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Abstract. The translation from finite CSPs into SAT has been studied
intensively. Common encodings for variable domains are the compact,
direct and order encoding. The direct encoding needs a quadratic num-
ber of clauses for encoding a domain in SAT whereas the order encoding
uses only linearly many. We introduce a conversion for domains from the
direct encoding to the order encoding on the CNF level by extracting the
encoded domains and replacing the related clauses by the order encod-
ing and a mapping between them. The transformation keeps the model
for the original formula and transforming domains with more than 8 el-
ements results in less clauses in the formula. Experiments showed that
our SAT solver riss can solve the transformed instances with domains
greater than 7 from the SAT Competition 2009 Application with 3.4%
less run time. On 105 crafted instances riss could solve 55 instead of
58 instances, but the average run time decreased by 30%. Results for
PrecoSAT, clasp and march hi will be presented as well, showing that
the transformation boosts the performance of CDCL solvers.

1 Introduction

The satisfiability problem (SAT) and the constraint satisfaction problem (CSP)
are two well known and intensely studied problems in computer science. There
are numerous applications for both problems, e.g. bio informatics [11] or schedul-
ing [2] for SAT and configuration problems [22] for CSP. Recent successes on
SAT solver is based on the algorithmic level, like conflict-directed clause learn-
ing [17] (CDCL), on the implementation, like the two-watched-literal unit prop-
agation [14] and cache utilization [10], as well as on new studies of heuristics [1].
Annual competitions push the development of solvers further. Consequently, de-
velopers of CSP solvers also encode CSPs into SAT and use SAT solvers to solve
their problems (e.g. [18,6]).

Encoding a CSP into SAT can be realized in many ways. The main difference
between encodings is the way how a domain of a CSP variable is encoded into
propositional variables. The direct encoding [21] uses one propositional variable
per possible assignment for the CSP variable. For assigning a value to the CSP
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domain at least one of the according propositional variables and at most one
variable has to be satisfied. The latter part requires a quadratic number of
clauses. On the CNF level the encoded domain has the same properties as a
one-out-of-N constraint, which is a special case of cardinality constraints in SAT.
The order encoding [19] also needs a propositional variable for each CSP domain
value, but these variables represent different information. The domain is assumed
to be ordered so that a variable pi states that the corresponding CSP variable has
at least the value of the i-th element of its domain. To encode this information,
only linearly many clauses are necessary. Additionally, the first propositional
variable has always to be assigned true, because the CSP variable is assigned at
least the smallest value of the domain. It is not necessary to encode this variable.
Thus, only n-1 variables are necessary to encode the same domain with with the
order encoding. There are also hybrid encodings that encode a domain in both
ways and a mapping between the two encodings, making it more easy to convert
a CSP in CNF [16,6].

As far as we know, the direct encoding is most frequently used, although
the order encoding seems to be more beneficial [19]. We are not aware of a
transformation on the CNF level from the direct encoding to the order encoding.
Hence, the contribution of this paper is exactly this transformation. We present
an algorithm that extracts CSP domains out of a CNF and show that the used
clauses can be replaced by new clauses that encode the same domain with the
order encoding. The introduction of new variables for the order encoding requires
also to add a mapping from the order encoding back to the direct encoding. Since
the number of clauses of the order encoding and the mapping is linear in the size
of the domain and the direct encoding requires quadratically many clauses, the
transformation results in a new formula with less clauses, if the domain size is
larger than a certain threshold. We show, that this threshold is eight elements.

This paper is structured in the following way: Encodings from CSP to SAT
are introduced briefly in Section 2. The transformation is presented in Section 3.
In Section 4 we give experimental results and finally conclude the work in Sec-
tion 5.

2 Preliminaries

A finite Constraint Satisfaction Problem (CSP) is represented by a tuple (V , D,
C), where V is the set of variables and each variable v is assigned a domain d

from the set of domains D, where a domain is a set of integers. The variable v

can represent only values from d. C is the set of constraints that describe the
problem. To satisfy the CSP, an assignment for all variables of V has to be found
that does not violate a constraint of C. The reader will find more information
about CSPs in [3].

Satisfiability Testing (SAT) is a subset of CSP. All variables in V have a bi-
nary domain with the result that they can be mapped to propositional variables.
In the following, propositional variables p and negated propositional variables
¬p are called literals. A constraint in SAT is a disjunction of literals and is called
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clause. Special clauses are the unit clause, which contains only a single literal,
and the binary clause with two literals. For industrial applications, the CDCL
algorithm [17] seems to be the most powerful algorithm, because solvers using
this algorithm dominated the last competitions. In the sequel the focus will be
on this kind of SAT solvers.

In [21], Walsh studies the relationship between CSP and SAT. He further-
more compares the power of algorithms that are used to solve these two problems
theoretically. SAT has been proven to be NP complete [5]. There are time poly-
nomial mappings from SAT to CSP and from finite domain CSP to SAT [21].
Still, there is no competitive comparison of SAT and CSP or a detailed case
analysis to choose the appropriate representation of a problem. In this work we
will focus on the encoding from CSP to SAT. There are several ways to encode
a CSP into SAT [7,8]. Encoding a domain from a CSP variable into SAT is done
most prominently in following three ways:

1. log encoding (also called compact encoding) [7]
2. direct encoding (also called sparse encoding) [21]
3. order encoding [19]

There are also systems that combine the latter two encodings [16,6] and call
it hybrid encoding. The log encoding represents the elements of a CSP domain
logarithmically. The direct encoding and the order encoding use a linear repre-
sentation. Motivated by this property, the presented transformation focusses on
the direct and order encoding.

To encode a CSP variable v with a domain d by using the direct encoding
results in n = |d| propositional variables p1, . . . , pn. A variable pi is assigned true,
if the related CSP variable v is assigned the value of element i of d. Therefore,
the following two things have to be stated:

1. At least one propositional variable has to be satisfied
2. At most one propositional variable has to be satisfied

In the following, the specified constraint is called one-out-of-N constraint and
has the property that exactly one variable of the specified set of variables is
assigned true. Encoding the first statement is usually done by a single clause
that connects all variables of the constraint positively. The second statement is

encoded with binary clauses: 1 ≤ i ≤ n, i < j ≤ n : [¬pi,¬pj ], resulting in n(n−1)
2

clauses. Encoding a domain with the direct encoding requires quadratically many
clauses.

The order encoding orders the element of the domain artificially to over-
come the quadratic growth. By encoding this order it is already ensured that
a CSP variable cannot represent two values of its domain at the same time. In
order to encode a CSP variable v with an ordered domain d, n = |d| propo-
sitional variables have to be introduced. A variable pi is assigned to true, if
v has a value greater or equal to the i-th element of d. Only linearly many
clauses are necessary for encoding the order of the elements in a domain, namely:
1 ≤ i < n : [pi,¬pi+1]. Furthermore it is stated that the variable represents at
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least the smallest value of the domain by adding a clause [p1]. Due to this clause,
p1 has to be assigned true and can be removed from the formula, resulting in
only n− 1 variables. The introduced order reduces the space complexity of the
encoding from quadratic to linear in the number of clauses. Given the meaning
of the propositional variables the statement v = i is encoded by pi ∧ ¬pi+1.

As an example the variable v with the domain d = 1, 2, 3, 4 is encoded with
the two presented encodings. The direct encoding uses the variables a1, . . . , a4,
where ai is set to true iff v = i. The following clauses encode this domain in
SAT:

[a1, a2, a3, a4], [¬a1,¬a2], [¬a1,¬a3], [¬a1,¬a4], [¬a2,¬a4], [¬a3,¬a4], [¬a3,¬a4]

The first clause states the at-least constraint. The CSP variable v has to have
a value. All the remaining clauses force that v can have at-most one value. The
clauses encode the implications i 6= j : ai → ¬aj . Assuming that v = 2, a2 is set
to true and the remaining variables will be set to false. The order encoding for
this example uses the variables b1, . . . , b4, where bi is set to true iff v ≥ i. The
domain is encoded by:

[b1], [b1,¬b2], [b2,¬b3], [b3,¬b4]

Again, the first clause states that the variable v has a value. The remaining
clauses represent the order of the domain elements from 1 to 4. If v has value
j, than each variable that represents i < j : v ≥ i has also to be set to true.
The encoded implications represent exactly this behavior. Furthermore, all the
propositional variables that represent an equation i > j : v ≥ i have to be set
to false. These implication are expressed in the same binary clauses. Let v = 2,
than b2 is assigned true, whereas b3 is assigned false. Consequently, b4 is also
assigned false. To satisfy the very first clause of the order encoding, b1 is assigned
true.

3 The Transformation

Using the order encoding seems to require less clauses. However, if a SAT solver
has to solve a problem that is encoded in the direct encoding it is hard to re-
encode the whole problem in another encoding. Thus, we focus on extracting
One-out-of-N constraints, which possibly represents integer variables and their
domain, and on replacing them by a hybrid representation of the order encod-
ing. The presented approach is hybrid, because the variables representing the
One-out-of-N constraint are not removed from the formula. The following sec-
tions describe the transformation from the direct encoding to the order encoding
in propositional logic, illustrate its correctness and show how one-out-of-N con-
straints can be extracted from a formula in CNF efficiently. Furthermore, an
example is give, that shows that the number of clauses can increase even more,
as long as the hybrid approach is not chosen, but the direct encoding is replaced
by the order encoding an the representation of all propositional variables of this
domain is replaced.
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3.1 Mapping the Order Encoding to the Direct Encoding

A one-out-of-N constraint of a variable v with n elements in its domain d will
be described with the propositional variables a1, . . . , an. Without the loss of
generality we neglect the meaning of the elements of d and refer to them by
their indeces: i ≤ n : ai = true → v = i. The order encoding will be described
with the variables b1, . . . , bn and also the indexes of the domain elements are
used: i ≤ n : pi = true → v ≥ i. Consequently, a statement about the variable
can be mapped by the formula v = i ≡ v ≥ i∧¬v ≥ i+1. On the CNF level, this
mapping between the direct encoding and the order encoding is ai ≡ bi ∧¬bi+1.
Transforming this equation into CNF results in the clauses:

1. [¬ai, bi]
2. [¬ai,¬bi+1]
3. [ai,¬bi, bi+1]

For each element of the ordered domain d these three clauses need to be gen-
erated. There are special cases for the first and the last element. In the order
encoding, b1 is always set to true with the result that the above clauses are
reduced to [¬a1,¬b2] and [a1, b2] and represent the equivalence a1 ≡ ¬b2. As al-
ready discussed in Section 2, this effect is expected. Similarly, the clauses for the
n-th element of d are also reduced, because it is the last element of the domain
and there cannot be greater elements. Therefore, bn+1 is always set to false. The
remaining clauses for the mapping of an are [¬an, bn] and [an,¬bn]. These two
clauses represent the equivalence an ≡ bn.

The mapping is illustrated with an example of a variable v with its do-
main d = {1, 2, 3, 4}. The propositional variables for the direct encoding are
a1, a2, a3, a4 and the order encoding uses the variable b1, b2, b3, b4. Assuming v is
set to 2. Consequently, a2 has to be satisfied. Furthermore, b2 is set to true and
b3 is set to false by using only the information of the variable. With the clauses
that encode the domains in the two encodings, a1, a3, a4, b4 are assigned false

and b1 is assigned true (compare Section 2). Now the mapping ai ≡ bi ∧ ¬bi+1

can be tested. The mapping produces exactly the truth values for the variables
in the direct encoding as the encoding would do itself.

1. a1 ≡ ¬b2 ≡ ¬true ≡ false

2. a2 ≡ b2 ∧ ¬b3 ≡ true ∧ ¬false ≡ true

3. a3 ≡ b3 ∧ ¬b4 ≡ false ∧ ¬false ≡ false

4. a4 ≡ b4 ≡ false

Since encoding the mapping between the order encoding and the direct en-
coding is linear in the size of the domain, the quadratic direct encoding should
be replaced to reduce the number of clauses in the formula. Let H ≡ F ∧D be
a formula with the propositional variables p1, . . . , pm. D encodes a domain d

of an integer variable v using the direct encoding, with n = |d|. F encodes the
remaining problem. The formula H can be modified by a set of clauses G that
represents the order encoding for d with the variables pm+1, . . . , pm+n and the
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set of clauses M for the mapping between the order encoding G and the direct
encoding D. We claim that all models for the formula F ∧G ∧M represent all
models for H. More precisely: every model for F ∧ G ∧ M is also a model for
H and every model I1 for H can be extended to an interpretation I2 = I1 ∪ J

which is a model for F ∧G ∧M .
Proof sketch: I |= F ∧G ∧M ⇒ I |= H ≡ F ∧D. The subformula F can be

dropped from the sketch, because it is obvious that I |= F . For D we have to
show that the mappingM is correct, which should be obvious since the definition
of M is chosen so that this property is fulfilled. Then we know that I is a valid
interpretation of the order encoding G and the mapping M , hence D has also
to be satisfied. The other direction can be proved in the same way.

We illustrate this on the following example. Let our original formula be H.

H = [1, 2, 3], [¬1,¬2], [¬1,¬3], [¬2,¬3], [¬2, 4], [¬1,¬5]

Here the reader can find a one-out-of-N constrain encoded directly.

D = [1, 2, 3], [¬1,¬2], [¬1,¬3], [¬2,¬3]

Let F be the remaining formula so that H ≡ D ∧ F holds.

F = [¬2, 4], [¬1,¬5]

According to our definition we can transform the direct encoded one-out-of-N
constrain D into a order encoded one.

G = [6], [6,¬7], [7,¬8]

The mapping is given by the formula M .

M = [¬1, 6], [¬2, 7], [¬3, 8],
[¬1,¬7], [¬2,¬8],
[1,¬6, 7], [2,¬7, 8], [3,¬8]

Now we replace D by G ∧M and result in H ′.

H ′ = [6], [6,¬7], [7,¬8],
[¬1, 6], [¬2, 7], [¬3, 8],
[¬1,¬7], [¬2,¬8],
[1,¬6, 7], [2,¬7, 8], [3,¬8],
[¬2, 4], [¬1,¬5]

Let I |= H be an arbitrarily chosen model of H.

I = {1,¬2,¬3,¬4,¬5}

Now the mapping M transforms the direct encoding into the order encoding,
hence we can extent I to I ′, since there is only one model I ′ |= M with I ⊂ I ′

and I |= H.

I ′ = {1,¬2,¬3,¬4,¬5, 6,¬7,¬8}

The other way around, from I ′ the model for H can be obtained easily by
removing the newly introduced variables again from I ′.
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3.2 Extracting One-out-of-N Constraints

Extracting one-out-of-N constraints is sufficient to find domains that have been
encoded with the direct encoding, because they have the same properties. The
extraction on a given CNF can be done efficiently. Each clause that contains at
least three literals is considered as candidate. All binary clauses are used to verify
whether a candidate is really a one-out-of-N constraint. Let binary :literal→clause

be a mapping from a literal l to the set of binary clauses that contain l. The
following steps have to be executed for the verification:

For each candidate clause c:
1. Mark ¬l for all literals l ∈ c

2. For each literal l ∈ c:
Check whether all marked literals l′ can be found
in binary(¬l)

3. If any check failed, c is withdrawn
4. Otherwise c represents a one-out-of-N constraint
5. Clear all marks

The check in Step 2 ensures, that all the binary clause that are necessary for
the direct encoding of the domain are found in the formula. If all these binary
clauses are found, the clause c together with all the used binary clauses encode
a one-out-of-N constraint with respect to the literals in c.

A given CNF might also encode a domain without the binary clauses. This is
possible, if all the constraints of the CSP are encoded as nogood and thus, the at-
least-one clause is the only positive occurrence of the corresponding propositional
variables. This case is not considered in the extraction, because in this case there
is only a single clause that represents the domain and transforming these domains
results only in bigger formulas.

3.3 Altering the Original Formula

Usually, the number of variables does not influence the power of a SAT solver
as much as the number of clauses. Recent experiments showed, that the ratio
between clauses and variables influences the performance of our solver riss. This
effect might be caused by the fact that a higher ratio ships with a higher number
of clauses. Therefore, we replace only domains of a size n, such that the number
of clauses of the formula is reduced if the order encoding and the mapping are
added and the direct encoding is removed. As a side effect, the newly introduced
variables for the order encoding decrease the ratio between clauses and variables.

As already presented, the direct encoding uses 1 + n(n−1)
2 clauses, the order

encoding needs n clauses, and the mapping requires 2 + 3(n− 2) clauses.
Table 1 shows the number of clauses that are necessary to encode a domain

d with n elements in the direct encoding or the order encoding. The last column
shows the difference between two neighboring cells for each line. This difference
states the newly introduced clauses if one increases the domain size from the
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Size (n) 3 4 5 6 7 8 9 diff

Direct Encoding 4 7 11 16 22 29 38 +(n-1)

Order Encoding 2 3 4 5 6 7 8 +1

Mapping 7 10 13 16 19 22 25 +3

Difference 5 6 6 5 3 0 -5 4-(n-1)

Table 1: Conversion size for several domain sizes

previous size by one element. Therefore, the n in this column represents the
elements of the new domain and the value of the column itself represents the
difference to the number of clauses that are additionally introduced to represent
the new size compared to the old size. thus, one realizes that the order encoding
needs only a constant number of clauses to encode the next domain size. The
direct encoding needs linear many clauses to do so. Since the mapping needs only
three more clauses per iteration, the difference in the number of clauses when
using the direct encoding or using the order encoding combined with a mapping
increases also linearly. As soon as the size of the domain becomes larger than
four, the difference between the two encodings starts to decrease. When a size
of eight is reached, the two encodings need the same amount of clauses. Table 1
furthermore shows that the difference in this row grows also linearly and thus
the absolute numbers of clauses between the tow encodings differ quadratically.

An illustration of the algorithm is given for the formula with the following
clauses:

[¬1, 4], [1,¬4], [¬2, 5], [2,¬5], [¬3, 6], [3,¬6], [1, 2, 3], [¬1,¬2], [¬2,¬3], [¬1,¬3]

The extraction for encoded one-out-of-N constraints finds the clause [1, 2, 3] as
sole candidate. According to the algorithm in Section 3.2, the literals ¬1,¬2
and ¬3 are marked (Step 1). In step two each literal of the candidate is further
analyzed: The list of binary clauses for the first literal ¬1 contains ¬1, 4,¬2 and
¬3. For ¬2 the literals ¬2, 5,¬1 and ¬3 are found. Finally, analyzing ¬3 results in
the literals ¬3, 5,¬1 and ¬2. Since the condition in step 2.1 is met for all literals
of the candidate, the candidate represents a direct encoded domain d = {1, 2, 3}
with |d| = 3. As a next step, new variables 7, 8 and 9 are introduced and the
clauses for the order encoded domain are created. Furthermore, the clauses for
the mapping have to be generated. The mapping is 1 ≡ ¬8, 2 ≡ 8 ∧ ¬9 and
3 ≡ 9. Finally, the transformed formula is created by removing the clauses for
encoding d and adding the order encoding and the mapping:

1. [¬1, 4], [1,¬4], [¬2, 5], [2,¬5], [¬3, 6], [3,¬6]
2. [7], [8,¬9]
3. [¬1,¬8], [1, 8], [¬2, 8], [¬2,¬9], [2,¬8, 9], [¬3, 9], [3,¬9]

The first line is the part of the original formula that has not been altered. In
the second line the clauses of the order encoding are given. The mapping from
the order encoding and the new variables to the direct encoding and the original
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variables are given in the third line. It can be seen that the number of clauses
increases from 10 to 15, which is exactly the difference that has been specified
in Table 1 for a domain with a cardinality of 3.

If no new variables would be introduced, but the semantic of the existing
variables would be changed, the mapping ai ≡ a′i ∧ ¬a′i+1 can result in an
exponential blowup in the clauses. Thus, we have not considered to replace the
semantics.

4 Experiments

The performance of SAT solvers decreases with an increasing number of clauses,
which has been already evaluated experimentally. The presented transformation
does not introduce more clauses if it is applied to domains that have a size greater
equal eight. Therefore, the transformation has only been applied to formulas that
contain this kind of domains. The SAT solver riss [12] has been extended and is
able to transform the formula before or after preprocessing it. In the experiments,
the transformation has been applied before preprocessing.

4.1 Encodings in Application Instances

First, we check the SAT Competition 2009 Application benchmark for instances
that contain domains that have been encoded with the direct encoding. After
applying the transformation to the instances, riss solved 177 instances, where 25
instances contained encoded domains. The average speedup on these instances is
3.4%. The instances with the encoded domains come from two families, namely
the q query family and the vmpc family. Especially the vmpc family seems to
benefit from the encoding. More detailed results per instance are presented in
Table 2. The column Converted shows the solving time for instances where the
transformation has been applied. The second column Original shows the runtime
for the original instances of the transformation. The number of transformed
domains is given in the column Domains and the speedup for an instance is
given in the last column Speedup.

4.2 Encodings in Crafted Instances

Since the application benchmark contained only 25 instances with encoded do-
mains, we looked at crafted instances because they encode different problems
than application instances and do not often use the Tseitin transformation [20],
but encode variable domains. We found 105 instances that contained encoded
domains of at least eight elements in the Crafted Benchmark of the SAT Com-
petition 2009 and in the medium and hard crafted instances of the SAT Com-
petition 2007. We applied the transformation to these instances and ran a set of
SAT solvers on these instances.
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Instance Converted Original Domains Speedup

q query 2 L324 coli.cnf 390.55 414.23 646 -5.72%

q query 3 L100 coli.sat.cnf 473.84 253.21 297 87.13%

q query 3 L150 coli.sat.cnf 662.75 756.65 447 -12.41%

q query 3 L200 coli.sat.cnf 684.18 846.23 597 -19.2%

q query 3 L60 coli.sat.cnf 84.71 113.24 177 -25.2%

q query 3 L70 coli.sat.cnf 250.77 194.22 207 29.12%

q query 3 L80 coli.sat.cnf 496.14 424.89 237 16.77%

q query 3 L90 coli.sat.cnf 505.88 625.65 267 -19.14%

q query 3 l37 lambda.cnf 3.59 9.04 108 -60.28%

q query 3 l38 lambda.cnf 10.05 8.41 111 19.44%

q query 3 l39 lambda.cnf 24.61 12.92 114 90.40%

q query 3 l40 lambda.cnf 31.83 34.37 117 -7.42%

q query 3 l41 lambda.cnf 63.31 49.46 120 27.98%

q query 3 l42 lambda.cnf 110.53 97.71 123 13.11%

q query 3 l43 lambda.cnf 296.08 149.25 126 98.37%

q query 3 l44 lambda.cnf 1054.14 950.41 129 10.91%

q query 3 l45 lambda.cnf 885.27 922.83 132 -04.07%

q query 3 l46 lambda.cnf 908.24 852.52 135 06.53%

q query 3 l47 lambda.cnf 1040.25 1177.46 138 -11.65%

q query 3 l48 lambda.cnf 901.41 977.47 141 -07.78%

vmpc 24.cnf 18.06 86.66 48 -79.16%

vmpc 25.cnf 24.46 62.21 50 -60.67%

vmpc 26.cnf 18.48 45.86 52 -59.70%

vmpc 28.cnf 84.50 423.97 56 -80.06%

vmpc 29.cnf 1455.13 2147.83 58 -32.25%

Table 2: Comparison on the application benchmark

Table 31 summarizes the results of this experiment. The table provides an
overview over the number of the solved original instances (Original instances)
and the number of solved instances after the transformation (Transformed in-
stances). Furthermore, the average runtime per instance is given for both versions
of the instances. Our solver riss can solve only 53 instead of 57 instances within
the timeout, but it shows a significant reduced average runtime for the solved
instances. In average risssolves each instances 200 seconds faster, resulting in a
speedup of 28.27%.

Another solving technique for crafted instances is the look-ahead algorithm
for choosing a variable before branching. The runtime of this algorithm seems to
be highly correlated with the number of variables in the problem. A well known
look-ahead solver march [9] can solve one more instance if the transformation
is applied, but needs much more time per instance, namely 24.8%. In contrast,

1 More detailed results per instance can be found at http://www.ki.inf.tu-dresden.
de/~norbert/paperdata/CSPSAT2011.html

http://www.ki.inf.tu-dresden.de/~norbert/paperdata/CSPSAT2011.html
http://www.ki.inf.tu-dresden.de/~norbert/paperdata/CSPSAT2011.html
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Solver riss march hi MiniSAT 2.2 clasp PrecoSAT

Original instances 57 29 47 61 57

Transformed instances 54 30 48 62 53

Original runtime 703.76 467.09 529.64 424.88 425.43

Transformed runtime 505.90 621.60 561.07 505.82 403.06

Table 3: Comparison on the crafted benchmark

another well known CDCL based solver MiniSAT 2.2 [15] can also solve one more
instance but its runtime does not increase significantly.

Two more SAT solvers are analyzed. The solver clasp [13] is the winner of the
crafted benchmark track of the SAT Competition 2009. It is also able to solve
one more instance, but its average runtime increases by 16% in comparison to
MiniSAT. A reason for this effect could be that clasp does more calculation to
determine the next branching variable than other CDCL solvers. PrecoSAT [4]
can solve three instances less and its runtime improves by 5%.

Concerning the runtime improvement, there seems to be a cut between solvers
that do fast decisions, such as as riss, MiniSAT and PrecoSAT, and solvers that
spend more time for the next decision, such as march and clasp. Since the trans-
formation encodes the original problem in another way, the heuristics of the
solver also output different decisions that lead to different guiding path and
introduce a high variation in the solving time for each instances. Still, the con-
version from the direct encoding to the order encoding boosts the performance
of CDCL based SAT solvers.

5 Conclusion

In this paper we present a study on transformations on the CNF level. The
contribution of this work is a transformation that reduces the number of clauses
by replacing a quadratic direct encoding of a CSP variable domain with a linear
order encoded domain and the corresponding linear mapping between the two
encodings. We illustrated the correctness of the transformation and studied the
influence of this mapping to the performance of several SAT solvers on the
Crafted and Application Benchmark of the SAT Competition 2009 and medium
and hard instances from the Crafted Benchmark of the SAT Competition 2007.
We also show that transforming domains with more than eight elements results
in a formula with less clauses. On our CDCL based SAT solver riss the runtime
to solve an encoded instance improves by almost 30% in average on crafted
instances and improves by 3.4% on application instances. The performance of
other CDCL based SAT solvers, e.g. PrecoSAT or MiniSAT 2.2 improves only
slightly. Since variables are added to the formula, solvers that do not choose the
next decision literal quickly seem to loose performance after the transformation.
The performance of clasp, the solver that won the crafted track of the SAT
Competition 2009, could solve one more instance, but needed 16% more runtime
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per instance, on average. In average the look ahead solver march uses 24.8%
more runtime to solve an instance.

We choose to not replace the direct encoding completely, but replace the
clauses that encode a domain and introduce some new variables and new clauses
for the order encoding of this domain and the corresponding mapping. This
scheme has also been used in [16,6]. Replacing the variables of the direct encoding
completely would result in a formula with less variables and thus the complexity
of the given problem is reduced. First attempts for this conversion failed, because
the time for the replacement has been higher than solving the original instance.
Furthermore, we are interested in more studies on the comparison of the order
encoding and the direct encoding and the way these two encodings constrain the
search space during the solving process.

Since not only domains are encoded into CNF but the whole CSP, there
might be more transformations that reduce the number of clauses in a CNF. As
experiments showed, less clauses seem to boost the performance of SAT solvers as
we showed for the order encoding. We are not aware of any other transformation
on CNF that re-encodes a part of the problem.

This work also shows, that the order encoding of CSP variables seems to be
beneficial. To our knowledge, the direct encoding is used more than the order
encoding, although Sugar [18], one of the leading CSP to SAT converter uses
the order encoding and won several CSP competition tracks. This work tries
to bridge the gap between the mostly used direct encoding in CNF and the
beneficial order encoding.

Open questions are related to the different representations of the one-out-of-
N constraint. If the at-most-one constraint is not encoded and thus there are not
quadratically many binary clauses, transforming the formula might still improve
SAT solving because the order encoding might have beneficial properties over
the direct encoding. Furthermore, there might also be a similar representation
of other cardinality constraints that do not use the direct encoding but a related
idea to the order encoding.
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