
A Finitary System for First Order Logic

Abstract. We present an inference system for classical first order logic
in which each inference rule, including the cut, only has a finite set of
premises to chose from. The main conceptual contribution of this paper
is the possibility of separating different sources of infinite choice, which
happen to be entangled in the traditional cut rule.
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1 Introduction

The cut rule in a Gentzen system [5] is infinitary, in the sense that, given its
conclusion, there is an infinite choice of premises, corresponding to an infinite
choice of eigenformulae. Much effort has been devoted to eliminating this source
on infinity in various systems: theorems of cut elimination remove infinite choice
together with the cut rule itself, and are at the core of proof theory. There is
another source of infinite choice in the bottom-up construction of a first order
proof, namely the choice in instantiating an existentially quantified variable.
Research grounded in Herbrand’s theorem [9] deals with this aspect and is at
the core of automated deduction and logic programming.

This paper shows how one can eliminate all sources of infinite choice in a system
of first order classical logic in a very simple way. The main idea we exploit is that
there are actually two sources of infinite choice in the cut rule: an infinite choice
of atoms and an infinite choice in how these atoms can be combined for making
formulae. A third source of infinite choice, in the rule for existential quantifica-
tion, is about choosing substitutions. We are able to separate the various kinds
of infinite choice by making use of deep inference, which is the possibility of
applying inference rules deep inside formulae.

In the sequent calculus, it is impossible to separate the two kinds of infinite
choice in a cut rule without going through cut elimination. Instead, in the cal-
culus of structures [7,2,1], whose main feature is the adoption of deep inference,
one can straightforwardly reduce the cut rule to its atomic form, which has the
advantage of not presenting infinite choice in combining atoms to shape a for-
mula. Similar techniques reduce the instantiation rules into more elementary
ones. Infinite choice in the elementary rules so produced can be attacked by sim-
ple considerations that essentially limit the range of possibilities to the atoms
and terms that already appear in the conclusions of rules.

Systems in the calculus of structures offer the same proof theoretical proper-
ties as systems in the sequent calculus, in particular it is possible to prove cut



elimination and many other normalisation results. The point we make in this
paper is that it is possible to have finitary systems without having to use these
more complex methods. As an example, we show how to prove consistency in
our setting.

A way of looking at our results is to notice that, when proving in first order logic,
the only infinity that remains is in the unboundedness of the proofs themselves,
every other aspect in proof construction is finite: at any given step, there are
finitely many inferences possible, and each inference rule can only be applied
in a finite number of different ways. A good example is the contraction rule: it
is always applicable, but only to a finite number of formulae and only in one
way (one duplicates the chosen formula). The inference rules we get behave like
contraction, for example, a cut can only produce two dual atoms that already
appear in a formula.

In previous work, Brünnler and Tiu proved that classical logic can be presented
in the calculus of structures in such a way that applying a rule only requires a
bounded effort [1,2]. This paper improves on that result by bounding choice.

In Section 2 we introduce first order logic in the calculus of structures and in
Section 3 we show how to reduce infinitary rules to finitary ones and we show
the consistency argument.

2 First Order Logic in the Calculus of Structures

Variables are denoted by x and y. Terms, denoted by τ , are defined as usual
in first-order predicate logic. Atoms, denoted by a, b, etc., are expressions of the
form p(τ1, . . . , τn), where p is a predicate symbol of arity n and τ1, . . . , τn are
terms. The negation of an atom is again an atom.

The structures of the language KSq are generated by

S ::= f | t | a | [ S, . . . , S
︸ ︷︷ ︸

>0

] | ( S, . . . , S
︸ ︷︷ ︸

>0

) | ∃xS | ∀xS | S̄ .

where t and f are the units true and false, [S1, . . . , Sh ] is a disjunction, (S1, . . . , Sh)
is a conjunction, ∃ is the existential quantifier and ∀ is the universal quantifier.
S̄ is the negation of the structure S. The units are not atoms. Structures are de-
noted by S, R, T , U and V . Structure contexts, denoted by S{ }, are structures
with one occurrence of { }, the empty context or hole, that does not appear in
the scope of a negation. S{R} denotes the structure obtained by filling the hole
in S{ } with R. We drop the curly braces when they are redundant: for exam-
ple, S [R, T ] stands for S{[R, T ]}. Structures are equivalent modulo the smallest
equivalence relation induced by the axioms shown in Fig. 1, where R and T are
finite, non-empty sequences of structures. In general we do not distinguish be-
tween equivalent structures.
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Associativity

[R, [T ], U ] = [R, T , U ]

(R, (T ), U ) = (R, T , U )

Units
(f, f) = f [f, R] = R

[t, t] = t (t, R) = R

Context Closure

if R = T then
S{R} = S{T}

R̄ = T̄

Vacuous Quantifier

if y is not free in R then ∀yR = ∃yR = R

Variable Renaming

if y is not free in R then
∀xR = ∀yR[x/y ]

∃xR = ∃yR[x/y ]

Commutativity

[R, T ] = [T, R]

(R, T ) = (T, R)

Negation

f = t

t = f

[R, T ] = (R̄, T̄ )

(R, T ) = [R̄, T̄ ]

∃xR = ∀xR̄

∀xR = ∃xR̄

¯̄R = R

Fig. 1. Syntactic equivalence of structures

An inference rule is a scheme of the kind
S{T}

ρ
S{R} , where ρ is the name of the

rule, S{T} is its premise and S{R} is its conclusion. A (formal) system S is a
set of inference rules. The dual of a rule is obtained by exchanging premise and
conclusion and replacing each connective by its De Morgan dual.

A derivation ∆ is a finite chain of instances of inference rules:

T
π′

V
π

...
ρ′

U
ρ

R

.

A derivation can consist of just one structure. The topmost structure in a deriva-
tion is called the premise of the derivation, and the structure at the bottom is
called its conclusion. A derivation ∆ whose premise is T , whose conclusion is R,

and whose inference rules are in S will be indicated with
T

R

S∆ . A proof Π in
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S{t}
i↓

S [R, R̄]

S(R, R̄)
i↑

S{f}

S([R, U ], T )
s

S [(R, T ), U ]

S{∀x[R, T ]}
u↓

S [∀xR,∃xT ]

S(∃xR,∀xT )
u↑

S{∃x(R, T )}

S{f}
w↓

S{R}
S{R}

w↑
S{t}

S [R, R]
c↓

S{R}
S{R}

c↑
S(R, R)

S{R[x/τ ]}
n↓

S{∃xR}
S{∀xR}

n↑
S{R[x/τ ]}

Fig. 2. System SKSgq

the calculus of structures is a derivation whose premise is the unit true. It will

be denoted by
R

SΠ . A rule ρ is derivable for a system S if for every instance

of
T

ρ
R

there is a derivation
T

R

S . A rule ρ is admissible for a system S if for

every proof
S

S∪{ρ} there is a proof
S

S .

System SKSgq, shown in Fig. 2, has been introduced and shown to be sound and
complete for classical predicate logic in [1]. The first S stands for “symmetric”
or “self-dual”, meaning that for each rule, its dual (or contrapositive) is also in
the system. The K stands for “klassisch” as in Gentzen’s LK and the second S
says that it is a system in the calculus of structures. The g is for “general” (as
opposed to atomic) contraction. The q denotes (first-order) quantifiers.

The first and last column show the rules that deal with quantifiers, in the middle
there are the rules for the propositional fragment. The propositional rules i↓, s,w↓
and c↓ are called respectively identity, switch, weakening and contraction. The
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rule u↓ is called universal, because it roughly corresponds to the R∀ rule in
sequent systems, while n↓ is called instantiation, because it corresponds to R∃.

In the sequent calculus, going up, the R∀ rule removes a universal quantifier from
a formula to allow other rules to access this formula. In system SKSgq, inference
rules apply deep inside formulae, so there is no need to remove the quantifier.
Note that the premise of the u↓ rule implies its conclusion, which is not true for
the R∀ rule of the sequent calculus. In all rules of SKSgq the premise implies the
conclusion.

As usual, the substitution operation in the rules n↓ and n↑ requires τ to be free
for x in R: quantifiers in R do not capture variables in τ . The term τ is not
required to be free for x in S{R}: quantifiers in S may capture variables in τ .

The dual of rule carries the same name prefixed with a “co-”, so e.g. w↑ is
called co-weakening. The rule s is self-dual. The rule i↑ is special, it is called cut.
Rules with a name that contains an arrow pointing downward are called down-
rules and their duals are called up-rules. The system enjoys cut elimination: all
up-rules are admissible, as has been shown in [1].

Sequent calculus derivations easily correspond to derivations in system SKSgq.
For instance, the cut of sequent systems in Gentzen-Schütte form [14]:

� Φ,A � Ψ, Ā
Cut corresponds to� Φ, Ψ

([Φ,A], [Ψ, Ā])
s

[Φ, (A, [Ψ, Ā])]
s

[Φ, Ψ, (A, Ā)]
i↑ .

[Φ, Ψ ]

Besides deep inference, the calculus of structures employs a notion of top-down
symmetry for derivations. Symmetry makes possible to reduce the cut rule to
its atomic form without performing cut elimination: this would be impossible by
solely adopting deep inference. Here is an example that makes use of symmetry
by flipping derivations: assuming that we can not prove f in the system, having
a proof of R implies that there is no proof of R̄. We assume that we have both
proofs:

R
and

R̄
,

dualise the proof of R, to get
R̄

f

,

and compose this derivation with the proof of R̄ to get a proof of f, which is a
contradiction:

R̄

f

.
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3 Reducing and Eliminating Infinitary Rules

There are three infinitary rules in system SKSgq: the co-weakening, the cut, and
the instantiation rule. In the following we will see for each of these rules how to
to replace them by finitary ones without affecting provability.

3.1 The Co-weakening Rule

The rule w↑ is clearly infinitary, since there is an infinite choice of atoms, but it
can immediately be eliminated by using a cut and an instance of w↓ as follows:

S{a}
w↑ �

S{t}

S{R}
s
S(R, [t, f ])

s
S [t, (R, f)]

w↓
S [t, (R, R̄)]

i↑
S [t, f ]

= .
S{t}

3.2 The Cut Rule

The cut is the most prominent infinitary rule. The first source of infinite choice
we will remove is the arbitrary size of the cut formula. To that end, consider the
atomic cut rule:

S(a, ā)
ai↑

S{f}

The following theorem, also proved in [1], allows us to restrict ourselves to atomic
cuts.

Theorem 1. The rule i↑ is derivable for {ai↑, s, u↑}.

Proof. By an easy structural induction on the structure that is cut. A cut intro-
ducing the structure (R, T ) together with its dual structure [R̄, T̄ ] is replaced
by two cuts on smaller structures:

S(R, T, [R̄, T̄ ])
i↑ �

S{f}

S(R, T, [R̄, T̄ ])
s
S(R, [R̄, (T, T̄ )])

s
S [(R, R̄), (T, T̄ )]

i↑
S(R, R̄)

i↑ .
S{f}
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A cut introducing the structure ∀xR together with its dual structure ∃xR̄ is
replaced by a cut inside an existential quantifier followed by an instance of u↑:

S(∀xR,∃xR̄)
i↑ �

S{f}

S(∀xR,∃xR̄)
u↑

S{∃x(R, R̄)}
i↑

S{∃xf}
= .

S{f}

These reductions can be repeated until all cuts are atomic. ��

The rule ai↑ still is infinitary, since there is an infinite choice of atoms. Let us
take a closer look at the atoms:

S(p(τ1, . . . , τn), p(τ1, . . . , τn))
ai↑ .

S{f}

There are both an infinite choice of predicate symbols p and an infinite choice of
terms for each argument of p. Let

→
τ denote τ1, . . . , τn and

→
x denote x1, . . . , xn.

Since cuts can be applied inside existential quantifiers, we can delegate the choice
of terms to a sequence of n↓ instances:

S(p(
→
τ ), p(

→
τ ))

ai↑ �
S{f}

S(p(
→
τ ), p(

→
τ ))

n↓n

S{∃→x(p(
→
x), p(

→
x))}

ai↑
S{∃→x f}

= .
S{f}

The remaining cuts are restricted in that they do not introduce arbitray terms
but just existential variables. Let us call this restricted form vai↑:

S(p(
→
x), p(

→
x))

vai↑ .
S{f}

The only infinite choice that remains is the one of the predicate symbol p. To
remove it, consider the rule finitary atomic cut

S(p(
→
x), p(

→
x))

fai↑ where p appears in the conclusion.
S{f}

This rule is finitary, and we will show that we can easily transform a proof into
one where the only cuts that appear are fai↑ instances.
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Take a proof in the system we obtained so far, that is SKSgq without w↑, and
with vai↑ instead of i↑. Individuate the bottommost instance of vai↓ that violates
the proviso of fai↑:

S(p(
→
x), p(

→
x))

vai↑ ,
S{f}

where p does not appear in S{f}. We can then replace all instances of p(
→
x) and

p(
→
x) in the proof above the cut with t and f, respectively, to obtain a proof of

S{f}. It is easy to check that all rule instances stay valid or become trivial; the
cut

S(t, f)
vai↑ ,

S{f}
can just be removed, since (t, f) = f.

Please notice that if p appeared in S{f}, then this would not work, because it
could destroy the rule instance below S{f}.
Proceeding inductively upwards, we remove all infinitary atomic cuts.

3.3 The Instantiation Rule

The same techniques also work for instantiation. Consider these two restricted
versions of n↓:

S{R[x/f(
→
x)]}

n↓1
S{∃xR} and

S{R[x/y ]}
n↓2

S{∃xR} .

An instance of n↓ that is not an instance of n↓2 can inductively be replaced by
instances of n↓1 (chose variables for

→
x that are not free in R):

S{R[x/f(
→
τ )]}

n↓ �
S{∃xR}

S{R[x/f(
→
τ )]}

n↓n

S{∃→xR[x/f(
→
x)]}

n↓1
S{∃→x∃xR}

= .
S{∃xR}

This process can be repeated until all instances of n↓ are either instances of n↓1

or n↓2.

Now consider the following finitary rules,

S{R[x/f(
→
x)]}

fn↓1
S{∃xR} and

S{R[x/y ]}
fn↓2

S{∃xR} .
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where fn↓1 carries the proviso that the function symbol f either occurs in the
conclusion or is a fixed constant c, and fn↓2 carries the proviso that the variable
y appears in the conclusion (no matter whether free or bound or in a vacuous
quantifier).

Infinitary instances of n↓1 and n↓2, i.e. those that are not instances of fn↓1

and fn↓2, respectively, are easily replaced by finitary rules similarly to how the
infinitary cuts were eliminated. Take the constant symbol c that is fixed in the
proviso of fn↓1, and throughout the proof above an infinitary instance of n↓1,
replace all terms that are instances of f(

→
x) by c. For n↓2 we do the same to all

occurences of y, turning it into an instance of fn↓1.

3.4 Consistency

We now define the finitary system FKSgq to be

(SKSgq \ {i↑,w↑, n↓}) ∪ {fai↑, fn↓1, fn↓2} ,

and, for what we said above, state

Theorem 2. Each structure is provable in system SKSgq if and only it is provable
in system FKSgq.

To put finitariness at work, we show consistency of system FKSgq. Of course, for
this purpose it suffices to have finitary cut. Having infinite choice in instantiation
would not affect the following argument.

Theorem 3. The unit f is not provable in system FKSgq.

Proof. No atoms, but only f, t and vacuous quantifiers can appear in such a
proof. It is easy to show that f is not equivalent to t. Then we show that no
rule can have a premise equivalent to t and a conclusion equivalent to f. This is
simply done by inspection of all the rules in FKSgq.

From the two theorems above we immediately get

Corollary 4. The unit f is not provable in system SKSgq.

3.5 The Dust Under the Carpet

The seemingly innocuous equations for variable renaming and vacuous quantifier,
technically speaking, are infinitary in the choice of variables. There is no reason
to believe that vacuous quantifier and variable renaming can get in the way of
finitariness; in fact, from automated deduction we know that this can be treated
in a finitary way. At this time we could show a finitary system where inference
rules keep track of the global structure of derivations in much the same way as
Miller does in [10]. We are not entirely happy with this solution, because it loses
some of the purity of rules. We are confident that a perfectly satisfying solution
can be found, and we reserve it for the journal version of this paper.
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4 Conclusion

In this paper we showed simple proof theoretical techniques for making a sys-
tem of first order classical logic finitary. We believe that these considerations
help make clear that finitariness and cut elimination, or other normalisation
techniques, are conceptually independent.

Some of the techniques we used, for example the replacement of an atom and
its dual by t and f, are folklore. However, in order to produce a finitary system
they have to be combined with the reduction of the cut rule to its atomic form.
This crucial ingredient is provided by deep inference and top-down symmetry,
which are not available in the sequent calculus.

In the calculus of structures, there are presentations of various modal logics
[11], linear logic [13,12] and various extensions of it [7,8,3] and noncommutative
logics [4]. All these systems are similar to system SKSgq in that they include
rules which follow a scheme [6], which ensures atomicity of cut and identity. So
it is certainly possible to use these methods for these logics.
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de Paris, 1930.

10. Dale Miller. Abstract syntax and logic programming. In Andrei Voronkov, edi-
tor, Proceedings of the Second Russian Conference on Logic Programming, LNAI.
Springer-Verlag, 1991.

10



11. Charles Stewart and Phiniki Stouppa. A systematic proof theory for several modal
logics. Technical Report WV-03-08, Technische Universität Dresden, 2003. Sub-
mitted.

12. Lutz Straßburger. MELL in the calculus of structures. Technical Report WV-
2001-03, Dresden University of Technology, 2001. Accepted by TCS. Available at
http://www.ki.inf.tu-dresden.de/˜lutz/els.pdf.

13. Lutz Straßburger. A local system for linear logic. In Matthias Baaz and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning,
LPAR 2002, volume 2514 of LNAI, pages 388–402. Springer-Verlag, 2002.

14. Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge
University Press, 1996.

11


	A Finitary System for First Order Logic

