
Annals of Mathematics and Artificial Intelligence manuscript No.
(will be inserted by the editor)

Fast Algorithms for Implication Bases and Attribute
Exploration Using Proper Premises

Uwe Ryssel · Felix Distel · Daniel Borchmann.

Received: date / Accepted: date

Abstract A central task in formal concept analysis is the enumeration of a small base for the
implications that hold in a formal context. The usual stem base algorithms have been proven to
be costly in terms of runtime. Proper premises are an alternative to the stem base. We present
a new algorithm for the fast computation of proper premises. It is based on a known link
between proper premises and minimal hypergraph transversals. Two further improvements
are made, which reduce the number of proper premises that are obtained multiple times and
redundancies within the set of proper premises. We have evaluated our algorithms within an
application related to refactoring of model variants. In this application an implicational base
needs to be computed, and runtime is more crucial than minimal cardinality. In addition to
the empirical tests, we provide heuristic evidence that an approach based on proper premises
will also be beneficial for other applications. Finally, we show how our algorithms can be
extended to an exploration algorithm that is based on proper premises.

Keywords formal concept analysis, proper premises

1 Introduction

For many years, computing the stem base has been the default method for extracting a small
but complete set of implications from a formal context. There exist mainly two algorithms
to achieve this [17,26], and both of them compute not only the implications from the stem
base, but also concept intents. This is problematic as a context may have exponentially many

The author Daniel Borchmann has been supported by DFG Graduiertenkolleg 1763 (QuantLA)

U. Ryssel
Institute of Applied Computer Science, Technische Universität Dresden, Dresden, Germany, E-mail:
uwe.ryssel@tu-dresden.de

F. Distel
Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany, E-mail:
felix@tcs.inf.tu-dresden.de

D. Borchmann
Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany, E-mail:
borch@tcs.inf.tu-dresden.de

2 Uwe Ryssel et al.

concept intents. Recent theoretical results also suggest that improvements to this exponential
worst-case complexity cannot be expected [10,1].

In the early days of formal concept analysis an alternative to the stem base was developed,
the base of proper premises. It has since been neglected as the stem base appeared superior
since—unlike the base of proper premises—it has minimal cardinality. In this work we
suggest to reconsider the base of proper premises. Just like pseudo-intents, which are used to
obtain the stem base, proper premises yield a sound and complete set of implications. There
are substantial arguments to reconsider using them. Existing methods for computing proper
premises avoid computing concept intents, i.e. the main cause for the computational cost of
stem base algorithms. Thus, in contexts with many concept intents they may have a clear
advantage in runtime over the stem base algorithms.

Often, in applications, runtime is the limiting factor, not the size of the base. But even
where minimal cardinality is a requirement, computing proper premises is worth considering,
since there are methods to transform a base into the stem base in polynomial time [24,28].

In this paper we present an algorithm for the fast computation of proper premises. It is
based on three ideas. The first idea is to use a simple connection between proper premises
and minimal hypergraph transversals. The problem of enumerating minimal hypergraph
transversals is well-researched. Exploiting the link to proper premises allows us to use
existing algorithms that are known to behave well in practice. A first, naïve algorithm iterates
over all attributes and uses a black-box hypergraph algorithm to compute proper premises of
each attribute.

A drawback when iterating over all attributes is that the same proper premise may be
computed several times for different attributes. So we introduce a candidate filter in the
second step: For each attribute m, the attribute set is filtered and proper premises are searched
only among the candidate attributes. We show that this filtering method significantly reduces
the number of multiple-computed proper premises while maintaining completeness. In a third
step we exploit the fact that there are obvious redundancies within the proper premises. These
can be removed by searching for proper premises only among the meet-irreducible attributes.

We argue that our algorithms are trivial to parallelize, leading to further speedups. Due to
their incremental nature, parallelized versions of the stem base algorithms are not known to
date.

We provide experimental results that support our claim that our algorithms perform well
in practice. The application in which we test them is described in detail in Section 5.2. It deals
with data-flow-oriented simulation models, such as MATLAB/Simulink, state diagrams, and
diagrams of electrical networks. Generally, such models consist of blocks or elements and
connections among them. Using techniques described in Section 5.2, a formal context can be
obtained from such models. By computing an implication base of this context, dependencies
among model artifacts can be uncovered. These can help to represent a large number of
model variants in a structured way. In these contexts the number of concept intents is often
close to the theoretical maximum. Here, attributes often occur together with their negated
counterparts, and the concept lattice can contain several millions of elements.

Our empirical tests show highly significant improvements for the contexts obtained from
the model refactoring application. For a sample context, where several hours where required
to compute the stem base, runtime has dropped to fractions of a second. For contexts from
other applications the improvements are not as impressive but still large.

In Section 5.1 we provide arguments that we can expect the number of concept intents to
be larger than the number of proper premises in most contexts, assuming a uniform random
distribution.

Fast Algorithms for Implication Bases and Attribute Exploration Using Proper Premises 3

Another setting where proper premises may lead to a significant speedup is attribute
exploration [18]. The aim of attribute exploration is to assist domain experts in completing
knowledge that can be represented as formal contexts. During the exploration process, the
domain expert is asked whether certain implications hold or not. If the domain expert refutes
one of those implications, she is asked to provide a counterexample, which is then added
to the formal context. The process terminates when no more implications exist that may be
presented to the expert and the resulting set of implications completely describes the domain
represented by the expert.

Attribute exploration is typically formulated using pseudo-intents and the Next-Closure [17,
18] algorithm. However, it is known [11,13] that in this setting it may take time exponential
in the size of the currently known context to compute the next implication presented to the
expert. Because of this, it may be worth considering alternative formulations of attribute
exploration that do not use pseudo-intents. A first attempt to formulate attribute exploration
using proper premises has been done in [27]. We shall give another variant of attribute explo-
ration using proper premises in Section 6. It uses the same approaches as our enumeration
algorithms for the stem base.

2 Preliminaries

We provide a short summary of the most common definitions in formal concept analysis
(FCA). A formal context is a triple K = (G,M, I) where G is a set of objects, M a set of
attributes, and I ⊆ G×M is a relation that expresses whether an object g ∈ G has an attribute
m ∈M. If A ⊆ G is a set of objects then A′ denotes the set of all attributes that are shared
among all objects in A, i.e., A′ = {m ∈M | ∀g ∈ A : gIm}. Likewise, for some set B ⊆M
we define B′ = {g ∈ G | ∀m ∈ B : gIm}. For objects g ∈ G, we may write g′ instead of {g}′,
and likewise m′ instead of {m}′ for attributes m ∈M. Pairs of the form (A,B) where A⊆ G,
B⊆M, A′ = B and B′ = A are called formal concepts. Formal concepts of the form (m′,m′′)
for some attribute m ∈M are called attribute concepts and are denoted by µm. We define
the partial order ≤ on the set of all formal concepts of a context to be the subset order on
the first component. The first component of a formal concept is called the concept extent
while the second component is called the concept intent. The formal concepts of a formal
context together with the order ≤ form a complete lattice, which is called the concept lattice.
An example for a formal context together with its concept lattice can be seen in Figure 1.
For conciseness the labeling in the lattice diagram is reduced. It can be understood in the
following way: an object g has the attribute m iff the label m appears below the label g in the
lattice diagram. For each m ∈M the attribute concept µm corresponds to the node labeled
m in the lattice. For an object g ∈ G and an attribute m ∈M we write g $ m if g′ is maximal
with respect to the subset order among all object intents which do not contain m.

Formal concept analysis provides methods to mine implicational knowledge from formal
contexts. An implication is a pair (B1,B2) where B1,B2 ⊆M, usually denoted by B1→ B2.
B1 is then called the premise of the implication and B2 is said to be the conclusion of the
implication. We say that the implication B1 → B2 holds in a context K if B′1 ⊆ B′2. An
implication B1→ B2 follows from a set of implications L if for every context K in which all
implications from L hold, B1→ B2 also holds. This can alternatively be characterized in the

4 Uwe Ryssel et al.

following way. Define

L 1(A) = A∪
⋃
{Y | (X → Y) ∈L ,X ⊆ A},

L i(A) = L 1(L i−1(A)) for i > 1,

L (A) =
⋃

i∈N>0

L i(A).

Then an implication X → Y follows from the set L of implications if and only if Y ⊆L (X).
We write L |= (X → Y) if and only if X → Y follows from L .

We say that a set L of implications is sound for K if all implications from L hold in K,
and we say that L is complete for K if all implications that hold in K follow from L . If L
is sound and complete for K, then L is said to be a base1 for K. It is called a direct base, if
furthermore L 1(A) = L (A) holds for all A⊆M.

There exists a sound and complete set of implications for each context which has minimal
cardinality [19]. This is called the stem base. To define this base, we need to introduce the
notion of pseudo-intents. These are sets P⊆M, such that P 6= P′′ and for each pseudo-intent
Q (P, it is true that Q′′ ⊆ P. Then the stem base of K is defined as

{P→ P′′ | P pseudo-intent of K}.

However, we can also explicitly describe another base of K. Let m ∈M and B⊆M. Then
B is called a premise for m if m ∈ B′′ \B. It is easy to see that the set

L = {B→ B′′ | B⊆M premise for some m ∈M }

is also a sound and complete set of implications of K, although it is quite large, as each subset
B⊆M is a premise for all n ∈ B′′ \B.

A smaller subsets of L that is still sound and complete can be obtained using proper
premises. For a given set of attributes B ⊆M, define B• to be the set of those attributes in
M \B that follow from B but not from a strict subset of B, i.e.,

B• = B′′ \
(

B∪
⋃

S(B

S′′
)
.

B is called a proper premise if B• is not empty. It is called a proper premise for m ∈ M
if m ∈ B•. One can show that B is a proper premise for m iff B is ⊆-minimal among the
premises of m. Furthermore, {B→ B• | B proper premise} is sound and complete [18] and a
direct base of K. This set is called the base of proper premises of K. Several alternative ways
to define this base can be found in [4].

Example 1 We compute the proper premises in the context from Figure 1. Notice that a set
B⊆M and an attribute m ∈M satisfy m ∈ B′′ iff

∧
{µb | b ∈ B} ≤ µm holds in the concept

lattice. Hence, {c,d,e} is a premise for a. However, it is not ⊆-minimal since {c,e} and {d}
are also premises for a. The latter are ⊆-minimal and therefore proper premises for a. The
full base of proper premises of this context is

{a,b} → {d}, {a,c} → {b,d,e}, {a,e} → {b,c,d},
{b,c} → {a,d,e}, {b,e} → {a,c,d}, {c,d} → {e},
{c,e} → {a,b,d}, {d} → {a,b}, {d,e} → {c}.

1 In the literature, sometimes what we call base is called cover, and what we call minimal base is simply
called base. However, we shall not use this terminology in this work. In particular this means that our bases do
not need to be minimal.

Fast Algorithms for Implication Bases and Attribute Exploration Using Proper Premises 5

a b c d e
1 ×
2 ×
3 ×
4 × × ×
5 ×

1
a

2
b3

c
5
e 4

d

Fig. 1 A formal context and its concept lattice

3 Proper Premises as Minimal Hypergraph Transversals

We present a connection between proper premises and minimal hypergraph transversals,
which forms the foundation for our enumeration algorithms. It has been exploited before in
database theory to the purpose of mining functional dependencies from a database relation
[25]. Implicitly, it has also been known for a long time within the FCA community. However,
the term hypergraph has not been used in this context (cf. Prop. 23 from [18]). Beyond that,
hypergraphs have previously been used for the related task of association rule mining [33].
An overview of how hypergraphs can be applied to data mining can be found in [20].

Let V be a finite set of vertices. A hypergraph H on V is simply a subset of the power
set 2V . Intuitively, each set E ∈H represents an edge of the hypergraph, which, in contrast
to classical graph theory, may be incident to more or less than two vertices. A set S⊆V is
called a hypergraph transversal of H if it intersects every edge E ∈H , i.e.,

∀E ∈H : S∩E 6= /0.

S⊆V is called a minimal hypergraph transversal of H if it is minimal with respect to the
subset order among all hypergraph transversals of H . The transversal hypergraph of H is
the set of all minimal hypergraph transversals of H . It is denoted by Tr(H). The problem
of deciding for two hypergraphs G and H whether H is the transversal hypergraph of G is
called TRANSHYP. The problem of enumerating all minimal hypergraph transversals of a
hypergraph G is called TRANSENUM. Both problems are relevant to a large number of fields
and therefore have been well-researched. TRANSHYP is known to be contained in CONP.
Since it has been shown that TRANSHYP can be decided in quasi-polynomial time [16], it is
not believed to be CONP-complete. Furthermore, it has been shown that it can be decided
using only limited non-determinism [15]. For the enumeration problem it is not known to
date whether an output-polynomial algorithm exists. However, efficient algorithms have been
developed for several classes of hypergraphs [15,7].

The following proposition can be found in [18] among others.

Proposition 1 P⊆M \{m} is a premise of m ∈M iff

(M \g′)∩P 6= /0

holds for all g ∈ G with g $ m. P is a proper premise for m iff P is minimal (with respect to
⊆) with this property.

We immediately obtain the following corollary.

Corollary 1 P is a premise of m iff P is a hypergraph transversal of H ↙
K,m where

H ↙
K,m := {(M \{m})\g′ | g ∈ G,g $ m}.

The set of all proper premises of m is exactly the transversal hypergraph Tr(H ↙
K,m).

6 Uwe Ryssel et al.

Algorithm 1 Naïve Algorithm for Enumerating All Proper Premises
Input: K= (G,M, I)
P := /0
for all m ∈M do

P := P ∪Tr(H ↙
K,m)

end for
return P

Table 1 Context from Figure 1
with $-Relation

a b c d e
1 × ↙ ↙
2 ↙ × ↙
3 ↙ ↙ × ↙ ↙
4 × × ↙ × ↙
5 ↙ ↙ ↙ ↙ ×

Table 2 Context from Figure 1 in-
verted

a b c d e
1 × × × ×
2 × × × ×
3 × × × ×
4 × ×
5 × × × ×

Table 3 Context from Ta-
ble 2 with Rows 1, 2, 3 and
Column c Removed

a b d e
4 ×
5 × × ×

A version of this corollary without the maximality condition (implied by $) on the object
intents also exists.

Corollary 2 The set of all proper premises of m is exactly the transversal hypergraph
Tr(H /∈

K,m), where

H /∈
K,m := {(M \{m})\g′ | g ∈ G,m /∈ g′}.

In particular this proves that enumerating the proper premises of a given attribute m is
polynomially equivalent to TRANSENUM. This can be exploited in a naïve algorithm for
computing all proper premises of a formal context (Algorithm 1). Being aware of the link to
hypergraph transversals, we can benefit from existing efficient algorithms for TRANSENUM

in order to enumerate proper premises similar to what has been proposed in [25]. Of course,
it is also possible to use other enumeration problems to which TRANSENUM can be reduced.
Examples are the enumeration of prime implicants of Horn functions [4] and the enumeration
of set covers.

Example 2 Assume we want to compute the proper premises for the attribute c in the context
K from Figure 1. To see how the hypergraph H ↙

K,c is obtained, consider first Table 1 which
shows K with the $-relation added. Since only Rows 4 and 5 contain arrows in Column c
only these two rows are relevant for the proper premises of c. Next, consider Table 3 which
is obtained by first inverting the context (Table 2) and then removing the irrelevant rows
as well as the Column c itself. Reading this context line by line yields the hypergraph
H ↙

K,c =
{
{e},{a,b,d}

}
. We obtain the proper premises of c as the minimal transversals of

H ↙
K,c: they are {a,e}, {b,e} and {d,e}.

4 Improvements to the Algorithm

4.1 Avoiding Duplicates using Candidate Sets

We can further optimize Algorithm 1 by reducing the search space. In the naïve algorithm
proper premises are typically computed multiple times since they can be proper premises

Fast Algorithms for Implication Bases and Attribute Exploration Using Proper Premises 7

µu µm

µvµw µx

Fig. 2 On candidate sets

of more than one attribute. Our goal is to avoid this wherever possible. In Example 1 the
set {c,e} is a proper premise for the three attributes a, b and d. Therefore, Algorithm 1 will
compute it three times, namely in the iterations for a, b and d.

The first idea is shown in Algorithm 2. There we introduce a candidate set C of relevant
attributes, depending on the current attribute m. We claim now that we only have to search
for minimal hypergraph transversals P of H ↙

K,m with P⊆C. We provide some intuition for
this idea.

Let us consider the snippet of a concept lattice as it is shown in Figure 2. We can see that
in this case the set {w,x} is a proper premise for both m and v. This implies that Algorithm 1
computes the set {w,x} at least twice. More generally, we can observe that a proper premise
P for an attribute m will be computed a second time in Algorithm 1 if∧

p∈P

µ p≤ µv < µm

is true for some attribute v. The proper premise P is then recomputed in the iteration of v.
We now try to identify attributes that cause proper premises to be computed multiple

times. Observe that in Figure 2 the attribute w satisfies the condition

µw∧µm≤ µv < µm. (1)

Now, assume that P is a proper premise of m that contains w. Then we know that m ∈ P′′,
which is equivalent to ∧

p∈P

µ p≤ µm.

From w ∈ P we obtain ∧
p∈P

µ p = µw∧
∧
p∈P

µ p︸ ︷︷ ︸
≤µm

≤ µw∧µm≤ µv.

Thus, P is also a proper premise for v. This shows that in the example any proper premise
that contains w will be computed by Algorithm 1 at least twice: in the iteration for v and in
the iteration for m. The redundancy is caused by w satisfying the condition (1). We therefore

8 Uwe Ryssel et al.

Algorithm 2 A Better Algorithm for Enumerating All Proper Premises
Input: K= (G,M, I)
P := {{m} | m ∈M,{m} is a proper premise of K}
for all m ∈M do

C := {u ∈M \{m} | @v ∈M : µu∧µm≤ µv < µm}
P := P ∪{P⊆C | P minimal hypergraph transversal of H ↙

K,m }
end for
return P

suggest to introduce in each iteration a candidate set of only those attributes that do not
satisfy (1).

More formally, let us fix a formal context K = (G,M, I) and choose m ∈ M. In the
iteration for m we search for proper premises only within the candidate set

C = {u ∈M \{m} | @v ∈M : µu∧µm≤ µv < µm}, (2)

as shown in Algorithm 2. With this intuitive understanding in mind, we now turn to the proof
of the correctness of Algorithm 2.

Lemma 1 Algorithm 2 enumerates for a given formal context K = (G,M, I) all proper
premises of K.

Proof Let P be a proper premise of K for the attribute m. P is a proper premise and therefore
m ∈ P′′ holds, which is equivalent to µm ≥ (P′,P′′). Let c ∈ M be such that µm ≥ µc ≥
(P′,P′′) and µc is minimal with this property. We claim that either P = {c} or P is found in
the iteration for c of Algorithm 2.

Suppose c∈P. Then m∈ {c}′′ follows from µm≥ µc. As a proper premise, P is minimal
with the property m ∈ P′′. It follows that P = {c} and P is found by Algorithm 2 during the
initialization.

Now suppose c 6∈ P. Consider

C := {u ∈M \{c} | @v ∈M : µu∧µc≤ µv < µc}.

We shall show that P⊆C. To see this, consider some p ∈ P. Then p 6= c holds by assumption.
Suppose that p 6∈C, i.e., there is some v∈M such that µ p∧µc≤ µv < µc. Because of p∈ P,
µ p≥ (P′,P′′) and together with µc≥ (P′,P′′) we have

(P′,P′′)≤ µ p∧µc≤ µv < µc

in contradiction to the minimality of µc. This shows that p ∈C and all together P⊆C.
To complete the proof it remains to show that P is a minimal hypergraph transversal

of {M \ {g}′ | g $ c}, i.e., that P is also a proper premise for c, not only for m. Consider
n ∈ P. Assume c ∈ (P\{n})′′. Since {c} implies m, then P\{n} would be a premise for m
in contradiction to the minimality of P. Thus c 6∈ (P\{n})′′ holds for all n ∈ P and therefore
P is a proper premise for c. ut

Example 3 As mentioned earlier the proper premise {c,e} is a proper premise of three
attributes, namely a, b and d. The naïve Algorithm 1 would therefore compute it three times.

Fast Algorithms for Implication Bases and Attribute Exploration Using Proper Premises 9

µm

µy

µx

µa µb

Fig. 3 On removing reducible attributes

Let us now compute the candidate set in the iteration of Algorithm 2 where m = a. It holds
that

µb∧µa ≤ µd < µa,

µc∧µa ≤ µd < µa, and

µe∧µa ≤ µd < µa.

Thus b, c and e are not in the candidate set for a as defined in (2). In fact, the candidate set
for a contains only one element: d. The proper premise {c,e} will therefore not be computed
in the iteration for a, nor will it be computed in the iteration for b. It will only appear in the
iteration for d.

4.2 Irreducible Attributes

We go one step further and also remove attributes m from our candidate set C whose attribute
concept µm is the meet of other attribute concepts µx1, . . . ,µxn, where x1, . . . ,xn ∈C, i.e.,
µm =

∧n
i=1 µxi and µm 6= µxi for i = 1, . . . ,n. Such an attribute m is called (meet-)reducible.

This results in Algorithm 3 that no longer computes all proper premises, but a subset that
still yields a complete implicational base. We show that we only have to search for proper
premises P with P⊆ N where N is the set of irreducible attributes of K.

To ease the presentation, let us assume for the rest of this paper that the formal context K
is attribute-clarified, i.e. there are no two different attributes m,n in K such that m′ = n′. Let
us furthermore assume that /0′′ = /0, i.e. there is no attribute that all objects have.

To obtain some intuition why reducible attributes may yield redundant proper premises
let us consider the snippet of a concept lattice as it is given in Figure 3. We can see that
the set {x,y} is a proper premise for the attribute m. Notice that the attribute x is reducible
since µx = µa∧µb. We can observe that the implication {x,y}→ {m} already follows from
the implications {x}→ {a,b} and {a,b,y}→ {m}. The former is obtained from a singleton
proper premise. In the latter the set {a,b,y} is either a set of irreducible attributes or each
reducible attribute can be replaced in the same way as for x. Hence, if we again handle
singleton proper premise separately we are allowed to only consider the set of irreducible
attributes when computing proper premises. This results in a significant speedup in the
computation. The resulting algorithm is shown in Algorithm 3.

We are now going to describe this idea formally and prove its correctness.

10 Uwe Ryssel et al.

Algorithm 3 Computing Enough Proper Premises
Input: K= (G,M, I)
P := {{m} | m ∈M,{m} is a proper premise of K}
N := M \{x ∈M | µx =

∧n
i=1 µxi for an n ∈ N and xi ∈M \{x} for 1≤ i≤ n}

for all m ∈M do
C := {u ∈ N \{m} | @v ∈M : µu∧µm≤ µv < µm}
P := P ∪{P⊆C | P minimal hypergraph transversal of H ↙

K,m }
end for
return P

Proposition 2 Let m be an attribute and let P be a proper premise for m. Let x ∈ P, n ∈ N,
and for 1≤ i≤ n let xi ∈M be attributes satisfying

– m /∈ {x1, . . . ,xn },
– µx =

∧n
i=1 µxi,

– xi /∈ /0′′ for all 1≤ i≤ n and
– µx < µxi for all 1≤ i≤ n.

Then {x} is a proper premise for all xi and there exists a nonempty set Y ⊆ {x1, . . . ,xn } such
that (P\{x})∪Y is a proper premise for m.

Proof It is clear that {x} is a proper premise for all xi, since xi ∈ {x}′′ and xi /∈ /0′′. Define

QY := (P\{x})∪Y

for Y ⊆ {x1, . . . ,xn }. We choose Y ⊆ {x1, . . . ,xn } such that Y is minimal with respect to m ∈
Q′′Y . Such a set exists, since m ∈ ((P\{x})∪{x1, . . . ,xn })′′ because of {x1, . . . ,xn }→ {x}.
Furthermore, Y 6= /0, since m /∈ (P\{x})′′.

We now claim that QY is a proper premise for m. Clearly m /∈ QY , since m /∈ Y . For
all y ∈ Y it holds that m /∈ (QY \{y})′′ or otherwise minimality of Y would be violated. It
therefore remains to show that m /∈ (QY \{y})′′ for all y ∈ QY \Y = P\{x}.

(QY \{y})′′ = ((P\{x,y})∪Y)′′

⊆ ((P\{y})∪Y)′′

= (P\{y})′′

since {x}→ Y and x ∈ P\{y}. Since m /∈ (P\{y})′′, we get m /∈ (QY \{y})′′ as required.
In sum, QY is a proper premise for m. ut

Lemma 2 Let N be the set of all meet-irreducible attributes of a context K. Define

P = {X ⊆M | |X | ≤ 1,X proper premise}∪{X ⊆ N | X proper premise}

Then the set L = {P→ P• | P ∈P } is sound and complete for K.

Proof Let m be an attribute and let P be a proper premise for m. If P /∈P then it follows
that P 6⊆ N. Thus we can find y1 ∈ P\N and elements x1, . . . ,xn ∈M with n≥ 1 such that

– m /∈ {x1, . . . ,xn },
– µy1 =

∧n
i=1 µxi,

– xi /∈ /0′′ for all 1≤ i≤ n and
– µx < µxi for all 1≤ i≤ n.

Fast Algorithms for Implication Bases and Attribute Exploration Using Proper Premises 11

By Proposition 2 we can find a proper premise P1 such that P→{m} follows from {y1 }→
{x1, . . . ,xn } and P1 → {m}. Clearly {y1 } ∈P , since all singleton proper premises are
contained in P . If P1 /∈P then we can apply Proposition 2 again and obtain a new proper
premise P2, etc. To see that this process terminates consider the strict partial order ≺ defined
as

P≺ Q iff ∀q ∈ Q : ∃p ∈ P : µ p < µq.

It is easy to see that with each application of Proposition 2 we obtain a new proper premise
that is strictly larger than the previous with respect to ≺. Hence, the process must terminate.
This yields a set P ′ = {{y1 }, . . . ,{yk },Pk } ⊆P such that P→{m} follows from {Q→
Q• | Q ∈P ′ }. Thus L is a sound and complete set of implications. ut

Together with Lemma 1 this yields correctness of Algorithm 3.

Corollary 3 The set of proper premises computed by Algorithm 3 yields a sound and com-
plete set of implications for the given formal context.

Example 4 In Figure 1 the attribute d is meet-reducible since µd = µa∧µd. In its first step
Algorithm 3 will compute the set of all proper premises with at most one element:

P =
{
{d}
}
.

In the second step, all meet-reducible attributes are removed and only the attributes in

N = {a,b,c,e}

are considered. After this Algorithm 3 proceeds exactly as Algorithm 2, but with N as the
new set of attributes. It will find those proper premises that are subsets of N, i.e. {a,b}, {a,c},
{a,e}, {b,c}, {b,e}, and {c,e}. From the set of proper premises found in Example 1 only
{c,d} and {d,e} are missing. The resulting base is still complete, since {c,d}→ {e} follows
from {d}→ {a,b} and {a,c}→ {b,d,e} (similarly for {d,e}→ {c}).

5 Evaluation

5.1 Computing Proper Premises Instead of Intents

In both the stem base algorithms and our algorithms, runtime can be exponential in the
size of the input and output. In the classical case the reason is that the number of intents
can be exponential in the size of the stem base [23]. In the case of our algorithms there are
two reasons: the computation of proper premises is TRANSENUM-complete, and there can
be exponentially many proper premises. The first issue is less relevant in practice because
algorithms for TRANSENUM, while still exponential in the worst case, behave well for most
instances.

To see that there can be exponentially many proper premises in the size of the stem base,
let us look at the context Kn from Table 4 for some n≥ 2, consisting of two contranominal
scales of dimension n× n and one attribute a with empty extent. It can be verified that
the proper premises of the attribute a are exactly the sets of the form {mi | i ∈ J}∪{m̄i |
i /∈ J} for some J ⊆ {1, . . . ,n}, while the only pseudo-intents are the singleton sets and
{m1, . . . ,mn, m̄1, . . . , m̄n}. Hence there are 2n proper premises for a, while there are only
2n+2 pseudo-intents.

12 Uwe Ryssel et al.

Table 4 Context Kn with Exponentially Many Proper Premises

m1 . . . mn m̄1 . . . m̄n a
g1
... 6= 6=

gn

2 4 6 8

0

20

40

60

n = m

2 4 6 8

0

50

100

n = 3m

2 4 6 8

0

50

100

n = 5m

Fig. 4 Expected Number of Intents and Proper Premises for Certain Families of Formal Contexts

Next-Closure behaves poorly on contexts with many intents while our algorithms behave
poorly on contexts with many proper premises. In order to provide evidence that our algorithm
should behave better in practice we use formulae for the expectation of the number of intents
and proper premises in a formal context that is chosen uniformly at random among all
n×m-contexts for fixed natural numbers n and m.2 Derivations of these formulae can be
found in [12].

The expected value for the number of intents in an n×m-context is

Eintent =
m

∑
q=0

(
m
q

) n

∑
r=0

(
n
r

)
2−rq(1−2−r)m−q(1−2−q)n−r,

while the expected value for the number of proper premises for a fixed attribute a in an
n×m-context is

Epp = 2−n
n

∑
r=0

(
n
r

)m−1

∑
q=0

(
m
q

)
q! 2−q2

∑
(p1,...,pq)∈Nq

1≤p1<···<pq≤r

q

∏
i=0

(
1−2−q(1+ i)

)pi+1−pi−1
.

Figure 4 shows the values of m ·Epp (squares) and Eintent (bullets) for quadratic contexts and
for contexts with n = 3m and n = 5m. While there are more proper premises for quadratic
contexts, less proper premises need to be computed for contexts with a large number of
objects.

5.2 Applications in Model Refactoring

In Section 5.3 we shall see that the proper premise approach performs surprisingly well on
contexts obtained from model refactoring. The goal of model refactoring is to restructure
certain models that are used to describe and to design systems. One example of such models

2 We ignore renaming of attributes and objects.

Fast Algorithms for Implication Bases and Attribute Exploration Using Proper Premises 13

Fe
at

ur
e

1

Fe
at

ur
e

2

Fe
at

ur
e

3

Fe
at

ur
e

4

Fe
at

ur
e

5

Fe
at

ur
e

6

Fe
at

ur
e

7

Fe
at

ur
e

8

¬F
ea

tu
re

2

¬F
ea

tu
re

3

¬F
ea

tu
re

4

¬F
ea

tu
re

5

¬F
ea

tu
re

6

1 × × × × × × ×
2 × × × × × × ×
3 × × × × × × ×
4 × × × × × × ×
5 × × × × × × ×
6 × × × × × × ×
7 × × × × × × ×
8 × × × × × × ×

Feature Artifacts

Feature 1 Block A, Block C
Feature 2 Block B, Line A to B,

Line B to C
Feature 3 Block D, Line B to D
Feature 4 Block E, Line B to E
Feature 5 Block F, Line B to F
Feature 6 Line A to C
Feature 7 A.p = 2
Feature 8 A.p = 3

Fig. 5 A formal context for variant and features of data-flow models

are data-flow-oriented models. We briefly describe how formal contexts arise in this setting.
Data-flow-oriented simulation models (e.g., MATLAB/Simulink models) are graph-like
structures consisting of artifacts such as blocks, connections (lines) and parameter settings,
which are used to model and run systems. Working with that kind of models will quickly
result in many variants of similar models, which are difficult to manage.

One solution for that problem is to refactor these variants to one single configurable
model. This model contains the union of all artifacts existing in any of the variants. An
artifact that exists in more than one variant, which can be detected using matching algorithms,
will be contained only once in the configurable model. Artifacts, which always co-occur in
the variants, can be grouped to so-called features, so there is a 1:n-relation among features
and artifacts. Complementary to the configurable model, a so-called feature model defines
the valid combinations of this features in a form that is equivalent to a propositional formula
with the features as variables.

To create a specific variant of the configurable model, the user has to select a number
of features he wants in the resulting model. The validity of the given feature set is checked
against the feature model, i.e., it is checked whether the set of selected features satisfies the
corresponding propositional formula. Selected features will have the Boolean value true and
not selected features will have the value false. If the feature set is valid, a generator copies
those artifacts to the result model that are related to the selected features. Because of the
restrictions in the feature model, the generator will always create valid models.

To create the needed feature models from a set of model variants automatically, as
described in [29,30], the dependencies among the features or artifacts have to be identified
in form of implications. Therefore, a formal context is built as shown in Figure 5: The
model variants (1–8) form the object set and the features form the attribute set. Since the
dependencies should also cover the relations to not selected features, a negated counterpart
¬Feature x is added as an additional attribute for some of the features, especially for blocks
and lines. If a block or line exists in a variant, they are incident in the resulting context. For
the negated counterparts the incidence is negated as well. The many-valued relation among
variants and parameters is resolved by using parameter settings (i.e., pairs of parameters and
their values) as attributes. For instance in Figure 5, the block A’s parameter p creates one
feature for each occurring value.

Typically, a context created from model variants contains many alternative features, i.e.,
features that never co-occur in the variants. In Figure 5, the features 3–6 and 7,8 are such
groups of alternative features. Combined with the negated attributes, the number of concepts
of the corresponding lattice will grow exponentially with the number of alternative features.

14 Uwe Ryssel et al.

The context in Figure 5 contains only 46 concepts, but the data-flow model in Table 5 contains
alternative feature groups with a size above 20 resulting in a lattice with millions of concepts.
Also because of the negated attributes, the density of the context is high (usually greater than
0.3). A typical context size for this application is 20 objects and 60 attributes, from which a
complete set of implications has to be calculated.

5.3 Experimental Comparison to Other Algorithms

We experimentally compare our proposed algorithm to other well-known ones. For this, we
recall the algorithms we want to compare, briefly discuss some implementation details, and
then present the achieved results.

Algorithms We compare the following implementations: SB which is an implementation of
the stem base algorithm based on Next-Closure, HT which computes all proper premises as
hypergraph transversals as in Algorithm 1, and PP, an implementation of Algorithm 3.

At first, comparing the algorithm SB, HT, PP may seem a bit suspicious, since they
all compute different things from a given formal context. However, the purpose of our
experiments is not to compare different ways to compute the same values. Instead, in our
experiments we want to compare different ways to find bases of a given formal context. What
we then want to compare are both the time needed to compute the respective base, and the
size of the base. With respect to this goal, the algorithm SB, HT and PP can very well be
compared, since these algorithms either directly compute a base (SB) or give the premises of
a base (HT, PP).

Implementation An easy optimization we have made in HT and PP concerns parallelization.
In all the listings we have presented so far, the iterations over the set of attributes in our
formal context are independent of each other. It is natural to evaluate those iterations in
parallel to improve the overall performance of our algorithms.

In our experiments we did not use special-purpose algorithms to compute the hypergraph
transversals in HT and PP. Instead we have used an ad-hoc implementation that is based
on backtracking and some simple heuristics [5]. Compared to advanced algorithms for
TRANSENUM, this leaves room for further optimizations.

Data Sets Our test data sets can be divided into two categories, random and structured. For
the tests on structured data we have chosen two data sets from the UCI Machine Learning
Repository. The first data set is the testing data set of SPECT [9], which describes Single
Proton Emission Computed Tomography (SPECT) images. This data set is given as a dyadic
formal context with 187 objects, 23 attributes, and an approximate density of 0.38. The second
one is a data set on Congressional Voting Records of the U.S. House of Representatives from
1984 [31]. It contains 435 objects, 16 attributes and is given as many valued context. It has
been nominally scaled, resulting in a context with 50 attributes and an approximate density
of 0.34.3 The third structured data set originates from the application described in Section 5.2
and [30]. It has 26 objects, 79 attributes and an approximate density of 0.35.

The other part of testing data sets consists of randomly generated contexts. For this we
fix the number nG of objects, nM of attributes and the density nI of crosses. Then we generate

3 Note that this is another scaling as the one in [26], so the times obtained there cannot be compared directly
to ours.

Fast Algorithms for Implication Bases and Attribute Exploration Using Proper Premises 15

Table 5 Behaviour on Structured Data

Context SB HT PP

runtime size runtime size runtime size

Data-Flow-Model 6.5 hrs 86 37 hrs 1 480 0.1 sec 86
SPECT 175 sec 1 778 16 sec 6 830 5.4 sec 6 830
Voting 13 hrs 18 572 6 hrs 140 032 17 min 140 032

Table 6 Behaviour on Random Data

Context SB HT PP

runtime size runtime size runtime size

20×40×0.9 75 sec 78 0.8 sec 988 1.4 sec 527
20×40×0.8 820 sec 879 4.3 sec 11 263 2.4 sec 9 223
20×40×0.3 8.9 sec 556 4.6 sec 3 780 2.5 sec 3 698
20×40×0.2 5.2 sec 386 2.2 sec 1 817 0.9 sec 1 478

40×20×0.9 17 sec 62 0.04 sec 105 0.04 sec 105
40×20×0.8 104 sec 920 1.5 sec 2 017 0.45 sec 2 017
40×20×0.3 1.6 sec 388 1 sec 1 258 0.7 sec 1 258
40×20×0.2 0.4 sec 173 0.4 sec 503 0.4 sec 503

25×25×0.9 17 sec 72 0.1 sec 154 0.04 sec 122
25×25×0.8 143 sec 565 1 sec 2 533 0.4 sec 2 533
25×25×0.3 1.2 sec 252 0.8 sec 1 231 0.6 sec 1 231
25×25×0.2 0.9 sec 226 0.34 sec 550 0.3 sec 533

for those three numbers one context of the given size nG×nM with an approximate density
of nI .

Experimental Results We have implemented all three algorithms as part of conexp-clj,
a general-purpose FCA tool developed by one of the authors. The implementations itself
are not highly optimized but rather prototypical, so the absolute running times of the test
cases should not be taken as best possible. However, for comparing the three algorithms
SB, HT, and PP, those implementations are sufficient and give a good impression on their
performance. The experimental results (runtime and size of implication base) are given in
Table 5 and Table 6.

As one can see from the results, HT most often runs faster then SB, but both are outper-
formed by PP. This can be seen most drastically with the Data-Flow-Model data sets, where
PP only runs a fraction of a second whereas both SB and HT run for hours. The same occurs
with the Voting data set. The same observation, although not that drastically, can also be seen
with the randomly generated data sets.

The number of implications returned varies significantly not only between HT/PP and
SB, but also between different runs of PP. Most often, HT and PP will return the same result,
i.e., if the input context is attribute reduced. However, if it is not, the number of implications
returned by PP may be significantly smaller than the overall number of proper premises, as
one can see with the Data-Flow-Model data set, where the number of returned implications is
the smallest possible.

However, most of the time the number of implications computed by HT and PP is much
larger then the size of the stem base. The observed factors mostly range between 5 and 20.
This might be a problem in practice, in particular if this factor is much higher. Therefore,

16 Uwe Ryssel et al.

one has to consider a trade-off between the time one wants to spend on computing a sound
and complete set of implications and on the size of this set of implications. The actual
requirements of the particular application decide on the usefulness of the particular algorithm.

6 Attribute Exploration

Attribute exploration is an interactive formalism that can be used to obtain a sound and
complete set of implications L , even if the context K is initially incomplete. An attribute
exploration system is assumed to have access to an incomplete context and an expert that has
complete knowledge about the domain. In each iteration, an implication is computed that is
then presented to the expert. The expert can either accept or refute it. If it is accepted, it is
added to the set of implications L . Otherwise, the expert is asked to provide a counterexample
that is then added to the context.

Let us introduce some notation to facilitate the description of the algorithm. The formal
context we use to start the exploration is called the initial context and the initial set of
implications is called the background knowledge. During the exploration, at each step of the
algorithm a formal context is known that originates from the initial context by adding all
counterexamples obtained so far. This context is called the current working context. Likewise,
the set of implications confirmed by the expert during the exploration process is said to be
the set of known implications. Finally, when the exploration stops, the last working context is
called the final context. We can imagine that during the exploration, although this context
may not be known explicitly, the expert takes her counterexamples from an implicitly known
context called the background context KBG. We can then understand attribute exploration as
the process of making the knowledge from the background context explicit.

Each time the current working context K is enlarged the set of implications that hold
in K also changes. Algorithmically, the main challenge of attribute exploration is to avoid
recomputing implications that have already been accepted by the expert. If the stem base is
used, this can be done using the already mentioned Next-Closure algorithm. This algorithm
enumerates implications (or rather their left-hand sides) in an order that extends the subset
order. This order ensures that rejecting an implication has no influence on the implications
that have been computed earlier.

When our algorithm for proper premises is used to compute the implications one has
much less control over the order in which implications are obtained. Therefore, different
arguments are needed. One attempt to this has already been done in [27]. In the following, we
shall propose an alternative exploration algorithm using proper premises based on hypergraph
transversals.

6.1 Incremental Computation of Proper Premises Using Berge Multiplication

Like in the traditional attribute exploration setting we assume that the expert does not
make mistakes. Assume that she accepts an implication P→ Q and, at a later point in the
exploration, adds a counterexample resulting in a working context K2. Then we can assume
that the expert does not contradict what she has stated earlier, i.e. P→ Q still holds in K2.
We show that in this case, P is still a proper premise of K2, meaning that once an implication
is accepted its premise will remain a proper premise of the working context throughout the
exploration process.

Fast Algorithms for Implication Bases and Attribute Exploration Using Proper Premises 17

Lemma 3 Let K1 = (G1,M, I1) and K2 = (G2,M, I2) be formal contexts such that G1 ⊆ G2
and I2∩ (G1×M) = I1. If P is a proper premise of K1 and P→ P′′1 holds in K2 then P is a
proper premise of K2 and P′′1 = P′′2 . Here ·′′1 (or ·′′2) denotes the derivations taken in K1
(or K2, respectively).

Proof Notice that for any set of attributes B it holds that

B′′2 =
⋂

g∈G2
∀m∈B : gI2m

{g}′2 ⊆
⋂

g∈G1
∀m∈B : gI1m

{g}′1 = B′′1 . (3)

In particular, this proves P′′1 ⊇ P′′2 . Furthermore, since P→ P′′1 holds in K2 we get P′2 ⊆
(P′′1)′2 , and therefore P′′1 ⊆ P′′2 , yielding

P′′1 = P′′2 . (4)

Let m ∈M be such that P is a proper premise of m in K1. Then (4) proves that P is a
premise of m in K2. It remains to prove minimality of P in K2. Let A (P be a strict subset
of P. Since P is a proper premise of m in K1 we obtain that m /∈ A′′1 . Then m /∈ A′′2 follows
from (3). Hence no strict subset of P can be a premise of m in K2 and thus P is not only a
premise, but a proper premise of m in K2. ut

The above result is important, since it ensures that expert interaction is never redundant.
In the following we will examine the algorithmic behaviour of proper premise based attribute
exploration. We will use expressions like “The expert extends K1 by a valid counterexample.”
to say that the context is extended in such a way that Lemma 3 is applicable.

6.1.1 Berge Multiplication and its Offspring

So far, we have always treated the hypergraph transversal algorithms as a black box. However,
for attribute exploration not all hypergraph transversal algorithms work equally well. For
example the algorithm by Fredman and Khachiyan [16] has been shown to have a short
total runtime in practice. However, it uses a divide and conquer approach which results in
it returning all the solutions at once at the end of its runtime. This means that in attribute
exploration one would have to wait for this algorithm to terminate until the first question can
be presented to the expert.

In order for a hypergraph transversal algorithm to be a suitable algorithm for attribute
exploration it should enumerate hypergraph transversals sequentially with a short delay. Such
algorithms are preferable over those that return the complete set of algorithms at the end
of the runtime, even if their total runtime were shorter. One of these algorithms is Berge
Multiplication [3].

We define for two hypergraphs G and H their edgewise union G ∨H as

G ∨H := {g∪h | g ∈ G ,h ∈H }.

Furthermore, for a set S of sets let us denote by min(S) all ⊆-minimal sets in S, i. e.

min(S) := {X ∈ S | @Y ∈ S : Y (X}.

Then the following statement holds, which can be found in [21], where it has been taken
from [3].

18 Uwe Ryssel et al.

Algorithm 4 Compute all minimal hypergraph transversals using Berge Multiplication
Input: H
T := { /0}
for all E ∈H do

T := min(T ∨{{v} | v ∈ E})
end for
return T

Algorithm 5 Algorithm 1 with Berge Multiplication
Input: K= (G,M, I)
P := /0
for all m ∈M do

E := H /∈
K,m

T := { /0}
for all E ∈ E do

T := min(T ∨{{v} | v ∈ E})
end for
P := P ∪T

end for
return P

Lemma 4 Let G ,H be two finite hypergraphs. Then

Tr(G ∪H) = min(Tr(G)∨Tr(H)).

From this lemma it is now easy to obtain an algorithm that computes all hypergraph
transversals of a finite hypergraph H . The idea is, that for a hypergraph {E } consisting
of a single edge E the minimal hypergraph transversals are exactly the singleton sets {e},
e ∈ E. In Algorithm 4 edges are sequentially added by applying Lemma 4 until the complete
transversal hypergraph of H is obtained. Algorithm 5 shows how Berge Multiplication can
be used instead of the black box algorithm in Algorithm 1.

Despite its simplicity it has long been an open question whether Berge Multiplication can
enumerate the minimal hypergraph transversals of H in output-polynomial time. In [32],
Takata was able to show that indeed Berge Multiplication does not run in output-polynomial
time. More precisely, Takata gave an example of a family of hypergraphs such that the
minimal runtime of Berge Multiplication is at best nΩ(log logn), where n is the size of the
corresponding output.

On the other hand, in [8] Boros et. al. show that Berge Multiplication can be used to
obtain all minimal hypergraph transversal of H in time n

√
n, where again n denotes the

size of the output. For this, the ordering of the edges of H = {e1, . . . ,en } is significant but
Boros et. al. were also able to show that the optimal permutation of the edges can be found in
polynomial time.

There are a number of variations of the simple Berge Multiplication algorithm, as
the DL-algorithm by Dong and Li [14], the BMR-algorithm by Bailey, Manoukian and
Ramamohanarao [2] and the KS-algorithm by Kavvadias and Stavropoulos [22]. All these
algorithms apply certain heuristics to speed up the multiplication step. However, all these
algorithms have worst case runtime at least nΩ(log logn) with n the size of the output [21].

6.1.2 A Naïve Exploration Algorithm using Proper Premises

We can now formulate a first version of our attribute exploration algorithm using proper
premises. Let K be the initial context, L be the background knowledge and E = H /∈

K,m.

Fast Algorithms for Implication Bases and Attribute Exploration Using Proper Premises 19

Algorithm 6 Attribute Exploration using Proper Premises and Berge Multiplication
Input: K= (G,M, I)
L := /0
for all m ∈M do

E := H /∈
K,m

T := { /0}
while there exists E ∈ E do

T := min(T ∨{{v} | v ∈ E})
E := E \{E}
while there exists Q ∈T with L 6|= (Q→ Q′′) do

if expert confirms Q→ Q′′ then
L := L ∪{Q→ Q′′ }

else
ask expert for valid counterexample g
if m /∈ g′ then

E := E ∪{M \g′}
end if

end if
end while

end while
end for
return L

Intuitively, the algorithm iterates through all attributes m and computes proper premises P of
m by successively considering edges in E using Berge Multiplication. If then L 6|= P→ P′′

the implication P→ P′′ is asked to the expert. If the implication is accepted it is added to the
set L of known implications. If the implication is rejected then let g be a counterexample
for P→{m}. Then if m /∈ g′, then the set M \g′ is an edge in H /∈

K,m and hence is added to
E . The process continues until there are no more edges in E are left, whereupon all proper
premises for m of the background context are known. The exploration then continues by
considering the remaining attributes in M until no more are left.

This process is formally presented in Algorithm 6. Note that in this algorithm, we
describe expert interaction only informally as “expert confirms Q→ Q′′” or “ask expert for
valid counterexample,” as it is usual in the literature. But it is also possible to describe this
interaction more formally, as it has been done in [6]. We shall not do this here, however, as it
is not necessary for our further considerations.

Lemma 5 Upon termination of Algorithm 6, L is a base of the background context KBG
and contains only implications of the form P→ P′′ where P is a proper premise of KBG.

Proof Let K be the final context obtained upon termination of Algorithm 6. Outside the inner
while-loop Algorithm 6 behaves exactly like Algorithm 5. Thus, it follows from correctness
of Algorithm 5 that upon termination it will have enumerated all proper premises of K (more
precisely all implications P→ P′′ where P is a proper premise of K).

It only remains to show that the proper premises of K are exactly the proper premises
of KBG. First, it follows directly from Lemma 3 that every proper premise P of K is also a
proper premise of KBG.

Now assume that P is a proper premise in KBG for some attribute m. By Corollary 2 this is
equivalent to P being a minimal hypergraph transversal of H /∈

KBG,m
. Since all counterexamples

have been taken from KBG it is true that H /∈
K,m ⊆H /∈

KBG,m
and thus P is also a hypergraph

transversal for H /∈
K,m. It remains to show minimality of P among the hypergraph transversals

of H /∈
K,m. Let Q ⊆ P be a minimal hypergraph transversal of H /∈

K,m. Then Q is a proper

20 Uwe Ryssel et al.

Algorithm 7 Querying the Hierarchy of Attribute Concepts
Input: K= (G,M, I)
Kinit :=K
Linit := /0
{find singleton proper premises:}
for all m ∈M do

while expert refutes {m}→ {m}′′ do
expert adds counterexample to Kinit

end while
if {m} 6= {m}′′ then

Linit := Linit ∪{{m}→ {m}′′ }
end if

end for
{find irreducibles:}
for all m ∈M do

while expert refutes {n ∈ m′′ | µm < µn}→ {m} do
expert adds counterexample to Kinit

end while
end for
return Kinit, Linit

premise of K and thus L |= (Q→Q′′). By Lemma 3, Q is also a proper premise of KBG and
therefore a minimal hypergraph transversal of H /∈

KBG,m
. We know that P is minimal among

the transversals of H /∈
KBG,m

, which implies P = Q. This proves that P is also minimal among

the transversals of H /∈
K,m, i.e. P is a proper premise of the working context K.

We have thus shown that Algorithm 6 enumerates the base of proper premises of the final
working context K and that this is the same as the base of proper premises of the background
context KBG.

6.2 Using the improvements

While Algorithm 6 shows a way to perform attribute exploration using proper premises, it
does not make use of the two improvements. In order to benefit from the performance gain
achieved by these two ideas we need to implement them in our exploration algorithms.

6.2.1 Querying the hierarchy of attribute concepts

Both Algorithm 2 and Algorithm 3 require that all singleton proper premises be computed in
a first step. In attribute exploration the context K is initially incomplete. It is therefore not
sufficient to simply compute all singleton proper premises of K, because we do not know
whether they will remain proper premises when K is extended. However, if {m} is a proper
premise of K and the expert confirms the implication {m}→ {m}′′ then Lemma 3 ensures
that {m} remains a premise when K is extended.

In Algorithm 3 one needs to know which attribute concepts are meet-irreducible. Unfortu-
nately, it is possible that an attribute concept µm that is meet-reducible in the working context
K is no longer meet-reducible in an extension of K. We can find out for certain if the reducible
attribute m can be removed by presenting the implication {n ∈ {m}′′ | µm < µn}→ {m}
to the expert. We shall see that m remains meet-reducible in all extensions of K if this
implication is accepted. Algorithm 7 shows how these two initial queries are performed.

Fast Algorithms for Implication Bases and Attribute Exploration Using Proper Premises 21

Lemma 6 Let Kinit = (Ginit,M, Iinit) and Linit be the context and implication set obtained by
Algorithm 7. Let K= (G,M, I) be a formal context such that Ginit ⊆ G and I∩ (Ginit×M) =
Iinit. Let m ∈M be an attribute.

If all implications from Linit hold in K then

– {m} is a proper premise of K, and
– µm≤ µn iff µm≤init µn, where ≤ and ≤init denote the order in the concept lattice of K

and Kinit, respectively, and
– µm is meet-reducible in K iff µm is meet-reducible in Kinit.

Proof The claim that {m} is a proper premise of K follows immediately from Lemma 3 and
the fact that for all proper premises {m} the implication {m}→ {m}′′ is contained in Linit.

In particular, we also obtain from Lemma 3 that {m}′′ = {m}′′init holds for all m ∈M,
i.e. after the first for-loop has terminated, the intents of attribute concepts remain fixed. It is
an easy result from basic FCA that µm≤ µn iff n ∈ {m}′′. Hence, together with the intents
the hierarchy of attribute concepts also remains fixed:

µm≤ µn ⇐⇒ µm≤init µn.

This proves the second claim.
We show that µm is meet-reducible in K iff {n ∈ m′′ | µm < µn} → {m} holds in K.

On the one hand it holds that

{n ∈ m′′ | µm < µn}→ {m} holds in K ⇐⇒ {n ∈ m′′ | µm < µn}′ ⊆ {m}′

⇐⇒
∧
{µn | n ∈ m′′,µm < µn} ≤ µm ⇐⇒

∧
{µn | n ∈ m′′,µm < µn}= µm.

This shows that µm is meet-reducible if {n ∈ m′′ | µm < µn} → {m} holds in K. On the
other hand, if µm is meet-reducible then there is a set S ⊆ {n ∈ m′′ | µm < µn} such that∧
{µn | n ∈ S}= µm. By the same arguments as above, this is equivalent to S′ ⊆ {m}′ and

together with {n ∈m′′ | µm < µn}′ ⊆ S′ implies that {n ∈m′′ | µm < µn}→ {m} holds in
K.

By asking the expert to confirm or refute each of the implications of the form {n ∈ m′′ |
µm < µn}→ {m}, we can be sure that {n ∈m′′ | µm < µn}→ {m} holds in K iff it holds
in Kinit. The above equivalence then shows that µm is irreducible in K iff it is irreducible in
Kinit. ut

6.2.2 Candidate Sets

Adapting the restriction to candidate sets to an exploration setting is not straightforward. The
problem is that an attribute u that is not a candidate for an attribute m in Kinit can still be a
candidate in KBG, as is illustrated by the following example.

Consider the background context KBG from Table 7. Assume that after the preprocessing
step of Algorithm 7 we obtain a context Kinit as shown in Table 8 and the set of implications
Linit = {{v}→{m}}. Suppose we want to compute the proper premises for m. We compute
the candidate set

Cinit = {u ∈M \{m} | @v ∈M : µu∧µm≤init µv <init µm},

which is empty, as can easily be seen from the concept lattice in Figure 7. As a consequence,
we fail to compute the proper premise {u,w}. However, in the concept lattice of KBG both u
and w are candidates for m, and {u,w} is indeed a proper premise for m (cf. Figure 6).

22 Uwe Ryssel et al.

Table 7 Context KBG

m u v w
A ×
B ×
C × ×
D ×
E × × ×

Table 8 Context Kinit

m u v w
A ×
B ×
C × ×
D ×

µw µu µm

µv

Fig. 6 Concept Lattice of KBG

µw µu

µm

µv

Fig. 7 Concept Lattice of Kinit

Notice, that the above problem does not arise if we compute the proper premises for v
before we compute those for m. Then the expert would first be asked whether {m,u}→ {v}
holds, forcing her to add E as the counterexample.

The problems from the above example can be easily avoided by fixing the order in which
the attributes are processed. We can select any order < on M that satisfies the condition

µm <init µn implies m < n.

An exploration algorithm that uses candidate sets and this order on the attributes is outlined
in Algorithm 8.

If m is the first attribute with respect to this order, then µm is minimal among all attribute
concepts, and therefore the candidate set for m is the full set M \{m}. This means that all
proper premises for m are known after the first iteration. Remember, that in Algorithm 2
each proper premise of m is obtained either in the iteration of m or in the iteration of some v
with µv < µm. Thus, induction shows that for all attributes n the following holds: After the
attribute n has been processed

– L contains the implication P→ P′′ for every proper premise P of n, and
– for every implication of the form S→{n} that does not hold in KBG a counterexample

has been added to K.

This property ensures that in each iteration the candidates that would be computed in KBG
are exactly the candidates computed for K, as can be seen from the following lemma.

Lemma 7 Assume that we have allowed Algorithm 8 to run until the beginning of the
iteration for an attribute m. Let Km be the current context obtained in this iteration and
KBG the background context. Let ≤m and ≤BG denote the orders in their respective concept
lattices. Then

CBG = {u ∈M \{m} | @v ∈M : µu∧µm≤BG µv <BG µm}
= {u ∈M \{m} | @v ∈M : µu∧µm≤m µv <m µm}=Cm (5)

Fast Algorithms for Implication Bases and Attribute Exploration Using Proper Premises 23

Algorithm 8 Attribute Exploration Algorithm using Candidate Sets
Input: K= (G,M, I)
Use Algorithm 7 to compute Kinit and Linit
L := Linit, K=Kinit
fix an order m1 < · · ·< mn on M such that µmi <init µm j implies mi < m j
for m := m1 to mn do

C := {u ∈M \{m} | @v ∈M : µu∧µm <init µv <init µm}
E := {E ∩C | E ∈H /∈

K,m }
T := { /0}
while there exists E ∈ E do

T := min(T ∨{{v} | v ∈ E})
E := E \{E}
while there exists Q ∈T with L 6|= (Q→ Q′′) do

if expert confirms Q→ Q′′ then
L := L ∪{Q→ Q′′ }

else
ask expert for valid counterexample g
if m /∈ g′ then

E := E ∪{C \g′}
end if

end if
end while

end while
end for
return L

Proof From Lemma 6 we obtain that

µv <BG µm ⇐⇒ µv <init µm ⇐⇒ µv <m µm. (6)

Furthermore, it is a basic fact from FCA that µu∧µm≤BG µv iff {u,m}′BG ⊆ {v}′BG , i.e.
iff {u,m}→ {v} holds in KBG. If µv <m µm then we know that v has been processed in an
earlier iteration, and therefore all implications of the form S→{v} hold in Km iff they hold
in KBG. Thus we obtain for all v ∈M with µv <m µm

µu∧µm≤BG µv ⇐⇒ {u,m}→ {v} holds in KBG

⇐⇒ {u,m}→ {v} holds in Km ⇐⇒ µu∧µm≤m µv. (7)

From (6) and (7) we obtain the following equivalences.

u /∈Cm ⇐⇒ ∃v ∈M : µu∧µm≤m µv <m µm

⇐⇒ ∃v ∈M : µu∧µm≤BG µv <BG µm

⇐⇒ u /∈CBG.

This proves Cm =CBG. ut

Lemma 7 shows that if we run Algorithm 2 on the background context we obtain the
same candidate sets as if we run Algorithm 8 with a subcontext as input. Correctness of
Algorithm 8 then follows immediately from correctness of Algorithm 2 (Lemma 1).

Corollary 4 Upon termination of Algorithm 8 with a subcontext K of KBG as input the set
L will contain all implications of the form P→ P′′ where P is a proper premise in KBG.

24 Uwe Ryssel et al.

Algorithm 9 Attribute Exploration Algorithm without Reducible Attributes
Input: K= (G,M, I)
Use Algorithm 7 to compute Kinit and Linit
L := Linit, K :=Kinit
N := M \{x ∈M | µx =

∧n
i=1 µxi for an n ∈ N and xi ∈M \{x} for 1≤ i≤ n}

fix an order m1 < · · ·< mn on M such that µmi <init µm j implies mi < m j
for m := m1 to mn do

C := {u ∈ N \{m} | @v ∈M : µu∧µm <init µv <init µm}
E := {E ∩C | E ∈H /∈

K,m }
T := { /0}
while there exists E ∈ E do

T := min(T ∨{{v} | v ∈ E})
E := E \{E}
while there exists Q ∈T with L 6|= (Q→ Q′′) do

if expert confirms Q→ Q′′ then
L := L ∪{Q→ Q′′ }

else
ask expert for valid counterexample g
if m /∈ g′ then

E := E ∪{C \g′}
end if

end if
end while

end while
end for
return L

6.2.3 Removing Reducibles

Because of Lemma 6 we can be sure that once Kinit has been computed the set of
irreducible attributes does not change anymore during the exploration, and is in fact the
same as the set of irreducible attributes in KBG. Hence, we can directly extend Algorithm 8
by restricting the search space to meet-irreducible attributes. This is shown in Algorithm 9.
Correctness of Algorithm 9 is an immediate consequence of correctness of Algorithm 3 and
Algorithm 9.

Corollary 5 Upon termination of Algorithm 9 with a subcontext K of KBG as input the set
L will contain all implications of the form P→ P′′ where P is a proper premise in KBG.

7 Conclusion

In this paper we have shown that, while the stem base has minimal cardinality, the base of
proper premises can often be computed more efficiently. Very simple optimizations in the
hypergraph based algorithms yield large gains in performance. Therefore it appears promising
that using more sophisticated approaches even larger performance gains can be achieved.

We have evaluated it both on random, artificially generated contexts as well as on
contexts from a practical application. Our evaluation has shown our algorithms to be faster
than existing algorithms on these particular datasets. This suggests that our approach may
also be better for other datasets, especially if these datasets contain a large number of intents.

It should be mentioned that in a setting where minimal cardinality is crucial an additional
minimization step is required. In this case the performance gain may be smaller. However, in
applications like model refactoring minimal cardinality is only of secondary interest.

Fast Algorithms for Implication Bases and Attribute Exploration Using Proper Premises 25

We have also shown how a proper premise based exploration can be performed. Previ-
ously, only high-level descriptions of proper premise based attribute exploration existed. We
have provided a detailed algorithmic description and we have shown how the improvements
from the first part of the paper can be applied in an attribute exploration setting.

References

1. Babin, M., Kuznetsov, S.: Recognizing pseudo-intents is coNP-complete. In: M. Kryszkiewicz, S. Obied-
kov (eds.) Proc. of the 7th Int. Conf. on Concept Lattices and Their Applications, vol. 672. CEUR
Workshop Proceedings (2010)

2. Bailey, J., Manoukian, T., Ramamohanarao, K.: A fast algorithm for computing hypergraph transversals
and its application in mining emerging patterns. In: ICDM, pp. 485–488. IEEE Computer Society (2003)

3. Berge, C.: Hypergraphs – combinatorics of finite sets. North-Holland, Amsterdam (1989)
4. Bertet, K., Monjardet, B.: The multiple facets of the canonical direct unit implicational basis. Theoretical

Computer Science 411(22–24), 2155–2166 (2010)
5. Borchmann, D.: conexp-clj — a general-purpose tool for formal concept analysis. See http://www.math.tu-

dresden.de/ borch/conexp-clj/
6. Borchmann, D.: A General Form of Attribute Exploration. LTCS-Report 13-02, Chair of Automata

Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany
(2013). See http://lat.inf.tu-dresden.de/research/reports.html.

7. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L.: An efficient incremental algorithm for generating all
maximal independent sets in hypergraphs of bounded dimension. Parallel Processing Letters 10, 253–266
(2000)

8. Boros, E., Elbassioni, K., Makino, K.: On berge multiplication for monotone boolean dualization. In:
Proceedings of the 35th international colloquium on Automata, Languages and Programming, Part I,
ICALP ’08, pp. 48–59. Springer-Verlag, Berlin, Heidelberg (2008)

9. Cios, K.J., Kurgan, L.A., Goodenday, L.S.: UCI Machine Learning Repository: SPECT Heart Data Set
(2001). URL http://archive.ics.uci.edu/ml/datasets/SPECT+Heart

10. Distel, F.: Hardness of enumerating pseudo-intents in the lectic order. In: B. Sertkaya, L. Kwuida (eds.)
Proc. of the 8th Int. Conf. on Formal Concept Analysis, Lecture Notes in Artificial Intelligence, vol. 5986,
pp. 124–137. Springer (2010)

11. Distel, F.: Hardness of enumerating pseudo-intents in the lectic order. In: L. Kwuida, B. Sertkaya (eds.)
ICFCA, Lecture Notes in Computer Science, vol. 5986, pp. 124–137. Springer (2010)

12. Distel, F., Borchmann, D.: Expected numbers of proper premises and concept intents. Preprint, Institut
für Algebra, TU Dresden (2011)

13. Distel, F., Sertkaya, B.: On the complexity of enumerating pseudo-intents. Discrete Applied Mathematics
159(6), 450–466 (2011)

14. Dong, G., Li, J.: Mining border descriptions of emerging patterns from dataset pairs. Knowl. Inf. Syst.
8(2), 178–202 (2005)

15. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and generating hypergraph
transversals. SIAM J. Comput. 32, 514–537 (2003)

16. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms.
Journal of Algorithms 21(3), 618 – 628 (1996)

17. Ganter, B.: Two basic algorithms in concept analysis. Preprint 831, Fachbereich Mathematik, TU
Darmstadt, Darmstadt, Germany (1984)

18. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, New York (1999)
19. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de

données binaires. Math. Sci. Humaines 95, 5–18 (1986)
20. Gunopulos, D., Mannila, H., Khardon, R., Toivonen, H.: Data mining, hypergraph transversals, and

machine learning (extended abstract). In: Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, PODS ’97, pp. 209–216. ACM, New York, NY, USA
(1997). DOI 10.1145/263661.263684. URL http://doi.acm.org/10.1145/263661.263684

21. Hagen, M.: Algorithmic and Computational Complexity Issues of MONET. Ph.D. thesis, Friedrich-
Schiller-Universität Jena (2008)

22. Kavvadias, D.J., Stavropoulos, E.C.: An efficient algorithm for the transversal hypergraph generation. J.
Graph Algorithms Appl. 9(2), 239–264 (2005)

23. Kuznetsov, S.O.: On the intractability of computing the Duquenne-Guigues base. Journal of Universal
Computer Science 10(8), 927–933 (2004)

26 Uwe Ryssel et al.

24. Maier, D.: Theory of Relational Databases. Computer Science Pr (1983)
25. Mannila, H., Räihä, K.J.: Algorithms for inferring functional dependencies from relations. Data &

Knowledge Engineering 12(1), 83 – 99 (1994)
26. Obiedkov, S., Duquenne, V.: Attribute-incremental construction of the canonical implication basis. Annals

of Mathematics and Artificial Intelligence 49(1-4), 77–99 (2007)
27. Reppe, H.: Attribute exploration using implications with proper premises. In: P.W. Eklund, O. Haemmerlé

(eds.) ICCS, Lecture Notes in Computer Science, vol. 5113, pp. 161–174. Springer (2008)
28. Rudolph, S.: Some notes on pseudo-closed sets. In: S.O. Kuznetsov, S. Schmidt (eds.) Proc. of the 5th Int.

Conf. on Formal Concept Analysis, Lecture Notes in Computer Science, vol. 4390, pp. 151–165. Springer
(2007)

29. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Automatic variation-point identification in function-block-based
models. In: Proc. of the 9th Int. Conf. on Generative Programming and Component Engineering, pp.
23–32. ACM (2010)

30. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal contexts. In: Proc. of
the 15th Int. Software Product Line Conference, pp. 4:1–4:8. ACM (2011)

31. Schlimmer, J.: UCI Machine Learning Repository: 1984 United Stated congressional voting records
(1987). URL http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

32. Takata, K.: A worst-case analysis of the sequential method to list the minimal hitting sets of a hypergraph.
SIAM J. Discret. Math. 21(4), 936–946 (2007)

33. Zaki, M.J., Ogihara, M.: Theoretical foundations of association rules. In: Proceedings of the 3rd ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (1998)

