Succinctness and Tractability of Closure Operator Representations

Sebastian Rudolph

Technische Universitdt Dresden, Germany
sebastian.rudolph@tu-dresden. de

Abstract

It is widely known that closure operators on finite sets can be represented by sets of implications
(also known as inclusion dependencies) as well as by formal contexts. In this article, we consider
these two representation types, as well as generalizations of them: extended implication sets
and context families. We discuss the mutual succinctness of these four representations and the
tractability of certain operations used to compare and modify closure operators.

1. Introduction

Closure operators and closure systems are a basic notion in algebra and occur in various com-
puter science scenarios such as logic programming or databases. One central task when dealing
with closure operators algorithmically is to represent them in a succinct way while still allow-
ing for their efficient computational usage. Formal concept analysis (FCA) naturally provides
two complementary ways of representing closure operators: by means of formal contexts on one
side and implication sets on the other. Although being complementary, these two representa-
tions share the property that they allow for tractable closure computation. In fact, this property
is also exhibited by further representation types, which properly generalize the ones mentioned
above: context families consist of several contexts and the closure is specified as the “simultane-
ous fixpoint” of all the separate contexts’ closures; extended implications are implications where
auxiliary elements are allowed.

For a given closure operator, the space needed to represent it in one or the other way may dif-
fer significantly: it is well known that there are closure operators whose minimal implicational
representation is exponentially larger than their minimal contextual one and vice versa (see Sec-
tion 3).

Thus, when designing algorithms which use and manipulate closure operators (as many FCA al-
gorithms do) it is important to know which of the possible representation types allow for efficient
storage and still guarantee fast (that is: PTIME) execution of typical computations.

This paper investigates the four representation types in this respect. To this end, we will consol-
idate known results from diverse areas into one framework and provide some findings which are
— to the best of our knowledge — novel and original to fill the remaining gaps. Our main results
can be generalized as follows:

e We show that context families allow for succinct representation of both contexts and im-
plications, and that extended implication sets can succinctly represent all the three other
representation types. We also show that a succinct translation (i.e., one where the size of
the result is polynomially bounded by the input) in all other directions is not possible.

Preprint submitted to Theoretical Computer Science December 14, 2015

e We clarify the complexities for comparing closure operators in different representations in
terms of whether one is a refinement of the other. Interestingly, some of the investigated
comparison tasks are tractable (i.e., time-polynomial), others are not (assuming P # NP).
We provide algorithms for the tractable cases and coNP-hardness arguments for the others.

e We go through standard manipulation tasks for closure operators (refinement by adding a
closed set, coarsening through an implication, projection, meet and join in the lattice of
closure operators) and clarify which are tractable and which are not.

This paper is a significantly refined and extended version of two precursor publications (Rudolph,
2012, 2014). All statements for which proofs are given are original to the best of our knowledge,
unless explicitly stated otherwise.

2. Preliminaries

We start providing a condensed overview of the notions used in this paper. After recalling some
complexity notations, we introduce closure operators as well as the four representation types we
want to discuss in this article: (formal) contexts, context families, implication sets and extended
implication sets.

2.1. Complexity Notations

In order to asymptotically compare sizes of data structures, we will make use of the Bachmann-
Landau notation. In particular, we remind the reader that for two infinite sequences (a,),en and
(bp)nen, We write

e a, € Q(b,) if b, is an asymptotic lower bound of a,, i.e., there exists some k with a, > k-b,
for sufficiently large n, and

e a, € O(b,) if b, is an asymptotic lower and upper bound of a,, i.e., there exist some k; and
ky with ky - b, > a, > k; - b, for sufficiently large n.

2.2. Closure Operators
We now introduce and formally define the central notion of this paper: closure operators.

Definition 1. Let M be an arbitrary set. A function ¢ : 2" — 2M is called a closure operator on
M ifit is

1. extensive, i.e., A C @(A) forall A C M,

2. monotone, i.e., A C B implies ¢(A) C ¢(B) for all A,B C M, and

3. idempotent, i.e., p(¢@(A)) = @(A) forall A € M.

A set A C M is called closed (or ¢-closed in case of ambiguity), if o(A) = A. The set of all closed
sets {A | A = ¢(A) C M} is called closure system of .

It is easy to show that for an arbitrary closure system S, the corresponding closure operator ¢
can be reconstructed by
@(A) = ﬂ B.

BeS, ACB
Hence, there is a one-to-one correspondence between a closure operator and the according clo-
sure system.
In the following, we provide some closure operators which will serve as running examples in the
course of the paper.

2

{a,b,c,d, e}, the functions a, B, v, and § defined in the below
table are all closure operators (due to extensivity, every closure operator ¢ satisfies A C @(A),
thus for better readability, we underline elements of p(A) \ A).

Example 2. Considering M

—_—
vl Y
—_— e

vl vl e_d

) B B CS_SNESJdd TSV ISTIINST LS
=323 S3S5333S83Y93S833SS59S3S333S3588SE
Y Y TS TS

Y VIV VT T IUNRNT TS TITIT T OR
JdTIvd T[T AdIv N S < ST T S dR [JdIdim N S <

Sl SS9iSS 9SS SSTTSILIISS AL SIS
/%Iﬂ_rﬂrﬂ_mm_mrﬂ_rﬂrﬂ_rﬂ@mlal_ralrnw_rnwfnw_ra\m_mlrﬂ_rﬂrﬂ_m;a_mrﬂ_rﬂrﬂ_mfa_m
<l <

Sl E RN IR NS < T IO

TN Y NNY NN J T OTT Y INNSTRN O

< }}noi,}c,c,bn}dudﬂbmzlmac,b, d”ﬂbmdwc”c”bme,ddbdccb
ﬂHrﬂnw:alrwm%lmwfaluwmkmwmkmwmmmw{mmwmkmwm
Y Y TS TS

<SS UNIS T TIT T IETTIOON S

Y TT ST J IS ST T I I N IS S ¢

gl S<TTIENNSLGISSTTIL S AL 588
(a\rﬂ_rﬂrﬂ_wW_rmral_lalral_mm_mW_ralrﬂ_ralml_mM_Mlal_rﬂw_mm_mw_rwral_mw_m
<

.) < T IO

< ARSI TOITTC NN SNYN O

< ddb,}umumb,ﬂccb TITILTT TSI ST SO

<|=3S385S 33383383383 JISSISSESISE

Closure operators can be compared with respect to the inclusion of their respective closed sets.

Definition 3. Given two closure operators ¢ and on M, ¢ is called finer than Y (written ¢ <,
alternatively we also say is coarser than @) if every W-closed set is also ¢-closed. We call ¢

¥), if both ¢ <y and < .
Note that, as a straightforward consequence from this definition, ¢ < i holds exactly if p(A) C

and equivalent (written ¢

¥ holds if and only if ¢(A) = Y(A) forall A € M.

Y(A) for all A € M. Moreover, ¢

Example 4. For the closure operators defined in Example 2, we observe 6 < a and 3 < vy.

It is well-known that the set of all closure operators together with the “finer than” relation con-

stitutes a complete lattice (Caspard and Monjardet (2003) give an excellent and comprehensive

treatise about this subject). The lattice operations can be defined as follows: ¢ A i is the closure
operator mapping any A € M to ¢(A) N y(A) whereas ¢ V ¢ is the closure operator that maps
A C M to the smallest superset of A that is closed under ¢ and (which, for finite sets, can be
obtained by alternatingly applying ¢ and ¢ to A until a fixpoint is reached). The finest closure
operator is the identity function mapping every set to itself. The coarsest closure operator maps
every input set to M.

Example 5. For the closure operators defined in Example 2 we obtainy = aV andd = a AS.

To this date, the precise numbers of closure operators on finite sets are known up to |M| = 7:

| IM] | number of closure operators on M reference |
1 2
2 7
3 61
4 2,480
5 1,385,552 Higuchi, 1998
6 75,973,751,474 | Habib and Nourine, 2005
7 14,087, 648,235,707,352,472 Colomb et al., 2010

Moreover, general lower and upper bounds have been determined (Burosch et al., 1991), ac-
cording to which the number of closure operators an an n-element set is between 20u72) and

22 V2 1+0(D) Thereby, the lower bound can be exploited to obtain a first negative result re-
garding succinct representability of closure operators in general.

Proposition 6. There is no uniform representation of closure operators that requires at most
polynomial space w.r.t. |M|.

Proof. Suppose the contrary, i.e., that there exists some fixed k such that every closure operator
on M can be expressed by a word of length |M[* over some alphabet ¥ of bounded size, say
2| = £. Obviously, there are £0M") such words in total. For sufficiently large M, we then obtain

PIME) _ ology(OIMP) @M (i)

Thus, there are fewer words of the required length than there are distinct closure operators. [
Finally, we introduce the notion of a projection of a closure operator.

Definition 7. Given a closure operator ¢ on a set M and some set N C M, the projection of ¢ to
N, written ¢|y is a closure operator on N with ¢|n(A) = ¢(A) NN forall A C N.

Next we introduce four ways of representing closure operators. Thereby and in what follows,
we will restrict our considerations to closure operators over finite sets, which is a reasonable
assumption when investigating succinctness and complexity properties.

2.3. Contexts

Following the normal line of argumentation of FCA (Ganter and Wille, 1997), we use formal
contexts as data structure to encode closure operators.

4

Definition 8. A formal context K is a triple (G, M, I) with some set G called objects, some set
M called attributes, and a relation I C G X M called incidence relation. The size of K (written:
#K) is defined as |G| - |M)|, i.e., as the number of bits required to store I.

For the sake of brevity, we will sometimes just write context instead of formal context. Contexts
are often conveniently represented by means of crosstables.

Example 9. The following crosstable represents a formal context K = (G, M, I) with object set
G = {81,892, 83, 84, 85, 86, &7} and attribute set M = {a, b, c,d, e}.

L lalbfcld]e]

81 || X X

& || X | x| x

83 || X X

84 || X X
gs || % X X
g || X | X | X X
g7 || X X | X | X

This basic data structure can then be used to define operations on sets of objects or attributes,
respectively.

Definition 10. Let K = (G, M, I) be a formal context. We define a function (-) : 2¢ — 2™ with
Al .= {m | gIm forall g € A} for A C G. Furthermore, we use the same notation to define the
function (-)' : 2M — 26 where B! := {g | gIm for allm € B} for B C M. For convenience, we
sometimes write g' instead of (g} and m' instead of {m}'.

Applied to an object set, this function yields all attributes common to these objects; by applying
it to an attribute set we get the set of all objects having those attributes. The following facts are
consequences of the above definitions:

e ()'!is a closure operator on G as well as on M.
e For A C G, A is a (-)!!-closed set and

e for BC M, B! is a (-)!'-closed set.

Example 11. Looking at the formal context from Example 9, we find for instance {b}! =
{g2,86) = {a,b,c) and (b,d}'! = 0" = {a,b,c,d,e). Indeed, ()" coincides with o from Ex-
ample 2.

In the following, we will focus only on the closure operator on attribute sets and exploit the fact
that this closure operator is independent from the concrete object set G; it suffices to know the
set of the context’s so-called “object intents”, i.e., the sets of attributes associated to each object.
Thus, we will directly use intent sets, that is: families ¥ of subsets of M, to represent formal
contexts.

Example 12. Obviously, the context from Example 9 can be represented by the family F
{Fi,....F7y with Fy = {a,c}, F, = {a,b,c}, F3 = {a.d}, F4 = {a.e}, F5 = {a,c,e}, Fs
{a,b,c,e} and F7 = {a,c,d,e).

Definition 13. Given a family ¥ C 2M, we let K(F) denote the formal context (G, M, I) with
G = F and, for an A € F, we let Alm exactly if m € A. Given B C M, we use the notation B” to
denote the attribute closure B in K(F) and let #F = #K(F) = |F| - [M|.

For the sake of simplicity we will from now on refer to ¥ as contexts (on M). It is easy to see
that (-)* can be alternatively defined via A” = (4cgcs B for every A € M. This gives rise to the
following algorithm and complexity result.

Algorithm 1 closureContext
Input: context ¥ on M, setA C M
Output: C = A7

. C:=M
2: for each B € ¥ do
3 if A C B then
4: C.=CnB
5
6
7

end if
: end for
: output C

Proposition 14. For any context ¥ on a set M and any set A C M, the closure A” can be
computed in O#F) = O(|F| - |M|) time.

Given an arbitrary context # representing some closure operator ¢ on some set M, the question
whether there exists another ¥ representing ¢ and satisfying #7’ < #F — and if so, how to
compute it — is straightforwardly solved by noting that this coincides with the question if K(%)
is row-reduced (Ganter and Wille, 1997) and how to row-reduce it. Algorithm 2 displays the
according method cast in our representation via set families which directly allows to establish
the subsequent complexity result.

Algorithm 2 minimizeContext

Input: context ¥ on M

Output: size-minimal context ¥’
such that () = ()"

. F =F

2: for each A € ¥’ do

3 if A=A\ then

4: F'=F"\ {A}

5

6

7

end if
: end for
. output ¥’

Proposition 15. Given a context ¥ on M, a size-minimal context ¥’ with O = () can be
computed in O(F* - |M|) = O(F| - #F) < OHF?) time.

We note that for a given closure operator ¢, the minimal 7 with ¢ = (-) is uniquely determined.
It consists of all those ¢-closed sets that cannot be obtained by intersecting other ¢-closed sets.
We will denote this minimal context by F (¢).

6

Example 16. Considering the context from Example 9, we see that the set {a,c,e} (associ-
ated with gs) can be represented as the intersection of the sets {a, b, c, e} (associated with ge)
and {a, c,d, e} (associated with g7) and therefore {a, c, e} \Macet = Miaceicper B = {a,b,c,e} N
{a,c,d, e} ={a,c,e}). Thus{a,c,e} will be removed from F by the minimization algorithm.

As a final observation regarding contexts, we note that the closure operator associated to a context
coincides with the infimum of all the “one-line contexts” it is composed of, in the lattice of
closure operators.

Proposition 17. Let 7 be a context on a set M. Then ()" =)\ geqr ()41,

Proof. Let ¢ = Aser (D", Then for any B € M, the following holds: ¢(B) = (e BY =
Npcacr A = B”. O

2.4. Context Families

The notion of contexts can be extended to that of context families.

Definition 18. A context family on a set M is a finite set § = {F 1, ... ,} of formal contexts on
M. The size of § (written: #§) is defined as Y,"_, #F ;.

The closure operator ()8 associated with § is defined via its closed sets: A is ()8-closed ifitis
()T -closed for every F € (F 1, ... Fnl).

Note that the provided definition of (-)8 can be equivalently expressed by (-)% := \/ﬁg.(-)(’r using
the join operation \/ in the lattice of closure operators.

This type of data structure has been investigated in an area of computer science called model-
based reasoning (Eiter et al., 1998) and, as we will see, it is more succinct than plain contexts. On
the other hand, this improvement seems to come at a prize; the obvious upper bound for closure
computation is higher than for plain contexts, although still polynomial:

Proposition 19. For any context family & on a set M and any set A C M, the closure A% can be
computed in O(F| - IM|?) = OGHF - |M)) < OH#F?) time.

Proof. According to the definition, A is the smallest simultaneous fixpoint of O (-)T"
that contains A. Thanks to monotonicity and finiteness of M, such a fixpoint can be obtained by
|M|-fold application of ()7 % (that is, the composition of the closure operators OF O
to A. Exploiting Proposition 14, a one-fold application requires Y.\, O#F) = OXL, #F) =
O#) time, which leads to the above result for |M|-fold application. O

This finding can be seen as a special case of a more general result (Eiter et al., 1998), according
to which checking if a propositional formula in CNF with m conjuncts is entailed by the Horn
theory represented by a context family is feasible in O(m - #§) time.

2.5. Implication Sets

Given a set of attributes, implications on that set are logical expressions that can be used to
describe certain attribute correspondences which are valid for all objects in a formal context.

Definition 20. Let M be an arbitrary set. An implication on M is a pair (A, B) with A,B € M.

To support intuition we write A — B instead of (A, B). We say an implication A — B holds for

an attribute set C (also: C respects A — B), if A Q C or B C C. Moreover, an implication i

holds (or: is valid) in a formal context F if it holds for all sets C € F. We then write ¥ = 1.
7

The size of an implication set 3 (written: #3) is defined as |3| - |M|. Given a set A C M and
a set I of implications on M, we write A® for the smallest set that contains A and respects
all implications from 3. (Since those two requirements are preserved under intersection, the
existence of a smallest such set is assured).

Note that the above definition implies that in an implication A — B, both A and B are interpreted
as conjunctions. In particular, any implication with B = () is vacuously true.

It can be easily shown that an implication A — B is valid in a context ¥ exactly if B € A”.
Furthermore it is obvious that for any set 3 of implications on M, the operation (-)° is a closure
operator on M.

Example 21. The closure operator a from Example 2 coincides with the closure operator cor-
responding to the implication set consisting of the implications 0 — {a}, {b} — {c}, {b,d} — {e},
{c,d} — {e}, and {d, e} — {c}

The naive algorithm for computing A for some set A C M and implication set J requires to pass
through the implication set |3| times in the worst case, giving rise to a runtime of O(3? - IM)).
However, one can do better as shown by Maier (1983) as well as Dowling & Gallier (1984), who
provided Algorithm 3, also known as LINCLOSURE, with a better time complexity.

Algorithm 3 closureImpSet
Input: implication set I on M, setA € M
Output: D = A°

1: foreach B — C € 3 do

2 countg_,c := |B|

3 for each m € B do

4 L, =L, U{B— C}
5 end for

6: end for

7. D:=A

8 F:=A

9: while E # 0 do

10 pickmeD

11: E:=E\{m}

122 foreachB— CeL, do
13: countg_,c := countg_,c — 1
14: if countg_,c = 0 then
15: E=EU(C\D)
16: D:=DuUC

17: end if

18: end for
19: end while
20: output D

Proposition 22 (Maier 1983, Dowling & Gallier 1984). For any attribute set B C M and set 3
of implications, B> can be computed in O#3) = O(|3| - |M)) time.

8

Like in the case of the contextual encoding, also here it is natural to ask for a size-minimal set of
implications that corresponds to a certain closure operator.

Although there is in general no unique minimal implication set for a given closure operator ¢,
the so-called Duquenne-Guigues base or stem base (Guigues and Duquenne, 1986) is often used
as a (minimal) canonical representation.

Definition 23. Given a closure operator ¢ on a finite set M, a set A C M is called pseudoclosed
if (A) # A and for every pseudoclosed set B strictly contained in A (i.e., B C A) holds ¢(A) C B.
The Duquenne-Guigues base or stem base of ¢, denoted by I(p) is the implication set

{P — @(P) | P pseudoclosed with respect to ¢}.

It is worth mentioning that the definition of pseudoclosed sets, although recursive, is well since
we assume finiteness of M.

Example 24. The Duquenne-Guigues base of the closure operator « from Example 2 contains
the implications O — {a}, {a,b} — {a,b,c}, {a,c,d} — {a,c,d,e}, and {a,d,e} — {a,c,d, e}.
Note that the cardinality (and hence the size) of this implication set is smaller than that of the
one given in Example 21.

It has been shown that (-)°® = ¢ and that every implication set J satisfying (-)° = ¢ has equal
or greater cardinality than J(¢p).

Algorithm 4 provides a well-known way to turn an arbitrary implication set into an equivalent
Duquenne-Guigues base (Day, 1992; Wild, 1991; Rudolph, 2007), giving rise to the subsequent
complexity result.

Algorithm 4 minimizeImpSet

Input: implication set I on M
Output: size-minimal implication set 3’
such that (-)° = ()Y
I:=0
for eachA — B e 3 do
J:=JU{A - (AUB))
end for
J:=0 _
for eachA — B e 3 do
delete A — B from 3
C = ASUS’
if C # B then
3" =3 U{C — B}
end if
end for
. output J’

R A A R ol S

— e e e
W N = O

Proposition 25 (Day 1992). Given a set I of implications on M, a size-minimal 3’ with (-)° =
() can be computed in O(SP - |M]) = O(3)| - #3) < OHY) time.

9

The algorithm performs a 2-pass processing of the implication set. Note that both passes can
be performed in situ (i.e., by overwriting the input with the output) which would require only
O(|M|) additional memory.

It is worth noting that the existence of a polynomial minimization algorithm presented here
hinges on the way how we defined implication sets and their size. If we, for instance, allow only
implications with one-element conclusion (which correspond to propositional Horn clauses),
minimization cannot be carried out in polynomial time (a comprehensive treatise on the problem
being given by Boros et al. (2013)), no matter if the size is defined depending on the number
of implications (Ausiello et al., 1986) or on the number of accumulated element occurrences
(Maier, 1980).

As a final observation regarding implications, we note that the closure operator associated to an
implication set coincides with the supremum of all the closure operators corresponding to the
“single-implication subsets” of that implication set, in the lattice of closure operators.

Proposition 26. Let 3 be an implication set on a set M. Then (-)° = \/ie5()'.

Proof. Let ¢ = \/,c5(-)'!. Then some B C M is ¢-closed iff it is (-)-closed for every i € 3. This
is the case iff B respects all implications i € J, i.e., B is (-)°-closed. O

2.6. Extended Implication Sets

We will now slightly generalize the notion of implications by allowing for “auxiliary elements”
that do not belong to M.

Definition 27. An extended implication set on M is an implication set over some set N 2 M
(referred to as total attribute set) where the elements of N \ M are called auxiliary elements. The
size of an extended implication set K (written: #¥K) is defined as |K| - |N|. Given an extended
implication set K over M, we associate with it the closure operator ().

Example 28. The closure operator B from Example 2 can be represented by the following ex-
tended implication using auxiliary attributes f and g:
a—f b—f c—og d—g f,g—e.

We will see later that allowing for auxiliary elements enables a more succinct representation of
closure operators. The complexities for closure computation follow directly from those for plain
implication sets.

3. Mutual Succinctness

Given the four encodings of closure operators introduced above, a question which arises naturally
is whether one encoding is superior to the other in terms of memory required to store it. First of
all, note that for a given M, we will find a representation of any of the four types whose size is
bounded by 2! .M, i.e., at most exponential in the size of M.

The following proposition shows that for some ¢, #7 (¢) is exponentially larger than #3(¢p).

Proposition 29. There exists a sequence (¢p)nen Of closure operators such that #5 (¢,,) € @(n-2")
whereas #3(¢,) € On?).

10

Proof. We define ¢, as the closure operator on the set M, = {1,...,2n} that maps a set A C
M to M in case A contains both an odd number and its successor, and otherwise just maps
A to A. Clearly, ¢, can be represented by the implication set J; containing the implication
{2i — 1,2i} - M, forevery i € {1,...,n}. Then, we obtain #3(¢,) = 2n”. On the other hand,
Fon) ={{2k—ax|]l <k <n}l|{ay,...,a,) €{0,1}"}, as schematically displayed in the following
crosstable:

y J1]2]...]2n-3[2n-2[2n-1][2n]
81 X X X
82 X X X
83 X X X
g4 X X X
gzr;_1 X ... X ><
82" X e X X
Therefore, we obtain #F (¢,) = 2" - 2n. O

This shows that plain contexts cannot succinctly (that is: with only polynomial increase in size)
represent closure operators defined via implication sets. However, we will next show that this
can be achieved by context families. To this end, we first define the notion of a one-implication-
context.

Definition 30. For an implicationti = A — B on some set M, the one-implication-context ¥ is
defined by Fi = {M\{m} | me(M\BYUAYU{M \ {m,m’} |me B\A,m’' € A}.

It is not hard to verify that 7 is the unique context which is reduced, in which i holds and that
satisfies that every other implication holding therein is a logical consequence of i (in other words,
the closure operators (-)”t and (-)!V coincide). In other words, whenever B \ A is nonempty, the
stem base of 7 4,5 will contain exactly the implication A — A U B. We omit a proof here as this
is a special case of Proposition 58 presented later. Furthermore, we obtain #7; < |[M|>. Now,
given an implication set, we can obtain a context family by putting together all the corresponding
one-implication-contexts:

Definition 31. For an implication set 3 = {i,...,i,} on some set M, the associated context

Samily ¥(3J) is defined by F(3) = {Fi,,....F,).

Proposition 32. For any implication set S on some set M holds (-)° = (-)5®). Moreover, #F(3) <
#3 - M.

Proof- We find (-)° = \V/ies(OW = Vies()T' = ()3, The given bound is straightforward. O

This shows that for every implication set, there exists a context family that is only polynomially
larger and represents the same closure operator.

We now turn our attention to the other direction, asking if implications allow for a succinct
representation of contextually specified closure operators. It is known that this is not the case:
as a consequence of a result on the number of pseudo-intents (Kuznetsov, 2004; Mannila and
Riihd, 1992), we know that for some ¢, #3(¢p) is exponentially larger than #7 (¢).

Proposition 33 (Kuznetsov 2004, Mannila & Réihd 1992). There exists a sequence (¢,)nen Of
closure operators such that #F (p,) € O(n?) but #3(p,) € O2").
11

We provide here the construction given by (Kuznetsov, 2004) but refer the reader to the original
source for the complete argument. Given an n, we define M = {0,...,2n} and the context
F ={F,....,F3,)with F; ={1,...,2n}\{i,n+i}for1 <i<naswellas F,,; ={0,1,...,2n}\{i}
for 1 < i < 2n. The size of the context is 6n% +3n while the corresponding closure operator has 2"
pseudo-closed sets, and therefore every implication set giving rise to this closure operator must
have at least 2" implications.

This result implies that in general, one cannot avoid the exponential blow-up if a contextually
represented closure operator is to be represented by means of implications on the set M.
However, as the following definition and theorem show, this does not hold for extended implica-
tion sets. In fact, we show that the exponential blow-up can then always be avoided.

Definition 34. Given a context F on a set M, let M* denote the set M extended by one new
attribute mg for each F € F. Then we define 3¢ as the extended implication set containing for
every m € M the two implications {m} — {mp | F € F,m ¢ F}and{mp | F € ¥,m ¢ F} — {m}.

Example 35. Consider the context ¥ from Example 12 (and displayed in Example 9). The
corresponding extended implication set 3¢ is

la} >0 0 — {a}
(b} — {mp,,mp,, mg,, mp, mp, } {mp,,mp,,mg,,mp,,mp,} — {b}
{c} = {mp,, mp,} {mp;, mg,} = {c}
{d} — {mp,,mp,, mg,,mpg, mr} {mp,,mp,,mp,, mg,,mp} — {d}
{e} = {mp,,mp,, mp,} {mp,,mp,,mp} — {e}.

Theorem 36. Let F be a context on some set M. Then #3¢# = 2-|M|-|M*| = 2-|M|- (M| +|F]) <
4 - (#F)2. Moreover, ()7 = ()3 |y, that is, A = AS* N M forall A C M.

Proof. The first claim is obvious.

For the second claim, we first show that for an arbitrary set A C M, one obtains A¥ = BUC
with B={mp | F € F,AZ F}and C = {m | {mp | F € F,m ¢ F} C B}. To show A> C BUC
we note that A € B U C and that BU C is 3g-closed: B U C satisfies all implications of the
type {mp | F € ¥,m ¢ F} — {m} by definition of C. To check implications of the second type,
{m} - {mp | F € F,m ¢ F}, we note that

C= m|{mp|Fe¥,m¢F}C B}
= {m|{mp|FeEF,me¢F)C{mp|FeF,ALF}}
= m|VFeF :m¢F—>ALF}

Now, picking an m € C, we find that every mp for which m ¢ F must also satisfy A §Z F and

therefore mp € B so we find all implications of the second type satisfied.

Further, we show BU C C A%, by proving B C A% and C C A>" separately.

We obtain B={mr | F € ¥,A ,@ F} C A% due to the following: given an F € ¥ with A ¢ F,

we find an m € A with m ¢ F and thus an implication m — {mp, ...} contained in J#, therefore

A" must contain m.

We then also obtain C := {m | {mp | F € F,m ¢ F} C B} C A" by the following argument:

picking an m € C, we find the implication {mp | F € ¥,m ¢ F} — {m} contained in I#. On the

other hand, we already know B C A and B2 {mp | F € F,m ¢ F}, hence m € A" .

Finally, we obtain A¥ |y =AY "M =C={m|VFe€F :m¢F >ALF}={m|VFeF :

ACF > meF}=pegacr F=A" forany A C M. O
12

Thus, we obtain a polynomially size-bounded implicational representation of a context. In our
view this is a remarkable — although not too intricate — insight as it seems to challenge the practi-
cal relevance of computationally hard problems w.r.t. pseudo-intents (recognizing, enumerating,
counting), on which theoretical FCA research has been focusing lately (Kuznetsov and Obiedkov,
2006; Rudolph, 2007; Kuznetsov and Obiedkov, 2008; Sertkaya, 2009b,a; Distel, 2010).

What remains to be clarified is the mutual succinctness of context families vs. extended impli-
cation sets. Can they be polynomially transformed into each other, is one strictly more succinct
than the other or are they incomparable in that respect?

We will first show that extended implication sets can indeed polynomially express closure oper-
ators which are defined via context families. The idea is to translate the contexts separately into
extended implication sets as defined before and then take the union over those implication sets.
However, one has to make sure that the auxiliary attribute sets of the created extended implication
sets are mutually disjoint.

Definition 37. Given a context family & = {F1, ..., T}, we obtain the corresponding extended
implication set 3 as the union | J._, rename(3«,, i) where rename is a function replacing every
auxiliary attribute m ¢ M occurring in 3¢, by a fresh attribute denoted by (m, 1).

Proposition 38. Given a context family § on a set M, we obtain (-)°%|y = (-)5. Moreover,
#35 = 203 - IMI* + #F) < 443~

Proof. The second claim is obvious. For the first claim, we show that every (-)°%|y-closed set
is (-)8-closed and vice versa. Let A be (-)|y-closed. Then, by construction of Iz, A it must
be (-)%7 |y-closed for every ¥ € &, hence it must be (-)5-closed. Next, let B be (-)¥-closed. By
definition, this means B is (-)” -closed for every ¥ € & and hence also ()% |y-closed for every
F € &. Then, by construction of I, it must be also (-) % |y-closed. O

The final question, if every extended implication set has a polynomial-sized context family coun-
terpart, is the last missing piece to the big picture about succinctness of representation types. The
question must be answered negatively and we do so by providing a sequence of closure operators
having a size-polynomial representation as extended implication set but not as context family.

Proposition 39. There exists a sequence (¢,)nen Of closure operators that can be represented by
a sequence (R,)nen Of extended implication sets with #&, € On*) but any sequence (Fp)nen of
context families representing (¢,)nen satisfies #3, € Q2").

Proof. For some natural number ¢, we let M, = {even} U {zero;,one; | 1 < i < £}. Next, for any
S C{l,...,¢} we define Y5 := {one; | i € S} U {zero; | i ¢ S}. Now, let Ys(A) = A U {even}
whenever there is some S C {1,...,¢} of even cardinality for which Y5 C A. Otherwise, let
¥e(A) = A. It can be easily verified that i, is indeed a closure operator.

We next note that i, can be represented by the extended implication set &) with auxiliary at-

tributes {even;, odd; | 1 < i < £} containing the implications

one; — odd,

zeroy — even
odd;,one;,; — eveny; foralll <i< ¢
even;,one;,; — oddi foralll <i<?
odd;, zero;y1 — oddi forall1<i<?
even;, zeroiy,, — eveni; foralll <i<?

even, — even

13

context F implication set J

context family & ; extended impli-
2(131 - IMIP+#3) cation set]

Figure 1: Overview about polynomial translatability between the four representation types. Arrows indicate the existence
of a polynomial translation and the arrow labels indicate the upper bounds for the size of the resulting data structure. If
no arrow exists between two representation types, no polynomial translation exists.

It is rather easy to see that #§) € O(£*) and 8} implements the wanted behavior.
For the second part, let &, be a context family with the desired behavior. Then, by definition, for

any set S C{1,..., £} holds even € Y iff!

VoAV e

7—’63’[AeF meM)A
evengA
Consequently, S contains an even number of elements, iff {p; — true |i € S} U {p; — false|i ¢
S} is a truth assignment for the propositional formula

VoAV R e

Fe¥, AeF meMNA
even¢A

Note that this propositional formula has linear size compared to &, and, by definition, it encodes a
parity function over py, ..., p,. Note that, due to its structure, this formula gives rise to a Boolean
circuit of depth 3 whose size is linearly bounded by the size of . However, as was shown by
Hastad (1987, Theorem 5.1), there are no Boolean circuits of depth k and size QIMOVEDEIED i a
compute parity on £ input bits, for sufficiently large £. Therefore #§ € Q2" m) ‘ﬁ).

Finally, we define a sequence (¢,)en Of closure operators by letting ¢, = ¥gp,2. We obtain
corresponding sequences (R,),eny and (F,)qey of representations by letting &, = & o and

100
Sn = /lOOOnZ’ Then we obtain #8&, € O(n*) and #§, € Q(2"), concluding our proof. L]

Figure 1 provides a visual summary of this section. Note that the non-existence of polynomial
translations from context families to contexts and from extended implication sets to implication
sets follows from the existing translations and the known non-existence of polynomial transla-
tions between contexts and implication sets.

Note that in this proof, the symbols \/ and /A stand for logical connectives, whereas in the rest of the paper, they
denote lattice operations.

14

Algorithm S finerThanContext
Input: closure operator ¢ on set M,
context ¥
Output: YES if ¢ < (-)”, NO otherwise
1: foreach A € ¥ do

2: if A # ¢(A) then
3: output NO

4: exit

5 end if

6: end for

7: output YES

4. Algorithms for Managing Closure Operators

4.1. Finer or Coarser?

Depending on how closure operators are represented, there are several ways of checking if one
is finer than the other.

We will start with the two basic representation types, contexts and implication sets, and establish
results for the cases where this check is tractable, i.e., can be done in polynomial time.

Theorem 40. Let ¢ be a closure operator on a set M for which computing of closures can be
performed in t, time. Then, the following hold:

e For a context F on M, the problem ¢ < ()" can be decided in || - t, time.
e For an implication set 3 on M, the problem ()P < ¢ can be decided in |3| - t, time.

Proof. Algorithm 5 provides a solution for the first case. It verifies that every element (in FCA
terms: every object intent) of ¥ is ¢-closed, this suffices to guarantee that all ¥ -closed sets are
¢-closed since every ¥ -closed set is an intersection of elements of # and ¢-closed sets are closed
under intersections (since this holds for every closure operator).

Algorithm 6 provides a solution for the second case. To ensure that every ¢-closed set is also
(-)3-closed, it suffices to show that every ¢-closed set respects all implications from J. Whether
every ¢-closed set respects an implication A — B € J can in turn be verified by checking if
B C ¢(A). O

The results established in the above theorem give rise to precise polynomial complexity bounds
for seven of the 16 possible comparisons between the different representation types of closure
operators.

’

Corollary 41. Given contexts F,F’, a context family §, implication sets 3,3’ and an extended

implication set] on some set M, it is possible to check
o (Y 2 intime O(F|-|F'| - IM|) = OHF - #F" [IM]),
o () <)Y intime O(3| - || - IM]) = OFS - #3' /M),
15

Algorithm 6 coarserThanImpSet

Input: closure operator ¢ on set M,
implication set 3
Output: YES if (-)° < ¢, NO otherwise
1: foreach A — Be 3 do
2. if BZ ¢(A) then

3 output NO
4: exit

5 end if

6: end for

7: output YES

o (P =) intime O(F]-|3|- M) = OGF - #3/|M)),

o (OO < () intime O(Zyex |F'| |71 IMP) = OGHE - #5),

o () =N intime O(3| - |- IN]) = OGS - #8/|M)),

o (° 2% intime O(Zy e || - 131 IMP) = OHF - #3), and
o (V' =< () intime O(F|- IR - IN)) = OGF - #K/IM]).

Surprisingly, the ensuing question — whether it is possible to establish a polynomial time com-
plexity bound for the missing comparison cases — has to be denied assuming P # NP. The
corresponding findings are based on the following theorem. This result in a slightly different
formulation is already known in other communities (Gottlob and Libkin, 1990), but we give a
direct proof for the sake of self-containedness.

Theorem 42. The problem of deciding if (-)* < (-)° for some context F and an implication set
3 on some set M is coNP-complete.

Proof. To show coNP membership, we note that (-)” ﬁ ()% if and only if there is a set A which
is (-)*-closed but not (-)” -closed. Clearly, we can guess such a set and check the above properties
in polynomial time.
We show coNP hardness by a polynomial reduction of the problem to 3SAT (Karp, 1972). Given
asetC = {Cy,...,Cy} of 3-clauses (i.e. |C;| = 3) over a set of literals L = {py, =p1,... pe, 2 pe},
we let M = L and define

3= {{pi,—pi} = M| p; € L}

as well as
F =M\ (Ciuim})|CieC,me M}.

We now show that there is a set A with A¥ = A but A” # A if and only if there is a valuation on
{p1,...,pe} for which C is satisfied.
For the “if” direction assume val : {pi,..., p¢} — {true,false} to be that valuation and define
A := {p; | val(p;) = true} U {=p; | val(p;) = false}. Obviously, A is (-)*-closed. On the other
hand, since by definition A must contain one element from each C; € C, we have that F QZ A for
all F € F and hence A = M # A.

16

< context implications | context family | extended
implications
context #F - #F'/|M| | coNP-hard coNP-hard coNP-hard
implications HFE -#3/|M| | #3-#I /M| | #F - #3 #3 - #]/|M|
context family H#E - H#HT coNP-hard coNP-hard coNP-hard
extended implications || #F - #8/|M| coNP-hard coNP-hard coNP-hard

Table 1: Upper bounds for time complexities for checking the < relation depending on the representation types.

For the “only if” direction, assume A® = A but A” # A. By construction of 7, the latter can only

be the case if A contains one element of each C; € C. Thus, the valuation val : {p,..., p¢} —
{true, false} with
| true ifp;€A
val(pi) = { false otherwise
witnesses the satisfiability of C. O

In fact, this negative result allows us to infer equally negative results for all remaining eight open
cases.

Proposition 43. For arbitrary context F, context families §, &', implication set 3, and extended
implication sets],] on some set M, each of the following checks is cONP-hard: F < §, F < &,
FFFIFF,FIKK/<F, /<G, and kR K.

Proof. The coNP-hard problem ¥ < J can be polynomially translated in any of the above prob-
lems employing the translations given in Section 3. O

Table 1 summarizes the situation providing the time complexities for the tractable cases.

4.2. Projection

Next we investigate for all four representation types, whether a succinct representation of the pro-
jection of a closure operator to a subset N C M of the attributes exists. The findings are mostly
trivial or simple consequences of earlier results. We start with contexts, where it is straightfor-
ward that the result can be obtained by element-wise projection.

Proposition 44. Given a formal context F on a set M, its projection to some set N can be
expressed by Fy ={ANN | A € F}. Moreover, #Fy = |F |- [N| = #F - |N|/|M| < #F.

Proof. Let BC N. Then

BT = ﬂ AmN:NmﬂA:Ban.

BCANN,AeF BCAeF

O

Turning to implications, we note that if a polynomial-size representation of the projection existed,
this would imply the existence of a polynomial translation from extended implication sets into
implication sets (by projecting away all the auxiliary attributes), contradicting our finding in
Section 3. We can even use our considerations from that section to provide an example where
exponential blow-up is unavoidable.

17

Proposition 45. There exists a sequence (¢,)nen Of closure operators on sets M, M3, ... as well
as a sequence of sets M1, M, ... with M; C M} such that #3(p,) € On?) but #3(@ulu,) € O2").

Proof. Consider the closure operators ¢, defined via contexts ¥, given by Kuznetsov (given in
this paper right after Proposition 33). As shown by Kuznetsov, the corresponding minimal im-
plication sets 3J(¢,) are of exponential size. On the other hand, each context ¥, can be translated
into an extended implication set I#, with only linear blow-up, using the translation given in Def-
inition 34. Clearly, the projection of (-)* to the original attribute sets M, must yield (-) ¢,
Hence we have found a sequence of quadratically growing implication sets whose projections
grow exponentially. O

For extended implications, the case is trivial: the attributes which are to be projected away are
simply redefined to be auxiliary attributes.

Proposition 46. Given an extended implication set] on a set M, its projection to some set N
can be expressed by itself, i.e., Ry = K. We obtain #Ky = #8.

Last, we consider the context family representation type. Again we can show indirectly that no
polynomial representation of projections can exist: assuming its existence, we could polynomi-
ally translate extended implications on M with total attribute set M’ into context families by first
using the polynomial implication-to-context family translation detailed in Section 3 to arrive at
a context family on M’ and then polynomially project away the auxiliary attributes in M’. How-
ever we know that such a translation cannot exist. Again, we can use arguments established in
Section 3 to even show exponential blow-up.

Proposition 47. There exists a sequence (F,)nen of context families on sets My, M, ... as well
as a sequence of sets My, M, ... with M; C M} such that #§, € On) but for any sequence
(&))nen of context families with)% = (-)8|yy, holds #F! € Q(2™).

Proof. Consider the closure operators ()" with &, taken from the proof of Proposition 39. Note
that (-)™ does not coincide with ¢, from that proof, since we interpret the extended implication
sets &, on M, given there as implication sets on their total attribute sets (let us denote them by
M;). Then we can express the closure operators () by context families ¥, = &(R,) as defined
in Definition 31. These context families are of size ®(1°). On the other hand, according to
the proof of Proposition 39, we know that any sequence (&))neny Of context families satisfying
%M, = ()% must be of size Q(2"). O

4.3. Adding a Closed Set

We now consider the task of making a closure operator ¢ minimally “finer” by requiring that a
given set A be a closed set.

Definition 48. Given a closure operator ¢ on M and some A C M, the A-refinement of ¢ (written
wlA) is defined as the coarsest closure operator y with < ¢ and y(A) = A.

Alternatively, the A-refinement can also be defined by ¢|A = ¢ A (-)*4) using the infimum opera-
tion on the lattice of closure operators.

It is straightforward to show, using McKinsey’s theorem (McKinsey, 1943), that B is a ¢|A-
closed set exactly if it is ¢-closed or the intersection of A and a ¢-closed set. Clearly, if a closure
operator is represented as formal context, refinements can be computed by simply adding a row
to the context. The obtained context will in general not be size-minimal even if the original
context is.

18

Proposition 49. Given a context ¥ on M and some A € M, let 7' = FU{A}. Then ()" = ()7 |A
and #F' < #F + |M|.

Proof. Direct consequence of Proposition 17. O

If, however, the closure operator is represented as a context family, exponential blow-up may
2

occur.
Proposition 50. There exist sequences (&,)neny and (Ap)nen With §; being a context family over
some set M} and A; C M of context families and such that #3§,, € Q) and |A,| = O(n) but for
any sequence (§,)nen Of context families with ()8 = ()8 holds #§, € O2").

Proof. The proof proceeds as follows: we will show that, for any context family § on some set
M* and some subset M C M*, we can construct a context family ® on M with OBy = %
The construction of ® is linear up to one computation of a refinement w.r.t. M, but due to
Proposition 47, the size of ® must be exponential wrt. the size of §, which provides us with the
claimed lower bound.
Given & and M, let now ¥ be a size-minimal context family with ()3 = ()% M. Note that
we then obtain B C M whenever B C M. Consequently (-)5 coincides with ()5, for all
arguments B C M. Also, as a straightforward consequence, we obtain B” C M for every B C M
and ¥ € §'.
Now let ® be the context family on M definedby & = {{ANM |A e F} | F € §}, thatis, ®
is obtained from &’ by eliminating from its contexts all attributes not in M. For some B € M
we then have that B® is the smallest superset of B closed under every (-)¢ with G € ®, which
by construction is the smallest superset of B closed under every (-)” with & € & . Thereby, we
obtain that ® coincides with (-)%,.
Now, employing Proposition 47 as well as the fact that #® < #§" we obtain the claimed bounds.
O

Likewise, if the closure operator is represented in terms of implications, adding a closed set may
incur exponential blow-up as shown in some recent work on belief revision in propositional Horn
logic (Adaricheva et al., 2012).3

Proposition 51 (Adaricheva et al. 2012). There exists sequences (¢n)nen Of closure operators
and sets (Ap)nen such that #3(¢,lA,) € O2") whereas #3(¢,) € On?).

Again, we provide the construction here but refer to the literature for the comprehensive argu-
ment: given n, let M, = (WU {t,u,vi | 1 <i<nhlet3, =1{; > vi; uy > vi| 1 <i<
nfU{vy,...,v, > wlandletA, = wlU{t,u; | 1 <i<n}.
As it turns out, the situation again changes when auxiliary attributes can be used. In this case a
polynomial size implicational representation can be found.

2This finding and the closely related one of Proposition 69 correct wrong results presented in an earlier publication
(Rudolph, 2014) where a construction was presented relying on the erroneous assumption that the lattice of closure
operators were distributive. The author is grateful to Daniel Borchmann for catching the error.

3The author is indebted to Kira V. Adaricheva pointing him to a severe flaw in his earlier publication on the subject
(Rudolph, 2012), where he erroneously claimed that a polynomial solution exists.

19

Definition 52. Let 8 be an extended implication set on M with the total attribute set N. Let
A C M. Then we define an extended implication set R|A on M with a total attribute set N’ :=
NU{m' | me N\ A} U {tr} (the new elements m’ being copies of the respective m) as follows:

KRIA = {{m) > (', tr}, (W', tr} > {m} |l me N\ A}U
{(BNA)YU{m' |meB\A} > (CNA)YU{m' |meC\A}|B— C € &K}

Example 53. Consider the implication set 3 from Example 21, and let A = {b,d}. Then KA is
composed of the implications:

’

{af — [{d,tr} {a,tr} — A{a} 3 - {a}
{c} — {c,tr) d,try - Ac} by — {c'}
e} — {e,tr) {e,tr} — e} {b,d} — {e'}
{c.dy — {e}
{d,e'y — {}

The intuition behind this encoding is to introduce “copies” of all attributes outside A and to use an
implication set in which all those attributes are renamed into their copies. Moreover, a specific
“trigger attribute” ¢r is implied by any of the original attributes from M \ A. Whenever tr is
activated, all the introduced copies imply their original counterparts. The following proposition
justifies this construction.

Proposition 54. Given an extended implication set & on M with N the total attribute set and
some A € M, we have (Y™ |y = ()N lA and #(R1A) < 2 -#8 + K|+ 4|N* + 2IN| < 9 - #82 and
for the total attribute set N' of R A holds |N’'| < 2|N| + 1.

Proof. Checking the provided size bounds is straightforward.
We now show the first claim by proving that a subset S C M is (-)"4|y-closed iff it is (-)%|y-
closed or the intersection of A and some (-)%|3;-closed set.
We start with the “only if” direction, distinguishing two cases. Given some set S € M with
S C A, we obtain S = (SN AU {m' | m e S¥ N (N \ A)} and, in particular, S does not
contain ¢r and hence also no m € N \ A. Therefore S™4|), = $%|,y N A. Next assume S ¢ A, i.e.,
there is some m € M with m € § \ A. Then tr € S and therefore ™ = S NAU{m, m’ | m €
SYSNIN\NAIUtry =S¥ u{m | me SY N (N \ A} U {tr). Hence we getSRlA|M =S¥ y.
For the “if” direction, we distinguish the two cases. First, assume S is ()% y-closed, i.e., S® N
M = §. Toward a contradiction, suppose that S is not (YA y-closed, hence there is some m € M
with m € ™4\ §. If m is brought about by an implication of type {tr,m’} — {m}, we also have
tr € SN and therefore SN N M =S¥ N M = S, a contradiction. Otherwise m € A but then we
obtain m € S® = § another contradiction. Second, assume S is the intersection of A and some
()%|s-closed set S’. Then we obtain S™4 = (ANSHMA Cc ANANS A = ANSA = ANS™S =
ANS’ =S, which, together with the trivial S € S™, shows S = §.

O]

4.4. Adding an Implication

The task dual to the one from the preceding section is to make a given closure operator coarser
by requiring that all closed sets of the coarsened version respect a given implication. In other
words, all closed sets not respecting the implication are removed.

20

Definition 55. Given a closure operator ¢ on M and some implicationi = A — BwithA,B C M,
the i-coarsening of ¢ (written ¢1i) is defined as the finest closure operator ¥ with ¢ < and
B C y(A).

Alternatively, the i-coarsening can also be defined by ¢Ti = ¢ Vv () using the supremum opera-
tion on the lattice of closure operators.

Clearly, if a closure operator is represented as implication set (extended or not), coarsenings can
be computed by simply adding the implication to the set. Note that I’ := J U {i} will in general
not be size-minimal.

Proposition 56. Given a (possibly extended) implication set I on M and some implication i on
M, we obtain (-)° = (Y*1i with I’ = I U {i}). Moreover, |3'| = |3| + 1.

Proof. Direct consequence of Proposition 26. O

If the closure operator is represented by a context, a little more work is needed for this task. The
idea behind the following definition is as follows: a set is closed w.r.t. the updated context ¥’
iff it is closed w.r.t. the original context # and respects the new implication i. Thus, all C € ¥
respecting i will be in ¥”. For the other C, we have to add their i-respecting intersections with
other sets, which essentially can only be intersections with sets D that do not contain the premise
of i.

Definition 57. Given a context & on M and some implicationi = A — B on M, we define a new
context ¥ 11 as follows

F1i = {C|CeF andC respects A — B} U
{CND|C,DeF, AL Dand C does not respect A — B}

Proposition 58. Given a context & on M and some implication i on M, we have (-)* T = ()7 1i.
Moreover, we have |F 11| < |F|* and hence #F i < (#F)?/|M).

Proof. 1t is easy to check that ¥ Ti satisfies the size bounds given in the second claim. We show
the first claim by verifying that a set is ()" M-closed if and only if it is ()" -closed and respects
A — B.
For the “if” direction, let S be an (-)” -closed set that respects A — B. This means that either
BC S orA ¢ S. In the first case, note that every C € ¥ with S C C respects A — B and thus
each such C is contained in F Ti as well. Since S is the intersection of all these C, it must itself
be ()" Mi-closed. In the second case, there must be some C € F with S € C and A 51 C. Thus we
obtain
S = ﬂSgDeT D
= (mSgDE?, D respects A—B D) N (mSgDE?, D violates A—»B D) nc
= (mSgDeT, D respects A—B D) N (mSgDeT, D violates A—B Dn C)

and see that S is an intersection of (-)” T-closed sets and hence itself (-)” T-closed.

For the “only if” direction, consider an arbitrary () Miclosed set S. It can be easily checked that
all C € F Tirespect A — B, hence also S does. Moreover, by definition, every C € ¥ Ti is an
intersection of elements of # and thus (-)” -closed. O

For a context family §, there are two options of computing an implication-coarsening. One
option is to exchange one context ¥ € § by # Ti. We will present the second option which will
lead to a smaller blowup under reasonable assumptions.

21

Definition 59. Given a context family § on M and some implication i on M, we define a new
context family FTt as § U {Fi}, where T is the one-implication context for it as defined in Defini-
tion 30.

Proposition 60. Given a context family § on M and some implication i on M, we have (-)5T' =
(-)511i. Moreover, we have #F1t < #F + M.

Proof. The upper size bound in the second claim is obvious. We prove the first claim by showing
that the (-)%T-closed sets are exactly the (-)%-closed sets respecting i. Assume A is (-)5-closed and
respects i. From the latter, we can derive that A is also (-)”-closed and hence it must be OLLS
closed. Next, assume B is (-)5"-closed. Since § C §7Ti, we obtain that B must be (-)3-closed. On
the other hand F; € ¥Ti implies that B is () i-closed, i.e., it respects i. O

4.5. Lattice Operations

Last but not least, we will examine succinctness of the diverse representation types when apply-
ing the lattice operations V and A in the lattice of closure operators described in Section 2. We
will distinguish between binary and n-ary application.

For contexts, A with arbitrary arity is very easy to compute and incurs no blowup whatsoever:
one simply needs to concatenate all input contexts.

Proposition 61. Given n contexts F1,...,Fn welet F = F1U. . . UF,. Then, ' A AT =
O and #F = #F1 + ... + #F,.

Proof. Direct consequence from Proposition 17. [

On the other hand already the binary application of V may result in exponential blowup, a result
shown in the context of model-based reasoning (Eiter et al., 1998).

Proposition 62 (Eiter et al. 1998). There exist sequences (¢,)nen and (Wy,)nen of closure opera-
tors such that #F (¢, V) € OQ2") whereas #F (¢,) = #F (0, € O1?).

We provide the construction used by (Eiter et al., 1998), but omit the proof. They let M =
{1,...,4n} and define ¢, via the context

Fn={M\ ({2n+1,...,3n} U{i,(imod n) + 3n}) | i € {1,...,2n}}
and i, via the context
Fo={M\({(3n+1,...,4n} U {i,(imod n) + 2n}) | i € {1,...,2n}}.

For implications, conversely, V is very easily computable by just taking the union of the impli-
cation sets.

Proposition 63. Given n implication sets 3, ...,3,, welet 3 = 31U ...US,. Then, V...V
()= () and #3 = #3, + ... + #3,,.

Proof. Direct consequence from Proposition 26. O
On the other hand, A may result in exponential blowup even if applied only binarily:

Proposition 64. There exist sequences (¢,)nen and (W) of closure operators such that #3(g, A
W) € O2") whereas #3(¢,) € O(n?) and #3(y,) € O(n).
22

Proof. Let M, ={a;,b; | 1 <i < n}U/{cd} let g, be represented by J; containing the implica-
tions
a;, — b 1<i<n,
bi,....,bp, — d,

and let ¢, be represented by I, = {c — d}. We now show that 3(¢, Vi,,) contains 2" implications
by showing that there are 2" pseudo-closed sets. For every set S C {1,...,n}let As :={a; | i €
SYU{b;|i¢ S}U/{c}. It can be easily verified that Ag is pseudo-closed, since it is not closed (as
the closure must contain d) and it cannot not properly contain pseudo-closed sets since each of
its subsets is closed. Clearly, there are 2" distinct subsets of {1,...,n}. On the other hand, every
minimal implicational representation of ¢, V i, must contain at least as many implications as
there are pseudo-closed sets (Guigues and Duquenne, 1986; Ganter and Wille, 1997). O

Switching to extended implications improves the situation. Computing V remains easy and can
be done by taking the union of the implication sets. One just has to take care (possibly via a
renaming) that the auxiliary attributes of the separate sets are disjoint. The quadratic blowup
comes from the fact that both the number of implications and the auxiliary attribute sets add up.

Proposition 65. Given n extended implication sets R}1,...,8, on M with total attribute sets
My, ..., My, let & = \JL, rename(8;, i). Then, () |y V... V) Nly = ()N and #8 = (- IR[I)-

(1M1 + 21y 1M\ M),

Proof. We show that every (-)%|3-closed set is also ()™ |5 V ... V (-)|y-closed and vice versa.
Assume B is (-)%|y-closed but (toward a contradiction) not (-)%|,-closed for some i. Conse-
quently, there is some b € B% n M \ B. But then, since rename(f;) C K we have b €
Brename®) N A1 ¢ B N M = B, a contradiction.

Next, assume B is (-)%|4-closed for every i but (toward a contradiction) not ()% m-closed. Con-
sequently, there is some b € B® N M \ B. Then there must be a sequence C1—Dy,...,Cy— Dy
of implications from & and a sequence By, ..., By of sets such that By = B and b € By, as well as
C;CBi_yand B; = Bi_; U D, foralli € {1,...,k}. Let b and this sequences be chosen such that
k is minimal. Therefore, for all i < k, B; " M = B. Then, by minimality and disjointness of the
auxiliary element sets, all implications from the sequence must come from the same rename(R;).
But then B cannot be (-)%|y-closed, a contradiction. O

Computing A for extended implication sets is remarkably easier than for implication sets. The
idea here is to introduce disjoint “copies” of all implication sets such that closure computation
is done independently. Finally one has to add some “confluence rules” which make sure that a
proper attribute is added to the closure if it is contained in each of the separate independently
computed closures.

Definition 66. Let renameall be the function that takes an extended implication set & and a nat-
ural number i as input and returns the implication set with every (proper or auxiliary) attribute
m in & replaced by a new attribute denoted (m, i).

Given n extended implication sets K1, ...,8, on M, let

/\{R,,...,Rn} = Rip U Kou U U renameall(R;, i),

1<i<n

define a new extended implication set on M where K, = {m — (m,i) | m € M,1 <i < n} and
Kou ={(m, 1),...,(m,n) > m|me M}
23

Proposition 67. Given n extended implication sets K1,...,8, on M, we let & = \{K,...,8,}.
Then, (Yl A .. Al = ()8 and #8 = (M1 + S, (K4 + M) - (1M1 + L, 1M4])

Proof. We show that B " M = (B n M) N ... N (B N M) holds for every B C M. By
construction we have

BY =BU[U B“fx{i})u ﬂ{bl(b,i)e(B“’x{i})}:{U B“fx{i}]u ﬂ B

1<i<n 1<i<n 1<i<n 1<i<n
Therefore BA N M = M N (<1, BY = (BN n M) N ...N (BY N M) as claimed. O

Finally, we turn to context families. Like for implications, V is very easily computable by just
taking the union of the separate context families.

Proposition 68. Given n context families &1,..., &, we let § = U ... U F,. Then, [OLIRY;
VO = OF and #F = #F) + ...+ #F,.

Proof. Follows from the fact that for every context family § holds (-)% = \/ﬁg(-)f. O]

On the other hand, computing A turns out to require exponential blow-up, even if we compute it
for only two context families.

Proposition 69. There exist sequences (§,)nen and (&', nen of context families such that #§, €
On®) and #5F',, € O(n) but for any sequence (&) nen of context families with OLAEYOLIINOLL
holds #§,] € ®(2").

Proof. This is a straightforward consequence from Proposition 50, using the fact that (-)5|A =
()8 A (AN]

5. Conclusion

In this paper we have investigated two archetypical and two more exotic representations of clo-
sure operators with respect to their mutual succinctness and their suitability for performing cer-
tain operations in terms of computation time and output size. The results are summarized in Ta-
ble 2. Therein, for closure computation and comparison via <, upper bounds for the computation
time are given in case poly-time algorithms exist, whereas “intractable” indicates coNP-hardness.
For the other computations, the expressions give an upper bound on the output size in case a poly-
nomial such bound exists (for all those cases, the computation time is linearly bounded by the
output size), “exponential” denotes that exponential blow-up can be demonstrated. Note that for
computation of n-ary A of context families, n» must be considered fixed to ensure polynomiality.
There are many open questions left. On the theoretical side, central open questions are if — in
the cases where an exponential blowup may occur — there are algorithms transforming one repre-
sentation into another in output polynomial time, that is, if the time required for the computation
is polynomially bounded by the size of the output. Note that a negative answer to this question
would also disprove the existence of polynomial-delay algorithms.

On the practical side, coming back to our initial motivation, it should be experimentally investi-
gated if variants of standard FCA algorithms can be improved by adding the option of working
with alternative closure operator representations.

24

context ¥ implication set J | context family & | extended implication set &

closure #F #3 #& - M| #]

check < #F - #F [|M| #3 - #3' /| M| intractable intractable

project #F exponential exponential #K]

add implication | (#7)>/|M| #3 + |M| #F + M #K + |N|

add closed set | #F + |M| exponential exponential 2 -#K +|R] + 4|N]> + 2|N|
n-ary A i H#F exponential =2 | exponential n=2 | (I, #&,)

n-ary \/ exponential n=2 | 3, #3; > #E (3 #8,)?

Table 2: Upper bounds for computations with the four representation types.

Acknowledgements

The author is thankful to Kira Adaricheva and Mikhail A. Babin, who gave very valuable hints to
existing related work, to Markus Krotzsch for his thorough proof-reading of an earlier version of
this article and to Daniel Borchmann for an in-depth check of the actual version, catching some
final glitches. Finally, the author wishes to thank the two anonymous reviewers of the article for
their constructive and helpful comments which helped to improve the paper.

References

Adaricheva, K. V., Sloan, R. H., Szorényi, B., Turdn, G., 2012. Horn belief contraction: Remainders, envelopes and
complexity. In: Brewka, G., Eiter, T., Mcllraith, S. A. (Eds.), Proceedings of the 13th International Conference on
Principles of Knowledge Representation and Reasoning (KR).

Ausiello, G., D’Atri, A., Sacca, D., 1986. Minimal representation of directed hypergraphs. SIAM Journal on Computing
15 (2), 418-431.

Boros, E., Cepek, O., Kucera, P, 2013. A decomposition method for CNF minimality proofs. Theoretical Computer
Science 510, 111-126.

Burosch, G., Demetrovics, J., Katona, G. O. H., Kleitman, D. J., Sapozhenko, A. A., 1991. On the number of databases
and closure operations. Theoretical Computer Science 78 (2), 377-381.

Caspard, N., Monjardet, B., 2003. The lattices of closure systems, closure operators, and implicational systems on a finite
set: A survey. Discrete Applied Mathematics 127 (2), 241-269.

Colomb, P, Irlande, A., Raynaud, O., 2010. Counting of Moore families for n=7. In: Kwuida, L., Sertkaya, B. (Eds.),
Proceedings of the 8th International Conference on Formal Concept Analysis (ICFCA). Vol. 5986 of LNCS. Springer,
pp. 72-87.

Day, A., 1992. The lattice theory of functional dependencies and normal decompositions. International Journal of Algebra
and Computation 2 (4), 409-431.

Distel, F.,, 2010. Hardness of enumerating pseudo-intents in the lectic order. In: Kwuida, L., Sertkaya, B. (Eds.), Pro-
ceedings of the 8th International Conference on Formal Concept Analysis (ICFCA). Vol. 5986 of LNCS. Springer,
pp. 124-137.

Dowling, W. F., Gallier, J. H., 1984. Linear-time algorithms for testing the satisfiability of propositional Horn formulae.
Journal of Logic Programming 1 (3), 267-284.

Eiter, T., Ibaraki, T., Makino, K., 1998. Computing intersections of Horn theories for reasoning with models. Tech. Rep.
IFIG research report 9803, Universitit Giefen.

Ganter, B., Wille, R., 1997. Formal Concept Analysis: Mathematical Foundations. Springer.

Glodeanu, C. V., Kaytoue, M., Sacarea, C. (Eds.), 2014. Proceedings of the 12th International Conference of Formal
Concept Analysis (ICFCA). Vol. 8478 of LNCS. Springer.

Gottlob, G., Libkin, L., 1990. Investigations on Armstrong relations, dependency inference, and excluded functional
dependencies. Acta Cybernetica 9 (4), 385-402.

Guigues, J.-L., Duquenne, V., 1986. Familles minimales d’implications informatives resultant d’un tableau de données
binaires. Mathmatiques et Sciences Humaines 95, 5-18.

25

Habib, M., Nourine, L., 2005. The number of Moore families on n=6. Discrete Mathematics 294 (3), 291-296.

Hastad, J., 1987. Computational Limitations of Small-depth Circuits. MIT Press, Cambridge, MA, USA.

Higuchi, A., 1998. Lattices of closure operators. Discrete Mathematics 179 (1-3), 267-272.

Karp, R. M., 1972. Reducibility Among Combinatorial Problems. In: Miller, R. E., Thatcher, J. W. (Eds.), Complexity
of Computer Computations. Plenum Press, pp. 85-103.

Kuznetsov, S. O., 2004. On the intractability of computing the Duquenne-Guigues base. Journal of Universal Computer
Science 10 (8), 927-933.

Kuznetsov, S. O., Obiedkov, S. A., 2006. Counting pseudo-intents and #P-completeness. In: Eklund, P. W. (Ed.), Pro-
ceedings of the 4th International Conference on Formal Concept Analysis (ICFCA). Vol. 3874 of LNCS. Springer,
pp- 306-308.

Kuznetsov, S. O., Obiedkov, S. A., 2008. Some decision and counting problems of the Duquenne-Guigues basis of
implications. Discrete Applied Mathematics 156 (11), 1994-2003.

Maier, D., 1980. Minimum covers in relational database model. Journal of the ACM 27 (4), 664-674.

Maier, D., 1983. The Theory of Relational Databases. Computer Science Press.

Mannila, H., Rdihi, K.-J., 1992. Design of Relational Databases. Addison-Wesley.

McKinsey, J. C. C., 1943. The decision problem for some classes of sentences without quantifiers. Journal of Symbolic
Logic 8 (3), 61-76.

Rudolph, S., 2007. Some notes on pseudo-closed sets. In: Kuznetsov, S. O., Schmidt, S. (Eds.), Proceedings of the 5th
International Conference on Formal Concept Analysis (ICFCA). Vol. 4390 of LNCS. Springer, pp. 151-165.

Rudolph, S., 2012. Some notes on managing closure operators. In: Domenach, F., Ignatov, D. I., Poelmans, J. (Eds.), Pro-
ceedings of the 10th International Conference on Formal Concept Analysis ICFCA). Vol. 7278 of LNCS. Springer,
pp. 278-291.

Rudolph, S., 2014. On the succinctness of closure operator representations. In: Glodeanu et al. (2014), pp. 15-36.

Sertkaya, B., 2009a. Some computational problems related to pseudo-intents. In: Ferré, S., Rudolph, S. (Eds.), Proceed-
ings of the 7th International Conference on Formal Concept Analysis (ICFCA). Vol. 5548 of LNCS. Springer, pp.
130-145.

Sertkaya, B., 2009b. Towards the complexity of recognizing pseudo-intents. In: Rudolph, S., Dau, F., Kuznetsov, S. O.
(Eds.), Proceedings of the 17th International Conference on Conceptual Structures (ICCS). Vol. 5662 of LNCS.
Springer, pp. 284-292.

Wild, M., 1991. Implicational bases for finite closure systems. In: Lex, W. (Ed.), Arbeitstagung Begriffsanalyse und
Kiinstliche Intelligenz. Springer, pp. 147-169.

26

