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Abstract

We present a translation from defeasible theory bases to abstract dialectical
frameworks, a recent generalisation of abstract argumentation frameworks. Us-
ing several problematic examples from the literature, we first show how our
translation addresses important issues of existing approaches. We then prove
that the translated frameworks satisfy the rationality postulates closure and dir-
ect/indirect consistency. Furthermore, the frameworks can detect inconsisten-
cies in the set of strict inference rules and cyclic (strict and defeasible) supports
amongst literals. We also show that the translation involves at most a quadratic
blowup and is therefore effectively and efficiently computable. In the last part
of the paper, we also define a direct, possible-worlds semantics for defeasible
theory bases, which illustrates the technical difficulties arising in this process.
In particular, the possible-worlds semantics is eager to apply defeasible rules,
which is in contrast to the previously studied translation-based approaches.

Keywords: abstract dialectical frameworks, abstract argumentation
frameworks, defeasible theories, rule bases

1. Introduction

Abstract argumentation frameworks (AFs) [11] are a formalism that is widely
used in argumentation research. Such an AF consists of a set of arguments
and an attack relation between these arguments. Their semantics determines
which sets of arguments of a given AF can be accepted according to specific
criteria. A common way to employ Dung’s AF's is as abstraction formalism.
In this view, expressive languages are used to model concrete argumentation
scenarios, and translations into Dung AF's provide these original languages with
semantics. The advantage of translating into an argumentation formalism is
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that the resulting semantics can be given a dialectical interpretation, which can
be used to inform humans how a particular conclusion was inferred.

However, the approach is not without its problems. Caminada and Amgoud
[6] reported some difficulties they encountered when defining an abstract argu-
mentation-based semantics for defeasible theory bases. Defeasible theory bases
are simple logic-inspired formalisms working with inference rules on a set of
literals. Inference rules can be strict, in which case the conclusion of the in-
ference (a literal) must necessarily hold whenever all antecedents (also literals)
hold. Inference rules can also be defeasible, which means that the conclusion
usually holds whenever the antecedents hold. Here, the word “usually” sug-
gests that there could be exceptional cases where a defeasible rule has not been
applied [17].

In response to the problems they encountered, Caminada and Amgoud [6]
stated general rationality postulates for AFs based on defeasible theories. The
intention of these postulates is to mathematically capture what humans perceive
as rational behaviour from the semantics of defeasible theory bases. First of all
the closure postulate says that whatever model or extension the target formalism
(the AF) produces, it must be closed under application of strict rules, meaning
that all applicable strict rules have been applied. Direct and indirect consistency
postulates express that any model or extension of the target formalism must be
internally consistent with respect to the literals of the defeasible theory base
(directly) and even with respect to application of strict rules (indirectly).

Later, Wyner et al. [23] criticised Caminada and Amgoud’s definition of ar-
guments on ontological grounds and gave an alternative translation. We are
agnostic with respect to Wyner et al.’s criticism, but use their translation as a
starting point for our own work. Such a further refinement is necessary since
the translation of Wyner et al. [23] still yields unintuitive results on benchmark
examples and does not satisfy the closure and indirect consistency postulates.
Wyner et al. [24] later fixed these issues by adding a meta-level integrity con-
straint on the obtained extensions, thus ruling out violation of the postulates.
Our translation has this integrity constraint built into it, such that models can
be taken as they are.

The basis of our solution to the aforementioned problems is a shift in the
target language. While until now abstract argumentation frameworks were the
formalism of choice, we will use the more general abstract dialectical frameworks
(ADFs) [4]. Where AF's allow only attacks between arguments, ADFs can also
represent support relations and many more. More specifically, in an AF an
argument is accepted if none of its attackers is accepted. The same can be
expressed in an ADF. But ADFs can also express that an argument is only
accepted if all of its supporters are accepted, or the argument is accepted if
some of its supporters are accepted, or it is accepted if some attacker is not
accepted, and many more.

The modelling capacities of ADF's in comparison to AFs — which we studied
previously [19, 5] — enables us to give a direct and straightforward translation
from defeasible theory bases to abstract dialectical frameworks. We will show
that this translation — the first main contribution of this paper — treats the



benchmark examples right and satisfies the rationality postulates of Caminada
and Amgoud [6]. We consider this further important evidence that abstract
dialectical frameworks are useful tools for representing and reasoning about
argumentation scenarios. We also perform a complexity analysis of our trans-
lation; this is significant in that we are not aware of complexity analyses of the
mentioned previous approaches.

The availability of support in ADFs (in contrast to AFs) as a target formal-
ism will be of fundamental importance to our translation. Among other things,
it will allow us to resolve cyclic dependencies among literals in a defeasible the-
ory base in a straightforward way. The treatment of such support cycles is built
into ADF standard semantics, which can be considered a product of decades of
research into nonmonotonic knowledge representation languages.

As our second main contribution, we introduce a possible-worlds semantics
for defeasible theory bases. This provides a language for formulating different in-
tuitions about the meaning of strict and defeasible rules. Furthermore, it nicely
illustrates the difficulties in formally defining semantics for collections of such
rules. The semantics is inspired by possible-worlds semantics for autoepistemic
logic [10], we therefore indirectly present potential epistemic modal readings of
strict and defeasible rules.

In the rest of the paper, we first recall the necessary background on defeas-
ible theory bases, abstract argumentation frameworks and abstract dialectical
frameworks. In Section 3 we look at the translations of Caminada and Amgoud
[6] and Wyner et al. [23], discuss some problems of these, and introduce gen-
eralised versions of the rationality postulates. In Section 4 we then define our
own translation. We show how it treats the problematic examples, prove that it
satisfies the (generalised versions of the) rationality postulates and analyse its
computational complexity. We then introduce our direct semantics for defeas-
ible theories and illustrate its behaviour on several examples, and afterwards
clarify its connections to autoepistemic logic. We conclude with a discussion of
related and future work. This paper is a revised and extended version of [20].

2. Background

Defeasible Theories. Following Caminada and Amgoud [6], we use a set Lit of
literals that are built using syntactical negation —- and define a semantic nega-
tion function - such that for an atom p we have p = —p and =p = p. Throughout
the paper, we assume that Lit is closed under negation in the sense that 1) € Lit
implies ¢ € Lit. A set S C Lit of literals is consistent iff there is no literal
1 € Lit such that both ¢ € S and —¢ € S. For literals ¢1,...,¢,,% € Lit, a

strict Tule over Lit is of the form 7 : ¢1,..., ¢, — ¥; a defeasible rule over Lit
is of the form r : ¢1,..., ¢, = ¥. (The only difference is the arrows.) Here r is
the unique rule name, the literals ¢1, ..., ¢, constitute the rule body and ) is

the rule head or conclusion. Intuitively, a strict rule says that the rule head is
necessarily true whenever all body literals are true; a defeasible rule says that
the head v is usually true whenever all body literals are true. In definitions, we
use the symbol = as meta-level variable for — and =-.



For a set M C Lit of literals and a set Strinf of strict rules over Lit,
we say that M is closed under Strinf iff r : ¢1,..., ¢, — ¥ € Strinf and
P1,-..,0n € M imply ¢ € M. Accordingly, the closure of M under Strinf
is the smallest set Clgyms (M) that contains M and is closed under Strinf. A
defeasible theory or theory base is a triple (Lit, Strinf, DefInf) where Lit is a set
of literals, Strinf is a set of strict rules over Lit and DefInf is a set of defeasible
rules over Lit. The semantics of theory bases is usually defined via a translation
to abstract argumentation frameworks, which will be introduced next.

Abstract Argumentation Frameworks. Dung [11] introduced argumentation
frameworks as pairs © = (A, R) where A is a set and R C A x A a rela-
tion. The intended reading of an AF © is that the elements of A are arguments
whose internal structure is abstracted away. The only information about the ar-
guments is given by the relation R encoding a notion of attack: a pair (a,b) € R
expresses that argument a attacks argument b in some sense.

The purpose of semantics for argumentation frameworks is to determine
sets of arguments (called extensions) which are acceptable according to various
standards. We will only be interested in so-called stable extensions, sets S of
arguments that do not attack each other and attack all arguments not in the set.
More formally, a set S C A of arguments is conflict-free iff there are no a,b € S
with (a,b) € R. A set S is a stable extension for (A, R) iff it is conflict-free and
for all a € A\ S there is a b € S with (b,a) € R.

Abstract Dialectical Frameworks. Brewka and Woltran [4] introduced abstract
dialectical frameworks as a powerful generalisation of Dung AF's that are able
to capture not only attack and support, but also more general notions such as
joint attack and joint support.

Definition 1. An abstract dialectical framework is a triple Z = (S, L, C') where
e S is a set of statements,
e [ C S xS isaset of links, where par(s) & {re S| (r,s) € L}
o O ={C,},cq is aset of total functions Cy : 2P*7(®) — {in, out}.

Intuitively, the function Cs for a statement s determines the acceptance
status of s, which naturally depends on the status of its parent nodes. Any
such function Cy can alternatively be represented by a propositional formula
s over the vocabulary par(s). The understanding here is that for M C par(s),
Cs(M) = in iff M is a model of ¢, (written M = ¢;), where an interpretation
is identified with the set of atoms that are evaluated to true.

Brewka and Woltran [4] introduced several semantical notions for ADFs.
First, for an ADF = = (S, L,C) where C is given by a set of propositional
formulas ¢, for each s € S, a set M C S is a model for = iff for all statements
s we have: s € M iff M |= ;.



Example 1 (Abstract dialectical framework). Consider the
ADF D= (S,L,C) with statements S = {a,b,c,d}, links L =
{(a,¢), (b,b), (b,c),(b,d)} and acceptance functions given by the formulas
Yo =T, pop =0b, o = aAband p; = —b. Intuitively, these acceptance
conditions express that (1) a is always accepted, (2) b supports itself, (3) ¢
needs the joint support of a and b, and (4) d is attacked by b. The two models
of D are M; = {a,b,c} and My = {a,d}.

The semantics of ADFs can be defined using operators [5]. In this paper, we
are only interested in two-valued semantics, that is, models and stable models.
The definition of the latter is based on the notion of a reduct and an operator
originally introduced by Brewka and Woltran [4]. The operator I's takes two
sets A, R of statements, where the intuition is that all statements in A are
accepted and those in R are rejected. (So those in S\ (AU R) are undecided.)
According to these acceptance statuses, the operator evaluates all acceptance
formulas and decides which statements can be definitely accepted or rejected.
The reduct implements the intuition that whatever is false in a stable model can
be assumed false, but whatever is true in a stable model must be constructively
provable. The next definition combines all of this.

Definition 2. Let E = (S, L, C) be an abstract dialectical framework. Define
an operator by I's(4, R) = (acc(4, R), rej(A, R)) for A, R C S, where

acc(A,R)={se€ S |forall AC Z C (S\ R),we have Z = p,}
rej(A,R)={se€ S |forall AC Z C (S\ R),we have Z [~ s}

For a set M C S, define the reduced ADF =M = (M, LM CM) by the set of
links LM = LN (M x M) and for each s € M we set oM = ¢ [r/L:r ¢ M].
A model M for = is a stable model of Z iff the least fixpoint of the operator
I'zw is given by (M, 0).

Brewka and Woltran [4] showed that for any ADF Z, the operator I's always
has a least fixpoint with respect to the component-wise C-ordering.! The com-
putation of this least fixpoint starts with (0,0); if it ends in (M, 0) then this
intuitively means that all statements in M can be constructively derived assum-
ing that all statements not in M are false. If the computation ends in anything
other than (M, (), then M is not a stable model.

Example 1 (Continued). Of the two models M;, M, seen earlier, only M,
is a stable model. Intuitively, the statement b € M; cyclically supports itself.

It is clear that ADFs are a generalisation of AFs: for an argumentation
framework © = (A, R), its associated abstract dialectical framework is given by
E2(0) = (4, R,C) with Cy(B) = in iff B = () for each a € A. But this is not just
syntactical; Brewka and Woltran [4] showed that their semantical notions for

IThat is, (A, B) < (C,D) iff AC C and B C D.



ADFs are generalisations of Dung’s respective AF notions; likewise, in [5, 19]
we proved correspondence results for all semantics defined there. Brewka and
Woltran [4] defined a particular subclass of ADFs called bipolar. Intuitively,
in bipolar ADFs each link is supporting or attacking (or both). It will turn
out that ADFs resulting from our automatic translation from defeasible theory
bases are all bipolar. This is especially significant as recent complexity results
show that bipolar ADFs are as complex as AFs, thus the additional modelling
capacities of bipolar ADFs come essentially for free [21].

3. Instantiations to Abstract Argumentation Frameworks

The general approach to provide a semantics for defeasible theories is to
translate the defeasible theory into an argumentation formalism and then let
the already existing semantics for that argumentation formalism determine the
semantics of the defeasible theory. In the literature, the target formalism of
choice are Dung’s abstract argumentation frameworks. They abstract away
from everything except arguments and attacks between them, so to define a
translation to AFs one has to define arguments and attacks. We now review
two particular such approaches.

3.1. The Approach of Caminada and Amgoud [6]

Caminada and Amgoud [6] define a translation from defeasible theories to
argumentation frameworks. They create arguments in an inductive way by
applying one or more inference rules. The internal structure of the arguments
reflects how a particular conclusion was derived by applying an inference rule
to the conclusions of subarguments, and allows arguments to be nested. So the
base case of the induction takes into account rules with empty body, that is,
rules of the form — ¢ (or = ) for some literal ¢). Each such rule leads to
an argument A = [— 9] (or [= ¢]), and the conclusion of the rule becomes
the conclusion of the argument. For the induction step, we assume there are
arguments Aq,..., A, with conclusions ¢1,...,¢,, respectively. If there is a
strict rule @1, ..., ¢, — ¥, we can build a new argument A = [A44,..., 4, = ]
with conclusion ¢. (Likewise, if there is a defeasible rule ¢4, ..., ¢, = 9, we can
build a new argument A = [Ay,..., A, = ¢].) Similar to rules, arguments can
be strict or defeasible, where application of at least one defeasible rule makes
the whole argument defeasible. In other words, strict arguments only use strict
rules to derive their conclusion.

For these arguments, Caminada and Amgoud [6] then define two different
kinds of attacks, rebuts and undercuts. An argument a rebuts another argument
b if a subargument of a concludes some literal v, while there is a defeasible
subargument of b that concludes 1). An argument a undercuts another argument
b if the latter has a subargument that results from applying a defeasible rule
and the applicability of that rule is disputed by a subargument of a. (So as a
matter of principle, only defeasible arguments can be attacked.) Caminada and
Amgoud [6] observed some difficulties of this translation.



Example 2 (Married John, [6, Example 4]). Consider the following

vocabulary with intended natural-language meaning: w... John wears
something that looks like a wedding ring, ¢... John often goes out late
with his friends, m... John is married, b... John is a bachelor, h...

John has a spouse. There are several relationships between these pro-
positions, which are captured in the following theory base: the literals
are Lit = {w, g, h,m,b,~w, g, —h,—m,—b}, the strict rules are given by
Strinf = {r1 : = w, r9 :— g, r3:b— —h, r4: m — h} and the defeasible rules
DefInf = {rs : w=m, r¢: g = b}.

In the ASPIC system of Caminada and Amgoud [6], all the literals in the set
S = {w, g,m,b} are contained in all extensions (with respect to any of Dung’s
standard semantics) of the constructed AF. Caminada and Amgoud observe
that this is clearly unintended since the natural-language interpretation would
be that John is a married bachelor. Moreover, the closure of S under Strinf
is Clsiring (S) = {w, g,m, b, h, =h}, which is inconsistent. So not only are there
applicable strict rules that have not been applied in S, but their application
would lead to inconsistency.

To avoid anomalies such as the one just seen, Caminada and Amgoud [6] went
on to define three natural rationality postulates for rule-based argumentation-
based systems that are concerned with the interplay of consistency and strict
rule application. Our formulation of them is slightly different for various reasons:

e We are concerned with argumentation frameworks as well as with abstract
dialectical frameworks in this paper, so we made the postulates parametric
in the target argumentation formalism.

e We removed the respective second condition on the sceptical conclusions
with respect to all extensions/models. Propositions 4 and 5 in [6] show
that they are redundant in their case.

e We are not constrained to formalisms and semantics where there are only
finitely many extensions/models.

e For the sake of readability, we assume that the literals Lit of the defeasible
theory are contained in the vocabulary of the target formalism.?

The first postulate requires that the set of conclusions for any extension
should be closed under application of strict rules.

Postulate 1 (Closure). Let (Lit, StrInf, DefInf) be a defeasible theory. Its
translation satisfies closure for semantics o iff for any o-model M, we find that
ClStT[nf(Lit N M) C LitNM.

2This is not a proper restriction since reconstruction of conclusions about the original
defeasible theory is one of the goals of the whole enterprise and so there should be at least a
translation function from argumentation models to theory models.



Naturally, the notion of consistency is reduced to consistency of a set of
literals of the underlying logical language. Note that consistency only concerns
the local consistency of a given single model of the target formalism. It may
well be that the formalism is globally inconsistent in the sense of not allowing
for any model with respect to a particular semantics. The latter behaviour can
be desired, for example if the original theory base is inconsistent already.

Postulate 2 (Direct Consistency). Let (Lit, Strinf, DefInf) be a defeasible
theory with translation X and o a semantics. X satisfies direct consistency iff
for all o-models M we have that Lit N M is consistent.

Caminada and Amgoud [6] remark that it is usually easy to satisfy direct
consistency, but much harder to satisfy the stronger notion of indirect consist-
ency. For this to hold, for each model its closure under strict rules must be
consistent.

Postulate 3 (Indirect Consistency). Let (Lit, Strinf, DefInf) be a defeas-
ible theory with translation X and o a semantics. X satisfies indirect consistency
iff for all o-models M we have that Cls¢pmys(Lit N M) is consistent.

As a counterpart to Proposition 7 of Caminada and Amgoud [6], we can
show that closure and direct consistency together imply indirect consistency.

Proposition 1. Let (Lit, Strinf, DefInf) be a defeasible theory with transla-
tion X and o a semantics. If X satisfies closure and direct consistency, then it
satisfies indirect consistency.

Proof. Let X satisfy closure and direct consistency, and let M be a o-model
for X. We have to show that Clsirr,s(Lit N M) is consistent. Since X satisfies
closure, Clsrms(Lit N M) C Lit N M. Now since X satisfies direct consistency,
Lit N M is consistent. Hence its subset Clgypms(Lit N M) C Lit is consistent
and X satisfies indirect consistency. O

While Caminada and Amgoud [6] observed problematic issues in giving
argument-based semantics to defeasible theory bases, they still succeeded in
devising an approach that is able to achieve closure and direct and indirect con-
sistency for any admissibility-based semantics by using appropriate definitions
of rebut and undercut.

3.2. The Approach of Wyner et al. [24]

Wyner et al. [23, 24] identified some problems of the approach of Camin-
ada and Amgoud [6] and proposed an alternative translation from theory bases
to argumentation frameworks. We do not necessarily support or reject their
philosophical criticisms, but rather find the translation technically appealing.
They create an argument for each literal in the theory base’s language and ad-
ditionally an argument for each rule. Intuitively, the literal arguments indicate
that the literal holds, and the rule arguments indicate that the rule is applicable.
Furthermore, the defined conflicts between these arguments are straightforward:



(1) opposite literals attack each other; (2) rules are attacked by the negations
of their body literals; (3) defeasible rules are attacked by the negation of their
head; (4) all rules attack the negation of their head.

Definition 3 (Definitions 4 and 5 in [23]). Let TB = (Lit, Strinf, DefInf)
be a defeasible theory. Define an argumentation framework ©(7TB) = (A4, R) by
A= Lit U{r | r:d1,...,0n = 1 € Strinf U Definf}
R=  {(¥,¥) | € Lit}
U {(¢i,7) | T L., n = € Strinf U DefInf,1 < i <n}
U {(@,r) | ridr, ..., p =Y E DefInf}
u {(T,@) | T, On =P E StrlnfUDefInf}

As mentioned in the introduction, a further definition is needed to rule out
extensions that are not closed under strict rules.

Definition 4 (Definition 7 in [24]). Let TB = (Lit, Strinf, DefInf) be a
defeasible theory and ©(TB) = (A, R) its associated argumentation frame-
work. An extension M C A of ©(TB) is well-formed if there is no strict rule
riQ1, ..., On — ¥ € StrInf such that {r,¢1,...,¢,} C M but ¢ ¢ M.

It is decidable in polynomial time whether a given extension M is well-
formed: we can compute Clsrrns (M) and then check whether Clgyy gy (M) C M.
This means that the additional computational cost incurred by Definition 4 is
acceptable under standard assumptions.? For illustration, let us now look at
one of the examples of Wyner et al. [24] which they adapted from [6].

Example 3 (Example 4 in [24]). Consider the following theory base.

Lit = {x1, 22, 3, 4, T5, 2T1, T2, 73, L4, 75}
Strinf = {ry :—= x1, ro:i— T2, r3:i— T3, T4:T4,Tp— T3}
DefInf = {rs : x1 = x4, 7r6:x3= a5}

We can see that x1,zo, x3 are strictly asserted and thus should be contained in
any extension. The AF translation is depicted below.

o SDUERCD
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31t might even be possible to encode Definition 4 directly into the translated AF by adding,
for each strict rule 7 : ¢1,...,¢n — ¥ € Strinf, a new argument -r (“r is inapplicable”) and

the attacks (-r,-7), (1,-1), (¢1,-7),. .., (¢n,-7).




The stable extensions of this AF are as follows:

Sl = {33'1,332,1'3, _'334,_'1'5,7‘1,?”2,7”3} 52 = {$1,$2,$3, _\IL’4,I'5,7’1,7‘2,7"3,7”6}

S3 = {3317962,333,334,ﬁ335,7“1,7“2,7‘3,7“5} Sy = {331,3?2,334,$5,7’177"2,7“3,7“4,7‘5,7’6}

While the first three extensions can be considered intended, Sy is not closed
under strict rules and indirectly inconsistent: r3 is applicable but x3 does not
hold, ry4 is applicable but —x3 does not hold. Indeed, Sy is not well-formed and
thus should not be considered for drawing conclusions [24].

A similar observation can be made in Example 2: the AF translation accord-
ing to Wyner et al. [23] has a stable extension {w, g, m,b,r1,79,73,74,75,76}
where John is a married bachelor; but again, this extension is not well-formed
and thus discarded.

4. Instantiations to Abstract Dialectical Frameworks

In this section, we extend the theory base to AF translation of Wyner et al.
[23] to ADFs. Due to the availability of support, this is straightforward. Indeed,
support and attack are sufficient for our purposes and we can therefore restrict
our attention to bipolar ADFs.

4.1. From Theory Bases to ADFs

As in the approach of Wyner et al. [23], we directly use the literals from the
theory base as statements that express whether the literal holds. We also use
rule names as statements indicating that the rule is applicable. Additionally,
for each rule r we create a statement -r indicating that the rule has not been
applied. Not applying a rule is acceptable for defeasible rules, but unacceptable
for strict rules since it would violate the closure postulate. This is enforced
via integrity constraints saying that it may not be the case in any model that
the rule body holds but the head does not hold: Technically, for a strict rule
r, we introduce a conditional self-attack of -r; this self-attack becomes active
if (and only if) the body of r is satisfied but the head of r is not satisfied,
thereby preventing this undesirable state of affairs from getting included in a
model. Defeasible rules offer some degree of choice, whence we leave it to the
semantics whether or not to apply them. This choice is modelled by a mutual
attack cycle between r and -r. The remaining acceptance conditions are equally
straightforward:

e Opposite literals attack each other.

e A literal is accepted whenever some rule deriving it is applicable, that is,
all rules with head v support statement 1.

e A strict rule is applicable whenever all of its body literals hold, that is,
the body literals of r are exactly the supporters of r.

10



e Likewise, a defeasible rule is applicable whenever all of its body literals
hold, and additionally the negation of its head literal must not hold.

In particular, literals cannot be accepted unless there is some rule deriving them.

Definition 5. Let TB = (Lit, Strinf, DefInf) be a theory base. Define an ADF
E(TB) = (S,L,C) by S=LitU{r,-r | r: ¢1,...,¢n = ¢ € StrInf U Deflnf};
the acceptance functions of statements s can be parsimoniously represented by
propositional formulas ¢,.* For a literal ¢ € Lit, we define

Py =[P A V [7]

rid1,..., 0 DYEStrinfUDefInf

For a strict rule 7 : ¢1,..., ¢, — ¢ € Strinf, we define

pr =0l AAlga]l  and =[G AL A [Pn] A =[] A S

For a defeasible rule r : ¢1,...,¢0, = 1 € Deflnf, we define

Pr = [¢1] ARERA [¢n] A ﬂW N _\[—’I“] and P-r = _‘[T]
Finally, there is a link (s',s) € L iff [s/] occurs in the acceptance formula ;.

(For the formulas defined above, the empty disjunction leads to L — logical
falsity — and the empty conjunction to T — logical truth.)
Let us see how our translation treats the examples seen earlier.

Example 3 (Continued). Definition 5 yields these acceptance formulas:

Pzy = [x1] Ar1] Oz =@ A2l @y = [mw3] Alrg]
Pzy = [xa] Ars] P25 = [x5] A [16]
Pogy = L Doy = L Pagz = _‘[373] A [7“4 Pazy = L Pz = L
Pry = T Pro = T Prs = T Pry = [564] A [I5]
Ors = [m] A[mza]) Amlrs] g = [m2] A [mas] A [-r6]
Py = @] A =[] Py =lw2] A[r2] gy =[] Al
Pory = [wa] Afas] A=[mzs] A =[] @y = 5] g = [re]

Statements with an acceptance condition of the form —p; A...A—p, behave like
AF arguments. So in particular r1, 79,73 are always in since these rules have an
empty body. Similarly, -r1,-72,-r3 are self-attacking arguments. The statements
—x1, T2, Oy, OT5 are always out since there are no rules deriving these literals.
The remaining acceptance conditions are clear from the definitions: literals are

4In these formulas, we write ADF statements in brackets, to avoid confusion between
negation being applied inside a statement name — as in [-z] — and negation being applied in
the formula outside of the statement’s name — as in =[-r]. Thus [~z] and —[z] are syntactically
different literals in the language of acceptance formulas; their meaning is intertwined via the
semantics of ADFs.

11



supported by the rules deriving them and rules in turn are supported by their
body literals.

For this ADF, models and stable models coincide, and there are three of
them:

My ={x1,x2,3,71,72,73,-75,-T6 } My ={x1,x2, 3, T4,71,72,73,75,-T6 }

M3z ={x1, 22,23, 25,71,72,73,-T5,76 }

Roughly, in M7 none of the defeasible rules rs5, ¢ has been applied — indicated
by -r5 and -rg —, while in M and M3 either one of them has been applied. As
intended, there is no model where both defeasible rules have been applied, as
this would lead to a set that contains both x4 and z5; this in turn would make
rule r4 applicable, allowing to conclude —x3 in contradiction to x3 being strictly
true according to rule r3. We can furthermore see that all of the models are
closed under strict rule application (they contain x1, 2,23 and no other strict
rule is applicable) and directly consistent, thus also indirectly consistent.

A similar observation can be made for John (not) being married (Example 2);
our ADF translation has three (stable) models: M; = {w,g,r1,72,-15,-r6},
My ={w,g,h,m,r1,ra,14,75,-16} and Mz = {w,g,b,—~h,r1,r9,73,-15,76}.
Again, the argumentation translation of the theory base satisfies closure and
direct and indirect consistency. We will later prove that the satisfaction of the
postulates is not a coincidence in our approach. But first of all let us consider
another problem which often arises in knowledge representation and reasoning.

4.2. Support Cycles in Theory Bases

When logical, rule-based approaches are used for knowledge representation, a
recurring issue is that of cyclic dependencies between propositions of the know-
ledge base. If such support cycles are carelessly overlooked or otherwise not
treated in an adequate way, they can lead to counterintuitive conclusions. Con-
sider this famous example by Denecker et al. [8].

Example 4 (Gear Wheels [8]). There are two interlocked gear wheels z and
y that can be separately turned and stopped. Let xy and yo denote whether x
(resp. y) turns at time point 0, and likewise for a successive time point 1. At
any one time point, whenever the first wheel turns (resp. stops), it causes the
second one to turn (resp. stop), and vice versa. This is expressed by strict rules
r1 to rg. Without a cause for change, things usually stay the way they are from
one time point to the next, which is expressed by the defeasible rules r, to r4.

Lit = {x()ay()axlayl’_'m()a_‘yOa_‘xlv_'yl}
Strinf = {r1 : @y — yo, 7r2:Yo — To, T3:To— TWo, T4: Yo — TTo,
TsIXTL Y1, Te:iYl —> L1, T7iTTl—> W1, gy — 1)

DefInf = {rq : ®o = x1, 7p: Ty = "T1, Te:Yo=Y1, Td:Yo= "Y1}

For later reference, we denote this theory base by TBgw =
(Lit, Strinf, DefInf).  To model a concrete scenario, we add the rules

12



Strinf" = {r; :— —wo,7; :— —yo} expressing that both wheels initially stand
still.  We denote the augmented theory base for this concrete scenario by
TB'ow = (Lit, Strinf U Strinf’, DefInf). Tt is clearly unintended that there is
some model for TB';y, where the gear wheels magically start turning with one
being the cause for the other and vice versa.

Example 5 (Defeasible cycle). Consider these defeasible rules saying that
rain and wet grass usually go hand in hand: Lit = {rain, wet, —rain, ~wet},
Strinf =0 and DefInf = {ry : rain = wet,ry : wet = rain}. The intended
meaning is that one is usually accompanied by the other, not that both may
appear out of thin air.

To see how argumentation translations of theory bases treat such cycles, let
us look at a simplified version of the gear wheels example.

Example 6 (Strict cycle). Consider a theory base with two literals mutually
supporting each other through strict rules: Lit = {1, 22, 721, "2}, the strict
rules are given by Strinf = {ry : x1 = x2, 712 :x2 — x1} and Deflnf = 0. Our
ADF translation of this example yields the acceptance formulas

Oz =[r2] e =L o =[] o = [T1] A[ze] Al
Pry = [7’1] Pozs = 1 Pry = [xQ] Pory = [xQ] A ﬁ[‘rl} A ﬁ['rﬂ

The ADF has two models, My = {x1,z2,7m1,72} and My = (). Only M is a
stable model due to the cyclic self-support of the statements in M;. Note that
not only do x; and z2 not hold in Ms, neither do -z and —x2 (there are no
rules possibly deriving them). In contrast, the translation of Wyner et al. [23]

yields the AF
<>
COERED)
<

with two stable extensions S1 = {x1, 71, 22,72} and Sy = {—x1, ~2z2}. In Sp, 21
and x hold due to self-support while in Sy they are “guessed” to be false.’

In our view, this is problematic since it is not made clear to the user that
these different extensions arise due to self-support. Even if we grant that for
some application domains, cyclic self-support of literals might be intended or at
least not unintended, the user should be able to distinguish whether different
models/extensions arise due to present or absent self-support on the one hand, or
due to conflicts between defeasible conclusions on the other hand. ADF's provide
this important distinction, since cycles are allowed in models and disallowed in

5In this paper, we consider only stable extension semantics for AFs. It might be possible
to choose/come up with an AF semantics that treats the above AF differently.
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stable models, while both semantics are identical in their treatment of conflicts
between defeasible conclusions.

In the approach of Caminada and Amgoud [6], treatment of cycles is built
into the definition of the set of arguments in the resulting argumentation frame-
work. The arguments are created using structural induction, where rules with
empty bodies form the induction base and all other rules form the induction
step. For the general gear wheel domain TB gy of Example 4, and for Ex-
amples 5 and 6, their translation would not create any arguments (there are no
assertions in the theory bases), and the approach could not draw any conclu-
sions about these examples. The concrete scenario of the interlocked gear wheel
domain TB';y, in Example 4, where both wheels initially stand still, would
be treated correctly by the approach of Caminada and Amgoud [6]. But note
that the well-foundedness of the treatment of cyclic dependencies is built into
the syntax of the resulting argumentation framework — there are no arguments
that could conclude that any of the wheels is turning, although there are (strict
and defeasible) rules with such conclusions.® Consequently, a part of the se-
mantics of the theory base is already fixed by the translation, irrespective of the
argumentation semantics that is used later on.

4.3. Inconsistent Theory Bases

Example 7 (Inconsistent Theory Base). Consider the following (obviously
inconsistent) theory base in which both a literal and its negation are strictly
asserted: Lit = {z, -z}, Strinf = {ry :— x, ro :— —a} and DefInf = (. Our
ADF translation yields the acceptance formulas

pa = [z A [r] ory =T Py = 2[z] A=)
Pz = D[] Afro] Pry =T Pory = 2[mw] A =[ro]

This ADF has no models, and so the theory base’s inconsistency is detected.

On the other hand, the associated argumentation framework due to Wyner
et al. [23] is given by the set of arguments A = {x, —x,r;,r2} and the attacks
R = {(z,—x), (-, x), (r1,x), (r2,2)}. In the only stable extension {ri,rs}
both rules are applicable but none of the head literals hold due to imman-
ent conflict. Again, this extension is not well-formed and the inconsistency is
made obvious.

In the approach of Caminada and Amgoud [6], we can construct two strict
arguments that conclude x and -z, respectively. There are no attacks between
these arguments, since rebuts are impossible between strict arguments and rules
without body cannot be undercut. So their resulting AF has a stable extension
from which both x and —z can be concluded, which detects the inconsistency.

6See also the discussion of (non-)treatment of partial knowledge bases by Wyner et al. [24].
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4.4. Properties of the Translation

In this section, we analyse some theoretical properties of our translation.
First we show that it satisfies (our reformulations of) the rationality postulates
of Caminada and Amgoud [6]. Then we analyse the computational complexity of
translating a given theory base and show that the blowup is at most quadratic.

Postulates. It is elementary to show that the ADF's resulting from our transla-
tion satisfy direct consistency. This is because the statements ¢ and ¢ mutually
attack each other.

Proposition 2. For any theory base TB = (Lit, StrInf, DefInf), its associated
ADF E(TB) satisfies direct consistency with respect to the model semantics.

Proof. Let M be a model for Z(TB) and assume to the contrary that M N Lit
is inconsistent. Then there is a ¥ € Lit such that ¢v € M and =@ € M. Since
—p € M, the acceptance condition of = yields ¥ ¢ M. Contradiction. (]

We can also prove that they satisfy closure: by construction, the (acceptance
conditions of) statements -r for strict rules r guarantee that the rule head is
contained in any model that contains the rule body.

Proposition 3. For any theory base TB = (Lit, Strinf, DefInf), its associated
ADF =(TB) satisfies closure with respect to the model semantics.

Proof. Let M be a model of Z(TB) and 7 : ¢1,...,¢, — ¢ € Strinf such that
we find ¢1,...,¢, € M. We have to show ¢ € M. By definition, Z(TB) has
a statement -r with parents par(-r) = {¢1,...,¢n,¥,-r}. We next show that
-r ¢ M: assume to the contrary that -r € M. Then by the acceptance condition
of -r we get -r ¢ M, contradiction. Thus -r ¢ M. Now the acceptance condition
of -r yields ¢ ¢ M or ...or ¢, ¢ M or ¢p € M or -r € M. By assumption, we
have ¢1,...,¢, € M and -r ¢ M, thus we get ¢ € M. O

By Proposition 1 the translation satisfies indirect consistency.

Corollary 4. For any theory base TB = (Lit, Strinf, DefInf), its associated
ADF =Z(TB) satisfies indirect consistency with respect to the model semantics.

Since any stable model is a model, our translation also satisfies the postulates
for the stable model semantics.

Corollary 5. For any theory base TB = (Lit, Strinf, DefInf), its associated
ADF Z(TB) satisfies closure and direct and indirect consistency with respect
to the stable model semantics.

It should be noted that defeasible rules may or may not be applied — the
approach is not eager to apply defeasible rules.
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Complezity. For a theory base TB = (Lit, Strinf, Deflnf), we define the size of
its constituents as follows. Quite straightforwardly, the size of a set of literals
is just its cardinality, the size of a rule is the number of literals in it, the size of
a set of rules is the sum of the sizes of its elements and the size of a theory base
is the sum of the sizes of its components.

We want to analyse the size of its ADF translation =(7TB) = (5, L,C) ac-
cording to Definition 5. Clearly, the number of statements is linear in the size of
the theory base, since we have one statement for each literal and two statements
for each rule: |S| = |Lit| + 2 - (|Strinf| + | DefInf|). Since L C S x S, the num-
ber of links in L is at most quadratic in the cardinality of S: |L| < |S|*. Finally,
we have seen in Definition 5 that the acceptance conditions of statements can be
parsimoniously represented by propositional formulas. It can be checked that
the size of each one of these formulas is at most linear in the size of the theory
base. Since there are linearly many statements with one acceptance formula
each, the acceptance conditions can be represented in quadratic space. So over-
all, the resulting ADF Z(TB) = (5, L,C) can be represented in space which is
at most quadratic in the size of the original theory base. In particular, in our ap-
proach a finite theory base always yields a finite argumentation translation. This
is in contrast to the definition of Caminada and Amgoud [6], where the strict rule
set Strinf = {rg :— a,r1 : @ = b, 13 : b — a} allows to construct infinitely many
arguments A; = [— a], Ay = [A; — b], A3 = [A2 = a], A4 = [A3 = b],...7

5. A Direct Semantics for Defeasible Theory Bases

We have seen previously how ADF's can be used to give a semantics to defeas-
ible theory bases. Albeit we introduced additional, merely technical statements
(like -r), we were able to address shortcomings of previous approaches. Still,
there remains the issue that the ADF-based semantics is not necessarily eager
to apply defeasible rules. In what follows, we will introduce a direct semantics
for defeasible theory bases that possesses this eagerness property. It will addi-
tionally allow us to more precisely clarify our intuitions about what rules mean,
especially the difference between strict and defeasible rules. While our intuitions
on defeasible rules are quite clear, we will argue that there are two different in-
tuitions on strict rules. One intuition says that strict rules are directed inference
rules that operate on the knowledge level, that is, whenever the premises are
known then the conclusion is inferred. In particular, in being directed these
rules do not automatically entail any of their contrapositives. Let us call this
intuition (DR) for directed inference rule; we will see that (DR) can lead to
problems with global inconsistency. Another intuition says that strict rules are
just like material implications in propositional logic, let us call it (MI). In par-

"Even if we exclude cycles in rules, there are rule sets that allow for exponentially many
arguments: Set Do = {= po,= —po}, D1 = DoU{po = p1,—po = p1} and fori > 1, D41 =
D; U {po,pi = pi+1, P0,Pi = pi+1}. For any n € N, the size of D, is linear in n and Dy
leads to 27! arguments, among them 2" arguments for p,,.
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ticular, in this intuition strict rules are not directed and therefore equivalent
to their contrapositives.® (MI) is unproblematic in its interaction with defeas-
ible rules, but raises the philosophical question why strict rules should allow for
contraposition and defeasible rules should not. These questions are pervasive
in giving semantics to nonmonotonic rule-based systems, and may account for
(parts of) the complications encountered by Caminada and Amgoud [6].

To formalise the two mentioned intuitions, we make use of concepts from
epistemic modal logic. We consider epistemic states in the form of sets of pos-
sible worlds, where a possible world is simply a two-valued interpretation of a
propositional vocabulary. More precisely, let A be a propositional signature.
Then an interpretation over A can be represented as a set w C A as usual; we
will also call an interpretation a world. We then define the set of worlds over A
as Wy 2 24, A set Q C Wy is then an epistemic state: intuitively, any entity
being in the epistemic state ) considers exactly the worlds w € @ to be possible,
that is, to be the one single world the entity “lives in.” Put another way, an
epistemic state @ signifies that any entity subscribing to this epistemic state
cannot distinguish the worlds in @ with what it knows. (But it can distinguish
worlds in @ from those not in @).) The knowledge associated with an epistemic
state @ over A is simply the set of propositional formulas over A which are true
in all possible worlds, the theory {¢ | w | ¢ for all w € Q}.

We start to formalise the intuition (MI), where strict rules ¢q,..., ¢, — ¥
are interpreted as material implications (¢1 A ... A ¢,,) D % in propositional lo-
gic. To do this, we define a satisfaction relation |, that indicates whether an
epistemic state together with a specific world (the “real world”) satisfies an
element of a defeasible theory base. Of course, it is trivial to define this for
literals. For strict rules, the real world must satisfy the above material implica-
tion. For defeasible rules r : ¢1, ..., ¢, = 1, our intuition is as follows: Assume
that w is the real world and @ is our epistemic state. If we know that all body
literals ¢1, ..., ¢, hold, and we do not know that the conclusion is false, then
for the pair @, w to satisfy the defeasible rule, the conclusion must hold in the
real world w. Otherwise, quite simply, the defeasible rule would not be a very
valuable guide on what normally holds in the world. In our formalisation below,
this intuition is split up into three ways how a defeasible rule can be satisfied:

1. Not all of the body literals are known. (Then the rule is inapplicable due
to insufficient premises.)

2. The negation of the head literal is known. (Then the rule is inapplicable
due to an exception.)

3. The head literal is actually true. (Then the defeasible rule is good re-
gardless of what we know, because it tells us something true about the
world.)

Definition 6. Let TB = (Lit, StrInf, DefInf) be a defeasible theory. Let

8Caminada and Amgoud have a similar concept, closure under transposition [6, Def. 17].
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A C Lit be all atoms of the language, a € A, w € W4 and Q C Wy.”

wkEa iff a ew
w E —a iff a ¢ w
wETr g, dn =Y ffwkE(p1 A...Apy) D in propositional logic
QuwET:¢1,....,0p =1 iffthereisave @ and1<i<n with v [~ ¢;
or for all v € Q we have v £ ¢

orwkE= 1
Q,wE= TB iff Q,w = r for all r € Strinf U DefInf

We use Examples 1 and 2 from [24] to illustrate the definitions.

Example 8 (Partial theories). Consider the set of literals
Lit = {x1, 29, 7x1, "2 }; then the set of atoms is A = {x1,x2}. Consequently,
there are four possible worlds, that is, Wa = {0,{z1},{x2},{z1,22}}. Tt
follows that 24 contains 2¢ = 16 different epistemic states, among them
the state W4 where any world is considered possible (thus the agent knows
nothing) and the state ) where the agent’s knowledge is inconsistent.
Considering the strict rule r1 : x1 — o, it is easy to see that it is satisfied
by all worlds except {z}. For its defeasible variant ry : 21 = 2o we have the
following: Assume the epistemic state @ = {{z1},{z1,22}} where we know
that 2 is true but are oblivious whether x5 holds, and the real world w = {z1}
where x5 is false. Then we have Q,w [~ ro : £1 = x2 since we know that the
rule’s body is true, do not know that its head is false, but its head is false in the
real world. For w’ = {x1, 22}, we would get Q,w’ | 7o : 1 = 5 since w’ = xs.

With the satisfaction relation at hand, it is then straightforward to define
when an epistemic state Q is a model of a defeasible theory: whenever @ coin-
cides with the set of possible worlds w for which the pair @, w satisfies all rules
in the defeasible theory base.

Definition 7. For a theory base TB, a set Q C W4 of possible worlds is a
model for TB if and only if Q = {w € W4 | Q,w = TB}.

Example 8 (Continued). For the defeasible theory base T'B; consisting only
of the strict rule v : 1 — w2, we get a single model Q1 = {0, {z2},{z1,22}}.
In @1 we know that z; implies xo2, but we do not know anything else. These
possible worlds correspond one-to-one with the preferred extensions that Wyner
et al. obtain for the very same theory [24, Example 1].

For the defeasible theory base TBs consisting only of the defeasible rule
ro : X1 = X2, the only model is Q2 = W where all worlds are considered pos-
sible. Intuitively, the premise of the defeasible rule is not known, and so the
rule cannot be applied.

9For conciseness, we leave out the epistemic state or the real world when it is not used in
the definition of the satisfaction relation.
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Let us consider some further examples.

Example 2 (Continued). For the married John example, we get two models:

Ql = {{gawab}} and QQ = {{gaw7m7h}}

In both models, the epistemic state is fully determined, that is, we know exactly
which world is the real one. In @)1, John is a bachelor; in @2, he is married and
thus has a spouse. In both epistemic states, John goes out and wears a ring.
Note that the semantics is eager to apply defeasible rules — while )7 and Q2
directly correspond to the models M5 and M; (page 12) of the ADF translation,
there is no possible-worlds equivalent of M; where no defeasible rule has been
applied. The reason for this is easy to see: if the epistemic state Q3 = {{g, w}}
were a model, then we would have Q3 = {w € W4 | Q3,w |= TB}. However for
v' = {g,w, b}, we find that Q3,v’ |E TB but v’ ¢ Q3. Intuitively, the pair Qs, v’
satisfies the defeasible rule r¢ : ¢ = b because v’ |= b; so according to what is
known v should be considered a possible world, but Q3 does not do so. (The
same can be shown for v’ = {g,w,m, h}.)

The behaviour of the other problematic example follows suit.

Example 3 (Continued). Again, we get two models:

Q1= {{z1,22,23,24}} and Q2 = {{x1,22,23,25}}

In both models, the set of applicable (and applied) defeasible rules is maximal;
in contrast to the AF- and ADF-based semantics, there is no third model in
which no defeasible rule has been applied.

We consider this eagerness to apply defeasible rules one of the most import-
ant differences between our direct semantics and the several previously seen
translation-based semantics. As another difference, the outcome (model) of the
possible-worlds semantics is not a propositional valuation, but a propositional
theory (the set of all propositional formulas that are true in all worlds that are
considered possible by the epistemic state). With respect to consistency of this
theory, we note that, given a defeasible theory base TB, there are essentially
two possibilities for its possible-worlds semantics:

1. TB has the empty epistemic state as its only model;
2. TB has a non-empty model.

The first case is an indication of inconsistency on the level of strict rules.

Example 7 (Continued). Recall the defeasible theory base comprising
Lit = {z,~z}, Strinf = {r; :— z, ro :— —x} and DefInf = (. We see that none
of the possible worlds () and {z} satisfies both strict rules. Thus the rule base
has the model () where no world is possible and its inconsistency is obviated.
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For each model of a defeasible theory base, we have by definition that all its
possible worlds satisfy the material implications associated with the strict rules.
Thus, closure holds in each possible world and in particular in the propositional
theory derived from the epistemic state.

So consistency and closure do not pose problems for the possible-worlds
semantics. However, it has its issues with positive cyclic dependencies.

Example 5 (Continued). Recall the example saying that rain and wet grass
usually accompany each other: DefInf = {ry : rain = wet,ry : wet = rain}.
The theory base has two models, @1 = Wy4 and Q2 = {{rain, wet}}. In Qy
nothing is known about rain or wet grass; in (J2 both are known, where each is
defeasibly derived from the other.

Such issues, which are problematic with regard to causality, motivate us
to define a refined version of the model semantics that excludes such cycles,
a stable model semantics. Roughly, for a model to be stable, there must be a
constructive derivation of its defeasible conclusions. For instance, Q2 above is
not stable since the two conclusions cyclicly depend on each other.

To achieve this constructiveness technically, we need a refinement of the
satisfaction relation for defeasible rules and the notion of a model. The key
change is not to check satisfaction of a rule’s body against the model itself, but to
check that all defeasible conclusions can be derived either from strict knowledge
or from defeasible conclusions that are themselves constructively derived. This
intuition comes from similar constructions in logic programming and default
logic. The more technical description is to try to reconstruct a given model
in an acyclic way. This construction starts with the set W4 of all possible
worlds. There, nothing is known because any world is considered possible.
The construction now stepwise removes worlds that are no longer considered
possible. The worlds violating some strict rules are the first to go. If this leads
to an increase in knowledge, then defeasible rules might become applicable and
are applied through the refined model relation. If this leads to a further increase
in knowledge (that is, a further decrease in the set of possible worlds), then the
process continues. Otherwise the process stops, in which case we check what has
been constructed. If the model could be fully reconstructed, then it is stable,
otherwise it is not.

Definition 8. Let TB be a defeasible theory base over a vocabulary A, w € Wy
and Q, R C Wy.

QRwET:¢1,....,0, > if wE (1 A...A¢,) DY in propositional logic
Q,RwET:¢1,...,0, = ¢ iff thereisav € Rand 1 <i <n with v £ ¢;
or for all v € @ we have v [~ 9

orwE Y
Q,R,wE TBiff Q,R,w [=r for all r € StrInf U DefInf
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Now set Ry ¥&f W4 and for 7 > 0 define

Ri1 ¥ {weWy|QRi,wkE TB} and R, & mRi
i>0

A set Q of possible worlds is a stable model for TB iff Q = R.

It can be shown that the name “stable model” is well-chosen in that every stable
model is a model [10].1°

Example 5 (Continued). Let us check if Q2 = {{rain, wet}} is stable. We
initialise the set of possible worlds Ry = W4 = {0, {rain}, {wet}, {rain, wet}}.
Now for obtaining R; according to Definition 8, we observe that neither
defeasible rule’s premise is known in the epistemic state Ry and we have
Q2, Ro,w = TB for every world w € Wy. Thus Ry = Rg = W4, we could
not reconstruct Q2 and therefore it is not a stable model.

For Q1 = W4, on the other hand, the process terminates likewise after the
first step. In this case, ()1 could be reconstructed and is thus stable.

While the stable model semantics can deal with defeasible cycles, it is at
a loss with respect to strict cycles, that is, positive cyclic dependencies among
literals in strict rules.

Example 6 (Continued). Recall that the only rules of this example are strict,
and given by Strinf = {r1 : x1 — x2, r2:x3 — x1}. Since there are no defeas-
ible rules, models and stable models coincide. Clearly any world satisfying both
rules satisfies the propositional formula 7 = x5, so the (stable) models of the
theory base — there are two of them, {#} and {{x;,z2}} — correspond one-to-
one to the models of the formula — @) and {x1,z2}. The second (stable) model,
{{z1,x2}}, where we know that both atoms are true, might be undesired in a
causal context such as that of Example 4.

Here, our alternative intuition (DR) for strict rules comes into play. It is
closer to the intuition behind defeasible rules and basically says that a strict rule
is a directed inference rule on the knowledge level, and so we can use the same
techniques for breaking strict cycles that we used earlier for defeasible ones.
The formal definition simply says that with epistemic state @, R (definitely
possible worlds @, potentially possible worlds R) in actual world w, a strict rule
is satisfied if and only if knowing the truth of the premises implies the actual
truth of its conclusion, where “knowing” refers to the conservative knowledge
estimate given by the potentially possible worlds R:

Q,RwET:¢1,...,0, > ¢ iff thereisav € Rand 1 <i <n with v }£ ¢;

orw k=1

10Roughly, for 2 > 0 we have R; D R;11 whence for each stable model we have Q = R; for
some ¢ € N, furthermore it can be shown that Q,Q,w = r (Def. 8) iff Q,w |=r (Def. 7).
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The remaining definitions, in particular those of models and stable models, stay
the same.'' This formal semantics of strict rules is just like that for defeasible
rules, only without the additional condition that checks that the conclusion is
not known to be false.

With this alternative semantics for strict rules, also positive strict cycles can
be treated by the stable model semantics. However, there is another problem:
this semantics is not able to produce the desired outcome of the “Married John”
rule base.

Example 2 (Continued). For the married John example and the intuition
where strict rules are interpreted according to propositional material implic-
ation, we had two models, @1 = {{g,w,b}} and Q2 = {{g,w, m,h}}. Unfor-
tunately, neither of the models persists when strict rules are interpreted ac-
cording to our alternative intuition, where they are much closer to defeasible
rules. Then, the semantics’ eagerness to apply rules also applies to strict
rules and leads to global inconsistency in the sense of allowing as the only
model of the theory base the empty epistemic state. We exemplify this by
showing that )1 is not a model any more: Recall that Q); is a model iff
Q1 ={weWa|Qi,wl TB}, in other words, if and only if {g,w,b} is the
one single world v for which we find Q1,v = TB. However, this is not the case.
There is another world, v' = {g, w, b, m}, which satisfies the theory base in the
epistemic state QJ1: First of all, the two strict rules 1 and 7o are satisfied by
Q1,7 since v’ Ewand v’ = g. We also have Q1,v' = r3 : b — —hsince v’ = —h.
We find that Q1,v" = ry : m — h since @1 = m. Finally, we can also show that
Q1,v = r5 1 w = m because v = m; and that Q1,v" =1 : g = b since v’ = b.

The problem is caused by r4. Roughly speaking, there is incomplete know-
ledge about m — it is not known although it holds. In general, it is clear that the
world v’ should not be considered possible since in it John is a married bachelor.
But the way strict rules are interpreted according to the alternative intution,
the semantics has no way to figure this out, because strict rules do not operate
on the level of single worlds, but only through the interaction of epistemic states
and single worlds. A similar thing happens for @s; likewise it can be verified
that the theory has no models at all.

This illustrates the difficulty of devising a semantics for defeasible theory
bases that both possesses an eagerness to apply rules as well as it prevents self-
supporting conclusions. Furthermore, our formalisation made it clear that the
issue is linked to the question on which level strict rules should be enforced —
on the level of single possible worlds or on theory level (knowledge level).

5.1. Relationship to Autoepistemic Logic

To explain the connection to related work in nonmonotonic reasoning, we
briefly sketch how our possible-worlds semantics links to Moore’s autoepistemic

M For the definition of a model the (DR) intuition uses the fact that Q,w = r iff Q,Q,w = r.
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logic (AEL) [16]. Propositional AEL enhances classical propositional logic by a
unary modal connective K for knowledge. So for a formula ¢, the AEL formula
K stands for “p is known.” The semantics of autoepistemic logic is defined as
follows: For a set B of formulas (the initial beliefs), a set T is an ezpansion of B
if it coincides with the deductive closure of BU{K¢ | ¢ €e T} U{-Kyp | ¢ ¢ T'}.
In words, T' is an expansion if it equals what can be derived using the initial
beliefs B and positive and negative introspection with respect to T itself.'> The
intuition behind K can be used to define a straightforward translation from
theory bases into autoepistemic logic for the intuition (MI) behind strict rules.

Definition 9. Let TB = (Lit, Strinf, DefInf) be a defeasible theory. Define an
autoepistemic theory Q(TB) as follows.

Q(TB) L {Q(r) | r € Strinf U DefInf}
Q1,00 =) & (1A APn) DY
Q1,00 = ) & (K(p1 Ao Ady) A K—th) D

With this translation, theory base models according to Definition 7 corres-
pond one-to-one to expansions of the resulting autoepistemic theory. Likewise,
stable models of the theory base are in one-to-one correspondence with strong
expansions of the autoepistemic theory, a constructive refinement of the original
expansion semantics [10].

For our alternative intuition (DR) for strict rules, the associated AEL trans-
lation is Q(¢1,...,¢0n = V) L (K(p1 A... A dy)) D . Tt is readily seen that
this translation is quite close to that of a defeasible rule. The relation of our
intuition behind theory bases with default logic [18] is immediate from reversing
Konolige’s translation [14], but we cannot give more details for a lack of space.

5.2. Defining Further Semantics

The translation from defeasible theory bases into autoepistemic logic im-
mediately provides us with the possibility to define further argumentation se-
mantics in terms of possible-world structures. Up to now, we explicitly only
considered possible-world structures () C W4 that were in a sense two-valued,
that is, a possible world w € W4 was either considered an epistemic alternative
(w € Q) or not (w ¢ Q). This is alike to the stable semantics in argumentation,
where each argument is either accepted or rejected. Of course, there are also
three-valued argumentation semantics, like the complete semantics, where the
status of an argument might be neither accepted nor rejected, but undecided.
To generalise such three-valued semantics to a possible-world setting, we need
possible-world structures in which the epistemic status of a possible world w
can be likewise undecided, that is, for all that we know, the world w might be
an epistemic alternative.

12Moore himself also gave a possible-worlds based treatment of autoepistemic logic [10],
which was an inspiration for this work.
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Denecker et al. [10] provided such a three-valued (even four-valued) possible-
world treatment for autoepistemic logic. This treatment is embedded into the
general algebraic framework of approzimation fizpoint theory [9]. There, know-
ledge bases are associated with certain operators, and the semantics of the know-
ledge bases is then defined via fixpoints of these operators. In previous work
of our own, we generalised several argumentation semantics to this abstract,
operator-based setting [19]. Applying these general definitions of semantics to
the approximation operator for autoepistemic logic as defined by Denecker et al.
[10] immediately yields all of these semantics for defeasible theory bases. The
precise technical definitions are straightforward to obtain and we omit them
here for a lack of space. We rather give some examples to provide a glimpse of
how some of the generalised semantics behave.

First of all, we want to note that most semantics for argumentation frame-
works allow for more than one generalisation. We have seen this already in the
case of the stable extension semantics, which can be generalised to ADFs in at
least two ways, to models and stable models. Likewise, we presented two ver-
sions of two-valued epistemic semantics for defeasible theory bases. In the same
vein, the grounded semantics for abstract argumentation can be generalised in at
least two ways: to the Kripke-Kleene semantics, the cycle-supporting version of
the grounded semantics, and to the well-founded semantics, the cycle-rejecting
version of the grounded semantics [10, 19].

Let us consider the rain/wet grass example (Example 5). There, the groun-
ded (Kripke Kleene) semantics considers the world {rain, wet} to be definitely
possible, and all other worlds to be potentially possible. The grounded (well-
founded) semantics for this example corresponds to the two-valued epistemic
model given by W, and considers all worlds to be definitely possible. Intuit-
ively, the well-founded semantics does not derive any knowledge from the two
mutually supporting defeasible rules (all possible worlds occur in all stable mod-
els), while the Kripke-Kleene semantics lends some more credence to the world
where both rain and wet grass are true (because this one world occurs in both
models, while all others only occur in one of them).

Example 9. Consider the literals Lit = {x1, x2, ~x1, ~22} and the theory base
given by defeasible rules DefInf = {r; := x1, 79 := —x1} and the strict rule
Strinf = {rs : x1 — xa}. It is clear that not both defeasible rules can be applied,
so there are two different models: Q1 = {{z1,22}} where r; has been applied,
and r3 then infers z5; and Q2 = {{}, {x2}} where r5 has been applied, and we
do not know about z3. In (both versions of) the grounded semantics of this
theory base, no world is definitely considered possible, as the two models are
disjoint. However, all the worlds in ()1 U Q)2 are considered potentially possible.

Likewise, in Example 3, both versions of grounded semantics consider the
three worlds {z1, za, 23}, {21,292, 3,24} and {1, z2, x5, 5} to be possible, al-
beit none of them definitely so. This shows that the generalised grounded se-
mantics are not equal to sceptical reasoning among (stable) models, but rather
an independent, weaker semantics. Indeed, this and other relationships between
argumentation semantics carry over to their generalised versions [19].
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6. Conclusion

We presented a translation from theory bases to abstract dialectical frame-
works. The translated frameworks satisfy the rationality postulates closure and
direct/indirect consistency, which we generalised to make them independent of
a specific target formalism. Furthermore, the translated frameworks can detect
inconsistencies in the rule base and cyclic supports amongst literals. We also
showed that the translation involves at most a quadratic blowup and is there-
fore effectively computable. In addition, our translation produces a number of
statements which is linear in the size of the theory base and can be considered ef-
ficient in this regard. (In the approach of [6] the number of produced arguments
is unbounded in general.) In terms of desired behaviour, we compared our trans-
lation to previous approaches from the literature [6, 23, 24] and demonstrated
how we avoid common problems. We also introduced possible-worlds semantics
as a language to “think aloud” about defeasible theories. Along with this we
presented two possible intuitions for strict rules and argued why we prefer one
over the other. Of course, other intuitions are possible, and we mainly consider
the present work a start for formulating intuitions in a formally precise way.

In earlier work, Brewka and Gordon [3] translated Carneades [13] argu-
ment evaluation structures (directly) to ADFs. They extended the original
Carneades formalism by allowing cyclic dependencies among arguments. Mean-
while, Van Gijzel and Prakken [22] also translated Carneades into AFs (via
ASPIC+ [15], that extends and generalises the definitions of Caminada and
Amgoud [6]). They can deal with cycles, but there is only one unique grounded,
preferred, complete, stable extension. Thus the semantic richness of abstract
argumentation is not used, and the user cannot choose whether they want to ac-
cept or reject circular justifications of arguments. In contrast, in the approach of
Brewka and Gordon [3] the user can decide whether cyclic justifications should
be allowed or disallowed, by choosing models or stable models as ADF semantics.

We regard this work as another piece of evidence that abstract dialectical
frameworks are well-suited as target formalisms for translations from rule-based
nonmonotonic languages such as theory bases. A natural next step is to consider
as input the specification language of ASPIC+ [15], for which a recent approach
to preferences between statements [5] is a good starting point. In view of possible
semantics for defeasible theories, it also seems fruitful to look at additional
rationality postulates, for example those studied by Caminada et al. [7] or Dung
and Thang [12]. Further work could also encompass the study of further ADF
semantics, like complete or preferred models [5], and whether our translation to
ADFs can be modified such that it is eager to apply defeasible rules and even
coincides with our possible-world semantics. Finally, we can compare existing
approaches to cycles in AFs [1, 2] with the treatment of cycles in ADF's.
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