incorporated
from F 21.

After the decision ẋ4, the local solver can immediately use the shared clause
[x4, x2] to derive the learnt clause [x4]. Performing the same decisions and prop-
agating without using the safe shared clause would lead to the learnt clause
[x4, x2]. Hence, flag-based clause sharing can effectively speed-up the local com-
putation of some node in the tree.

A weakness of the flag-based tagging is shown in Figure 4, where we slightly
changed the shape of the partition tree. Assume the clause D = [x4, x2] is learnt
while working on formula F 121. Since the resolution [x4, x2, x5] ⊗ [x4, x2, x5]
involves an unsafe clause, D is also tagged as unsafe and thus it is not shared at
all. However, from previous examples we know that this clause can be “safely”
shared among all the formulae F 1p, for all positions p of the tree rooted in F .
This example illustrates that flag-based tagging is a limited approximation of
clause sharing. The following situations cannot be covered:

1. An unsafe clause can be a semantic consequence of the original formula, and
thus be shareable

2. An unsafe clause is not shared at all. However, it might be considered safe
for some sub-tree of the original partition tree, and thus be shared among
the nodes belonging to this sub-tree.

The first problem can only be solved by an algorithm which is more complex
than the presented approximation. As shown in [22], using the approximation
instead of the complex mechanism still results in higher performance, because
the benefits of the complete algorithm cannot overcome its overhead. Solving
the second problem can be done by extending the tagging, which we do in the
next section.

3.2 Position-Based Clause Tagging

Flag-based sharing is designed in a way that a clause can be shared only if this
clause is a semantic consequence of the original formula. In other words, unsafe
clauses that are semantic consequences of formulae belonging to some strict sub-
tree of the partition tree are not shared at all. If the tag encodes the sub-tree
where a clause is “safe”, this clause can at least be shared in this sub-tree.
The key idea of position-based tagging is to associate each clause a position in

8

F := 〈[x1, x2, x3], [x3, x2], [x2, x4, x1],
[x2, x4, x1], [x4, x2, x5, x7], [x4, x2, x5], [x7, x8]〉

F 1 := 〈. . . , [x2, x4, x1], [x4, x2, x5], [x4, x2, x5]〉

〈[x3, x2], [x2, x4], [x2, x4], . . .〉

〈x1〉

〈[x2, x3], [x3, x2], . . .〉

F 121 := 〈[x2], [x4, x2, x5], [x4, x2, x5]〉

〈[x3]〉

〈[x2], [x4, x2, x5], [x4, x2, x5]〉

〈[x3]〉

〈[x1]〉

〈[x7]〉

F 2

〈[x7]〉

Fig. 4. Clause [x4, x2], learnt by the local solver working on the node solving
formula F 121, is not safe anymore, because it depends on the partition con-
straint x7.

the partition tree. If C is a clause, and p a position in the partition tree, Cp

denotes that the clause C is tagged with the position p. Given a partition tree
T for a formula F , clauses belonging to F have to be tagged with the empty
position ǫ. Clauses in a partition constraint Kp are tagged with the position p. A
learnt clause Dq obtained from a resolution derivation (Rp1

1 , . . . , Rpn
n) is tagged

with the longest position q among the positions of the clauses that are used
for resolution, i.e. q = argmaxpi

|pi|, where 1 ≤ i ≤ n. Observe that the same
clause can be derived in different nodes of the partition tree and thus be given
different positions. In order to permit a sequential solver to receive a clause from
another node in the same partition tree, the DPLL reduction system presented
in Table 1 needs to be extended. In general, a clause Cp will only be added to a
formula F q if F q |= Cp (that is, the set of models of F does not change by adding
Cp). The receive rule that is used for position-based tagging is the following:

Definition 2 (Receive Rule). Let G be a formula, J a partial interpretation
and F pq the node at position pq of a partition tree rooted in F . Consider a clause
Cp. Then

G :: J rec G,Cp :: J iff F pq :: ()
∗
 G :: J

Note that the position p of the clause Cp is a prefix of the position pq of the
formula F pq. The correctness of this receive rule is obtained by showing that
the formula F pq entails any clause Cp, which we formally state as Corollary 7
below. In order to prove it, we make use of an auxiliary definition:

Definition 3 (Resolution Order). Let F q be a node in a partition tree rooted

in F . Consider a sequential chain F q :: ()
∗
 G :: J s.t. Cp ∈ G. Consider a

clause Rs. Then Cp >res Rs iff Cp is a learnt clause and Rs is one of the
resolvents used to derive Cp.

It is not hard to see that the transitive closure >+
res of >res is a well-founded

strict partial order, since each learnt clause is the result of a finite resolution

9

derivation and each partition tree is finite. Thus, the well-founded induction
principle [37] is valid on >+

res.

Lemma 4. Consider a node F q, and a sequential chain F q :: ()
∗
 G :: J such

that Cp ∈ G. Then p is a prefix of q.

Proof. By well-founded induction w.r.t. >+
res. (IB) If Cp is not learnt, then it

must be Cp ∈ F q and thus thesis follows from construction. (IH+IS) Assume Cp

has been obtained in some node with a resolution derivation (Rr1
1 , . . . R

p
j , . . . , R

rn
n),

and that the theorem holds for each of these resolvents. If Cp is a received clause,
then it must be p ≤ q by definition of the receive rule. If Cp has been learnt in
F q, then the lemma hypotheses hold for R

p
j as well, and thus from (IH) p is a

prefix of q.

Lemma 5. If Cp is a learnt clause that has been obtained from a resolution
derivation (Rp1

1 , . . . , Rpn
n), then pi is a prefix of p, for every 1 ≤ i ≤ n.

Proof. This is a consequence of Lemma 4

Theorem 6. Given a clause Cp and a node F p, it holds F p |= Cp.

Proof. By well-founded induction w.r.t. >+
res. (IB) If Cp is not learnt, then

Cp ∈ F p, and thus F p |= Cp. (IH + IS) Assume Cp is obtained as a resolu-
tion from resolvents (Rq1

1 , . . . , Rqn
n), and that the theorem holds for each of these

resolvents. From Lemma 5, we have that q1, . . . , qn are prefixes of p. This, to-
gether with the definition of partition tree, leads to:

F qi ⊆ F p, for each 1 ≤ i ≤ n

Thus F p |= F qi , for 1 ≤ i ≤ n. From (IH) and transitivity we derive that F p

models every resolvent of Cp, concluding that F p |= Cp.

Corollary 7. Given a clause Cp and a formula F pq, it holds F pq |= Cp.

Proof. It follows directly from Theorem 6 and from the equality F pq = F p∪Kpq.

Now reconsider the example in Figure 4, which is an extension of Figure 3.
Flag-based clause tagging was not able to share the learnt clause [4, 2] anymore,
because [4, 2] is unsafe. The new sharing rule with position-based tagging can
share this clause again as in the situation of Figure 3: all solvers working on
formulae F 1p can receive this clause.

3.3 Implementation Details

For flag-based tagging only a single Boolean program variable is used to store
whether a learnt clause is safe. In theory, position-based tagging tags each clause
with a position and does expensive position operations during conflict analysis
(for assigning the right position) and during the receive rule application (only
those clauses tagged with a position prefix of the current position are accepted).

10

The implementation of this approach is less complicated and has no overhead
compared to the flag-based approach: each node in the partition tree provides a
clause storage, where all shared clauses that are tagged with the position of this
node are stored. Instead of encoding positions, it is sufficient to tag clauses with
an integer storing the position length (i.e., a level in the partition tree): a clause
tagged with an integer n has to be sent to the storage of the ancestor of level
n of the current node in the partition tree. When a solver incorporates shared
clauses, it only receives clauses from storages that belong to the position from
the current node to the root of the partition tree.

Again, from incorporated clauses only the length of the position is sufficient
to tag learnt clauses correctly. Instead of considering the maximum position, only
the maximum length has to be selected, which is a simple integer comparison
and thus not more expensive than comparing Boolean variables.

All the storages do not store all shared clauses over the whole run. Ring-
buffers with a size of 10000 are used, so that the first clause is overwritten with
the 10001th clause. Local solvers often incorporate clauses from a storage, but
seldom add clauses to the pools so that reader-writer locks protect the pools
instead of usual mutexes. Experiments showed that reader-writer locks give an
improvement of up to 10% against mutual exclusion semaphores.

4 Empirical Evaluation

The experiments have been run in a multicore setting using AMD Opteron 6274
CPUs with 2.2GHz and 16 cores, so that we run 16 local solvers in parallel. The
timeout for every instance is set to 1 hour (wall clock) and a total of 16GB main
memory is allowed for the parallel solvers. Every approach has been tested over
600 instances, that is the whole set of instances of SAT challenge [24]. Note that
a parallel solver is intrinsically non-deterministic: running it several times over
the same instance may result in different run times. Especially for satisfiable
instances, it is known that by chance the solution is found much faster in the
repetition of the run. However, in our specific case execution times have been
quite stable, and thus the results here exposed are likely to be replicated.

We implemented a parallel SAT solver, based on the work in [18] that is
based on Minisat [15]. That solver already shares learnt unit clauses downwards
in the partition tree, after a solver finished processing a node [18]. The evaluation
includes three further solver configurations:

Table 2. Number of solved instances

Approach Solved SAT UNSAT Average run time CPU ratio Score

POS 430 239 191 377.397 11.5 78

RAND 380 232 148 374.445 11.5 -50

FLAG 417 234 183 378.969 11.4 30

NONE 418 244 174 383.785 12.1 -58

11

1. POS, where the presented position-tagging is used
2. RAND, where any learnt clause is shared position-based with 5% probability
3. FLAG, where we use the sharing approach of [22]
4. NONE, where no clauses are shared

Note, local solvers will only share clauses with two or less literal. Only RAND

shares clauses of any size. Clauses are put into the clause storage as soon as
they have been learnt. A nice feature of position based tagging is that it allows
a certain degree of flexibility. Indeed, since F p |= Cp, the clause C could be
put in any storage at position pp′ (provided that pp′ is a valid position in the
partition tree) without affecting soundness. In our experiments we make use of
this flexibility by worsening the sharing level for POS and RAND: if a clause
C should be sent to level k, then we send it to level k′ = k + log2|C|. We do
this in order to fill the various pools in a more homogeneous way. As in [18]
the resources of the local solvers are restricted: a branch is created after 8096
conflicts, and a local solver is allowed to search until 512000 conflicts have been
reached.

Table 2 gives various properties of the four configurations on the benchmark.
For the whole benchmark, as well as separately for satisfiable (SAT) and unsat-
isfiable (UNSAT) formulae the number of solved instances is given. POS slightly
outperforms every other approach by solving at least 12 instances more. Surpris-
ingly, this ranking gives a poor performance to previous work FLAG [22]. For
satisfiable instances, sharing no clauses seems to be the best opportunity, allow-
ing the parallel solvers to diverse. On the other hand, for unsatisfiable instances
the position based sharing seems to be best. A good sharing heuristic is also
important, as can be seen when POS is compared to RAND: POS solves more
instances and the average run time per instance is almost the same. Another in-
teresting measure for parallel solvers is its scalability. The CPU ratio shows how
many cores have been used in average to solve all the instances. The accesses to
shared data structures do not alter this measure significantly: the value of con-
figuration NONE, which does not share any clauses, is only slightly better than
the other three configurations. It has been discussed whether only the number
of solved instances is a good measure [25]. A more careful ranking, which also
takes solving times into account, gives a different picture. The used noise value
for ties has been set to 60 seconds, so that instances that are solved faster than
this value are not considered. Now, FLAG shows the second best performance
after POS, which looks more like the expected evaluation. Furthermore, this
ranking shows that the new approach outperforms the other configurations sig-
nificantly. Comparing POS directly with NONE the score is 37 to -37 points.
Against FLAG, POS still wins with 13 to -13 points. The improvement in the
run time of the different sharing approaches is furthermore compared in the cac-
tus plot in Figure 5. Each dot (x, y) in the diagram shows that a configuration
solves x instances with a timeout of y seconds for each instance. This plot shows
also for other timeouts that POS is the superior configuration. A reason for the
improvement of the search is that clauses are shared. We analyzed how many
clauses have been shared, and furthermore recorded the subtree where these
clauses are valid. Table 3 shows the average number of shared clauses per run of

12

0

500

1000

1500

2000

2500

3000

3500

4000

300 320 340 360 380 400 420 440

T
im

e
 i
n

 s
e

c
o

n
d

s

POS

RAND

FLAG

NONE

Fig. 5. Solved instances and solving times of the four configurations

a configuration. Obviously, NONE does not share any clause. The configuration
FLAG shares only clauses, if they are valid for the whole formula. Therefore, all
6557 clauses have been sent to the storage of the initial formula. Sharing clauses
randomly with 5% probability results in the most shared clauses, namely 209199
in RAND. Note, that only 14% of all clauses are shared among all nodes in the
partition tree. Another 15% of the clauses are sent to storages of the first child
nodes. All remaining clauses are sent at a higher level in the tree and thus shared
among fewer nodes. Restricting shared clauses to binary and unary clauses in
POS leads to less shared clauses, namely only 17202. Similarly to RAND, only
a small fraction (8%) of these clauses is sent to the root of the partition tree.
Note, that both POS and RAND share binary clauses not at the root node, so
that the number cannot be easily compared to FLAG. Still, POS shares more
clauses than FLAG in total, and also results in a higher performance. Summa-
rizing, it is shown that our new sharing approach can share more clauses than
previous approaches. However, simply sending any clause without a good filter
results in a degradation of performance. The used size restriction seems to be a
good filter heuristic.

Table 3. Average number of shared clauses

Configuration shared level 0 shared level 1 total shared

POS 1420 5663 17202

RAND 29472 31676 209199

FLAG 6557 0 6557

NONE 0 0 0

13

Table 4. Scalability of the parallel solver

SAT UNSAT SAT run time UNSAT run time

Configuration slower faster slower faster 4-core 16-core 4-core 16-core

POS 39 203 18 175 317.10 234.60 694.10 556.08

RAND 39 195 13 136 264.18 259.37 639.40 554.83

FLAG 48 192 21 170 293.53 235.51 636.49 562.41

NONE 18 226 16 160 296.16 235.91 603.22 591.20

4.1 Scalable Search

To check whether for future multi-core architectures the approach will scale
further, we run all four solver configurations also with a restriction to 4 cores
and measured the run time and number of solved instances again. For instances
that could be solved with 4 or 16 cores we give the number of instances that
can be solved faster with one of the two approaches in Table 4. Furthermore,
the average run time is compared. The data shows that most of the instances
benefit from additional resources. The run time comparison shows that most of
the time using 16 cores instead of 4 cores results in a higher performance of the
solver. Only a few instances are slower. A similar picture is also presented when
the average run times are compared. For all configurations the average run time
decreases when more resources are used. Since the search of local solvers is not
structured, but enhanced with clause learning and improved backtracking, linear
speedups cannot be expected. These results are in line with the results of [18],
where no clause sharing was used.

5 Conclusion

We presented a new position-based clause sharing technique that allows to
share clauses for subsets of a parallel search space partitioning SAT solver.
Position-based clause sharing improves the intensification of parallel searching
SAT solvers by identifying the search space in which a shared clause is valid so
that the total number of shared clauses can be increased compared to previous
work [22]. Experiments with parallel SAT solvers show that clause sharing is im-
portant for the performance of these solvers. Thus, position-based clause sharing
is a nice extension of clause sharing, which could also be incorporated into other
search space partitioning search procedures.

Future work could improve shared clauses further. By rejecting resolution
steps, the sharing position of learnt clauses can be improved. Additionally, par-
allel resources should be exploited further, for example by using different parti-
tioning strategies or by replacing the local sequential solver by another parallel
SAT solver. Furthermore, more sophisticated search space partitionings have
to be analyzed and evaluated. Finally, improvements to the local solver, as for

14

example restarts and advanced search direction techniques, could also be incor-
porated into the search space partitioning.

References

1. Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J., Steinke, P.:
Solving periodic event scheduling problems with sat. In Jiang, H., Ding, W., Ali,
M., Wu, X., eds.: IEA/AIE. Volume 7345 of Lecture Notes in Computer Science.,
Springer (2012) 166–175

2. Goel, A.: A column generation heuristic for the general vehicle routing problem.
In Blum, C., Battiti, R., eds.: LION. Volume 6073 of Lecture Notes in Computer
Science., Springer (2010) 1–9

3. Carlier, J., Pinson, E.: An algorithm for solving the job-shop problem. Manage.
Sci. 35(2) (1989) 164–176

4. Rossi, F., Beek, P.v., Walsh, T.: Handbook of Constraint Programming (Founda-
tions of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA (2006)

5. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability.
Volume 185 of Frontiers in Artificial Intelligence and Applications., IOS Press
(2009)

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5 (1962) 394–397

7. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning sat solvers.
[5] chapter 4 131–153

8. Marques Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. IEEE Trans. Computers 48(5) (1999) 506–521

9. Katebi, H., Sakallah, K.A., Marques-Silva, J.a.P.: Empirical study of the anatomy
of modern sat solvers. In: Proceedings of the 14th international conference on The-
ory and application of satisfiability testing. SAT’11, Berlin, Heidelberg, Springer-
Verlag (2011) 343–356

10. Li, C.M., Manyà, F.: Maxsat, hard and soft constraints. [5] chapter 19 613–631

11. Kuegel, A.: Improved exact solver for the weighted max-sat problem. In Berre,
D.L., ed.: POS-10. Volume 8 of EPiC Series., EasyChair (2012) 15–27

12. Berre, D.L., Parrain, A.: The sat4j library, release 2.2. JSAT 7(2-3) (2010) 59–6

13. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel sat solver. JSAT 6(4) (2009)
245–262

14. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV
Report Series Technical Report 10/1, Johannes Kepler University, Linz, Austria
(2010)

15. Eén, N., Sörensson, N.: An extensible sat-solver. In Giunchiglia, E., Tacchella, A.,
eds.: SAT. Volume 2919 of LNCS., Springer (2003) 502–518

16. Manthey, N.: Parallel SAT Solving - Using More Cores. In: Pragmatics of
SAT(POS’11). (2011)

17. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction
networks. AI 45(3) (1990) 275–286

18. Hyvärinen, A.E.J., Manthey, N.: Designing scalable parallel sat solvers. In: Theory
and Applications of Satisfiability Testing - SAT 2012 - 15th International Confer-
ence, Trento, Italy, June 17-20, 2012. Proceedings. Volume 7317 of Lecture Notes
in Computer Science. (2012) 214–227

15

19. Chrabakh, W., Wolski, R.: Gridsat: A chaff-based distributed sat solver for the
grid. In: Proceedings of the 2003 ACM/IEEE conference on Supercomputing. SC
’03, New York, NY, USA, ACM (2003) 37–

20. Guo, L., Hamadi, Y., Jabbour, S., Sais, L.: Diversification and intensification
in parallel sat solving. In Cohen, D., ed.: CP. Volume 6308 of Lecture Notes in
Computer Science., Springer (2010) 252–265

21. Hyvärinen, A.E.J., Junttila, T.A., Niemelä, I.: Partitioning sat instances for dis-
tributed solving. In Fermüller, C.G., Voronkov, A., eds.: LPAR (Yogyakarta).
Volume 6397 of Lecture Notes in Computer Science., Springer (2010) 372–386

22. Hyvärinen, A.E.J., Junttila, T.A., Niemelä, I.: Grid-based sat solving with iterative
partitioning and clause learning. In Lee, J.H.M., ed.: CP. Volume 6876 of Lecture
Notes in Computer Science., Springer (2011) 385–399

23. Arbelaez, A., Hamadi, Y.: Improving parallel local search for sat. In Coello,
C.A.C., ed.: LION. Volume 6683 of Lecture Notes in Computer Science., Springer
(2011) 46–60

24. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international SAT solver
competitions. AI Magazine 33(1) (2012) 89–92

25. Van Gelder, A.: Careful ranking of multiple solvers with timeouts and ties. In:
Proceedings of the 14th international conference on Theory and application of
satisfiability testing. SAT’11, Berlin, Heidelberg, Springer-Verlag (2011) 317–328

26. Arnold, H.: A linearized dpll calculus with clause learning. (2010)
27. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in sat-

isfiability and constraint satisfaction problems. J. Autom. Reason. 24(1-2) (2000)
67–100

28. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: DAC. (2001) 530–535

29. Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In Gramlich, B., Miller,
D., Sattler, U., eds.: Proceedings of the 6th International Joint Conference on
Automated Reasoning (IJCAR 2012). Volume 7364 of Lecture Notes in Computer
Science., Springer (2012) 355–370

30. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning sat solvers as
resolution engines. Artif. Intell. 175(2) (2011) 512–525

31. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. J. Artif. Int. Res. 22(1) (2004) 319–351

32. Bhm, M., Bohm, M., Speckenmeyer, E., Speckenmeyer, E.: A fast parallel sat-solver
- efficient workload balancing (1994)

33. Martins, R., Manquinho, V., Lynce, I.: An overview of parallel sat solving. Con-
straints 17 (2012) 304–347

34. Hölldobler, S., Manthey, N., Nguyen, V., Stecklina, J., Steinke, P.: A short overview
on modern parallel SAT-solvers. In et.al., I.W., ed.: Proceedings of the Interna-
tional Conference on Advanced Computer Science and Information Systems. (2011)
201–206 ISBN 978-979-1421-11-9.

35. Audemard, G., Hoessen, B., Jabbour, S., Lagniez, J.M., Piette, C.: Revisiting
clause exchange in parallel sat solving. In: Proceedings of the 15th international
conference on Theory and Applications of Satisfiability Testing. SAT’12, Berlin,
Heidelberg, Springer-Verlag (2012) 200–213

36. Hyvärinen, A.E., Junttila, T., Niemelä, I.: Incorporating learning in grid-based
randomized sat solving. In: Proceedings of the 13th international conference on Ar-
tificial Intelligence: Methodology, Systems, and Applications. AIMSA ’08, Berlin,
Heidelberg, Springer-Verlag (2008) 247–261

16

37. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
New York, NY, USA (1998)

17

	Sharing Information in Parallel Search with Search Space Partitioning
	Davide Lanti and Norbert Manthey

