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Disclaimer

| will break with any conventions you may have heard of . ..

(e.g., P/T nets or S/T nets, elementary net systems, net systems,

Petri nets, ... will all be called Petri nets)
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Net Structure
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Markings and the Token Game
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Definitions and Observations

Definition 4.1 (Net Structure)

Let 3 be an alphabet. A (3-labeled) net structure is a quadruple (P, T, F, 1) with disjoint
finite sets P of places and 7' of transitions, /' C (P x T)U (7' x P), and [ : T — .

For nodes v € PUT, *v:={u | (u,v) € F'} and v* := {w | (v,w) € F}.

Definition 4.2 (Marking, Firing Rule)

For (labeled) net structure N = (P, T, F.l), we call a multiset 7 over P a marking of N. A
transition ¢ € T is enabled under marking m if ®¢ < m. An enabled transition ¢ under
marking m may fire, producing the successor marking m’ such that for all p € P,

m(p) — if pe°t\t°
m(p) == m(p)+1 ifpet®\°t
m(p) otherwise.

: t 1(t)
We also write m — m’ or even m —= m/. -



Definitions and Observations

Definition 4.3 (Petri net, reachability graph)

A (2-labeled) Petri net is a quintuple N = (P, T, F.,l,mq) where (P, T, F,l) is a labeled net
structure and my is a marking for it (initial marking).

The set of reachable markings of NV [NV) is defined inductively by (1) mo € [NV) and (2)
m € [N) and m % m/ implies m’ € [N).

The reachability graph of VR (V) is induced by the set of reachable markings [IV) as the
set of nodes and (Q)teT forming the edge relation.

We sometimes needs [V, m) for arbitrary markings m of N to be the set of reachable markings
of N where my is replaced by m. Special case: [N, mg) = [N).
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The Boundedness Problem

Given a Petri net N = (P, T, F.,l,my), is [IV) finite?

Definition 4.4 (Bounded Petri net)

Let £ € N. A Petri net N = (P, T, F,l,mg) is k-bounded if for all mn € [V) and all places
p € P, m(p) < k. N is bounded if there is a %, such that NV is k-bounded. If no such % exists,
N is unbounded.

Lemma 4.5

The following statements are equivalent for Petri nets N = (P, T, F,l,my):
1. [N) is infinite.
2. N is unbounded.

3. There are markings my, mo of N, such that
(a) my € [N), (b) ma € [N,m1), (c) m1 < mgz, and (d) mi(p) < ma(p) for some p € P.
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From 3 to 2
For Petri net N = (P, T, F,l,my), let my, mo be markings, such that
(a) m1 € [N), (b) ma € [N,m1), (c) m1 < ma, and (d) m1(p) < ma(p) for some p € P.
mo = my + s for some non-empty marking s! In particular, s(p) > 0

mo . mq . mo

Lemma 4.6 (Monotonicity)

For Petri net N = (P, T, F.,l,myg), t € T, and markings m,m’,s of N, m Lo/ implies
m+sSm +s.

For every k € N, repeat transition sequence o k + 1 times, reaching a marking m” with
mF(p) > k.

Thus, N is unbounded.
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From 1 to 3

Let N = (P, T,F,l,mg) be a Petri net, such that [N) is infinite.

o> ™

oD

As [N) is infinite, R(G) is infinite.

For every m € [N), the number of successors of m in R(G) is bounded by |T].
Hence, there is an infinite simple path my — mq — my — ... (by Kénig's Lemma)
momims . .. is an infinite sequence of markings or, equivalently vectors from NI

Due to Dickson’s Lemma, there is an infinite chain ng < n; < ns < ... of indices, such

that m,,, < m,, <m,, <...

Set m; = my, and ma = my,.

By construction (a) my € [N), (b) ms € [N, mq), and (c) m; < ma.

As m; and ms stem from a simple path, there is at least one place p € P with
ma(p) > ma(p).
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Theorem: Boundedness is Decidable

Start constructing R(N) by BFS:

e either the construction terminates (bounded), or
e a marking ms is constructed with a respective marking m; < ms earlier on a path from
mo, such that my(p) < ma(p) for some p € P (unbounded).

Many more decidable problems:

Reachability
Coverability

e Deadlock-freedom

e Liveness

e Language inclusion/equivalence (?)
Bisimilarity (7)

Yes to both (7), but not for labeled Petri nets!
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The Equivalence Problem(s)

The (prefix) language L(N) of a labeled Petri net N = (P, T, F,l,my) is the set of all

t: tw
words w € X%, such that w = ¢ or mg 252 - L such that *(t1ta .. b)) = w.

Two Petri nets Ny, N, are language equivalent if £(N}) = L(N3).

Theorem 4.1: Language equivalence is undecidable for labeled Petri nets.

We reduce from the halting problem of Minsky machines with two counters.

Petri nets are not Turing-complete!
~~ weak simulation of Turing machines/Minsky machines
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Minsky Machines

A Minsky machine is a pair (P, {c1,ca,...,cL}), where ¢, ..., ¢ are counters and P is a
finite sequence of commands l4l5...1,, such that [, = HALT and [; (i =1,...,n— 1) is

1. 4: c¢j:=c;+1; goto k, or

2. 4: if ¢;=0 then goto k; else c;j:=cj-1; goto k»
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Constructing a Petri Net

For Minsky machine M = (lyly ... Ly, {c1,...,cn}),
NM)={l,....lm,c1,...,¢n}, T, F,l,mg) where for each i € {1,...,m — 1}:
li=1: ¢; 1= cj+1; goto li: li =4: 1if ¢;=0 then goto ki else c¢; := cj-1; goto ka:

1 l;

Cs
Cj ]

The labeling can be arbitrary but injective.

For input ay,...,2, € N, define mg = {c1 — 1,...,cp = xp, 11 — 1}
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Petri Net Construction by Example
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L@
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Undecidability of Language Equivalence: The Reduction
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Undecidability of Bisimilarity: The Reduction
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The Coverability Graph

Note, w >n and w+ / —n=w for all n € N.

For directed graph G = (V. E) and v € V, defined v || to be the smallest set, such that (1)
vewv|and (2)ifwev | and u — w, then u € v .




Properties of the Coverability Graph

Theorem 4.2: The coverability graph C(V) of a Petri net IV is finite.

~ follows the same argument as for the decidability proof of the boundedness problem.
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Properties of the Coverability Graph

Theorem 4.3: The coverability problem — given a Petri net NV and a marking m, is
there a reachable marking m/, such that m < m’? — is decidable.

1. Construct C'(V)

2. Check if there is an w-marking m® with m < m

3. Consider the path my Uy I @ and the marking m’ reached after firing the
sequence ty ...t

4. If m <m', witness found.

5. If m £ m/, then there is at least one w in m* and there are markings on the path from
mo to m* that led to the addition of w

6. Repeat the respective firing sequences until a covering marking is reached.

7. Hence, it is sufficient to check only m“.

8. If m is not coverable, then there is no marking m’ in the coverability graph with m < m/.
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Equivalence of Unlabeled Nets

Theorem 4.4: Bisimilarity and language equivalence of Petri nets is decidable for unla-
beled Petri nets.

e Given are Ny = (Py,T1, F1,m{,11) and No = (P2, T, Fo,md, l2) (P1 NPy =0 = T1 NT3).

e Construct Ny + No = (Py U P2, Ty UTs, Fy U Fo,m$ +mi).

e Each transition ¢ € T1 U T% is duplicated to ¢’ with the same in-/outputs and label as ¢.

e Add a fresh place p and add {p} x (7% UT:) and {t’' | ¢’ is a duplicate} x {p} to the arc relation.

e For each label a € 3, add places p{, p5 and for ¢ € T; with [;(t) = a, add arcs (¢, p), (p§,u) for
transition duplicate v’ with [;(u) = a.

e If the nets are language equivalent, then every transition firing of ¢ € T; can be reproduced in N,
by u', such that I;(t) = I;(u).

e If the nets are not language equivalent, then there is a shortest word w of L(N;) \ L(N;). After
firing the last transition of w in NN;, no duplicate can be fired in N;.

e Unlabledness is important to not leave /N; the chance to use more clever a-labeled transitions. 102/115



