
Structures and Deduction –
the Quest for the Essence of Proofs
(satellite workshop of ICALP 2005)

Paola Bruscoli, François Lamarche
and Charles Stewart (Eds.)

FI05-08-Juli 2005

Technische Berichte
Technical Reports

ISSN 1430-211X

Fakultät Informatik

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/

Foreword
The Structures and Deductions workshop was held in Lisbon on July 16-17, 2005,
as a satellite workshop of the ICALP international conference. Citing the official
web page will convey what the organizers had in mind regarding its scientific
purpose.

This meeting is about new algebraic and geometric methods in proof
theory, with the aim of expanding our ability to manipulate proofs, elim-
inate bureaucracy from deductive systems, and ultimately provide: 1) a
satisfying answer to the problem of identity of proofs and 2) tools for
improving our ability to implement logics.
Stimulated by computer science, proof theory is progressing at fast pace.
However, it is becoming very technical, and runs the risk of splitting into
esoteric specialties. The history of science tells us that this has happened
several times before, and that these centrifugal tendencies are very often
countered by conceptual reunifications, which occur when one is looking
at a field after having taken a few steps back.

The organizers were aware that efforts of that kind are happening in several
distinct communities, and the workshop was conceived as a point of meeting
and exchange; in particular the schedule was designed to encourage impromptu
discussions.
Fourteen papers were chosen out of the nineteen submissions. The use of An-
drei Voronkov’s EasyChair software made it easy to ensure that everything got
reviewed by three referees.
This meeting was enough of a success for us to want to have another edition
next year; we hope that our better knowledge of the intricacies of international
funding agencies will allow us to pay for the expenses of our guest speakers this
time.
We wish to thank the following for their help, financial or personal:
– the guest speakers Claude Kirchner and Dale Miller, who came at their own
expenses;
– the organizers of the string of ICALP satellite workshops, Antonio Ravara
and Vasco Vasconcelos, as well as the whole of the ICALP organization;
– Carolina Silva and the Service de Coopération et d’Action Culturelle de
l’Ambassade de France à Lisbonne, as well as Bettina Schneider and the Deutsche
Forschungsgemeinschaft for their financial help;
– Sylvia Epp, Alessio Guglielmi, Steve Prestwich and Andrei Voronkov;
– INRIA and ICCL at TU Dresden.

The Organization Committee
Paola Bruscoli, François Lamarche, Charles Stewart July 2005

Organization

Programme Committee:

Paola Bruscoli (TU Dresden)
Pietro Di Gianantonio (Univ. Udine)
Gilles Dowek (LIX and Ecole Polytechnique, Paris)
Roy Dyckhoff (St Andrews)
Rajeev Goré (NICTA and ANU, Canberra)
François Lamarche (LORIA and INRIA Lorraine, Nancy) – Chair
Luke Ong (Oxford)
Prakash Panangaden (McGill)
Michel Parigot (CNRS, Paris)
Charles Stewart (TU Dresden)
Thomas Streicher (TU Darmstadt)

External Referees

Fabio Alessi
Denis Bechet
Kai Brünnler
Agata Ciabattoni
Paolo Coppola
Stéphane Lengrand
Sara Negri
Sylvain Pogodalla
Ivan Scagnetto
Lutz Straßburger
Vitezslav Svejdar

Contents

Claude Kirchner:
Beyond Deduction Modulo (Invited Talk) p. 1

Lutz Straßburger:
From Deep Inference to Proof Nets p. 2

Richard Iain McKinley:
Classical Categories and Deep Inference p. 19

Dale Miller:
A Games Semantics for Proof Search (Invited Talk) p. 34

Yves Guiraud:
The Three Dimensions of Proofs p. 35

Alessio Guglielmi:
The Problem of Bureaucracy and Identity of Proofs from the Perspective of Deep
Inference p. 53

Kai Brünnler and Stéphane Lengrand:
On two Forms of Bureaucracy in Derivations p. 69

Jean-Baptiste Joinet:
Completeness of MLL Proof-Nets w.r.t. Weak Distributivity p. 81

Christophe Fouqueré and Virgile Mogbil:
Rewritings in Polarized (Partial) Proof Structures p. 95

Estelle Dumoulin and Didier Galmiche:
Labelled Structures and Provability in Resource Logics p. 110

Charles Stewart and Robert Hein:
Purity Through Unravelling p. 126

Ewen Denney, John Power and Konstantinos Tourlas:
Hierarchical Proof Structures p. 144

Ozan Kahramanoğulları, Pierre-Etienne Moreau and Antoine Reilles:
Implementing Deep Inference in TOM p. 158

Gerard R. Renardel de Lavalette:
Abstract Derivations, Equational Logic and Interpolation p. 173

Elaine Pimentel, Simona Ronchi della Rocca and Luca Roversi:
Intersection Types: a Proof-Theoretical Approach p. 189

Joao Rasga:
A Cut Elimination in Propositional Based Logics p. 205

Beyond Deduction Modulo

Claude Kirchner

INRIA & LORIA
Nancy, France

1

From Deep Inference to Proof Nets

Lutz Straßburger

Universität des Saarlandes — Informatik — Programmiersysteme
Postfach 15 11 50 — 66041 Saarbrücken — Germany

http://www.ps.uni-sb.de/~lutz

Abstract. This paper shows how derivations in (a variation of) SKS
can be translated into proof nets. Since an SKS derivation contains more
information about a proof than the corresponding proof net, we observe
a loss of information which can be understood as “eliminating bureau-
cracy”. Technically this is achieved by cut reduction on proof nets. As an
intermediate step between the two extremes, SKS derivations and proof
nets, we will see nets representing derivations in “Formalism A”.

1 Introduction

Through the development of the two concepts of deep inference [Gug02] and
proof nets [Gir87] the quest for the identity of proofs has become fashionable
again, and the research on the fundamental question “When are two proofs the
same?” seems now to be booming.

Proof nets have been conceived by Girard [Gir87] in order to avoid bureau-
cracy: in formal systems like the sequent calculus two proofs that are “morally
the same” are distinguished by trivial rule permutations.

Deep inference has been conceived by Guglielmi in order to obtain a deductive
system for a non-commutative logic [Gug02]. In a formalism employing deep
inference, like the calculus of structures, one can apply inference rules anywhere
deep inside formulae as we know it from term rewriting, instead of decomposing
formulae along their main connectives as we know it from traditional formalisms.
From the “we-wish-to-eliminate-bureaucracy” point of view, this is a disaster:
The number of possible “trivial rule permutations” explodes, compared to the
sequent calculus. However, the finer granularity of inference rules (one inference
step in the sequent calculus corresponds to many inference steps in the calculus
of structures) allows a finer analysis of the inner structure of proofs, which in
turn can lead to new notions of proof nets (as happened in [SL04] and [LS05b]).

In this paper we will see how proof nets can be extracted directly from deep
inference systems. I will concentrate here only on classical logic, more precisely
on (a slight variation of) system SKS [BT01,Brü03a], the most popular system
for classical logic in the calculus of structures. But it should be clear that the
exercise of this paper can in the same way be carried out for any other system,
in particular also for linear logic as it is presented in [Str02].

To some extend, one can say that proof nets make as many identifications
between proofs as possible (without ending up in a triviality), and derivations

2

in the calculus of structures makes as few identifications as possible. These two
extremes span a whole universe of possible proof identifications. And going from
the extreme with few identifications to the extreme with many identification
means losing information, namely, the “bureaucratic” information that makes
the additional distinctions. I will argue, that this process of losing information
can be modelled by cut elimination. In each single cut reduction step some bit
of information is lost. Depending on the restrictions on cut elimination one can
choose which information to lose.

The question, when this information is bureaucratic and when it is non-
bureaucratic (i.e., essential for the proof), must be left unanswered in this paper.

2 Proof Nets for Classical Logic

Proof nets are abstract (graphical) presentations of proofs such that all “trivial
rule permutations” are quotiented away. Ideally the notion of proof net should
be independent from any syntactic formalism. But due to the almost absolute
monopoly of the sequent calculus, most notions of proof nets proposed in the
past related themselves to the sequent calculus. Consequently we could observe
features like “boxes” and explicit “contraction links”. The latter appeared not
only in linear logic [Gir96] but also in classical logic (as sketched in [Gir91] and
detailed out in [Rob03]). The slogan of the early proof nets was

Slogan 1: Every link in the proof net corresponds to a rule application
in the sequent calculus.

with the basic idea that if two rules “trivially permute” in the sequent calculus,
then the corresponding links in the proof net are independent. However, more
recent proposals for proof nets follow a different slogan:

Slogan 2: A proof net is a formula tree (or sequent forest) enriched with
additional graph structure.

This additional graph structure is supposed to capture the essence of the proof.
To our knowledge the first notion of proof net in this more modern setting were
[HvG03] for unit-free multiplicative additive linear logic (MALL) and [SL04] for
multiplicative linear logic (MLL) with units.1 Then in [LS05b] proof nets for
classical logic obeying Slogan 2 followed. Let me now recall that latter notion of
proof nets. (I consider here only the N-nets of [LS05b].)

The set of formulae is generated via the binary connectives ∧ (conjunction)
and ∨ (disjunction) from the set A ∪ Ā ∪ {t, f}, where A = {a, b, c, . . .} is a
countable set of propositional variables and Ā = {ā, b̄, c̄, . . .} is the set of negated
propositional variables, and t and f are the constants representing “true” and

1 In fact, the first has been [Gir87] (or more precisely [KM71]) simply because for the
special case of unit-free MLL both slogans coincide: every connective in the formulae
corresponds to an application of a sequent rule, and the axiom links attached to the
formulae capture exactly the essence of a proof in unit-free MLL. This very fortunate
coincidence is also the reason why proof nets for unit-free MLL behave so remarkably
well and were so successful from the very beginning.

3

“false”, respectively. The elements of the set A ∪ Ā ∪ {t, f} are called atoms.
A finite list Γ = A1, A2, . . . , An of formulae is called a sequent. I will consider
formulae as binary trees (and sequents as forests), whose leaves are decorated by
atoms, and whose inner nodes are decorated by the connectives. The negation
Ā of a formula A is defined as follows:

¯̄a = a t̄ = f f̄ = t (A ∧B) = B̄ ∨ Ā (A ∨B) = B̄ ∧ Ā (1)

Here a ranges over the set A. However, from now on I will use a to denote an
arbitrary atom (including constants). Note that ¯̄A = A for all A.

There is a special kind of auxiliary formula, called cut, which is of the shape
B ♦ B̄, where ♦ is called the cut connective and is allowed only at the root of a
formula tree. A cut sequent is a finite list Σ = B1 ♦ B̄1, . . . , Bn ♦ B̄n of cuts.

A prenet P,Σ�Γ consists of a sequent Γ , a cut sequent Σ, and an undirected
multi-graph P whose set of vertices is the set of leaves of Γ and Σ and whose set
of edges obeys the following conditions: (i) whenever there is an edge between
two leaves, then one is decorated by an atom a and the other by its dual ā,
and (ii) whenever there is an edge connecting a leaf to itself, then this leaf is
decorated by t.

One can think of P also of an undirected graph whose edges are labeled by
natural numbers (hence the name N-net in [LS05b]), but here I will draw it as
multi-graph, for example:

ā a ā a

∧

......................... ..
...

........
...

t f t t

♦ ∨

.................................
..

.........
........
...

In the following, I will consider only nets where Γ contains exactly two formulae
(there is no restriction on the number of cuts in Σ). Here are two examples, one
with and one without cuts (both are variations of examples in [LS05b]):

bb̄ b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧
∨

∨

♦

.............
................

...
..............

...
...................

.........................
...

........
.................

......................
...

b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧
∨

∨

.............
................

................
...........................

..................
..

..............
...

..........
.................

......................
..

These can also be drawn as

b̄ a ā b̄ b a

b

b̄

♦

āb

∧ ∧ ∧

∨

∨
∨

.............
................

.......
......
.......
......
.......
......
.........

.............
.............

.......
......
.......
......
.......
......
.......
.....

...

...

...........
...

..........
............
............
..........
...

and
b̄ a ā b̄ b a

āb

∧ ∧ ∧

∨

∨
∨

.............................
.............

.............
.............

.............
............

.............
.........

..........
.....................

..
......
.......
......
.......
......
......
.........

........
.............
.............

.............
.............

............
.............
.........

(2)

4

which will be the preferred way from now on.
The cut reduction procedure for prenets is defined as follows. For cuts on

compound formulae we have:

∧∧ ♦

� ♦
♦

(3)

(For saving space, the picture is put on the side.) Atomic cuts are reduced as
follows:

a

ā

♦

ā
ā

a
a

···

···

........
..........
........
.....

...............................

........
..........
........

.....

�

ā
ā

a
a

···

···

...

................
..............

..............
.............

.............
..............

...............
.......... ...

...

(4)

This means that for every pair of edges, where one is connected to the cut on one
side and the other is connected to the other side of the cut, there is in the reduced
net an edge connecting the two other ends of the pair (an edge connecting the
two ends of the cut disappears with the cut). For the formal details, see [LS05b].
Here, let me only draw attention to the fact that if there is more than one edge
between two dual atoms, the number of edges is multiplied, as in the following
example:

a

ā

♦

ā

a
..................................

........................
..........
..

...................

...................
� ā

a

...
.............

..... ...
............

..
.

............................
...
...............

..
(5)

This causes an exponential increase of the number of edges (in the number of
atomic cuts) during the cut reduction process.

Obviously the cut reduction on prenets is terminating. But we have conflu-
ency only in the case where the number of edges between two atoms is restricted
to one, i.e, where the multi-graph is just a graph (as shown in [LS05b]). In that
case also the correctness criterion of [LS05b] is adequate. However, at the cur-
rent state of the art, there is no suitable criterion yet for the general case. For
that reason the objects here are called “prenets”. The term “proof net” should
be reserved to those objects that actually represent proofs.

3 Deep Inference for Classical Logic

Deep inference is a new paradigm for proof theoretical formalisms. The most
prominent example of a formalism employing deep inference is the calculus of
structures. It has successfully been employed to give new presentations for many
logics, including classical logic [BT01,Brü03a], minimal logic [Brü03b], intuition-
istic logic [Tiu05], several modal logics [SS03,Sto04], linear logic [Str03], and
various noncommutative logics [DG04,Gug02,GS02].

Let me now recall the deep inference sytem SKS for classical logic [BT01].
At the same time I modify it slightly: I remove the syntactical equivalence em-
ployed by the calculus of structures and represent all the defining equations by
inference rules. Nonetheless, I use the “outfix” notation employed by the cal-
culus of structures because derivations are much easier to read that way. That

5

S{t}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{f}

S(A, [B, C])
s

S [(A, B), C]

S{f}
aw↓

S{a}
S [a, a]

ac↓
S{a}

S{a}
ac↑

S(a, a)

S{a}
aw↑

S{t}

S{f}
nm↓

S(f , f)

S [(A, C), (B, D)]
m

S([A, B], [C, D])

S [t, t]
nm↑

S{t}

S [A, B]
σ↓

S [B, A]

S [A, [B, C]]
α↓

S [[A, B], C]

S(A, (B, C))
α↑

S((A, B), C)

S(A, B)
σ↑

S(B, A)

S{A}
f↓

S [A, f]

S{A}
t↓

S(A, t)

S [f , A]
t↑

S{A}
S(t, A)

f↑
S{A}

Fig. 1. The inference rules of system SKS

means I write [A,B] for A ∨B and (A,B) for A ∧ B. For example the formula
((b̄ ∧ a) ∨ (ā ∧ b̄)) ∨ (b ∧ a) is in this notation written as [[(b̄, a), (ā, b̄)], (b, a)].

Before presenting the rules of the system we need to introduce the notion of
a context, which is simply a formula with a hole. It is usually denoted by S{ }.
For example [[(b̄, a), { }], (b, a)] is a context. Let it be denoted by S{ }, and let
A = (ā, b̄). Then S{A} = [[(b̄, a), (ā, b̄)], (b, a)]. I will omit the context-braces
when structural parentheses fill the hole exactly. For example S(ā, b̄) stands for
S{(ā, b̄)}.

Now we are ready to see the inference rules. In this paper, they are all of the
shape

S{A}
ρ

S{B}
and this simply specifies a step of rewriting (via the implication A⇒B) inside
a generic context S{ }. Such a rule is called deep, which is the reason for the
term “deep inference”. If a rule scheme does not have this generic context (or
there are size restrictions to the context), then the rule is called shallow.

The inference rules of system SKS (which are all deep) are shown in Figure 1.
The rules ai↓ and ai↑ are called atomic identity and atomic cut (the i stands for
“interaction”).2 The rules s and m are called switch and medial, respectively.

2 Here we can make an important observation: There are two very different notions of
“cut” and the two should not be mixed up. On the one side we have the cut as a rule,
and cut elimination means that this rule is admissible. In the calculus of structures
it means that the whole up-fragment of the system (i.e., all rules with the ↑ in the
name) are admissible. This holds in particular also for system SKS, see [Brü03a],

6

They are the soul of system SKS. Note that these two rules are self-dual, while
all other rules have their dual “co-rule”. For example, the rules aw↓ and ac↓
(called atomic weakening down and atomic contraction down, respectively) have
as duals the rules aw↑ and ac↑, which are called atomic weakening up and atomic
contraction up, respectively.3 The rules nm↓ and nm↑ are called nullary medial
(up and down). At this point it might seem rather strange that they are in the
system. After all, they are instances of the atomic contraction rules. There are
two reasons: The first one is that in a system in the calculus of structures the
complete up-fragment should be admissible (i.e., also the rule ac↑), but we need
nm↓ for completeness. The second reason is that the two rules ac↑ and nm↓ look
similar only from the outside. When we look at the inside of the rules—we will
do this in Section 5—we can see that they are of a very different nature.

The other rules (α↓, α↑, σ↓, σ↑, t↓, t↑, f↓, f↑) just say that ∧ and ∨ are
associative and commutative and that t and f are the units for them. Usually, in
systems in the calculus of structures, formulae are considered up to an syntactic
equivalence incorporating the associativity and commutativity (and the units)
of the binary connectives. For example [[A,B], [C, f]] and [B, [(t, A), C]] are
considered the same and denoted by [A,B,C]. Here, I deviate from this practice
because having explicit rules for associativity and commutativity simplifies the
translation to derivation nets in Section 5.

But before that, we need to plug our rules together to get derivations, which
are finite chains of instances of inference rules. The topmost formula in a deriva-
tion is called its premise and the bottommost formula is called the conclusion.
A derivation Δ, whose premise is A, whose conclusion is B, and whose inference
rules are all contained in the system S, is denoted by

A

Δ
∥∥S

B

.

Figure 2 shows two examples of derivations in system SKS.

4 The ABC of Bureaucracy

The term “bureaucracy” is used to describe the phenomenon that oftentimes
two formal proofs in a certain formalism denote “morally” the same proof but
differ due to trivial rule permutations or other syntactic phenomena. Of course,
the main problem here is to decide when two proofs should be “morally” the
same. I.e., when is a certain syntactic phenomenon an important information
about the proof and when is it just “bureaucracy”?

but is not of relevance for this paper. On the other side we have the cut , and cut
elimination means composition of derivations (or proofs, or arrows in a category),
and this will play a role in this paper.

3 In system SKS the rules ai↓, ac↓, and aw↓ are atomic because their general counter-
parts i↓, c↓, and w↓ are derivable. Dually for the up-rules (see [Brü03a] for details).

7

[b̄, a]
t↓

[b̄, (a, t)]
ai↓

[b̄, (a, [b, b̄])]
s

[b̄, [(a, b), b̄]]
σ↑

[b̄, [(b, a), b̄]]
σ↓

[b̄, [b̄, (b, a)]]
α↓

[[b̄, b̄], (b, a)]
ac↓

[b̄, (b, a)]
ac↑

[(b̄, b̄), (b, a)]
t↓

[(b̄, (b̄, t)), (b, a)]
ai↓

[(b̄, (b̄, [a, ā])), (b, a)]
s

[(b̄, [(b̄, ā), a]), (b, a)]
σ↑

[(b̄, [(ā, b̄), a]), (b, a)]
σ↓

[(b̄, [a, (ā, b̄)]), (b, a)]
s

[[(b̄, a), (ā, b̄)], (b, a)]

and

[b̄, a]
t↓

[b̄, (a, t)]
ai↓

[b̄, (a, [b, b̄])]
t↓

[b̄, (a, [b, (b̄, t)])]
ai↓

[b̄, (a, [b, (b̄, [b̄, b])])]
s

[b̄, (a, [b, [(b̄, b̄), b]])]
σ↓

[b̄, (a, [b, [b, (b̄, b̄)]])]
α↓

[b̄, (a, [[b, b], (b̄, b̄)])]
s

[b̄, [(a, [b, b]), (b̄, b̄)]]
σ↓

[b̄, [(b̄, b̄), (a, [b, b])]]
σ↑

[b̄, [(b̄, b̄), ([b, b], a)]]
α↓

[[b̄, (b̄, b̄)], ([b, b], a)]
ac↑

[[(b̄, b̄), (b̄, b̄)], ([b, b], a)]
ac↓

[[(b̄, b̄), (b̄, b̄)], (b, a)]
m

[([b̄, b̄] , [b̄, b̄]), (b, a)]
ac↓

[(b̄, [b̄, b̄]), (b, a)]
ac↓

[(b̄, b̄), (b, a)]
t↓

[(b̄, (b̄, t)), (b, a)]
ai↓

[(b̄, (b̄, [a, ā])), (b, a)]
s

[(b̄, [(b̄, ā), a]), (b, a)]
σ↑

[(b̄, [(ā, b̄), a]), (b, a)]
σ↓

[(b̄, [a, (ā, b̄)]), (b, a)]
s

[[(b̄, a), (ā, b̄)], (b, a)]

Fig. 2. Two examples of derivations

Consider now the right derivation in Figure 2. It is intuitively clear that
we would not change the essence of the derivation if we exchanded the two ac↓
between the m and the t↓ in the lower half of the derivation. That the two ac↓ are
ordered one above the other can be considered to be an act of “bureaucracy”.
In fact, following this intuition, we can permute the first ac↓ almost all the
way down in the derivation, as shown in Figure 3. This kind of “bureaucracy”
has been dubbed bureaucracy of type A by Guglielmi [Gug04a]. More generally
whenever there is a derivation Δ from A to B and a derivation Δ′ from C to D,
then

(A,C)

Δ

(B, C)

Δ′

(B, D)

and

(A,C)

Δ′

(A, D)

Δ

(B, D)

(6)

as well as any other “merge” of Δ and Δ′ should be considered to be the same.
Guglielmi calls a formalism which per se makes these identifications Formal-
ism A. However, Formalism A does not allow the identification of the two deriva-
tions in Figure 4. where the ac↓ is not “next to” another derivation but “inside”
another derivation. This phenomenon is called bureaucracy of type B [Gug04b].
Then Formalism B is a formalism that avoids this kind of bureaucracy.

Besides bureaucracy of type A and B, we can observe another kind of bureau-
cracy, which we will call here bureaucracy of type C. Consider the two derivations
in Figure 5. They can considered to be essentially the same, because in both the

8

[([b̄, b̄] , [b̄, b̄]), (b, a)]
ac↓

[(b̄, [b̄, b̄]), (b, a)]
ac↓

[(b̄, b̄), (b, a)]
t↓

[(b̄, (b̄, t)), (b, a)]
ai↓

[(b̄, (b̄, [a, ā])), (b, a)]
s

[(b̄, [(b̄, ā), a]), (b, a)]
σ↑

[(b̄, [(ā, b̄), a]), (b, a)]
σ↓

[(b̄, [a, (ā, b̄)]), (b, a)]
s

[[(b̄, a), (ā, b̄)], (b, a)]

[([b̄, b̄] , [b̄, b̄]), (b, a)]
ac↓

[([b̄, b̄] , b̄), (b, a)]
t↓

[([b̄, b̄] , (b̄, t)), (b, a)]
ai↓

[([b̄, b̄] , (b̄, [a, ā])), (b, a)]
s

[([b̄, b̄] , [(b̄, ā), a]), (b, a)]
σ↑

[([b̄, b̄] , [(ā, b̄), a]), (b, a)]
σ↓

[([b̄, b̄] , [a, (ā, b̄)]), (b, a)]
ac↓

[(b̄, [a, (ā, b̄)]), (b, a)]
s

[[(b̄, a), (ā, b̄)], (b, a)]

Fig. 3. Example for type-A bureaucracy

[([b̄, b̄], [b̄, b̄]), (b, a)]
ac↓

[([b̄, b̄], b̄), (b, a)]
t↓

[([b̄, b̄], (b̄, t)), (b, a)]
ai↓

[([b̄, b̄], (b̄, [a, ā])), (b, a)]
s

[([b̄, b̄], [(b̄, ā), a]), (b, a)]
σ↑

[([b̄, b̄], [(ā, b̄), a]), (b, a)]
σ↓

[([b̄, b̄], [a, (ā, b̄)]), (b, a)]
ac↓

[(b̄, [a, (ā, b̄)]), (b, a)]
s

[[(b̄, a), (ā, b̄)], (b, a)]

[([b̄, b̄], [b̄, b̄]), (b, a)]
t↓

[([b̄, b̄], ([b̄, b̄] , t)), (b, a)]
ai↓

[([b̄, b̄], ([b̄, b̄] , [a, ā])), (b, a)]
s

[([b̄, b̄], [([b̄, b̄] , ā), a]), (b, a)]
σ↑

[([b̄, b̄], [(ā, [b̄, b̄]), a]), (b, a)]
σ↓

[([b̄, b̄], [a, (ā, [b̄, b̄])]), (b, a)]
ac↓

[(b̄, [a, (ā, [b̄, b̄])]), (b, a)]
s

[[(b̄, a), (ā, [b̄, b̄])], (b, a)]
ac↓

[[(b̄, a), (ā, b̄)], (b, a)]

Fig. 4. Example for type-B bureaucracy

[(b̄, b̄), (b, a)]
t↓

[(b̄, (b̄, t)), (b, a)]
ai↓

[(b̄, (b̄, [a, ā])), (b, a)]
s

[(b̄, [(b̄, ā), a]), (b, a)]
σ↑

[(b̄, [(ā, b̄), a]), (b, a)]
σ↓

[(b̄, [a, (ā, b̄)]), (b, a)]
s

[[(b̄, a), (ā, b̄)], (b, a)]

[(b̄, b̄), (b, a)]
σ↑

[(b̄, b̄), (b, a)]
t↓

[(b̄, (b̄, t)), (b, a)]
ai↓

[(b̄, (b̄, [a, ā])), (b, a)]
s

[(b̄, [(b̄, a), ā]), (b, a)]
σ↓

[(b̄, [ā, (b̄, a)]), (b, a)]
s

[[(b̄, ā), (b̄, a)], (b, a)]
σ↑

[[(ā, b̄), (b̄, a)], (b, a)]
σ↓

[[(b̄, a), (ā, b̄)], (b, a)]

Fig. 5. Example for type-C bureaucracy

same a and ā in the conclusion are “brought together” and disappear in an
identity. The difference is that the derivation on the right contains two more
applications of commutativity in which the two b̄ are exchanged. But neither
Formalism A nor Formalism B can identify the two. Let us call Formalism C a
formalism that is able to avoid this kind of bureaucracy.

So far, none of the three formalisms mentioned above has been formalized as
a deductive system.4 Nonetheless, from the intuition given above one can trans-
late the forced identifications in category theoretical terms. This is briefly done
in Figure 6, which might be helpful for understanding the differences between
the various kinds of bureaucracy. But the reader should be warned that this
comparison os only very rough.5 There are various issues which are still unclear
an subject to future research. Most important are the questions: How does the
4 But compare [BL05] for work on term calculi for Formalisms A and B.
5 See also [Hug04] and [McK05] for work relating deep inference and categorical logic.

9

deep inference � working in a syntactic category

calculus of structures � free syntactic category
(+ coherence for associativity and commutativity)

Formalism A � free syntactic category
+ bifunctoriality of −∧ − and − ∨−

(+ coherence for associativity and commutativity)

Formalism B � free syntactic category
+ bifunctoriality of −∧ − and − ∨−
+ naturality of s, m, α↓, α↑, σ↓, σ↑, t↓, t↑, f↓, f↑

(+ coherence for associativity and commutativity)

Formalism C � free syntactic category
+ bifunctoriality of −∧ − and − ∨−
+ naturality of s, m, α↓, α↑, σ↓, σ↑, t↓, t↑, f↓, f↑
+ full coherence

Fig. 6. The bureaucracy-ABC vs. categorical logic

treatment of associativity and commutativity of the calculus of structures fit
into the picture? How can we accomodate the units/constants? And, what are
the axioms to which “full coherence” appeals?6

An alternative approach toward bureaucracy from a category theoretical
viewpoint is based on n-categories and n-dimensional rewriting [Gui05]. Then
proofs are three-dimensional objects, and bureaucracy is eliminated by isotopy.

Although formalisms A, B, C do not yet exist we can use proof nets to provide
canonical representants of derivations in these formalisms. In Section 6 we will
see the construction of such representants for formalisms A and C.

5 Derivation Nets

In this section we will see how derivations are translated into prenets. This is
done by assigning to each rule (shallow or deep) a rule net :

A
ρ

B
�

B

Ā

..

where the linking is subject to certain side conditions which depend on the rule ρ.
Figures 7, 8 and 9 show the rule nets for the rules of system SKS, as they are
6 For classical logic there are now at least three different proposals for such an ax-

iomatisation: [FP04], [DP04], and [LS05a]. But as we will see in Section 7, none of
them can meet our needs.

10

A

Ā

. .···

···
B

C̄

. .

···

···. .···

···
C

B̄

D

D̄

. .···

···

∧∧

∨∨

∧∧

∨∨

∨∨

∧∧

S

S̄

. .···

··· . .···

···
A

Ā

. .···

···
B

B̄

. .···

···
C

C̄

. .···

···

∧∧

∨∨

∨∨

∧∧

S

S̄

. .···

··· . .···

···
A

B̄

. .···

···
B

B̄

. .···

···
C

C̄

. .···

···

∨

∨

∨

∨

S

S̄

. .···

··· . .···

···

Fig. 7. The shape of m-nets, s-nets, and α↓-nets

A

Ā

. .

···

···. .···

···
B

B̄

∨

∨

S

S̄

. .···

··· . .···

···

Ā

A
f

∨

S

S̄

. .···

···. .···

··· . .···

···

Ā

A
t

∧

S

S̄

. .···

···. .···

··· . .···

···........
........
..........................

a

t

S

S̄

. .···

··· . .···

···

................................
.......
..

ā

t

S

S̄

. .···

··· . .···

···.......
.........
.........................

Fig. 8. The shape of σ↓-nets, f↓-nets, t↓-nets, aw↓-nets, and aw↑-nets

a ā

f

∨

S

S̄

. .···

··· . .···

···..........
.....................

ā a

f

∧

S

S̄

. .···

··· . .···

···

...........................
....

ā ā

a

∨

S

S̄

. .···

··· . .···

···

...

...
a a

ā

∧

S

S̄

. .···

··· . .···

···..........
..........
..........
..........
...

..........
..........
..........
..........
...

f f

t

∧

S

S̄

. .···

··· . .···

···

................................
.......
..

f f

t

∨

S

S̄

. .···

··· . .···

···.......
.........
.........................

Fig. 9. The shape the nets for the rules ai↓, ai↑, ac↓, ac↑, nm↓, and nm↑

given in Figure 1. For the rules s, m, α↓, α↑, σ↓, and σ↑, it is intuitively clear
what should happen: every atom in the premise is connected to its counterpart
in the conclusion via an edge in in the linking; and there are no other edges. Note
that the nets for α↓ and α↑ are the same; one written as the upside-down version
of the other. The same holds for all other pairs of dual rules. For α↓, σ↓, f↓, and

11

t↓ only one picture is shown, but for all other rules down- and up-version are
given because it is instructive to see them next to each other. Note in Figure 9
also the difference between the atomic contraction and the nullary medial rules.

Now we can use cuts to plug rule nets together to get derivation nets, as it is
shown in the upper left of Figure 10. Note that in derivation nets the “duality”
between derivations

A

Δ S

B

and

B̄

Δ̄ S

Ā

disappears because both are represented by the same net.

6 Cut Elimination is Losing Information

In this section we will see how cut elimination removes information, and that
this can be bureaucratic as well as non-bureaucratic (i.e., essential) information.

I will introduce three levels of cut elimination, that I call here “level-A”,
“level-C”, and “level-X”. For this, I need the following notion: An instance of a
binary connective is called heavy if it is active in a medial or switch rule. The
heavy instances of connectives are in boldface in Figure 7. All other instances
of connectives are called light, i.e., all connectives appearing in the contexts and
all connectives that are active in any other rule. For level-A cut elimination we
allow the reduction of cuts on binary connectives only if both connectives are
light. This means that

∧∧∧∧ ♦

,

∧∧∧ ♦

, and

∧∧∧ ♦

cannot be reduced. An atomic cut can only be reduced if at least one of the two
cut-atoms has exactly one adjacent egde in the linking by which it is connected
to another atom (its dual). I.e, we have:

a

ā

a ♦ ···

···
···

..................
.......................

.................
......

..

.........
..........
............
.................

........

�

a ···

.......................

.................
......

···
···

..

.........
..........
............
.................

........

Additionally we allow the reduction

tf

♦

.........................
..........
....................

� (7)

A derivation net is called A-reduced if no further cut elimination step under
these restrictions is possible. Note that level-A reduction is clearly terminating,
and it is also confluent because the problematic cuts are not allowed to reduce.
Therefore, for every derivation net there is a unique A-reduced net. It should be
obvious by now, that our goal is to establish the following claim:

Claim: Two SKS-derivations yield the same A-reduced net if and only
if they are identified by formalism A.

12

A
ρ0

C1
ρ1

C2
ρ2

...

Cn
ρn

B

�

B
..

C̄n

♦

Cn

..

.

.

.

..

C̄2

♦

C2

..

C̄1

♦

C1

..

A

b̄ a ā b̄ b a

∧ ∧ ∧
∨

∨

āb̄bbbb

∨∧ ∧
∨

∨

...................
....................................

..........
...........
............
............
.............
..............
...........

..........
..........
...........
............
............
.............
..............
.........

..........
..........
...........
............
............
.............
..............
.........

..........
..........
...........
............
............
.............
..............
...........

..........
..........
...........
............
............
.............
..............
...........

..........
..........
...........
............
............
.............
..............
.............
.

b̄ a ā b̄ b a

∧∧ ∧ ∧
∨∨

∨

āb̄bbbb

∨∧ ∧
∨

∨

b ā a b

∧
∨∨

∧∧
♦

∧
∨

∧

b̄ a ā b̄

āab

∨
∧
♦

∨∨
∧∧

aāb̄

āab

∨∨
∧∧
♦

∨
∧

aāb̄

............

............

........

............

............

.............

............

............

.............

............

............

........

............

.............

.............

.............

............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

............

.............

.............

..........

............

.............

.............

.............

............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

............

.............

.............

..........

............

............

.............

............

............

.............

............

............

........

...........................
................................

..........................

............

............

.............

............................
................................

.................

......................
.......................

...........
..............
............
...........
..........
..........
..........
.........
.........
........
........
........
........
.........
...............
...............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
...............
...............
........
........
........
........
........
.........
.........
.........
..........
...........
...........
............
..............
.............
..

...........

...........

...........

...........

...........

...........

...........

...........

............

............

............

............

............

............

............

.............

.............

.............

.............

.............

.............

..............

..............

..............

..............

...............

..........

........

........

........

........

........

.........

.........

.........

..........

..........

..........

...........

...........

...........

............
............
.............
..............
.............
.........
.........
...........
.............
.

.......................
.........................

........................
....

.............
............
............

Fig. 10. Upper left: From derivations to derivation nets. Right: Example of an A-
reduced net. Lower left: Result of applying level-C cut elimination to it.

In order to give a formal proof, it would be necessary to give a formal definition
of formalism A. The reader will agree that at this point it would be an easy
exercise to come up with a technical definition such that the claim holds. In
fact, one could use the A-reduced nets as the defining criterion. However, a more
interesting and not so trivial problem is to come up with a deductive formalism
for A-reduced nets. Another problem is to establish the relation between the
A-reduced nets and the term calculus for Formalism A presented in [BL05].
The conjecture would be that level-A cut elimination is “the same” as the term
normalization of [BL05].

13

That there is a close relation between A-reduced nets and formalism A can
be seen by observing that A-reduced nets identify the two derivations in (6), as
well as any “merge” of Δ and Δ′. For example the net on the right of Figure 10
represents the two derivations in Figure 3. It is easy to see that this net cannot
be obtained from the right derivation in Figure 4. This means that A-reduced
nets are not able to identify the derivations that are identified by formalism B.7

Let us now define level-C cut elimination. Here we allow the reduction of all
cuts on binary connectives, i.e., we forget the distinction between heavy and light
instances of connectives. For cuts on atoms we additionally allow the reductions:

a

ā

♦

a a· · ·
...............................

...............................

� a a· · · and
a

ā

♦ � and
t

f

···

♦

........
...........
...

........
.........
.......
..

� (8)

Note that the cuts that are problematic for confluency are still blocked. This
means that for each net we have a unique C-reduced net. Examples for C-reduced
nets are the two nets in (2). As the reader might verify, they are obtained from the
two derivations in Figure 2, which is the reason why these two SKS-derivations
are explicitely given. Another example is in the lower left of Figure 10 (which is
obtained from the net on the right of that figure). As before, we have

Claim: Two SKS-derivations yield the same C-reduced net if and only
if they are identified by formalism C.

And, as before, coming up with a formal definition of formalism C such that the
claim holds is an easy and uninteresting exercise. The difficult question is: What
are the right axioms that freely generate the category of C-reduced nets? Or,
equivalently, what is a minimal set of equations to be enforced on derivations
such that the equivalence classes are in bijection with the C-reduced nets?

Finally, we speak of level-X cut elimination, if there are no restrictions on the
reduction. A net is X-reduced if it contains no cuts. Hence, the X-reduced prenets
are exactly the N-prenets of [LS05b]. For example, the right net in (2) can be
obtained by reducing the cut from the left one. This means that X-reduced nets
would identify the two derivations in Figure 2. We can safely assume that this
goes beyond mere “bureaucracy elimination”. With level-X cut elimination we
not only eliminate “essential” information, we also leave the realm of confluency
(see [LS05b] for an explanation).

It should be mentioned that the X-reduced nets are essentially the same as
Buss’ logical flow graphs [Bus91,Car97].

7 Note that with A-reduced nets we make already some identifications that the purist
would put into the realm of formalism B, or even formalism C. For “pure formalism
A” it would be necessary to make all active conectives heavy and only the ones in
the context light. Further, we would have to disallow (7). I deviated her from the
“purist’s way” because the coherence laws for symmetric monoidal categories are so
natural.

14

7 Some remarks on the induced categories

We can define two categories: Let Pre be the category whose objects are the
formulae and whose arrows between formulae A and B are the C-reduced prenets
with Γ = Ā, B. The category Deri is the wide subcategory of Pre in which the
Hom-sets contain only those C-reduced prenets which are obtained from an SKS-
derivation in the way described in the previous sections. Note that the X-reduced
nets do not form a category, because composition defined via cut elimination is
not associative. The A-reduced nets do also not form a category because the
identity nets do not behave as identities.

The category Deri can be called “Boolean” in the sense of [LS05a]. The
forgetful functor from the category of (small) categories to the category of posets
maps it to a Boolean algebra. For the category Pre this is not the case because
it contains morphisms that do not correspond to implications in Boolean logic.

I cannot give here a full characterisation of the two categories Pre and Deri,
but I will compare them to the three different axiomatisations given in [FP04],
[DP04], and [LS05a]. All of them have in common that the Hom-sets are equipped
with an idempotent semigroup structure. This semigroup structure is also present
for Pre and Deri, but it is not idempotent. In the case of Pre the sum of two
nets is given by their union. This is best understood by seeing an example. Let
f be the left net in (2) and g the right one. Then we can form f + f , f + g, and
g + g as follows:

b̄ a ā b̄ b a

b

b̄

♦

b

b̄

♦

āb

∧ ∧ ∧

∨

∨
∨

.............
........................

...
......
......
......
......
......
...........
...........
...........
...........
...........
............
............
.............

...........
.......

........
.........

..

......

......
......
.........
...........
...........
...........
...........
...........
...........
...........
...........
............
.......

.......
.......
........
.......

...

...

...

...

..........
..............
..

.......
........
.........
..........
.........

...........
..

.........

..........

.........

.........

....

b̄ a ā b̄ b a

b

b̄

♦

āb

∧ ∧ ∧

∨

∨
∨

.............
........................

...
......
......
......
......
......
...........
...........
...........
...........
...........
............
............
.............

...........
.......

........
.........

..

......

......
......
.........
...........
...........
...........
...........
...........
...........
...........
...........
............
.......
.......
.......
........
.......

..

...

............
..

.......
......
....

...............................
..........

.............
..

..........

..........

...........

.......

......

......

......
......
......
.......
.......
.......
.......
........
........
........
..

......
......
......
......
......
.......
...........
...........
...........
...........
...........
............
............
.............
..........
.......
........
.......

b̄ a ā b̄ b a

āb

∧ ∧ ∧

∨

∨
∨

.............
........................

...
......
......
......
......
......
...........
...........
...........
...........
...........
............
............
.............

...........
.......

........
.........

..

......

......
......
.........
...........
...........
...........
...........
...........
...........
...........
...........
............
.......
.......
.......
........
.......

................................

..
...............

.........................
..

..............
................

......................
..

..........

..........

...........

........

......
......
......
......
......
.......
.......
.......
.......
........
........
........
..

.........
.........
.........
..........
..........
..........
..........
...........
......
......
......
.......
.......
.......
........
........
.........
.....

......
......
......
......
......
.......
...........
...........
...........
...........
...........
............
............
.............
..........
.......
........
.......

......
......
......
..........
...........
...........
...........
...........
...........
...........
...........
............
..........
.......
.......
.......
........
....

In the case of Deri we can also form the “sum” of two derivations by using
contraction, i.e., the two rules

S [A, A]
c↓

S{A} and
S{A}

c↑
S(A, A)

,

which are both derivable in SKS (see [BT01] for details), and the rule

S(A, B)
mix ,

S [A, B]

15

which is also derivable in SKS, for example via

S(A,B)
f↓

S([A, f], B)
aw↓

S([A, t], B)
s

S [A, (t, B)]
f↑ .

S [A,B]

For any two derivations Δ1, Δ2 from A to B we can now form their sum by
taking

A
c↑

(A,A)

(Δ1,Δ2) SKS

(B, B)
mix

[B, B]
c↓

B

,

where (Δ1, Δ2) is some “merge” of Δ1 and Δ2; compare (6). Note, that this
sum of derivations could also be obtained in a different way, for example by first
mixing (A,A) and then taking [Δ1, Δ2], or by using a different derivation for
mix. However, the important observation to make here is that no matter which
one we choose, the translation into a C-reduced prenet yields the same result for
all of them; and we obtain the same result if we first translate the derivations Δ1

and Δ2 into C-reduced prenets, and then taking their sum as nets (as described
above). Hence, the semigroup structure on the Hom-sets is the same for Pre and
Deri.

Furthermore, we can equip the Hom-sets of our categories with a partial
order, defined by cut elimination: We say f ≤ g if g is obtained from f by elim-
inating some of the remaining cuts8, as it is the case in our example above for
f and g. Then we also have f + f ≤ f + g ≤ g + g. The important observation
about the semigroup and the partial order structure is, that they are indepen-
dent. Although this seems to be natural from the viewpoint of our nets, it is
not the case in the “classical categories” of [FP04] which are based on the proof
nets in [Rob03]. In a “classical category” the sum-of-proofs-semigroup structure
and the cut-elimination-partial-order structure on the Hom-sets determine each
other uniquely via f ≤ g iff f + g = g. (In [DP04] and [LS05a] there is also a
partial order structure on the Hom-sets, simply because the semigroup struc-
ture is idempotent. But this partial order structure has nothing to do with cut
elimination, simply because everything is a priory cut-free.)

The category Pre follows quite closely the axiomatisation given in [LS05a]:
it is *-autonomous (with weak units), it has monoids and comonoids, and it is

8 Even if this process is not confluent, we stay in the realm of C-reduced nets.

16

“graphical”. But is does not obey the equation

A ∨ A

∇A

ΔA∨A
(A ∨ A) ∧ (A ∨ A)

∇A∧∇A

A
ΔA

A ∧ A

(9)

However, the two maps A ∨ A → A ∧ A in (9) are ordered according to the
cut-elimination-partial-order defined above, as it is the case in [FP04].

For the category Deri it is almost the same. The difference is that I have no
proof showing that it is *-autonomous. Furthermore, I do not know whether Deri
is closed under cut-elimination: Let Δ be an SKS derivation and let fΔ be its
corresponding C-reduced net. Now let f ′ be a net obtained from fΔ by reducing
some of the remaining cuts. Is there an SKS-derivation Δ′ corresponding to f ′?

Solving these two open problems (and, in case of a negative answer, find
a better deep inference deductive system for classical logic) is an important
pre-requisite for starting to look for a decent geometrical correctness criterion
for proof nets. Only with a good behaved deductive system one can ask for a
“sequentialization theorem” for proof nets.

References

[BL05] Kai Brünnler and Stéphane Lengrand. On two forms of bureaucracy in deriva-
tions. In Structures and Deduction 2005 (Satellite Workshop of ICALP’05),
2005.

[Brü03a] Kai Brünnler. Deep Inference and Symmetry for Classical Proofs. PhD thesis,
Technische Universität Dresden, 2003.

[Brü03b] Kai Brünnler. Minimal logic in the calculus of structures. note, 2003.
[BT01] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In

R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001, volume 2250 of Lecture
Notes in Artificial Intelligence, pages 347–361. Springer-Verlag, 2001.

[Bus91] Samuel R. Buss. The undecidability of k-provability. Annals of Pure and
Applied Logic, 53:72–102, 1991.

[Car97] Alessandra Carbone. Interpolants, cut elimination and flow graphs for the
propositional calculus. Annals of Pure and Applied Logic, 83:249–299, 1997.

[DG04] Pietro Di Gianantonio. Structures for multiplicative cyclic linear logic: Deep-
ness vs cyclicity. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Com-
puter Science Logic, CSL 2004, volume 3210 of Lecture Notes in Computer
Science, pages 130–144. Springer-Verlag, 2004.

[DP04] Kosta Došen and Zoran Petrić. Proof-Theoretical Coherence. KCL Publica-
tions, London, 2004.

[FP04] Carsten Führmann and David Pym. Order-enriched categorical models of the
classical sequent calculus. To appear in Journal of Pure and Applied Algebra,
2004.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[Gir91] Jean-Yves Girard. A new constructive logic: Classical logic. Mathematical
Structures in Computer Science, 1:255–296, 1991.

17

[Gir96] Jean-Yves Girard. Proof-nets : the parallel syntax for proof-theory. In Aldo
Ursini and Paolo Agliano, editors, Logic and Algebra. Marcel Dekker, New
York, 1996.

[GS02] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of
MELL. In Matthias Baaz and Andrei Voronkov, editors, Logic for Program-
ming, Artificial Intelligence, and Reasoning, LPAR 2002, volume 2514 of
LNAI, pages 231–246. Springer-Verlag, 2002.

[Gug02] Alessio Guglielmi. A system of interaction and structure. To appear in ACM
Transactions on Computational Logic, 2002.

[Gug04a] Alessio Guglielmi. Formalism A. note, April 2004.
[Gug04b] Alessio Guglielmi. Formalism B. note, December 2004.
[Gui05] Yves Guiraud. The three dimensions of proofs. In Structures and Deduction

2005 (Satellite Workshop of ICALP’05), 2005.
[Hug04] Dominic Hughes. Deep inderence proof theory equals categorical proof theory

minus coherence. preprint, 2004.
[HvG03] Dominic Hughes and Rob van Glabbeek. Proof nets for unit-free

multiplicative-additive linear logic. In 18th IEEE Symposium on Logic in
Computer Science (LICS 2003), pages 1–10, 2003.

[KM71] Gregory Maxwell Kelly and Saunders Mac Lane. Coherence in closed cate-
gories. Journal of Pure and Applied Algebra, 1:97–140, 1971.

[LS05a] François Lamarche and Lutz Straßburger. Constructing free Boolean cate-
gories. In Proceedings of the Twentieth Annual IEEE Symposium on Logic in
Computer Science (LICS’05), 2005.

[LS05b] François Lamarche and Lutz Straßburger. Naming proofs in classical propo-
sitional logic. In Pawe�l Urzyczyn, editor, Typed Lambda Calculi and Applica-
tions, TLCA 2005, volume 3461 of Lecture Notes in Computer Science, pages
246–261. Springer-Verlag, 2005.

[McK05] Richard McKinley. Classical categories and deep inference. In Structures and
Deduction 2005 (Satellite Workshop of ICALP’05), 2005.

[Rob03] Edmund P. Robinson. Proof nets for classical logic. Journal of Logic and
Computation, 13:777–797, 2003.

[SL04] Lutz Straßburger and François Lamarche. On proof nets for multiplicative
linear logic with units. In Jerzy Marcinkowski and Andrzej Tarlecki, editors,
Computer Science Logic, CSL 2004, volume 3210 of LNCS, pages 145–159.
Springer-Verlag, 2004.

[SS03] Charles Stewart and Phiniki Stouppa. A systematic proof theory for several
modal logics. Technical Report WV-03-08, Technische Universität Dresden,
2003. To appear in proceedings of Advances in Modal Logic 2004, published
by King’s College Publications.

[Sto04] Finiki Stouppa. The design of modal proof theories: the case of S5. Master’s
thesis, Technische Universität Dresden, 2004.

[Str02] Lutz Straßburger. A local system for linear logic. In Matthias Baaz and An-
drei Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning, LPAR 2002, volume 2514 of LNAI, pages 388–402. Springer-
Verlag, 2002.

[Str03] Lutz Straßburger. Linear Logic and Noncommutativity in the Calculus of
Structures. PhD thesis, Technische Universität Dresden, 2003.

[Tiu05] Alwen Fernanto Tiu. A local system for intuitionistic logic: Preliminary re-
sults. preprint, 2005.

18

Classical Categories and Deep Inference

Richard McKinley�

University of Bath

Abstract. Deep inference is a proof-theoretic notion in which proof rules apply
arbitrarily deeply inside a formula. We show that the essence of deep inference
is the bifunctoriality of the connectives. We demonstrate that, when given an in-
equational theory that models cut-reduction, a deep inference calculus for classi-
cal logic (SKSg) is a categorical model of the classical sequent calculus LK in the
sense of Führmann and Pym. We observe that this gives a notion of cut-reduction
for derivations in SKSg, for which the usual notion of cut in SKSg is a special
case. Viewing SKSg as a model of the sequent calculus uncovers new insights
into the Craig interpolation lemma and intuitionistic provability.

1 Introduction

In recent years, the received wisdom that classical logic is uninteresting from a proof-
theoretic point of view has been seriously challenged by a number of successful at-
tempts to give a denotational semantics to classical proofs. The difficulties these ap-
proaches overcome are illustrated by the example below.

Given two proofs Φ1 and Φ2 of the same sequent,the proof

Φ1···
Γ � Δ

WR
Γ � φ, Δ

Φ2···
Γ � Δ

WL
Γ, φ � Δ

Cut
Γ, Γ � Δ, Δ

CL,CR,
Γ
 Δ

(1)

(usually attributed to Lafont [1]), reduces (essentially) to either Φ1 or Φ2; the choice
is non-deterministic. In a model which admits cut-reduction as equality, Φ1 and Φ2

acquire the same denotation. Note that this example does not rely on negation.
Certain previous attempts to avoid this collapse have relied on moving to a sub-

logic (i.e., intuitionistic or linear logic). Others rely on a restricted cut-reduction system
which makes a systematic choice of the left- or right-hand reduction in (1): for exam-
ple, classical natural deduction systems [2, 3]. None of these supply what we want of
a semantics: a faithful representation of the structure of cut-reduction, with concrete
models that illuminate the proof theory.

Of the numerous recent candidates, Führmann and Pym [4–6] seem to give the best
synthesis of those two requirements. Their classical categories model classical proofs

� Supported by a University of Bath studentship

19

as morphisms in a special kind of poset-enriched linearly distributive category. The
poset enrichment models cut-reduction, so that whenever a proof Φ cut-reduces to a
proof Ψ , we have �Φ� ≤ �Ψ�, where �Φ� is the denotation ofΦ in the category. Classical
categories admit all commuting conversions of the sequent calculus as equalities; the
ordering represents certain cuts against structural rules. The semantics sheds new light
on the status of theMIX law in classical logic: the two obvious ways of defining it (as a
cut against either ⊥ or �) acquire the same denotation, and the rule can be eliminated.

Meanwhile, work by Brünnler [7], building on the calculus of structures of Guglielmi
[8, 9] has led to a new proof system (SKSg) for classical logic that promises a finer-
grained analysis of proofs. The calculus of structures uses “deep inference” (inference
rules operating arbitrarily deeply inside formulæ) to dispense with the tree- like struc-
ture of sequent proofs. The result is a precise duality: inference rules are unary, and
come in dual pairs (or are self dual). A derivation can be dualized by “inverting” each
inference rule to obtain a proof of the contrapositive derivation

Much of the work in deep inference at present lies in finding new proof-theoretic
systems (“Formalism A” [10] and “Formalism B” [11]) that generalize the calculus
of structures by eliminating “bureaucracy”: proofs which are essentially the same but
differ syntactically. For example,

(A, [B, C])
s

[(A, B), C]
Φ

[(A′, B), C]

and

(A, [B, C])
Φ

(A′, [B, C])
s

[(A′, B), C]

(2)

would, in Formalism B, be represented by the same syntactic structure.

Table 1. System LK

AxLK

ϕ � ϕ

Γ � Δ, ϕ Γ ′, ϕ � Δ′
CUTLK

Γ, Γ ′ � Δ, Δ′

Γ, ϕ, ϕ � Δ
CL

Γ, ϕ � Δ

Γ � Δ, ϕ, ϕ
CR

Γ � Δ, ϕ

�L
� �

⊥R
⊥ �

Γ � Δ
WL

Γ, ϕ � Δ

Γ � Δ
WR

Γ � Δ, ϕ

Γ � Δ, ϕ Γ ′ � Δ′, ψ
∧R

Γ, Γ ′ � Δ, Δ′, ϕ ∧ ψ

Γ, ϕ, ψ � Δ
∧L

Γ, ϕ ∧ ψ � Δ

Γ, ϕ � Δ
¬L

Γ � ¬ϕ, Δ

Γ � ϕ, Δ
¬R

Γ,¬ϕ � Δ

Γ � ϕ, ψ, Δ
∨R

Γ � ϕ ∨ ψ, Δ

Γ, ϕ � Δ Γ ′, ψ � Δ′
∨L

Γ, Γ ′, ϕ ∨ ψ � Δ, Δ′

Γ, ϕ, ψ � Δ
EL

Γ, ψ, ϕ � Δ

Γ � ϕ, ψ, Δ
ER

Γ � ψ, ϕ, Δ

This paper sets out to show, using classical categories as a case study, that the well
established notions of proof equality arising from categorical logic may be applied with

20

great ease to deep inference formalisms. The author hopes that these insights will act as
a guide to those designing future formalisms.

– In §4 we give an inequational theory on proofs in SKSg, making it a classical cate-
gory. This category:
• Captures the essence of Formalism A as bifunctoriality of the connectives;
• Captures the essence of Formalism B by requiring that certain inference rules
are (lax) natural;

• Does not collapse to a boolean algebra;
• Is a model of the two-sided classical sequent calculus, LK.

– We identify two distinct forms of cut in SKSg (§5.1):
1. A cut equivalent to that of a one-sided sequent system; and
2. A cut equivalent to that of a two-sided sequent system.
We show that the first is well-definable in terms of the second.

– We give a characterization of intuitionistically valid calculus of structures deriva-
tions (Lemma 3). Using this, we give a refinement of the Craig interpolation lemma
for propositional classical logic (Corollary 1).

2 Classical categories

First, we introduce classical categories [4–6]. We do not give details of the diagrams
required for coherence (although many can be inferred later from the equational parts
of the theory given below for SKSg). Classical categories are a sound and complete
semantics of the classical sequent calculus, developed by Führmann and Pym, that un-
like previous attempts can distinguish between proofs and model all cut-reductions.
A classical category is a poset-enriched category with extra structure, including two
symmetric monoidal products ⊗ and ⊕, with units 1 and 0. Mediating between these
functors is a natural transformation δ : A⊗ (B⊕C)→ (A⊗B)⊕C, making it a sym-
metric linearly distributive category ([12]). Various coherence conditions hold for these
categories, which in addition to giving coherence model the structure of cut-reduction
in a two-sided sequent calculus. The category also has for each object A a complement
A⊥, and morphisms A⊥ ⊗ A → 0 (contradiction) and 1 → A ⊕ A⊥ (excluded mid-
dle) which, with certain coherence conditions make it a symmetric linearly distributive
category with negation. It is, by virtue of this, equivalent to a ∗-autonomous category,
and a model of multiplicative linear logic, in the sense that objects model propositions
and morphisms model proofs. We model φ∧ψ inductively as �φ� ⊗ �ψ�, and similarly
disjunction is modelled by ⊕.

How the cut rule is modelled is of particular interest. Given a proof Φ of Γ
 Δ,φ
and a proof Ψ of φ, Γ ′
 Δ′, with denotations C�Φ�, C�Ψ� in a classical category C, we
denote the cutting together of these two proofs by:

�Γ� ⊗ �Γ
′� C�Φ� ⊗ id� (�Δ� ⊕ �φ�) ⊗ �Γ

′� δ′� �Δ� ⊕ (�φ� ⊗ �Γ
′�) id ⊕ C�Ψ�� �Δ� ⊕ �Δ

′�, (3)

where δ′ is the evident morphism obtained from δ and symmetric monoidal isomor-
phisms, and id is identity. In this setting, cut is a generalized composition.

21

In addition to this structure, a classical category carries the structure necessary to
model weakening and contraction on the right. Every object has a symmetric monoid
— a multiplication ∇A : A ⊕ A → A and unit []A : 0 → A, satisfying equations that
state the associativity and symmetry of ∇A and the neutrality of []A. In addition, we
require that ∇A⊕B is definable pointwise; that []A⊕B is definable pointwise; and that
[]0 = id. We say a symmetric monoidal category has symmetric monoids provided it
satisfies these three laws. Dually, a classical category has symmetric comonoids given
byΔA : A→ A⊗A and 〈〉A : A→ 1 for weakening and contraction on the right.

Table 2. Inequalities of a classical category

Δ∇

A ⊕ C
Δ� (A ⊕ C) ⊗ (A ⊕ C)

≤

A ⊕ (C ⊗ C)

id ⊕ Δ
�

�∇⊕ id
(A ⊕ A) ⊕ (C ⊗ C)

δ̂
�

A ⊕ C
〈〉 � 1

≤

A ⊕ 1

id ⊕ 〈〉
�

�[] ⊕ id
0 ⊕ 1

∼=
�

〈〉[]

∇Δ

A ⊗ C � ∇
(A ⊗ C) ⊕ (A ⊗ C)

≤

A ⊗ (C ⊕ C)

id ⊗∇ �

Δ ⊕ id� (A ⊗ A) ⊗ (C ⊕ C)

δ̌
�

A ⊗ C � []
0

≤

A ⊗ 0

id ⊗ []
�

〈〉 ⊕ id� 1 ⊗ 0

∼=
�

[]〈〉

Definition 1. A classical category is an order-enriched symmetric linearly distributive
category with negation such that:

1. The symmetric monoidal category (C,⊕, 0) has symmetric monoids;
2. The symmetric monoidal category (C,⊗, 1) has symmetric comonoids;
3. The object indexed families of mapsΔA,∇A, 〈〉A and []A are lax natural transfor-

mations, in the sense that for every morphism f we have

Δ ◦ f ≤ (f ⊗ f) ◦Δ f ◦ ∇ ≤ ∇ ◦ (f ⊕ f)
〈〉 ◦ f ≤ 〈〉 f ◦ [] ≤ []

4. The inequalities in Table 2 hold, where δ̂ and δ̌ are the evident morphisms obtained
from δ and symmetric monoidal isomorphisms

5. Composition of morphisms, and the functors ⊕, ⊗ are monotonic in all arguments.

Example 1. Rel⊗ is a classical category with objects sets and morphisms binary re-
lations, in which both ⊗ and ⊕ are given by the set theoretic product. Both 0 and 1
are given by the singleton set {∗}. Negation is identity on objects, and the excluded
middle on a set A is the relation {(∗, (x, x)) : x ∈ A} from {∗} to A × A. The map
∇A is {((x, x), x) : x ∈ A} and []A is {(∗, x) : x ∈ A}. The order on hom-sets is
set-theoretic inclusion of relations.

22

Example 2. A boolean lattice B is a classical category, with meet as ⊗ and join as ⊕.
Example 3. If C and C′ are classical categories, then so are Cop and C×C′. In particular,
the product of a classical category with non-trivial hom-sets (e.g.Rel⊗) and a boolean
algebra B is a non-compact, non-trivial classical category.

Before stating soundness and completeness, we need a notion of theory. For the sake
of simplicity we consider only pure logic.

Definition 2. A sequent theory over a collection of atoms A is a set of inequalities
Φ � Ψ , where both Φ and Ψ are proofs of a sequent Γ
 Δ over A, such that:
1. The relation � is reflexive, transitive, and compatible (i.e. all inference rules are

“monotonic w.r.t. �);
2. The relation holds for both directions of the usual cut-reduction rules for eliminat-

ing logical cuts. It also holds in both directions for a number of coherence rules,
including axiom expansions (for details, see [4]);

3. The usual rules for eliminating cut against weakening and contraction hold in only
one direction: from redex to reduct.

Führmann and Pym prove the following [4]:

Theorem 1 (Soundness [4]). Let P be a set of proofs over a set of atoms A. Then for
every interpretation C�−� in a classical category C, the judgements Φ � Ψ such that
�Φ� ≤ �Ψ� form a sequent theory.

Theorem 2 (Completeness [4]). Let T be a sequent theory, and suppose that �Φ� ≤
�Ψ� holds for every interpretation in a classical category C. Then Φ � Ψ is in T .

The proof in [4] of the latter relies heavily on the use of proof nets for classical logic,
introduced by Robinson [13], to construct a termmodel. These proof-nets are two-sided,
and correspond very closely to the sequent calculus. (In [6], equivalent proof nets in
style of Blute et. al. [14] are used, since they are closer to the categorical structure). The
calculations involved are significantly simplified, since proof nets admit commuting
conversions as syntactic equalities. One other very useful refinement of the presentation
of LK (which is best presented in proof nets) is the use of cut against constants instead
of rules to present ¬L, ¬R, and a variety of other proof rules: the proof net

(4)

which corresponds to an application of the LK rule ¬R to a derivation of a sequent
Γ, ϕ
 Δ ¬R, is taken to be shorthand for

(5)

23

which corresponds to that same LK derivation followed by cut against the (canonical)
proof of the sequent
 ϕ,¬ϕ. The ∧R is rule is modelled by cut against a proof net for
A,B
 A ∧B, and similarly for ∨L.

3 The calculus of structures for classical logic

We summarize Brünnler’s SKSg [7], a deep symmetric system in the style of the cal-
culus of structures for classical propositional logic. We give translations into a single-
sided sequent system. Finally, we discuss Guglielmi’s notions of “Formalism A” and
“Formalism B” [10, 11], which generalize the calculus of structures.

3.1 System SKSg

The calculus of structures [8, 9] is a formalism that employs deep inference. The se-
quent calculus LK does not exhibit deep inference. Consider the sequent
 C ∧ (A ∨
A), B, B. We can apply contraction across the comma, but not across the disjunction.
Semantically, comma on the right is the same as disjunction: the syntactic distinction is
required for completeness of the sequent calculus. The calculus of structures removes
this distinction, and any calculus of structures inference rule operates arbitrarily deeply
in a formula: this is deep inference. Proofs in the calculus of structures are not trees as
in the sequent calculus, but are linear.

We now present the syntax for classical logic in a deep inference setting:

Definition 3. Given a set V of propositional variables, we consider formulæ given by
the grammar

F ::= f | t | v | [F, . . . , F] | (F, . . . , F) | v̄,

where v is a variable, t and f are true and false, [. . .] and (. . .) are disjunction and
conjunction, and v̄ is the negation of v (negation on general formulæbeing inductively
defined). We use {} to denote a hole in a formula: a context S{} is a formula with one
occurrence of the hole, and S{R} is that context with the hole filled with a formula R.
We will omit the notation for the empty context where it can be inferred, for example
writing S(A,B) for S{(A,B)}

We take associativity and commutativity of connectives and the usual behaviour of
units, to hold at the level of syntactic equivalence. The set S of structures is the quotient
of the set F by the smallest relation containing these syntactic equivalences and closed
under formation of formulæ from contexts.

The deep symmetric system SKSg for classical propositional logic is given in Table
3. Each rule is unary, and is either self dual or comes as one of a dual pair. A derivation
is a sequence of applications of rules. A proof of A is a derivation from t to A.

The rules correspond closely to those of the one-sided sequent system GS1p. (GS1p
differs from LK in its axiom and cut rules, as given in Table 4. The other rules of GS1p
are the rules ∧R, ∨L, CL and WR of LK, restricted to right handed sequents.) For
example:

24

Table 3. System SKSg

S {t}
i↓

S [R, R̄]

S (R, R̄)
i↑

S {f}
S [R, R]

c↓
S {R}

S ([R, U], T)
s

S [(R, T), U]

S {R}
c↑

S (R, R)
S {f}

w↓
S [R]

S (R)
w↑

S {t}

� Γ, ϕ � Γ ′, ψ
∧R

� Γ, Γ ′, ϕ ∧ ψ
→

([Γ, ϕ], [Γ ′, ψ])
s

[Γ, (ϕ, [Γ ′, ψ])]
s

[Γ, Γ ′, (ϕ, ψ)]

and

� Γ, ϕ � Γ ′,¬ϕ
CUT

� Γ, Γ ′
→

([Γ, ϕ], [Γ ′, ϕ̄])
s

[Γ, (ϕ, [Γ ′, ϕ̄])]
s

[Γ, Γ ′, (ϕ, ϕ̄)]
i↑

[Γ, Γ ′, f]
=

[Γ, Γ ′]

The cases for axiom, weakening and contraction are similar. We now have the essential
tools for the proof of the following theorem from [7]:

Theorem 3 (GS1p to SKSg). For every proof Φ of
 Δ in GS1p there exists an SKSg
proof of Δ that does not involve c↑ or w↑ , and has the same number of occurrences of
i↑ as there are occurrences of cut in Φ.

Remark 1. Only the translation of the cut rule requires an application of i↑ : hence the
preservation result. Since the i↑ rule is so closely related to the cut rule in GS1p, it is
often referred to as the cut rule for the calculus of structures.

The following theorem (from [7]) gives us a partial converse — partial, since the
number of cuts is not preserved:

Theorem 4 (SKSg to GS1p). For every proof of a structure S in SKSg there exists a
proof of
 S in GS1p.

Given a proof in SKSg which begins with t, we can translate it into a GS1p proof.
Since cut is admissible in GS1p, we can obtain a cut-free proof. Translating that proof
back into SKSg, the proof we obtain contains no instance of i↑ . This proves the follow-
ing, (for which there is also a direct proof [15, 7]):

Theorem 5 (Cut-elimination). Any structure provable from t in SKSg is provable
without the use of i↑ (and without w↑ or c↑).

25

3.2 “Formalism A” and “Formalism B”

The calculus of structures allows more freedom in the application of inference rules.
As a result, it lays bare more bureaucracy than many other systems. Formalisms A [10]
and B [11] are suggestions for ways to design new systems which lack this bureaucracy.
Here we will describe the ideas behind these systems and the types of bureaucracy they
avoid. Later, we will ask what light a categorical semantics sheds on the issues involved.

When dealing with the sequent calculus, one has to deal with an enormous number
of commuting conversions; this is why proof nets, which validate these conversions as
identities, are so useful. In the calculus of structures, the situation is made worse. For
example, in the sequent calculus derivation,

··· Φ

 Γ, ϕ

··· Ψ

 Γ ′, ψ

∧R

 Γ, Γ ′, ϕ ∧ ψ

(6)

the two sub-proofs act in parallel. In the calculus of structures, the same derivation can
be written by applying the sub-proofs sequentially, as either

t
=

(t, t)
Φ

([Γ, ϕ], t)
Ψ

([Γ, ϕ], [Γ, ψ])
s

[Γ, (ϕ, [Γ ′, ψ])]
s

[Γ, Γ ′, (ϕ,ψ)]

or

t
=

(t, t)
Ψ

(t, [Γ, ψ])
Φ

([Γ, ϕ], [Γ, ψ])
s

[Γ, (ϕ, [Γ ′, ψ])]
s,

[Γ, Γ ′, (ϕ,ψ)]

(7)

or by interleaving the inference rules from each proof, in a number of possible ways. All
of these should, morally, represent the same proof. Formalism A would be a system in
which applications of inference rules can be made in parallel, as they are in the sequent
calculus or proof nets.

Formalism B caters to another, more subtle, form of bureaucracy. Suppose we have
a derivation Φ of A′ from A in the calculus of structures. The syntactic objects

(A, [B, C])
s

[(A, B), C]
Φ

[(A′, B), C]

and

(A, [B, C])
Φ

(A′, [B, C])
s

[(A′, B), C]

(8)

should denote the same proof. The solution posed by Guglielmi [11] is to have inference
rules acting not on formulæ, or on structures, but on derivations. Thus

(Δ, [Δ′,Δ′′])
s

[(Δ,Δ′),Δ′′]
(9)

would be the canonical expression for the both expressions in (8). Recent progress has
also been made on a version of the formalism called wired deduction.

26

Table 4. System GS1p: Axiom and Cut

AxGS1

� ϕ, ϕ̄

� Γ, ϕ � Γ ′, ϕ̄
CUTGS1p

� Γ, Γ ′

4 SKSg forms a classical category

In this section, we show that SKSg admits an inequational theory such that it forms a
classical category.

We should note that deep inference proof theory regards each formula/structure as
its own identity derivation.

Definition 4 (The theory T).
The theory T is a set of expressions Φ ≤ Ψ , where Φ and Ψ are derivations in

the calculus of structures. We write ≡ for the symmetric closure of ≤. We give the
inequations in a shallow form, with the understanding that the theory is closed under
formation of contexts.

We deal first with permutation of non-interfering rules. Given two inference rules p
and q, the following holds:

(A, A′)
q

(A, B′)
p

(B, B′)

≡
(A, A′)

p
(B, A′)

q
(B, B′)

(:= (p, q)), (10)

and similarly for disjunction.
The nesting of derivations and switch is also part of our theory:

(A, [B, C])
(p, [q, r])

(E, [F, G])
s

[(E, F), G)]

≡
(A, [B, C])

s
[(A, B), C]

[(p, q), r]
[(E, F), G]

, (11)

along with several equalities relating different ways of nesting switches, for example:

(A, B, [C, D])
s

[(A, B, C), D]
≡

(A, B, [C, D])
s

(A, [(B, C), D])
s

[(A, B, C), D]

. (12)

The following rule and its dual govern interactions between negations:

A
=

(A, t)
i↓

(A, [Ā, A])
s

[(A, Ā), A]
i↑

[f, A]
=

A

≡
A

id
A

(13)

27

The remaining equations are given in Table 5 and the inequations of the theory are
given in Table 6.

Table 5. Equalities: weakening and contraction

S[[P, Q], [P, Q]]
=

S[[P, P], [Q, Q]
↓ c

S[[P, P], Q]
↓ c

S[P, Q]

≡
S[[P, Q], [P, Q]]

↓ c
S[P, Q]

[[A, A], A]
c↓

[A, A]
c↓

A

≡
[A, [A, A]]

c
[A, A]

c↓
A

A
=

[A, f]
w↓

[A, A]
c↓

A

≡
A

id
A

f
=

[f, f]
[w↓ , w↓]

[A, B]

≡
f

w↓
[A, B]

f
w↓

f
≡

f
id

f

We now prove the main technical theorem of the paper.
Since we have an identity derivation on structures, we can form a category from

SKSg, with structures as objects and derivations between two structures as morphisms;
in particular, each inference rule is a morphism. Composition is given by concatenation.
We have extended conjunction and disjunction to the inference rules (Equation 10) and
we can extend that definition inductively to all derivations. We have required that the
connectives preserve identity derivations. By induction on the length of derivation, we
can show that both are bifunctorial. That they are monoidal follows from the syntactic
equalities of associativity, symmetry and units (i.e, they are strong monoidal products).
SKSg is a symmetric linearly distributive category, δ being given by the switch rule,
which is natural by (11). The required coherences are those typified by (12) (for further
details of the coherences see [12]). Along with (13), i↑ and i↓ are precisely what is
required to model negation in a linearly distributive category. The equations in Table
5 show that c ↓ and w ↓ form a symmetric monoid (∇, []) (and dually). Finally, the
inequations in Table 6 plus their duals give SKSg the structure of a classical category.

Theorem 6. SKSg with T forms a classical category.

Remark 2. The structure we have given to SKSg models precisely the equalities of
Formalisms A and B, and we would expect these formalisms (when they appear) to form
a classical category. Conversely, by looking at classical categories we can infer what
additional structure these formalisms will need to include. Categorically, Formalism
A amounts to bifunctoriality of disjunction and conjunction. (Deep inference in the
calculus of structures is the ordinary functoriality of the connectives with respect to
each argument.) The behaviour of Formalism B is modelled by naturality of switch
(and lax naturality of the structural rules).

28

Table 6. Inequalities: weakening and contraction

A
c↑

(A, A)
(p, p)

(B, B)

≥

A
p

B
c↑

(B, B)

f
w↓

A
p

B

≤
f

w↓
B

[A, C]
c↑

[A, (C, C)]
≤

[A, C]
c↑

([A, C], [A, C])
s′

[A, A, (C, C)]
c↓

[A, (C, C)]

(A, f)
w↓

(A, B)
≤

(A, f)
w↑

(t, f)
=

f
w↓

(A, B)

Theorem 7. SKSg + T is not equivalent to a boolean algebra; it is a non-trivial.

Proof. The quotient of the categoryRel⊗ by the equivalence relationR, which identi-
fies objects along the symmetric monoidal isomorphisms, is a nontrivial classical cate-
gory. Define a functor G fromRel⊗/R inductively on objects by mapping each propo-
sitional variable to a unique set, and inductively on morphisms by mapping each in-
ference rule to the corresponding classical category morphism in Rel⊗. This is well
defined, asRel⊗ is monoidal. Then, for any proof Φ of SKSg, G(f ◦ i↓) �= i↓ .

Remark 3. The need to quotient Rel⊗ arises from the equalities in SKSg. If, instead,
we add new (invertible) rules corresponding to the symmetric monoidal isomorphisms,
we obtain a category equivalent to the category of proof nets for classical logic.

5 Insights into SKSg and the sequent calculus

5.1 The meaning of cut in SKSg

We have seen that when we refer to cut in SKSg, we mean the rule i↑ . This corresponds
well to the definition of cut in a one-sided sequent system such as GS1p, and can be
eliminated, either directly or via a translation into GS1p. However, in the previous sec-
tion we saw SKSg as a classical category, and thereby a model of the two sided system
LK. The order given on proofs is a model of cut-reduction, and yet it is independent of
the rule i↑ . In this section we explore the relationship between these two notions of cut.

First, notice that any sequent in GS1p is a sequent in LK; we show that we can
embed any GS1p proof into LK.

Lemma 1. Any proof Φ in GS1p can be transformed into a proof in LK.

Proof. Suppose we have a GS1p proof Φ. Since GS1p and LK differ only on cut and
axiom, we transform only instance of these rules.

We replace each occurrence of an axiom

29

AxGS1p

� ¬ϕ, ϕ
with

AxLK

ϕ � ϕ
¬R

� ¬ϕ, ϕ

(14)

The case of cut is rather more complicated. There are three obvious ways of defining
the GS1p cut rule in LK:

� ϕ, Δ

� ¬ϕ, Δ′

AxLK

ϕ � ϕ
¬L

¬ϕ, ϕ �
CutLK

ϕ � Δ′

CutLK ,
� Δ, Δ′

(15)

� ¬ϕ, Δ′,

� ϕ, Δ
¬L

¬ϕ � Δ
CutLK ,

� Δ, Δ′

(16)

� ¬ϕ, Δ′ � ϕ, Δ
∧R

� (¬ϕ ∧ ϕ), Δ, Δ′

AxLK

ϕ � ϕ
¬L

¬ϕ, ϕ �
∧L

¬ϕ ∧ ϕ �
CutLK .

� Δ, Δ′

(17)

These definitions are coherent, in the sense that they are identified in our semantics.
Eliminating the logical cut in (17), and shifting to proof nets, with negation as cut
against a constant as in (5, §2), all three are represented by the proof net:

(18)

As SKSg is a classical category, the usual notion of interpretation gives us a trans-
lation from LK to SKSg. The following is a corollary of soundness:

Theorem 8 (From LK to SKSg). For every proof Φ of a sequent φ
 ψ in LK , there
is a derivation �Φ� from φ to ψ in SKSg. For any cut-reduction Φ � Ψ in LK, there is a
corresponding inequality in SKSg +T

Remark 4. This translation maps a proof ψ, containing no occurrences of ¬L, to a “cut-
free” proof in the sense of SKSg, regardless of the number of instances of cut in ψ. In
particular, consider the following lemma:

Lemma 2. The sequent
 Γ , if provable in LK, is provable without recourse to rules
operating on the left hand side of the sequent.

The SKSg cut-elimination theorem (Theorem 5) is a corollary of this result.

30

Each inference rule in SKSg, when read from top to bottom, is a valid entailment φ→ ψ
in classical logic, and there is therefore a cut-free proof of φ
 ψ. Composing these
proofs using the cut rule, we obtain:

Theorem 9 (From SKSg to LK). For every derivation Φ from A to B in SKSg there
exists an LK proof of the sequent A
 B, with a number of instances of cut equal to the
number of rule applications in Φ minus one.

Remark 5. This theorem embodies the notion of cut as composition. A proof is cut free
in this sense only if it is an instance of an inference rule: in particular i↑ translates to a
cut-free proof in LK.

Remarks 4 and 5 show that the translations between LK and SKSg respect the notion
of cut given by composition and the ordering on proofs, but not that given by instances
of the i↓ rule. The presence of this rule is clearly not sufficient to identify non-normal
derivations of SKSg. We can, however, generalise the notion of a normal proof to a
normal derivation in the following way:

Definition 5. A derivation is normal if it contains no ↑ rule below a ↓ rule.

(This observation was also made recently (and independently) by Brünnler.) This defi-
nition agrees with the equivalent notion for LK, in the sense that any normal LK deriva-
tion (or proof net) translates to a normal SKSg derivation (taking care to note that since
we have (implicit) cuts against constants in our proof nets, a normal proof net is one
without essential cuts). The notion of a normal SKSg proof is easily seen to be a special
case of this definition, since any ↑ rule with premise t has conclusion equivalent to t.
Notice also that each equational law in T involves only ↑ or ↓ rules: That is, application
of these rules to a normal derivation yields another normal derivation. Meanwhile, the
lax naturalities clearly show that moving an w↑ or c↑ rule above some other derivation
generates some change in denotation: The change corresponds to a move closer to a
normal form. By switching to a local presentation of the inequalities on proofs (i.e. an
inequational theory on SKSg) the author hopes in the future to remove these inequalities
from the theory and understand cut-reduction purely as moving ↑ rules above ↓ rules.

5.2 Intuitionistic validity and decomposition

Which proofs in SKSg are intuitionistically valid? Considering each inference rule as
an implication, we find that only i↓ is invalid. (Recall that negation is derived, and
therefore all the formulae in a derivation are assumed to be in negation normal form.
This excludes de Morgan duality from the list of syntactic equivalences we include. All
the other equivalences are intuitionistically valid). We have, therefore:

Lemma 3. A calculus of structures derivation is intuitionistically valid if it contains no
application of the i↓ rule.

We call a derivation which has this property intuitionistic, and a derivation which has
no instance of i↑ co-intuitionistic. (This terminology derives from the fact that if there
is a co-intuitionistic derivation S from A to B, the negation normal form (nnf) of B̄

31

intuitionistically entails the nnf of Ā, and the de-Morgan dual of S is such an intuition-
istic derivation.) In particular, the ↓ fragment of SKSg is co-intuitionistic. Consider the
following decomposition lemma from [7]:

Theorem 10. For every derivation of B from A in SKSg there is a derivation that is of
the form

A··· SKSg \ {i↓ , w↓ }
C··· SKSg \ {i↑ , w↑ }
B

Using that the first phase of the above proof introduces no new propositional variables,
and the second phase introduces no new propositional variables when viewed bottom
up, Brünnler obtains the Craig interpolation lemma [7]; using Lemma 3, we may now
strengthen that result:

Corollary 1 (Refined Craig interpolation). For all propositional formulæ φ and ψ in
nnf, if φ implies ψ then there is an interpolant γ such that φ intuitionistically implies γ,
γ co-intuitionistically implies ψ, and γ contains only propositional variables common
to A and B. Given a normal derivation S from φ to ψ, we can choose the intuitionistic
and co-intuitionistic derivations such that their composition equals S

Proof. A normal derivation is already ↑ − ↓ factored, and clearly the composition of
these factors is the original derivation.

McKinley and Brünnler have observed this behaviour in the sequent calculus (where
it can be demonstrated by an additional observation on top of the usual structural in-
duction), but the property is (in the opinion of the author) perspicuous in the calculus
of structures.
Acknowledgements. The author is grateful to David Pym and Carsten Führmann for
their guidance, encouragement and criticism and to Kai Brünnler and Alessio Guglielmi
for clarifications and the motivation for this work. Special thanks to Brünnler for repair-
ing a serious error from the first draft of this paper. The author is funded by a studentship
from the University of Bath. Figures were typeset using Paul Taylor’s diagrams and
prooftree packages.

References

1. Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press (1989)
2. Parigot, M.: λμ -calculus: An algorithmic interpretation of classical natural deduction. In
LPAR’92, Springer (1992) 190–201

3. Pym, D., Ritter, E.: On the semantics of classical disjunction. JPAA 159 (2001) 315–338
4. Führmann, C., Pym, D.: Order-enriched categorical models of the classical sequent calculus.
To appear, JPAA, 2005

5. Führmann, C., Pym, D.: On the Geometry of Interaction for Classical Logic. In Proc. 19th
LICS, Turku, 2004. 211-220 IEEE

32

6. Führmann, C., Pym, D.: On categorical models of classical logic and the geometry of interac-
tion. (In preparation. Manuscript available at http://www.cs.bath.ac.uk/˜pym/
dj.pdf)

7. Brünnler, K.: Deep Inference and Symmetry in Classical Proofs. Logos Verlag, Berlin (2004)
8. Guglielmi, A.: A system of interaction and structure. To appear ACM Transactions on
Computational Logic. Available at
http://iccl.tu-dresden.de/˜guglielm/p/SystIntStr.pdf.

9. Guglielmi, A.: (Deep inference and the calculus of structures) Project web page: Available
at http://alessio.guglielmi.name/res/cos/index.html.

10. Guglielmi, A.: Formalism A. (Available at http://iccl.tu-dresden.de/
˜guglielm/p/AG11.pdf)

11. Guglielmi, A.: Formalism B. (Available at http://iccl.tu-dresden.de/
˜guglielm/p/AG13.pdf)

12. Cockett, J.R.B., Seely, R.A.G.: Weakly distributive categories. In Applications of Categories
in Computer Science: Proceedings LMS Symp., Durham, UK, 20–30 July 1991. Volume 177.
Cambridge University Press, Cambridge (1992) 45–65

13. Robinson, E.: Proof Nets for Classical Logic. J. Logic Computat. 13 (2003) 777–797
14. Blute, R., Cockett, J.R.B., Seely, R.A.G., Trimble, T.H.: Natural deduction and coherence

for weakly distributive categories. JPAA 13 (1996) 229–296
15. Brünnler, K.: Atomic cut elimination for classical logic. In Volume 2803 LNCS, Springer-

Verlag (2003) 86–97 Available at http://www.iam.unibe.ch/˜kai/Papers/
AtomicCutElimination-short.pdf.

33

A Game Semantics for Proof Search:
Preliminary Results

Dale Miller

INRIA-Futurs and École Polytechnique
Palaiseau, France

We describe an ongoing project in which we attempt to describe a neutral ap-
proach to proof and refutation. In particular, we present a language of neutral
expressions which contains one element for each de Morgan pair of connectives in
(linear) logic. Our goal is then to describe, in a neutral fashion, what it means to
prove or refute. For this, we use games where moves are described as transitions
between positions built with neutral expressions. We can then relate winning
a game with provability. More precisely we relate winning strategies for an ex-
pression N with proofs for a linear logic formula obtained from N : to winning
∃∀-strategies for N we associate proofs of the positive (synchronous) translation
of N into logic. On the other hand, to winning ∀∃-strategies for N we associate
proofs of the negative (asynchronous) translation of N into logic.

This work is joint with Alexis Saurin. This abstract is based on a paper presented
at Mathematical Foundations of Programming Semantics (MFPS) 2005.

34

The three dimensions of proofs

Yves Guiraud

Institut de Mathématiques de Luminy, Marseille, France
guiraud@iml.univ-mrs.fr

Abstract. This document outlines a 3-categorical translation of the proofs of SKS, a deep inference formal
system for classical propositional logic. This interpretation identifies two proofs that only differ by bureaucratic
considerations: two proofs using the same inference rules, but in different order. Then, the notion of Penrose
diagrams is extended to provide 3-dimensional representations for proofs. Finally, the 3-categorical setting al-
lows one to express local transformations of proofs as 4-dimensional computations; this yields the first concrete
example of 4-dimensional rewriting and promises new tools to prove normalization and factorisation results.

1 The two dimensions of formulas

This section is about a 2-dimensional translation of SKS formulas, heavily inspired by the one already
known for terms, described and studied in (Guiraud 2004a, 2004b).

1.1 The formulas of system SKS

System SKS is a deep inference formal system for proofs of propositional logic (Brünnler 2004). It is one
of the formalisms expressed in the calculus of structures style, an alternative to sequent calculus where
inference rules can be applied at any depth inside formulas (Guglielmi 2005). Here a slightly alternative
definition of SKS is used.

Definition 1. Let us consider a countable set A. The set A of SKS atoms is the set of terms built on
the variables in A and the signature ΣA made of one unary operator (·), modulo the congruence ≡A

generated by the relation a ≡ a. Then, given another countable set V , the set F of SKS formulas is the
set of terms built on V and the signature ΣFmade of two constants � and ⊥, one unary operator from A

to F and two binary operators∧ and ∨, modulo the congruence≡F generated by the following relations:

(f ∧ g) ∧ h ≡ f ∧ (g ∧ h) (f ∨ g) ∨ h ≡ f ∨ (g ∨ h)

f ∧ g ≡ g ∧ f f ∨ g ≡ g ∨ f

�∧ f ≡ f ⊥∨ f ≡ f

⊥∧⊥ ≡ ⊥ �∨� ≡ �

�

Note that in the original description of system SKS, only closed terms are considered for formulas.
However, in order reduce deduction rules to a finite number, it is more convenient to consider all terms.
Furthermore, it does not raise any complication, neither does the fact of taking non-linear terms in ac-
count.

35

1.2 The 2-polygraph of logical connectives

Here a translation of the aforegiven SKS signature into a 2-polygraph is given. Defining the structure of
polygraph can be quite cumbersome, but giving an idea is rather simple: it is a cellular presentation of a
2-graph with no limitation on the shapes of the 2-cells. Such an object is built inductively:

- First, one considers a set Σ0 of 0-cells, pictured as points in the plane.
- Then, one takes a set Σ1 of 1-cells, pictured as arrows between these points; formally, the pair

(Σ0, Σ1) is equipped with a structure of (1-)graph.
- From these data, one can build a (1-)category, which is the graph (Σ0, 〈Σ1〉) of finite paths in (Σ0, Σ1),
equipped with the concatenation operation. Two paths starting at the same point and ending at the
same point are parallel.

- Finally, one chooses a set of 2-cells on the category (Σ0, 〈Σ1〉): this is a set Σ2 of arrows between
parallel paths. They are pictured as directed surfaces, like in the following examples:

c

x x

a b

c

⇓ α x x

x

⇓ β y

x x

x

x
b c

b
c

c

⇓ γ

y

For a formal definition of 2-polygraph, see (Burroni 1993), where these objects were introduced, or the
first pages of (Métayer 2003). There is another, more useful representation of 2-cells: Penrose diagrams,
already used in (Lafont 2003; Guiraud 2004a, 2004b), make 2-cells appear as circuits. For example, the
three aforegiven 2-cells become:

x

a b

c

c

β γ

b c

cb c

αx

y

x

x x x

x
y

To build these diagrams, the following correspondance is used:

- Each 0-cell is pictured as a label (or colour) for parts of the plane; in the given representations, these
labels have been grayed out for sake of clarity.

- Each 1-cell is drawn using a vertical wire, separating the plane in two parts, the leftmost one labelled
with the name of its source and the rightmost one with the name of its target; the wire itself is labelled
(or coloured) with the name of the 1-cell.

- Each 2-cell is pictured by a small circuit component, a bit like logical gates, with inputs and outputs
corresponding to its source and its target.

In most of the concrete examples encountered so far, there has been only one 0-cell and at most two
1-cells. Therefore, the labels in the parts of the plane can be dropped (they are all equal) and one uses
only one or two colours for the wires; this simplifies diagrams, but considering the general case does not
yield any difficulty since it is easily handled in pictures.

This being defined, let us build a 2-polygraph Σ from the signature defining SKS formulas. We follow
the same idea as the one used in (Guiraud 2004a, 2004b) to translate signatures of terms:

36

- The 2-polygraph Σ has only one 0-cell, denoted by ∗ (no label in parts of the plane).
- Then, we add two 1-cells, denoted by a and f, respectively corresponding to the sort of atoms (gray
wires) and to the sort of formulas (black wires).

- Finally, we consider the following twelve 2-cells:

∧ τaaτafτfaτffεδιν⊥�∨

The interpretation of each 2-cell is given below each diagram. Each one is seen as an operation on
formulas, such as (f, g) �→ f∧g for∧. The cells ι and ν stand respectively for the inclusion of atoms into
formulas and for the negation on atoms. To these ones, some so-called ressource management operators
are added; their role is to locally handle duplication, erasement and permutation operations:

- The 2-cell δ is a local duplicator of atoms. Note that, in what follows, duplication of formulas is not
necessary; however, one could add a local duplicator of formulas, with no increased difficulty, but at
the cost of a few more equations; in that case, the duplicators would be, if necessary, distinguished
by notations such as δa and δf.

- The 2-cell ε is a local eraser of atoms. The same remark applies, eventually leading to the addition
of another local eraser εf for formulas, the first one becoming εa.

- The four remaining 2-cells are local permutations; there is one for each possible pair of colours, but
generally all of them are simply denoted by τ.

1.3 The 2-category of formulas

In the same way as the signature operators are building blocks for formulas, these circuit components are
used to craft something bigger, in which SKS formulas can be interpreted.

From a 2-polygraph, one considers all the circuits one can build, by plugging together any number of
copies of its 2-cells. This is the same idea as the one leading from logical gates to boolean circuits, which
are all the constructions one can make using any number of AND-gates, OR-gates, etc.

For example, with the three aforegiven 2-cells α, β and γ, one can build the following circuit:

y

β

α

a b

γ

α

a b

y

cc

c

cb

x
x

x

x

In the case of the polygraph Σ, built from the signature of SKS, one can get the following circuits:

37

In what follows, we give the following interpretations to these circuits:

- The first one corresponds to the map A× F → F ×A sending (a, f) to
(
(⊥∨ f) ∧ a, a

)
.

- The second one is the constant map A → F sending every atom to �.
- The third one is the map A → F sending a to the formula a ∧ a.
- The fourth one is the map A → F sending a to the formula a ∧ a.

There are two kinds of pastings used to build these circuits: either horizontally or vertically. These
operations, called compositions, are pictured this way:

�0
()

,
()

,f g f g f
f

g
g

�−→ �−→
�1

The first one, �0, is only defined if the plane labels match (this is always the case here, since there is only
one 0-cell). The second one, �1, is only defined if the wires labels match (here, there must be the same
number of wires, with the same colours, in the same order). The fact that there are two different ways of
pasting circuits together, and only two, is the reason why we say that they are 2-dimensional objects.

These two dimensions are not totally independent. Indeed, the circuits are seen as genuine topological
objects. This means that they are to be considered modulo isotopy, or homeomorphical deformation: one
can deform wires and move components, provided no crossing is created. This identification is generated
by the following local isotopy relations, given for each pair of components α and β:

≡
β

α

α β

β

α

≡

Definition 2. The object 〈Σ〉 consisting of all circuits modulo isotopy is called the free 2-category gen-
erated by the 2-polygraph Σ; the circuits are the 2-arrows of 〈Σ〉. If f is one of them, then s1(f) and t1(f)

respectively denote the source and target 1-arrows of f. �

One can find in (MacLane 1998) more information about 2-categories and (Chang and Lauda 2004) is a
really comprehensive survey about the zoology of n-categories. Now, we sketch how SKS formulas are
related to the 2-arrows of 〈Σ〉. First, let us build a map from 2-arrows to (families) of formulas.

Since both A and V , the sets of atoms and formulas variables, are countable, one is allowed to choose a
strict linear order on each set, so that the elements of A are denoted by a1, a2, a3, etc. and the elements
of V are denoted by x1, x2, x3, etc.

We define, for each circuit f, a map π(f) acting on atoms and formulas. Let us start by giving its source
and target:

- First, one defines π(a) = A and π(f) = F.
- Then, one extends π(x �0 y) = π(x)× π(y), for any pair (x, y) of 1-arrows in 〈Σ〉.

38

- Finally, for any circuit f, π(f) has source and target given by:

π(f) : π(s1(f)) → π(t1(f)).

Then, we define π(f) inductively:

- If f is the identity of a, then π(f) is the identity of A; both identities are abusively denoted by a and
A.

- If f is (the identity of) f, then π(f) is (the identity of) F.
- π(∧) : F × F → F is defined by π(∧)(x, y) = x ∧ y, and similarly for ∨.
- π(�) : ∗→ F is the constant map �, and similarly for ⊥.
- π(ι) : A → F is the inclusion of A into F.
- π(ν) : A → A sends each atom a to a.
- π(δ) : A → A×A sends a to (a, a).
- π(ε) : A → ∗ is the terminal map of A.
- π(τf,f) : F × F → F × F send (x, y) to (y, x), and similarly for the other local permutators.
- If f has the shape f = g �0 h, then π(f) = (π(g), π(h)), the juxtaposition of both maps; this means
that π(g) acts on the first inputs and π(h) on the last inputs.

- If f has the shape f = g �1 h, then π(f) = π(h) ◦ π(g), the composition of π(g) and π(h).

Then, one has to check that π is well-defined: it is compatible with the isotopy relation, since the cartesian
product is a bifunctor. Finally, one associates a formula π(f) to each circuit f by application of π(f) on
some variables:

- One defines vn(a) = an, the nth atom variable, and vn(f) = xn, the nth formula variable.
- One inductively extends vn to vn(x �0 u) = (vn(x), vn+1(u)), for every 1-cell x and 1-arrow u.
- Finally, one defines π(f) = π(f)(v1(s1(f))).

For example, the four aforegiven circuits are respectively sent to the formulas:(
(⊥∨ x1) ∧ a1, a1

)
, �, a1 ∧ a1, a1 ∧ a1.

Hence, we have built a projection π from circuits to formulas. But, for the moment, we cannot define a
canonical sectionϕ, since the projection π is not compatible with the congruences≡A nor≡F. Indeed, for
example, both circuits ν�1ν and a are sent to the atom a1, since a ≡Aa, yet they are two distinct circuits.

Furthermore, π−1(≡A) and π−1(≡F) do not consitute the whole kernel of π. For example, both circuits
(τ�1τ) and f�0 f are sent to the pair (x1, x2); however, they are once again different circuits. These addi-
tional equalities are called resource management equations and the congruence they generate on circuits
is denoted by ≡Δ.

There exist more than one possibility to solve this problem, the choice being left to the user. On a first
approach, one can translate all the equalities defining ≡A and ≡F to equalities on circuits; then, add the
equalities defining ≡Δ; finally, consider circuits modulo the congruence generated by all of these equali-
ties. Then, equivalence classes of circuits would correspond to families of formulas.

But equalities and computational objects rarely live together peacefully. Another idea consists in the
replacement of equalities by computations proving these equalities; this point of view is more in adequa-
tion with the computational flavour of the considered objects. Then, both (Burroni 1993) and (Baez and
Dolan 1998) tell us that this calculus can be well-represented by objects in the dimension above.

39

2 The three dimensions of proofs

2.1 The proofs of system SKS

We give here a slightly different definition than the original one from (Brünnler 2004); non-closed for-
mulas allow one to remove contexts in the rules, reducing them to a finite number.

Definition 3. The inference rules of system SKS are given by:

� −→ a ∨ a (x ∨ y) ∧ z −→ (x ∧ z) ∨ y ⊥ −→ a a ∨ a −→ a

a ∧ a −→ ⊥ (x ∧ y) ∨ (z ∧ t) −→ (x ∨ z) ∧ (y ∨ t) a −→ � a −→ a ∧ a

From left to right, top to bottom, these rules are called introduction (or axiom), switch, weakening, con-
traction, cointroduction (or cut), medial, coweakening and cocontraction. �

From these elementary blocks, one builds SKS proofs exactly the same way one builds rewriting paths
from rewriting rules: each inference rule α generates a proof step from C[s(α) · σ] to C[t(α) · σ], for
every context C and every substitution σ - see (Baader and Nipkow 1998) or (Guiraud 2004a) for more
information about these notions.

Then one can compose proof steps, provided the target of each one matches the source of the next one.
Such a path going from a formula u to a formula v is called a proof (from u to v); when u = �, then the
path is a complete proof (of v).

Example 4. Here is a complete proof of (a ∧ b) ∨ (a ∨ b)):

� ≡F �∧� → (a ∨ a) ∧�
→ (a ∨ a) ∧ (b ∨ b)

→
(
a ∧ (b ∨ b)

)
∨ a ≡F

(
(b ∨ b) ∧ a

)
∨ a

→
(
(b ∧ a) ∨ b

)
∨ a ≡F (a ∧ b) ∨ (a ∨ b).

The main problem coming from using term-flavoured notations for formulas is that it raises bureaucracy,
that can hardly be controlled by equations.

A first example of bureaucracy is illustrated by the aforegiven SKS proof. Indeed, there are two possible
proofs from�∧� to (a∨a)∧ (b∨b), generating two different complete proofs of (a∧b)∨ (a∨b):

�∧� ��

��

(a ∨ a) ∧�

��
�∧ (b ∨ b) �� (a ∨ a) ∧ (b ∨ b)

But the user may desire to identify these two proofs: indeed, they only differ by the order of application
of two introduction rules on different subformulas; so, in essence, they could be considered the same.
Yet, they are distinct in the SKS formalism.

40

For this kind of bureaucracy, equations remain easy to craft. But there is another kind of bureaucracy that
can hardly be defined equationally on formulas expressed as terms. Let us assume that F is a proof from
u to v and that x and y are two formulas variables; then, one gets two different proofs from (u ∧ x) ∨ y

to (v ∨ y) ∧ x:

(u ∧ x) ∨ y ��

��

(v ∧ x) ∨ y

��
(u ∨ y) ∧ x �� (v ∨ y) ∧ x

Once again, these two proofs could be considered as equal. But here, equations are painful to define. This
is because the term notation makes the two different compositions �0 and �1 appear different, yet they
are similar in essence.

The two-dimensional interpretation of proofs makes it possible to produce automatically the equations
corresponding to these two kinds of bureaucracy, provided the proofs are seen as three-dimensional
objects.

2.2 The 3-polygraph of inference rules

Here, we associate a 3-polygraph to the inference rules of SKS. Let us give an informal definition of
what is a 3-polygraph - the formal one can still be found in (Burroni 1993) or (Métayer 2003).

Definition 5. A 3-polygraph is a family Σ = (Σ0, Σ1, Σ2, Σ3) where (Σ0, Σ1, Σ2) is a 2-polygraph and
Σ3 is an additional set of 3-cells: each one is an arrow between two parallel circuits f and g, built from
the 2-polygraph. �

These 3-dimensional cells can be represented as computations from one circuit to another. The ones
corresponding to the rules of SKS are the following eight 3-cells:

For the moment, we use this representation for proofs, but another one is used later in order to give a
genuine three-dimensional vision of these objects.

2.3 The 3-category of proofs

These 3-cells are seen as elementary components that are used to build bigger objects, representing
(families of) proofs. To give an idea, let us imagine a proof as a block. Here are two different possible
representations:

41

g

m

n

f g

F

f

This is a proof F from a circuit f to a circuit g, both having m inputs and n outputs. To compare both
representations, one can see the second one as composed of three vertical slices of the block: one before
the block (f), one in the middle of the block (F) and one after the block (g).

These blocks can be pasted in three different ways, each one corresponding to one of its dimensions:

GF

G F

G
F

If one makes slices for each of these three constructions, one gets:

f g f ′ g ′

F G

f g

F G

h

f

g

f ′

g ′
F

G

- The first composition produces a proof F �0 G composed of two juxtaposed subproofs (one in each
subformula); it is a new composition of proofs, linked to another one revealed by the two-dimensional
interpretation of formulas (the juxtaposition of formulas).

- The second one yields a proof F�1Gmade of one subproof plugged into another one; it is also a new
composition corresponding to the composition of formulas.

- The third composition is the usual composition F �2 G of proofs, one after the other.

When these constructions are defined, one has to identify some of them along some relations in order to
get the 3-arrows of the free 3-category. Among these relations are the monoidal ones:

- For any i ∈ {0, 1, 2} and any 3-arrows F, G, H, the following associativity relation holds whenever
one of its members is defined:

(F �i G) �i H = F �i (G �i H).

- For any 3-arrow F from f to g, withm inputs and n outputs, the following unit relations hold:

F �0 ∗ = F = ∗ �0 F, F �1 n = F = m �1 F, F �2 g = F = f �2 F.

To these families of equations, one adds the isotopy relations. Indeed, 3-dimensional constructions are
one again seen as topological objects; this implies that they are identified modulo homeomorphic defor-
mation, or isotopy.

42

The isotopy classes are given by the following equations, given graphically:

≡

≡ ≡

≡

≡

≡

There are three types of isotopy, two of them being detailed thereafter.

3 Isotopy and bureaucracy

Isotopy relations on 3-dimensional arrows are divided into three families. Two of them are deeply linked
with the two types of bureaucracy one encounters when dealing with SKS proofs or, more generally, with
proofs expressed in the calculus of structures; each one is detailed thereafter. The third family comes from
the only isotopy type one gets in dimension 2 (on circuits): it is a degenerated form of this one.

3.1 Isotopy and bureaucracy A

The first family of isotopy relations is given graphically by:

≡≡

In equational form, it is expressed as:

(F �0 g) �2 (f ′ �0 G) ≡ F �0 G ≡ (f �0 G) �2 (F �0 g ′),

for any F : f → f ′ and G : g → g ′. Thus, this isotopy identifies the three following proofs:

F �0 g ′

f g

f

g

g ′

f ′

f ′ g ′

f �0 G
≡

F �0 G
≡

F �0 g

f ′ �0 G

Now, let us see how this is linked to type A bureaucracy: in SKS, the applications of two proofs in two
different subformulas must be done one after the other; and the two possibilities correspond to two dif-
ferent proofs.

43

For example, as stated earlier, one gets two different SKS proofs from � ∧ � to (a ∨ a) ∧ (b ∨ b),
depending on which of a or b is introduced first. In SKS this yields two different proofs; if one wants to
identify them, then a canonical representative has to be chosen, which is not possible, for either choice
would be arbitrary.

But, in the 3-category, a third proof exists, corresponding to the simultaneous introduction of a and b:
this one can be chosen as a canonical representative.

Even more important, one may want to have equations describing this type of bureaucracy. This is not
really hard to express in the SKS style, but it is definitely easier in the 3-dimensional framework.

Furthermore, it is only a SKS feature that the other type of bureaucracy appears to be totally different in
essence than the type A one. Indeed, as described in the next paragraph, the two types are completely
similar in the 3-dimensional language.

3.2 Isotopy and bureaucracy B

The second family of isotopy relations is:

≡ ≡

In equational form, for any F : f → f ′ and G : g → g ′ such that the proof F �1 G is defined:

(F �1 g) �2 (f ′ �1 G) ≡ F �1 G ≡ (f �1 G) �2 (F �1 g ′),

Thus, this isotopy type identifies the three following paths:

F �1 g ′

f

g

f ′

g ′

f ′

g

f

g ′

F �1 G

≡

≡

f ′ �1 GF �1 g

f �1 G

This is deeply linked to type B bureaucracy: in SKS, one cannot apply at the same time one proof inside
another one; one of them must be done before the other, yielding two different proofs.

For example, let us consider a proof F from f to g, together with two variables x and y. Then, one gets
two different SKS proofs from (f ∨ x) ∧ y to (g ∧ y) ∨ x, depending on whether F is applied before or
after the switch rule. Once again, there is no canonical choice between them, whereas in the 3-category
there is one.

44

But, the main interest lies elsewhere: in the SKS style, it is quite hard to express equationally this bureau-
cracy type B, while in the 3-category, it is not painful at all, since both bureaucracy types are completely
similar; indeed, each one corresponds to an isotopy relation, between �2 and �0 for type A, between �2

and �1 for type B.

3.3 Some geography

There is a point in which higher-dimensional rewriting excels: the classification of equational and deduc-
tive theories. And this is also the case for the calculus of structures and its offsprings, formalisms A and
B - when concerned with classical propositional logic, these three are SKS, SKS modulo bureaucracy A
and SKS modulo bureaucracies A and B. Formalism A is defined in (Guglielmi 2004a) and formalism B
is in (Guglielmi 2004b).

Existing descriptions of the three formalisms look quite different, while they can be viewed as parts
of a bigger scheme. Let us consider the 2-polygraph of formulas and build the following commutative
diagram of 3-polygraphs over the free 2-category of formulas:

Σ �� ��
��

���
��

��
��

Σ �� ��
��

��

Σ
∗
��

��
Σ̂ �� �� Σ̂∗ �� ��

����

Σ̂∗/ ≡A

����
Σ̂∗/ ≡B

�� �� 〈Σ〉

Objects in this diagram are encountered when constructing, step by step, the free 3-category generated
by a 3-polygraph. Here is an informal description of them:

- One starts with a set Σ of 3-cells: these are rewriting rules on circuits.
- From these, one can consider all the rules, applied in any context, which yields Σ, the set of one-step
sequential reductions.

- Alternatively, one can consider all the rules applied in any existing context and possibly in parallel
to build Σ̂, the set of one-step parallel reductions.

- Then, one considers the reduction paths generated by Σ: this produces the set Σ
∗
of sequential reduc-

tions. This is where the calculus of structures (here SKS) lives.
- Alternatively, the paths generated by Σ̂ give the set Σ̂∗ of parallel reductions. This is the biggest set
of 3-arrows one can build from Σ: there, bureaucracy is at its highest level, since all the described
proofs differing by the order of application of subproofs are distinguished; furthermore, there is at
each time a third possible proof, consisting in the simultaneous application of both subproofs.

- Then one starts the quotients by isotopy relations. The first possibility is to quotient by the first
family of isotopy relations, corresponding to bureaucracy type A. This yields Σ̂∗/ ≡A, where lives
formalism A.

- As an alternative, one can instead quotient by the isotopy relations corresponding to bureaucracy type
B, to get Σ̂∗/ ≡B which has no equivalent in calculus of structures-derived formalisms.

- Finally, doing both quotients, one gets the free 3-category 〈Σ〉 generated by Σ, where all the bureau-
cracy is killed. This is where formalism B lives.

45

This diagram is indeed a map of where known formalisms are located. But it also encompasses still un-
known formalisms that could prove to be useful, like Σ̂∗ or Σ̂∗/ ≡B. This is an example of the freedom
higher-dimensional rewriting lets to the user in the exact design of the proofs he wants to consider.

Another example of freedom is given later about the possibilities offered to the user for handling the
equations between formulas.

4 A 3-dimensional representation for proofs

This section is a first attempt at representing proofs in 3 dimensions, so that one can view them as the
genuine 3-dimensional objects they are.

4.1 The theoretical idea

In order to represent 2-arrows, Penrose diagrams are really convenient; they make 2-arrows appear as
circuits, using the following scheme:

- Each 2-dimensional cell is pictured as a vertice in a graph (a 0-dimensional object).
- Each 1-dimensional cell is drawn as an edge in a graph (a 1-dimensional object).
- Each 0-dimensional cell is represented by a part of the plane which boundaries are the edges of the
graph (2-dimensional objects).

- Then, the vertices and edges of the graph are thickened until they are 2-dimensional; note that in the
circuit representation, wires are not thickened to make drawing easier, but they should be for sake of
coherence.

The application of a similar process to a 3-dimensional arrow gives:

- Each 3-dimensional cell is a point.
- Each 2-dimensional cell is a line (either open or between two points).
- Each 1-dimensional cell is a surface (either open or with a line as a boundary).
- Each 0-dimensional cell is a volume lying between surfaces.
- Finally, every object is thickened, if necessary, until it gets 3-dimensional.

This associates 3-dimensional Penrose diagrams to 3-arrows.

4.2 One glance at three-dimensional proofs

This is time to draw a 3-dimensional proof. First, let us make a Penrose diagram for a rule; the rewriting
rule style is also given:

46

Then, Penrose diagrams for proofs are pastings of such 3-dimensional blocks:

In order to understand how this object is built (and what lies behind some opaque volumes), one can
make vertical slices of this object, to produce the following rewriting-style proof:

a ∧ b(a ∧ b) ∨ (a ∧ b) (a ∨ a) ∧ (b ∨ b) (a ∨ a) ∧ (b ∨ b)

Since this representation uses only a fake third dimension, one could prefer to use a 3-dimensional mod-
eler. This has many advantages, such as being able to turn around the object and make snapshots from
different points of view. For example, two views of the same proof, presented in the next page, were
generated using the freely available software POV-Ray1.

1 http://www.povray.org

47

Two remarks shall be made about the representations:

- On the 3-dimensional ones, less emphasis has been put on circuits, so that different types of wires or
different operators appear the same while they should not.

- Some surfaces are not drawn, only for sake of clarity, but these objects should appear somewhat more
closed.

This part is quite new and some work will be necessary to produce nice and more usable representations,
so that the third dimension can provide more insight on what kind of objects proofs are.

5 The twilight zone

When the third dimension gets involved, one can ask whether this dimensional increase will stop or not.
The answer is quite simple: no. Indeed there are, at least, two good reasons to proceed.

The first one is total abstract nonsense. In category theory, there is a proverb saying: when one wants
to study some objects, one should rather study their morphisms. Let us add that morphisms between
3-arrows are 4-arrows in a 4-category.

More concretely, there are two kinds of examples that give rise to 4-dimensional arrows: equations be-
tween formulas and local transformations on proofs. This section is about a short glance at these two
issues.

5.1 Equations between formulas

Previously, equations between formulas have been left aside. It has been said that they can be translated
as equations between circuits. This is just one possibility, the higher-order rewriting framework allowing
one to choose between many possible considerations. Here are three of them, but one can at least take
any desired combination of them.

48

Equations are equations. The first possibility is, as stated before, to translate equations between formu-
las into equations between circuits. In that case, one considers circuitsmodulo two families of equations.

The first one is a faithful translation of the equations on formulas, so that, for example, one can recognize
associativity of ∧ and ∨ among them:

≡

≡ ≡ ≡ ≡

≡ ≡ ≡ ≡

≡≡

The second family purpose is to give the resource management operators their real meaning, so that, for
example, δ really is a local duplicator; among others, one gets the following equations:

≡

≡≡ ≡

≡ ≡

From equations to 3-dimensional isomorphisms. Rather than considering equations on formulas as equa-
tions on circuits, one can treat them as invertible computations. Indeed, equations are often clashing with
computational considerations, so that, whenever possible, they are replaced by local computations.

Hence, one could replace the two aforementionned families of equations by two families of invertible
3-cells. For example, the equation enforcing the associativity of∧ is split into two 3-cells:

Then, in order to ensure that they are 3-dimensional isomorphisms, one adds equations between proofs:
both possible composites are equal to the corresponding identity. Hence, this leaves no equation between
objects of dimension 2, while two of them appear between objects of dimension 3 for each equation on
formulas.

From equations to 4-dimensional computations. There is no reason to stop the process of lifting up
equations. In order to achieve this, the pairs of 3-dimensional cells replacing equations are keeped, but
equations between 3-dimensional composites are lifted up.

Hence, instead of considering commutative diagrams between 3-dimensional arrows, one defines 4-
dimensional cells: each one represents a computation from one composite to the identity 3-cell.

49

For example, the equation about the associativity of ∧ is finally replaced by two 3-cells, together with
the following two 4-cells:

==

5.2 Local computations on proofs

The next example of 4-dimensional cells is in fact a generalization of the former one. Indeed, it arises
whenever one wants to compute normal forms for proofs, modulo some user-specified equations. This
encompasses the former example, since these equations can be the ones stating that two 3-cells are in-
verse one another.

As an example of generalized computation, the following 4-cell can be introduced in order to simplify
proofs with a weakening followed by a contraction, both acting on the same atom:

≡

≡

In fact, any local computation on proofs can be replaced by a 4-cell. All the 4-cells being given, the
computations they generate are the 4-dimensional arrows of a free 4-category.

5.3 Some temporary relief

This point of view immediately arises the following question: how can one use the fact that these com-
putations are 4-dimensional objects? This comes with the subsidiary question: how can one represent
4-dimensional objects? In fact, this is not necessary at this point.

To explain this answer, let us step back by one dimension. Term rewriting is about some properties
(termination and confluence) of computations on 2-dimensional objects. While considering the whole
2-dimensional structure of terms is really useful, the computations need not be seen as genuine 3-
dimensional objects: the only purpose of doing so would be to identify reduction paths modulo bureau-
cracy. But term rewriting is not concerned with the classification of reduction paths (only their existence)
and neither termination nor confluence are modified by bureaucracy.

50

Then comes proof theory which, with the higher-dimensional point of view, studies 3-dimensional ob-
jects, or rather computations between them. Hence, with the same arguments as above, considering the
whole 3-dimensional structure of proofs shall prove to be useful. But the four dimensions of computations
on proofs are not involved if one only wants to prove termination or confluence of proof normalization
processes.

In conclusion, if it is only about (normalization of) proofs, then one can live with rewriting paths on
3-dimensional arrows. But when times will come when the classification of rewriting paths on proofs is
concerned, then the fourth dimension will be useful.

For example to manage the six types of bureaucracy lurking in dimension 4.

6 Future directions

This paper presents a higher-dimensional rewriting point of view for the deep inference system SKS. Its
main benefit is to provide a uniform setting for many possible systems, depending on what the user wants
to emphasize; indeed, much freedom is left on how to consider bureaucracy or how to see equations.

Furthermore, higher-dimensional rewriting provides a common view on equations and computations be-
tween proofs: they are seen as 4-dimensional cells between proofs. So one just has to choose the local
computations he wants to study, then the theory can be used to see if the generated calculus is terminating
or not, confluent or not.

However, some work will be necessary here to provide the required tools, such as a recipe to craft termi-
nation orders like the one in (Guiraud 2004b) for 3-dimensional rewriting. Another tool will concern the
study of 4-dimensional critical pairs; this will be an adaptation of one that is still under development for
3-dimensional critical pairs and will be described in a subsequent paper.

Aside from these computational issues, proofs seen as 3-dimensional objects are naturally equipped with
a geometric representation, using 3-dimensional Penrose diagrams. The links between these pictures and
proof nets still have to be explored. For the moment, we can at least say that the proposed 3-dimensional
representations provide a completely different way to look at proofs.

Here, only system SKS has been mentionned, mainly because it is smaller than, for example, system
SLLS for linear logic (Straßburger 2003). However, it is not very dangerous to conjecture that this trans-
lation shall work as well for SLLS.

A bit more risky is the assertion that the translation should also work with any deep inference-style for-
malism, provided there is no quantifier in the syntax of the formulas. Indeed, binders such as quantifiers
or the abstraction in the λ-calculus are yet to be understood in the higher-dimensional point of view.

Finally, a bigger conjecture would be that such a translation can be made for sequent-style proofs (still
with no binder allowed in the formulas). If this result holds, then one will be able to say that, in essence,
proof theory studies 4-dimensional rewriting systems.

51

References

Franz Baader and Tobias Nipkow, Term rewriting and all that, Cambridge University Press, 1998.

John Carlos Baez and James Dolan, Categorification, ArXiv preprint, 1998.

Kai Brünnler, Deep inference and symmetry in classical proofs, Logos Verlag, 2004.

Albert Burroni, Higher-dimensional word problems with applications to equational logic, Theoretical
Computer Science 115(1), 1993.

Eugenia Chang and Aaron Lauda, Higher-dimensional categories: an illustrated guide book, 2004.

Alessio Guglielmi, Formalism A, note, 2004(a).

Alessio Guglielmi, Formalism B, note, 2004(b).

Alessio Guglielmi, Deep inference and the calculus of structures, project report, 2005.

Yves Guiraud, Présentations d’opérades et systèmes de réécriture [Operad presentations and rewriting
systems], thèse de doctorat, Université Montpellier 2, 2004 (a).

Yves Guiraud, Termination orders for 3-dimensional rewriting, submitted preprint, 2004 (b).

Yves Lafont, Towards an algebraic theory of boolean circuits, Journal of Pure and Applied Algebra 184,
2003.

Saunders MacLane, Categories for the working mathematician, Springer, 1998.

François Métayer, Resolutions by polygraphs, Theory and Applications of Categories 11(7).

Lutz Straßburger, Linear logic and noncommutativity in the calculus of structures, PhD thesis, Technis-
chen Universität Dresden, 2003.

52

THE PROBLEM OF BUREAUCRACY AND IDENTITY OF PROOFS FROM THE
PERSPECTIVE OF DEEP INFERENCE
Alessio Guglielmi (TU Dresden and University of Bath)
17.6.2005

Abstract

Deep inference offers possibilities for getting rid of much
bureaucracy in deductive systems, and, correspondingly, to come up
with interesting notions of proof identity. We face now the problem
of designing formalisms which are intrinsically bureaucracy-free.
Since we have a design problem, it is important to elaborate
definitions that will remain useful for many years to come. I
propose a discussion of several proposals. The discussion will
hopefully be also a good way of introducing deep inference to those
who don’t know it.

In my talk I will explain in detail and with examples all the
notions quickly sketched below. It is apparently extremely simple
stuff, but there are subtle issues that only experienced proof
theorists might appreciate; I will try to address them. The proposed
solutions are currently discussed on the mailing list Frogs. By the
time of the workshop, in addition to my proposed definitions, I will
have also the opinions of the participants to the discussions.

Bureaucracy and Identity

Bureaucracy and identity of proofs are intimately related.

There is no formal notion of bureaucracy, but I guess the consensus
is that, when two proofs are morally the same, but they differ in
inessential details, then this is due to bureaucracy.

If this is so, we should conclude that eliminating bureaucracy
should lead us to eliminate the inessential details that blur the
`sameness´, i.e., identity, of proofs.

We should agree that, for any given logic, there are several
possible notions of identity of proofs, and people can invent more
and more of them.

Given a notion of identity and a formalism, either the formalism is
able to express the identical proofs or it isn't: in the latter
case, we have bureaucracy, and we have an enemy.

Our goal is to attack some specific, important kinds of bureaucracy,
in order to improve the ability of proof theory to deal with
bureaucracy. It is hopeless to try and define bureaucracy once and
for all. However, it is now possible to define formalisms which get
rid of the most brutal and medieval forms of bureaucracy.

53

Bureaucracy in the Formalism and in the Deductive System

I will use in the following the syntax of the calculus of structures
(CoS) [WS].

There are several sources of bureaucracy, and I think it is
convenient to address them separately. It should be possible to make
a broad distinction between bureaucracy induced by the formalism and
bureaucracy induced by the specific deductive system used (in the
given formalism).

What I call formalism A [1] takes care of bureaucracy of the kind

[R' T'] [R' T']
r'------- r -------
[R' T] [R T']

r ------- vs. r'------- ,
[R T] [R T]

where the order of the application of two inference rules doesn't
morally matter. In formalism A, one can write

R' T'
[r--- r'---]

R T

and the problem is solved. This is an example of formalism-related
bureaucracy: CoS only sees the two derivations above, and doesn't
express the one below.

However, consider a deductive system where associativity is explicit
(I mean, we are not working modulo associativity). Consider the
following two derivations:

[[a a] a]
ass -----------

[a [a a]] [[a a] a]
ac_ ---------- ac_ ---------

[a a] [a a]
ac_ ------ vs. ac_ ------ .

a a

They might be considered `morally the same´, but it is difficult to
fix the problem in the formalism definition. Perhaps, a better idea
is to fix the deductive system. For example, one can propose a
deductive system with sort of a `general atomic contraction´,
quotient by associativity, and go for the derivation

[a a a]
gac_ ------- .

a

54

So, this could be an example of fixing the bureaucracy problems by
fixing the deductive system (inside a given formalism).

A Problem with Commutativity and Associativity

In my opinion, the very first source of bureaucracy in all deductive
systems in all formalisms is associativity and commutativity (when
present) in formulae. I mean, in most cases, we do not want to
distinguish formulae, and so proofs, just because of the order of
associations, right?

The only practical way of dealing with commutativity is working
under an equivalence relation that takes care of it. Associativity
offers some more options. Anyway, working under associativity and
commutativity, in a deductive system, is difficult. Actually, it is
also dangerous.

Consider

E C
[| |]
[A B] A

* ---------- .
A [B A]

[| |]
D F

This is a derivation (in formalism B [2]) in which two derivations
are vertically composed by *, and we work under commutativity and
associativity. The problem is that this is the only way we have in
formalism B for representing (what I could graphically and
imprecisely represent as)

E C
[| |]
[A B] A
| \ | .
A [B A]

[| |]
D F

However, the same derivation above could also stand for

E C
| |

[[A B] A] ,
| |
F D

and this of course is morally different!

What can we do? Well, we could stop working under commutativity and
associativity: this way we could easily distinguish between the two

55

cases. However, if we drop commutativity and associativity, we get
back all the bureaucracy in formulae, with a vengeance, because now
this bureaucracy scales up to proof composition.

Possible Solutions

Apart from developing the ideas in [2], there is now the possibility
of designing a geometric formalism that solves the problems
mentioned above, which I called wired deduction. I posted its
possible definition(s) to the mailing list Frogs, and this generated
a discussion [3]. For convenience, I reproduce in the appendix the
email with the definition, but there is no room for reporting all
the issues discussed on Frogs.

It is too early to tell whether this is the long-term solution we
are looking for, however, the new formalism certainly works well for
classical logic, and this is what I’d like to show at the workshop,
since the ideas of wired deduction are all clearly exposed also in
the case of classical logic.

References

[1] Alessio Guglielmi. Formalism A. URL:
http://iccl.tu-dresden.de/~guglielm/p/AG11.pdf.

[2] Alessio Guglielmi. Formalism B. URL:
http://iccl.tu-dresden.de/~guglielm/p/AG13.pdf.

[3] Alessio Guglielmi, Stéphane Lengrand and Lutz Straßburger. Emails at URLs:
http://thread.gmane.org/gmane.science.mathematics.frogs/219,
http://thread.gmane.org/gmane.science.mathematics.frogs/220.

Web Site

[WS] http://alessio.guglielmi.name/res/cos.

Appendix

Delivered-To: Frogs
Date: Tue, 15 Mar 2005 17:32:09 +0100
To: Frogs, Michel Parigot
From: Alessio Guglielmi
Subject: [Frogs] Wires and pipes
Cc: Dominic Hughes
List-Post: Frogs
List-Page: <http://frogs.prooftheory.org>

Hello,

in this message I propose a formalism and a deductive system for classical
propositional logic.

The formalism, which I'd like to call `wired deduction' (weird deduction!) should
be the first example of deductive derivation net: it is an intrinsically

56

bureaucracy-free, deductive and geometric formalism. It naturally subsumes CoS and
formalisms A and B.

As usual, I will define the formalism by way of a deductive system, and the natural
choice is classical propositional logic. It is possible to define the formalism in
isolation, in two ways: 1) geometrically, as a set of graph-forming rules; 2)
deductively, by the definition for formalism B I showed at the workshop, *enriched
by wires* (see below for what wires are).

These definitions are almost trivial after you see a deductive system. Before
posting their details, I would like to receive some reactions about the deductive
system, which you find below.

This email has three parts: Motivations, Intuition and Technicalities. Reading up
to Intuition should be enough to get a good idea, if you know already about CoS and
KS.

I would be very grateful if somebody checks the technicalities, though. They are
nontrivial and unfortunately very combinatorial. Clearly, they might be wrong, but
it should be possible to fix any mistake without changing the general picture.

Please, if you check, let me know, even if you find no mistakes (positive
information is still very useful!).

Ciao,

-Alessio

MOTIVATION
==========

The general motivation is devising a formalism which is bureaucracy-free and
intrinsically so. Moreover, we want the formalism to be geometric.

Bureaucracy-free means that it should be possible to express, inside the formalism,
canonical representatives of derivations which are `morally the same' according to
some notion. See the message

<http://article.gmane.org/gmane.science.mathematics.frogs/219>

for an exposition of these ideas. See also the notes

<http://iccl.tu-dresden.de/~guglielm/p/AG11.pdf> ,
<http://iccl.tu-dresden.de/~guglielm/p/AG13.pdf> ,
<http://www.iam.unibe.ch/~kai/Current/prty.pdf> .

`Intrinsically' bureaucracy-free means that the formalism disallows the very
formation of some redundant derivations. This notion is closely related, somehow,
to the idea that the formalism should be geometric.

For a formalism, being `geometric' means that derivations are some sort of graphs
over which one operates locally and modulo some basic symmetries like those due to
commutativity and associativity.

Much of the inspiration for wired deduction comes from subatomic logic, especially
the idea of wires and the ww_ rule. See

<http://iccl.tu-dresden.de/~guglielm/p/AG8.pdf> .

57

In the design of the deductive system for classical logic, I wanted to get rid once
and for all of the unit equations. They have no strong justification in terms of
`war to bureaucracy' and they cause some technical problems. I think that the
system below is particularly convincing in this respect. It might be possible to do
better than I did, in the sense that some technicalities can perhaps be simplified.

INTUITION
=========

I will attempt here a completely informal exposition of the system for classical
logic, called KSw, which should be sufficient for people who know CoS and KS. The
technical definitions are in the Technicalities part of this message (they are
still subject to changes, of course).

We need to operate under associativity and commutativity, in order to get rid of
bureaucracy in formulae. However, in some cases we need to keep track of `where the
atoms come from'. The obvious solution would be to disambiguate these situations by
resorting to occurrences. Wires go one step further: they allow following atoms and
their transformations throughout a whole derivation.

The main idea goes as follows: there is a denumerable set of wires. Wires are
neither created nor destroyed. To wires we associate atoms, and the association may
vary in the course of the derivation.

Moreover, at any given time bunches of wires are organised into a tree of logical
relations, which also can change over time. For example, the following is a
derivation of a from (a V a) (so, it's a contraction):

[a a]
| |
[a f] .

1 2

There are two wires, 1 and 2, vertically disposed, and we assume that time flows
vertically going upwards. In the beginning, a is associated to 1 and f is
associated to 2. In traditional logic, a would be a propositional variable and f
would be the `false' unit; both are atoms for us. Wires 1 and 2 are in a
disjunction relation (indicated as usual in CoS). After some time wire 2 gets the
value a, but the logical relation between wires does not change. We indicate this
situation by the rule

[a a]
wc_ -|-|- ,

[a f]

which is of course supposed to apply in the middle of other wires. This is an
example of atomic rule. A special feature of wired deduction is that atomic rules
only work on wires, their values and their relations, by `going through' a
predetermined amount of them (in the case above, two). Atomic rules `see' which
atoms wires carry.

There is another kind of rule, the local rule. These are different than atomic
rules, they only see *bunches* of wires, called *pipes*, and they reshuffle their
logical relations. For example, take the switch rule

(A [B C])
s =|==|==|= .
[(A B) C]

58

Through pipes, logical inferences can go up and down, provided they don't stumble
one on another. For example, consider the following derivations:

([a a] [b b c]) ([a a] [b b c])
s =| |====| |===|= wc_-|-|- | | |
[(| | | |) |] | f | b |

| | | b | and | |wc_-|-|- | .
| |wc_-|-|- | | | | f |
| a | f | (| | [| | |])

wc_-|-|- | | | s =| |====| |===|=
[([a f] [b f]) c] [([a f] [b f]) c]

As you can see, the two wc_ rules can freely go up and down and pass through the
holes in the s rule. This example shows how wired deduction deals with both type A
and type B bureaucracy.

This also shows that employing this geometric criterion (sort of an elastic
deformation of graphs) avoids the problem of representing non-canonical
derivations: all derivations are canonical, and convergence of the `rewriting
system' is trivial.

So, what are derivations? Derivations are nets of the kind seen above, whose
general shape is

(<R> t ... t)
\|| | /
<net> .

/|| | \
[<T> f ... f]

In other words, the premiss R is in the middle of any number of t wires in
conjunction and the conclusion T is in the middle of any number of f wires in a
disjunction. *No wires are created or destroyed*: in this sense, this formalism is
always *linear*. A proof, of course, is a derivation with all t's in the premiss.

This setup clearly works for classical logic, and all our results with CoS, and my
preliminary work with subatomic proof theory, tell us that this should work for
any logic. Of course, in general f and t are simply the units of whatever
disjunction and conjunction one has, for example they would be bottom and one for
linear logic.

The general geometry is given by the wires: we *always* assume that they live under
a commutative and associative equivalence. In the case of non-commutative logic,
the non-commutativity will be represented by the logical relation between wires,
not by their geometry. In other words: if you take the horizontal section of any
derivation like the ones above, you always have a relation web (back to the
origins).

So, this is propositional classical logic's system KSw; notice that there are *no
equations*:

(t t) [a a] (f t)
wi_ -|--|- , wc_ -|-|- , ww_ -|-|- ,

[a -a] [a f] [a f]

(A [B C]) [(A B) (C D)]
s =|==|==|= , m =|===X===|= .
[(A B) C] ([A C] [B D])

Of course, I have to show that this system is complete for classical logic
(soundness is trivial). I could do it semantically, for example by showing how to

59

get disjunctive normal forms and then realising resolution and appeal to its
completeness.

However, I also want to check that the complexity of proofs does not grow wrt KS,
which is the place where we mostly study it. So, in the technicalities, you will
find a complete proof of the admissibility of KS equations for KSw.

What is the secret of success? Part of the reason is in the fact that we can assume
to have an unlimited supply of t's in conjunction and f's in disjunction. These
atoms can be brought wherever they are needed by the switch rule. Doing this way
does generate a small amount of bureaucracy of the deductive-system kind, for
contraction and weakening rules. However, it is very easy to get rid of this
bureaucracy by simple permutations. This is not very geometrical, but it is more
geometrical than basically allowing [R f] = R and (R t) = t everywhere, so I went
that way. In any case, there always is bureaucracy associated to the piling up of
contraction and weakenings, as I showed in the previous message to Frogs, and this
can be dealt with by using an appropriate deductive system with non-local rules (or
by using a straightforward equivalence on proofs).

If you have more or less clear what I tried to explain above, you can jump directly
to section 3 of the Technicalities and see KSw in action while getting rid of KS
equations.

TECHNICALITIES
==============

1 LANGUAGE

Definition We define the following:

- WW is a denumerable set of _wires_; we denote wires by natural numbers.

- PP is a set of _pipes_; we denote pipes by A, B, C, D and various
decorations.

- SSF is the language of _scheme skeleton formulae_, produced by

SSF ::= WW | PP | [SSF SSF] | (SSF SSF)

and such that no wire and no pipe appears twice in any element of SSF; we
denote scheme skeleton formulae by K; an _instance_ of a scheme skeleton
formula K is a scheme skeleton formula obtained by replacing in K any pipes
by scheme skeleton formulae.

Example K = [(1 2) A] is a scheme skeleton formula, while [(1 1) A] is not.
K' = [(1 2) (A B)] is an instance of K, while [(1 2) (A A)] is not.
[(1 2) ([3 4] (5 6))] is an instance of K'.

Definition AA is a denumerable set of _atoms_; we denote atoms by a, b and
c; on atoms we have an involution -: AA -> AA (i.e., --a = a); two special
atoms f and t, called _units_, belong to AA, and -f = t. A _scheme formula_ is
a couple (K, wr K -> AA), where wr K is the set of wires appearing in K; if no
pipes appear in K, then the scheme formula is a _formula_; formulae are denoted
by F.

Example If K = [(1 2) A] then (K, {1 -> a, 2 -> t}) is a scheme formula; if

60

K' = [(1 2) 3] then (K', {1 -> a, 2 -> t, 3 -> a}) is a formula, corresponding
to the classical propositional logic formula ((a ^ t) V a).

Definition The equivalence == on SSF is defined as the minimal equivalence
relation such that

[K K'] == [K' K] ,
(K K') == (K' K) ,

[K [K' K"]] == [[K K'] K"] ,
(K (K' K")) == ((K K') K") ,

if K == K' then [K K"] == [K' K"] and (K K") == (K' K") .

The equivalence == is applied naturally wherever scheme skeleton formulae
appear. _Structures_, denoted by P, Q, R, T, U and V, are formulae modulo ==.

Examples and Notation We usually omit indicating wires, and we write, for
example, [(a t) a] in the place of ([(1 2) 3], {1 -> a, 2 -> t, 3 -> a}). We
have that [(a b) [f a]] == [a [f (b a)]]. We drop unnecessary parentheses, so
[a [f (b a)]] can be written as [a f (b a)].

Definition Two structures R and T are _isomorphic_ if in their respective
==-equivalence classes there are two formulae which are equal modulo some
permutation of wires.

Example Let

R = ([([1 2] 3)]_==, {1 -> a, 2 -> b, 3 -> c}) ,
T = ([(4 [5 6])]_==, {4 -> c, 5 -> a, 6 -> b}) .

Clearly,

T = ([([5 6] 4)]_==, {5 -> a, 6 -> b, 4 -> c}) ;

we can consider the permutation {1 <-> 5, 2 <-> 6, 3 <-> 4}, and this shows
that R and T are isomorphic.

Notation We usually do not indicate pipes, rather we use structure
notation. So, for example, ([A B] C) is indicated as ([R T] U). This allows for
an important shortcut: when we repeat letters, like in (R R), we mean any
structure

([(K K')]_==, m), where m: wr (K + K') -> AA,

such that ([K]_==, m') and ([K']_==, m") are isomorphic, where m' and m" are
the restrictions of m to wr K and wr K', respectively.

Example ([R R] a) can be instantiated as ([(T T U) (T T U)] a) and
([(b f) (b f)] a), for example, but not as ([b c] a). ([R T] a) instead does
not impose any restriction on R and T.

Definition An _atomic inference rule_ is any expression of the kind

F
r ---,

F'

where F and F' are formulae such that the same wires appear in F and F'; r is
the _name_ of the rule. We adopt a notation such that wires are not explicitly
indicated, but they can be `followed', for example

61

((1 2), {1 -> f, 2 -> t})
ww_ -------------------------

([1 2], {1 -> a, 2 -> f})

is denoted by

(f t) (t f)
ww_ -|-|- or ww_ -X- .

[a f] [a f]

Definition A _local inference rule_ is any expression of the kind

K
r --- ,

K'

where K and K' are scheme skeleton formulae where no wires appear and such that
the same pipes appear in both; r is the _name_ of the inference. We adopt a
notation where we join vertically the pipes; for example

(A [B C])
s ---------
[(A B) C]

is denoted by

(A [B C]) (A [C B])
s =|==|==|= or s =|===X= .
[(A B) C] [(A B) C]

Example System KSw for classical propositional logic is defined by the
following rules

(t t) [a a] (f t)
wi_ -|--|- , wc_ -|-|- , ww_ -|-|- , for all a in AA,

[a -a] [a f] [a f]

(A [B C]) [(A B) (C D)]
s =|==|==|= , m =|===X===|= .
[(A B) C] ([A C] [B D])

The first three rule (schemes) are atomic, the last two are local. They are
called, respectively _wired interaction_, _wired contraction_, _wired
weakening_, _switch_ and _medial_.

2 COMPOSITION OF RULES

This part needs to be completed. For now, suffice to say that we compose rules
like in the calculus of structures. Of course, it is possible to define more
geometric notions of compositions, like for formalism B.

3 CLASSICAL PROPOSITIONAL LOGIC

Proposition The _contraction_ rule

[P P]
c_ ~|~^~ ,

P

62

is derivable for KSw.

Proof By structural induction on P. If P = a then consider

S[a a]
wc_ |-|--|-

|[a f]
s* =|=|==|= .

[S{a} f]

If P = [R T] then consider

[R R T T]
c_ | |~|~^~

[R R |]
c_ ~|~^~| .

[R T]

If P = (R T) then consider

[(R T) (R T)]
m =|===X===|=
([| R] [T T])

c_ | | ~|~^~
([R R] |)

c_ ~|~^~ |
(R T)

<>

Proposition The following rules

f
aw_ ~|~ (_atomic weakening_),

a

[a a]
ac_ ~|~^~ (_atomic contraction_),

a

f (f f) R
r1 ~!^!~ , r2 ~|~^~ , r3 ~|~!~ ,

(f f) f (R t)

t [t t] [R f]
r5 ~|~!~ , r6 ~|~^~ , r8 ~|~^~

[t t] t R

are derivable for KSw.

Proof Consider, respectively:

(S{f} t)
s* =|=|==|=

|(f t)
ww_ |-|--|-

|[a f]
s* =|=|==|= ,

[S{a} f]

[a a]
c_ ~|~^~ ,

a

63

(S(f) t t t t)
s* =|========|==| | | |=

|(| | | t t)
wi_ | | | | -|-|-

|(| t t [t f])
wi_ | | -|-|- | |

|(| [t f] [t |])
2.s | | =|===X===|=

|(| [| t (f f)])
s | =/ /==|==| |=/ /=

|[(f f) (| [| |])]
s* =|==| |===| | |=

[|(| |) (| [t t])] S(f f)
wc_ | | | | -|--|- aw_ | | ~|~

[|(| |) (| [t f])] |(f t)
s | | | =|==|==|= ww_ |-|--|-
[|(| |) (f t) |] |[f f] (S{R} t)

ww_ | | | -|--|- | , s* =|=|==|= , s* =|=|==|= ,
[S(f f) f f f] [S{f} f] S(R t)

(S{ t} t t)
s* =|==|==| |=

|(t t t)
wi_ | -|--|- |

|([t f] |)
s | | | |

|[| (f t)]
ww_ | | -|--|-

|[| t f] [t t] S[R f]
s* | =|==|==|= , c_ ~|~^~ , s* =|=|==|= .

[S[t t] f] t [S{R} f]

<>

Theorem <PP> In KSw, if S{P} is provable then S[P P] is provable.

Proof Induction on the length of the proof D of S{P}.

Base Case: If D = [(t t_t) f_f], we have to show that
[([(t n.t) (t n.t)] t_t) f_f] is provable, for n>= 0. Take

[(t t n.t n.t t_t) f_f]
wi_ -|--|- | | | |

[([t f] | | |) |]
aw_ | ~|~ | | | |

[([| t] n.t | |) |]
2.s =|====><=====|= | | .

[([(t n.t) (t n.t)] t_t) f_f]

Inductive Cases: If the bottommost rule instance in the proof of S{P} is like
in

__ __ __
|| || ||
S'{P} S{P'} S{P'}

r =|==|= or r |=|= or r |-|-
S{ P} S{P} S{P}

then use the induction hypothesis on
__ __
|| ||

__ S[P' P'] S[P' P']
|| r | | =|= r | | -|-

S'[P P] |[P' P] |[P' P]
r =|==| |= or r |=|= | or r |-|- | .

S[P P] S[P P] S[P P]

64

Otherwise, the following cases are possible:
__
||

S'[Q (t t)]
1 S{ } = S'[a { }], P = [-a Q] and D = wi_ | | -|--|- : Consider

S'[Q a -a]
__
||

S'[Q Q (t t) (t t)]
wi_ | | | | | -|--|-

| [| | (t t) a -a]
wi_ | | | -|-|- | |

| [| | -a a a |]
wc_ | | | |-|---|- |

| [| | | a f -a]
s* =|==| | | | =X= ;

[S'[Q Q -a a -a] f]

when Q is empty the argument is the same.

__
||

S'[Q a a]
2 S{ } = S'[{ } f], P = [Q a] and D = wc_ | |-|-|-: Consider

S'[Q a f]
__
||

S'[Q Q a a a a]
wc_ | | | |-|-|-|

| [| | | f a a]
c_ | | | | |~|~^~ ;

S'[Q Q a f a]

when Q is empty the argument is the same.

__
||

S'[Q a a]
3 S{ } = S'[a { }], P = [f Q] and D = wc_ | |-|-|-: Consider

S'[Q a f]
__
||

S'[Q Q a a a a]
wc_ | | | | |-|-|-

| [| | a a a f]
wc_ | | |-|-|-| |

| [| | f a a |]
c_ | | | |~|~^~| ;

S'[Q Q f a f]

when Q is empty the argument is the same.

__
||

S'[Q (f t)]
4 S{ } = S'[{ } f], P = [Q a] and D = ww_ | | -|-|- : Consider

S'[Q a f]
__
||

S'[Q Q (f t) (t f)]
ww_ | | | | | -|-|-

| [| | (f t) f a]
ww_ | | | -|-|- | |

| [| | a f | |]
c_ | | | |~|~~~^~| ;

S'[Q Q a f a]

65

when Q is empty the argument is the same.

__
||

S'[Q (f t)]
5 S{ } = S'[a { }], P = [f Q] and D = ww_ | | -|-|- : Consider

S'[Q a f]
__
||

S'[Q Q (t f) (f t)]
ww_ | | | | | -|-|-

| [| | (t f) a f]
ww_ | | | -|-|- | |

| [| | f a a |]
c_ | | | |~|~~~^~| ;

S'[Q Q f a f]

when Q is empty the argument is the same.
__
||

S'[Q (R [T U U'])]
6 S{ } = S'[{ } U'], P = [(R T) U Q] and D = s | | =|==|==| |= :

Consider S'[Q (R T) U U']
__
||

S'[Q Q (R [T U U']) ([U' U T] R)]
s | | | | | | | =| |==|==|=
| [| | (| [| | |]) | | (| |)]

s | | | =|==|==| |= | | | |
| [| | (| |) | U' U' | (| |)]

c_ | | | | | |~^~~~~~~|~ | | | ,
S'[Q Q (R T) U U' U (T R)]

when Q or U are empty the argument is the same.
__
||

S'[Q (R [T U U'])]
7 S{ } = S'[(R T) { } U'], P = [U Q] and D = s | | =|==|==| |= :

Consider S'[Q (R T) U U']
__
||

S'[Q Q (R [T U U']) ([U' U T] R)]
s | | | | | | | =| |==|==|=
| [| | (| [| | |]) | | (| |)]

s | | | =|==|==| |= | | | |
| [| | (| |) | U' U' | (| |)]

c_ | | | | | |~^~~~~~~|~ | | |
S'[Q Q (R T) U U' U (T R)]

c_ | | | ~|~~|~.|........|..|.~^^^^~ ,
S'[Q Q (R T) U U' U]

when Q or U are empty the argument is the same.

__
||

S'(R R' [(T T') U])
8 S{ } = S'[({ } R' T') U], P = (R T) and D = s | =| |====| |===|= :

Consider S'[(R R' T T') U]

66

__
||

S'[(R R' [(T T') U]) (R R' [(T T') U])]
s | | | | | | =| >==< |=====|=
| [(R R' [(T T') |]) (R T R' T') |]

s | =| >==< |===|= | | | | |
| [(R T R' T') U (| | | |) U]

c_ | | | | | ~^~....|..|....|..|....~|~
| [(| | R' T') (R T | |) |]

m | =| |=====> >=======< <=====| |= |
| [([(| |) (R T)] [(R' T') (R' T')]) |]

c_ | | | | | ~|~~|~~~~^^^^~ | ,
S'[([(R T) (R T)] R' T') U]

when R or R' or T or T' are empty, but (R R'), (T T'), (R T) and (R' T') are
not empty, the argument is the same. The only case remaining to consider is
when (R' T') is empty, i.e., S{ } = S'[{ } U], P = (R T), but this reduces to
case 6.

9 S{ } = S'([{ } R' U'] [T V]), P = [R U] and
__
||

S'[([R R'] T) ([U U'] V)]
D = m | =| |===/ /===|===/ /====|= : Consider

S'([R R' U U'] [T V])

__
||

S'[([R R'] T) ([R R'] T) ([U U'] V) ([U U'] V)]
m | =| |===/\/=/ /=\==|= | | | | | |
| [([| | R R'] [T |]) ([| |] V) ([U U'] |)]

m | | | | | | | =| |===/ X===/ /=\==|=
| [([| | | |] [T T]) ([| | U U'] [V |])]

m | =| | | |=======\ \=====| | | |====\ \==| |=
| ([| | | | | | | |] [T T V V])

c_ | | | | | | | | | ~|~^^^~|~
| ([| R' | R' | U' | U'] [| |])

c_ | |~|~.|~^~...............|~|~.|~^~ | | ,
S'([R R' R U U' U] [T V])

when R or R' or U or U' are empty, but [R R'] and [U U'] are not empty, the
argument is the same.

<>

Proposition <R7> The rule

R
r7 ~|~!~

[R f]

is admissible for system KSw.

Proof Consider the topmost instance of r7 in a proof in KSw + {r7}:

__
||

[(S{R} m.t) f_f]
r7 ~|~!~ , for some m >= 0.

[S[R f] f_f]

Let R = R'{a}, for some a; by Theorem <PP> there is a proof

67

__
||

[(S{R'[a a]} m.t) f_f]
wc_ | | -|---|- | |

[(|{| [a f]} |) |]
s* =|=|==| |====|= |

[|(| [| |] |) |]
s* |=|==|===|====|= |

[|[| {|} (| m.t)] |]
| | | | ^ |

...
| | | | /| \ |

[|[| {|} (| t t) m-2.f] |]
wi_ | | | | -|-|- | |

[|[| {|} (| [t f]) m-2.f] |]
s | | | =|==|==\===\=|= |

[|[| {|} (f t) m-1.f] |]
ww_ | | | -|--|- | |

[|[| {|} f f |] |]
s* =|=| | |==| |= | .

[S[R'{a} f] f m-1.f f_f]

Proceed eliminating r7 instances one by one.

<>

Proposition The rule

(R t)
r4 ~|~^~

R

is admissible for KSw.

Proof Consider

S(R t)
r7 | ~|~~!~ |

|([R f] |)
s | =|==|==|=

|[| (f t)]
ww_ | | -|--|-

|[| f f]
s* =|==|==| |= .
[S{ R} f f]

If S(R t) is provable in KSw, by Proposition <R7> then S{R} is also provable.

<>

Theorem System KSw is equivalent to system KS.

Proof All rules and equations of KS have admissible counterparts in KSw.

<>

68

On Two Forms of Bureaucracy in Derivations

Kai Brünnler1 and Stéphane Lengrand2

1 Institut für angewandte Mathematik und Informatik
Neubrückstr. 10, CH – 3012 Bern, Switzerland

2 PPS, Université Paris 7, France

Abstract. We call irrelevant information in derivations bureaucracy. An
example of such irrelevant information is the order between two con-
secutive inference rules that trivially permute. Building on ideas by
Guglielmi, we identify two forms of bureaucracy that occur in the calculus
of structures (and, in fact, in every non-trivial term rewriting derivation).
We develop term calculi that provide derivations that do not contain
this bureaucracy. We also give a normalisation procedure that removes
bureaucracy from derivations and find that in a certain sense the nor-
malisation process is a process of cut elimination.

1 Introduction

Consider the following two proofs in a sequent system for classical logic:

 A,B, Ā, C

 A,B, Ā ∨C

 A ∨B, Ā ∨ C

and

 A,B, Ā, C

 A ∨B, Ā, C

 A ∨B, Ā ∨ C

.

Clearly, these two proofs are essentially the same, and we prefer not to distinguish
them. More to the point, the sequent calculus forces us to choose an order of two
rule applications that we do not want to choose because it is not relevant. Let us
call bureaucracy this fact that a proof-theoretic formalism forces us to distinguish
morally identical proofs. Proof nets, introduced by Girard [4] for linear logic, are
a less bureaucratic formalism than the sequent calculus. They have also been
developed for classical logic, for example by Robinson [13] and by Lamarche
and Straßburger [11]. Proof nets have the merit that they do not distinguish
between proofs such as the above. However, establishing the correctness of a
proof net generally requires checking a global criterion which is more algorithmic
than deductive. The notion of deduction step is lost when moving from the
sequent calculus to proof nets. Let us informally call a formalism deductive if
it has a notion of inference step. That is of course a vague notion that can be

69

made more precise in several ways, for example in asking for a locally checkable
correctness criterion. The question then is whether there is a formalism that is
both: bureaucracy-free and deductive. The quest for such deductive proof nets
was initiated by Guglielmi. Starting from the calculus of structures [5,6] he
designs two formalisms that reduce bureaucracy without losing deductiveness:
they are called Formalism A [7] and Formalism B [8]. These formalisms are just
steps towards deductive proof nets and not the final result. These formalisms
still allow to form inessentially different proofs. However, they provide a third
proof which is a canonical representative of the two. So, compared to the sequent
calculus or the calculus of structures, the set of proofs grows larger. The ultimate
aim in this quest is then a deductive formalism that does not allow the formation
of non-canonical proofs in the first place.

Formalisms A and B address two kinds of bureaucracy that occur in every non-
trivial term rewriting derivation. Formalism A addresses bureaucracy type A,
where one has to choose an order for two consecutive applications of rewrite
rules that apply to disjoint, i.e. non-overlapping, subterms of a term. Formalism
B addresses bureaucracy type A and also bureaucracy type B, where one has to
choose an order between two consecutive applications of rewrite rules where one
rule applies to a term which is unchanged by the other rule because it is inside
a variable. Clearly, equivalence in Formalism B then corresponds to standard
notion of “equivalence modulo trivial permutation”.

The starting point of the work presented in this paper was our goal to provide
a normalisation procedure for Formalisms A and B which, given a bureaucratic
derivation, yields its bureaucracy-free representant. In [7,8] Guglielmi does not
provide such a normalisation procedure, though he defines a set of proofs that
seems rich enough to accommodate bureaucracy-free representatives. To achieve
our goal, we found it natural and also necessary to depart a bit from the defi-
nitions in [7,8] in two ways. First, we use a term calculus to define derivations.
This is just a notational difference, comparable to the difference between the
λ-calculus and natural deduction in minimal logic. Second, we found it hard to
work modulo the equational theory that is used not only in [7,8] but also gen-
erally in systems in the calculus of structures. It typically contains equations
like associativity and commutativity of conjunction and disjunction, for exam-
ple. We drop the equational theory and add those equations that are needed for
completeness as rules.

The plan of the paper is as follows: we first present a linear term rewriting
system that is a deductive system for classical propositional logic. We go on to
define proof terms for derivations in Formalism A and give a rewriting system
for these proof terms that removes bureaucracy, which, as we will see, turns out
to be a process of cut elimination. The following section, where we do the same
for Formalism B, is intended to be the heart of the paper, but is still a bit of a
construction site. The central notion though is already there, it is that of a tube
which is a placeholder which winds through a derivation and contains another

70

derivation. Tubes put an end to bureaucracy type B. Some discussion ends the
paper.

2 Propositional Logic as Term Rewriting

A deductive system in the calculus of structures [6] is just a term rewriting system
modulo an equational theory, cf. [10]. We should point out that the questions one
asks about these systems are rather different. Typical properties of interest of a
term rewriting system are termination and confluence, systems in the calculus
of structures typically are neither. Typical questions to ask of systems in the
calculus of structures are about the admissibility of rules and about the existence
of certain normal forms for derivations. Nevertheless, term rewriting systems is
what they are. In this section we present a linear term rewriting system on
formulas in propositional logic such that a formula A rewrites to a formula B iff
A implies B. This system is essentially obtained from system SKS from [2,1] by
removing all equations and adding some of them as rewrite rules. The system
is rather idiosyncratic and is not really central to the ideas developed here. We
present it just in order to show that linear term rewriting indeed can serve as
a proof-theoretic formalism and also to have some rules as running examples.
Formalisms A and B as we present them easily generalise to any linear term
rewriting system.

Formulas. There are propositional variables, denoted by v. Propositional vari-
ables v and their negations v̄ are atoms, they are denoted by a, b, and so on. The
letters A,B,C denote formulas, which are defined as follows:

A ::= f | t | a | (A ∨A) | (A ∧A)

where f and t are the units false and true. We define Ā, the negation of the
formula A, in the usual way:

f = t A ∨B = Ā ∧ B̄

t = f A ∧B = Ā ∨ B̄
¯̄v = v .

Term rewriting rules. A system of rewrite rules for classical propositional logic
is given in Figure 1. The subsystem on the left is called KSf where K means
classical, S means calculus of structures and f is for (equation-)free. The entire
system is called SKSf, where the first S is for symmetric. On top of the arrow
is the label of the rewrite rule. The labels of the rules on the left are short for
duplication, unit, commutativity, identity, switch, weakening and contraction.
Their dual rules on the right have the same name but with the prefix “co-”.
When viewing formulas as terms, we view atoms as constants. A rewrite rule
containing an atom, like f

aw↓−−→ a is shorthand for the set of rewrite rules one
obtains by replacing a by any atom.

We have soundness and completeness for classical propositional logic.

71

t
du↓−−→ t ∧ t A

un↓−−→ A ∨ f A ∧ t
un↑−−→ A f ∨ f

du↑−−→ f

A ∨ B
co↓−−→ B ∨ A A ∧ B

co↑−−→ B ∧ A

t
i↓−→ Ā ∨ A A ∧ Ā

i↑−→ f

(A ∨ B) ∧ (C ∨ D)
s↓−→ (A ∨ C) ∨ (B ∧ D) (A ∧ C) ∧ (B ∨ D)

s↑−→ (A ∧ B) ∨ (C ∧ D)

f
w↓−→ A A ∨ A

c↓−→ A A
c↑−→ A ∧ A A

w↑−→ t

Fig. 1. Rewrite rules for propositional logic

Theorem 1 1. t→∗
KSf A iff A is valid.

2. A→∗
SKSf B iff A implies B.

Proof. Soundness in both cases follows from a simple induction on the length of
the derivation and the observation that implication is closed under conjunction
and disjunction. System KSf is complete: a formula can be derived from its
conjunctive normal form via the rules c↓, co↓, s↓. If the formula is valid, then
each of the nested disjunctions in the conjunctive normal form contains two
dual atoms. By w↓, un↓ this formula can be derived from a formula where all
atoms except for the two dual atoms are removed. By i↓ we derive this from
a conjunction of lots of occurrences of t, which is derived from t by du↓. The
completeness direction of 2) is then a matter of constructing a derivation from
A to B in SKSf for each derivation from t to Ā ∨B in KSf, see [1] for details.

Linear rewrite rules. From SKSf we obtain a linear rewriting system SKSfl, where
l is for linear, which is shown in Figure 2. Derivability in this system is the same
as in the nonlinear system, for details see [1].

Theorem 2 1. A→∗
SKSf B iff A→∗

SKSfl B

2. A→∗
KSf B iff A→∗

KSfl B

3 Formalism A

Consider the following two rewrite paths (or derivations in the calculus of struc-
tures):

(a ∨ a) ∧ (b ∨ b)
ac↓

a ∧ (b ∨ b)
ac↓

a ∧ b

and

(a ∨ a) ∧ (b ∨ b)
ac↓

(a ∨ a) ∧ b
ac↓

a ∧ b

.

72

t
du↓−−→ t ∧ t A

un↓−−→ A ∨ f A ∧ t
un↑−−→ A f ∨ f

du↑−−→ f

A ∨ B
co↓−−→ B ∨ A A ∧ B

co↑−−→ B ∧ A

t
ai↓−→ ā ∨ a a ∧ ā

ai↑−→ f

(A ∨ B) ∧ (C ∨ D)
s↓−→ (A ∨ C) ∨ (B ∧ D) (A ∧ C) ∧ (B ∨ D)

s↑−→ (A ∧ B) ∨ (C ∧ D)

(A ∧ B) ∨ (C ∧ D)
m−→ (A ∨ C) ∧ (B ∨ D) (A ∧ B) ∨ (C ∧ D)

m−→ (A ∨ C) ∧ (B ∨ D)

(A ∨ B) ∨ (C ∨ D)
m0↓−−→ (A ∨ C) ∨ (B ∨ D) (A ∧ B) ∧ (C ∧ D)

m0↑−−→ (A ∧ C) ∧ (B ∧ D)

f
w0↓−−→ f ∧ f f

aw↓−−→ a a ∨ a
ac↓−−→ a a

ac↑−−→ a ∧ a a
aw↑−−→ t t ∧ t

w0↑−−→ t

Fig. 2. Linear rewrite rules for propositional logic

They inessentially differ in the order in which the two rules are applied. No
matter which of the two derivations we choose, it contains irrelevant information.
We now define Formalism A which provides a third derivation which stores no
information about the order between the two applications of ac↓. The solution
is of course very simple: we introduce a parallel composition of derivations.

Proof terms. Proof terms (or just terms) of Formalism A, denoted by R,S, T, U
are defined as follows:

R ::= id | ρ | (R |R) | (R .R)

where id is identity, ρ is the label of a rewrite rule from Figure 2, (R1 | R2) is
parallel composition and (R1 . R2) is sequential composition.

Typing rules. A judgement A
R−→ B which can be derived by the typing rules

given in Figure 3 from the rewrite rules (aka typing axioms) in Figure 2 says
that the proof term R allows to derive A implies B. Not each term is typeable,
for example s↓ . s↓ is not. In general, terms are typeable in different ways. For
example we have a

id−→ a, just like b
id−→ b. We have soundness and completeness

for classical propositional logic since we have the following theorem:

Theorem 3 There is a proof term R of Formalism A with A
R−→ B iff A→∗

SKSfl B.

Proof. The direction from left to right is an easy induction on the typing deriva-
tion. The converse is easy to see since a rewrite rule can be applied at an arbitray
depth with a proof term build from the label of the rewrite rule, identity and
parallel composition, and consecutive rule applications are represented using se-
quential composition.

73

A
id−→ A

A
R−→ B B

S−→ C

A
R.S−−→ C

A
R−→ C B

S−→ D

A ∧ B
R|S−−→ C ∧ D

A
R−→ C B

S−→ D

A ∨ B
R|S−−→ C ∨ D

Fig. 3. Typing rules for Formalism A

Reduction rules. The reduction relation →A is given by the following rewrite
rules:

R . id→ R
id . R→ R
id | id→ id
(R | S) . (T | U)→ (R . T) | (S . U)

Theorem 4 The reduction relation →A is convergent.

Proof. Each rule decreases the sum of the number of occurrences of id and the
number of occurrences of parallel composition. Local confluence is easily checked.

We call normal forms of →A canonical. The reduction rules preserve types.
If we call the typing rule for sequential composition “cut”, then they actually
correspond to cut elimination steps in the typing derivation, as we will see in
the proof of the following theorem. Note however that the cut rule for a typing
derivation has nothing to with a cut rule that may or may not be part of the
logical system we represent using rewrite rules. In our case, all the rules with an
up-arrow are in some sense cuts. Their admissibility follows from the previous
section and is unrelated to the following theorem.

Theorem 5 (Subject reduction) If A
R−→ B and R→∗

A S then A
S−→ B.

Proof.

A
id−→ A A

R−→ B

A
id.R−−→ B

� A
R−→ B

A
id−→ A B

id−→ B

A ∧B
id|id−−→ A ∧B

� A ∧B
id−→ A ∧B

74

A
R−→ E B

S−→ F

A ∧B
R|S−−→ E ∧ F

E
T−→ C F

U−→ D

E ∧ F
T |U−−→ C ∧D

A ∧B
(R|S).(T |U)−−−−−−−−→ C ∧D

�
A

R−→ E E
T−→ C

A
R.T−−→ C

B
S−→ F F

U−→ D

B
S.U−−→ D

A ∧B
(R.T)|(S.U)−−−−−−−−→ C ∧D

Example. The two derivations from the beginning of the section are the following
terms: (ac↓ | id) . (id | ac↓) and (id | ac↓) . (ac↓ | id). Both normalise to (ac↓ | ac↓).
However, there still is bureaucracy remaining in the canonical derivations of
Formalism A. Consider the following two derivations:

(b ∨ b) ∧ a
ac↓

b ∧ a
co↓

a ∧ b

and

(b ∨ b) ∧ a
co↓

a ∧ (b ∨ b)
ac↓

a ∧ b

,

which have the following proof terms: (ac↓| id) .co↓ and co↓ . (id |ac↓). There is no
proof term in Formalism A that composes the two rules in such a way that no
order between them is fixed. The next section will provide such a bureaucracy-
free proof term.

4 Formalism B

Given an occurrence of an inference rule in a term, in general this rule can
be permuted a certain distance to the left and a certain distance to the right
(possibly both zero) until it hits another occurrence of an inference rule such
that the two collide (do not permute). The actual position of the inference rule
within these two points is irrelevant. To capture this free space between the two
collision points we introduce tubes. Tubes have names, they have a start and an
end, and they can be filled with derivations.

Types and proof terms. Starting from Formalism A, we extend the definition of
formulas, which we now call types, and that of terms as follows:

A ::= f | t | a | (A ∨A) | (A ∧A) | xA
A

and
R ::= id | ρ | (R |R) | (R .R) | x� | �x .

where x is a name for a tube, in xA
B the types A and B respectively are premise

and conclusion of the tube, x� marks the start of the tube x and �x marks the

75

end of the tube x. For each term we require that each tube name occurs at most
once as a tube start and at most once as a tube end. Now our typing rules need
to keep track of an environment ε, which is a finite partial mapping from tube
names to terms. We write R, ε to denote a pair of a term and and environment.
Given an environment ε which is undefined for x we write ε, x : R to denote the
environment which only differs from ε by mapping x to R.

Typing rules. The typing rules for Formalism B are shown in Figure 4.

A
id,ε−−→ A

A
R,ε−−→ B B

S,ε−−→ C

A
R.S,ε−−−→ C

A
R,ε−−→ C B

S,ε−−→ D

A ∧ B
R|S,ε−−−→ C ∧ D

A
R,ε−−→ C B

S,ε−−→ D

A ∨ B
R|S,ε−−−→ C ∨ D

A
R,ε−−→ B

A
x�,ε,x:R−−−−−→ xA

B

A
R,ε−−→ B

xA
B

�x,ε,x:R−−−−−→ B

Fig. 4. Typing rules for Formalism B

Just like in Formalism A, we have soundness and completeness for classical
propositional logic since we have the following theorem:

Theorem 6 For all formulas A,B there is a proof term R of Formalism A with
A

R−→ B iff there is a proof term T of Formalism B with A
T−→ B.

Proof. The direction from left to right is obvious, just take an empty environ-
ment. For the converse, we first inductively define the premise p(A) of a type
A by pulling it over the propositional connectives and letting p(xA

B) = p(A).
We define the conclusion c(A) likewise, letting c(xA

B) = c(B). Now, by an easy
induction on the typing derivation we establish that for all types A,B if we
have A

T−→ B in Formalism B then there is a term R in Formalism A such that
p(A) R−→ c(B).

Normalisation process. To obtain a bureaucracy-free representant of a proof, we
start from a proof term in Formalism A. The normalisation process has three
steps.

The first step is an initialisation, in which for every rule we add its inner tubes,
e.g. co↓ is replaced by (x� | y�) . co↓ . (�y | �x). We define the corresponding
environment to map all occurring tubes to id.

76

The second step extends tubes as much as possible. It is a normalisation using
the rewrite rules of Formalism A and the following rewrite rule which work
both on the term and on the environment. The term R is either a parallel
composition or an inference rule. The expression S{R} . . .{T } denotes a term
with (fixed occurrences of) subterms R . . . T . We refer to the first two rules as
tube extension and to the third rule as tube fusion.

�x . R
ε, x : T −→ �x

ε, x : T.R

R . x�
ε, x : T −→ x�

ε, x : R.T

S{x�}{�x . y�}{�y}
ε, x : T, y : U −→ S{x�}{id}{�x}

ε, x : T.U, y : id

The third step is a cleanup phase, when all empty tubes are discarded:

S{x�}{�x}
ε, x : id

−→ S{id}{id}
ε

Examples. The minimal example are the terms (id | ac↓) . co↓ and co↓ . (ac↓ | id)
that both rewrite to:

(id | x�) . co↓ . (�x | id) , x : ac↓ .

More than one rule can be inside a tube. (id | ac↓) . co↓ . (ac↑ | id) rewrites to:

(id | x�) . co↓ . (�x | id) , x : ac↓ . ac↑ .

Tubes can be nested. ((ac↓ | id) | id) . co↓ . (id | co↓) rewrites to:

(x� | id) . co↓ . (id | �x) ,
x : (y� | id) . co↓ . (id | �y)
y : ac↓ .

The reduction relation preserves types:

Theorem 7 (Subject reduction) If A
R−→ B and R→∗

B S then A
S−→ B.

Proof. It is easy to check that the first and third step preserve typing, we give
the necessary transformation of the typing derivation for tube extension in the

77

second step. Tube fusion works similarly. The derivation

A
T,ε−−→ B

A
x�,ε,x:T−−−−−→ xA

B

A
T,ε−−→ B

xA
B

x�,ε,x:T−−−−−→ B B
R,ε,x:T−−−−−→ C

xA
B

�x.R,ε,x:T−−−−−−−→ C

Δ

D
S{x�}{�x.R},ε,x:T−−−−−−−−−−−−→ E

transforms into

A
T,ε−−→ B B

R,ε−−→ C

A
T.R,ε−−−→ C

A
x�,ε,x:T.R−−−−−−−→ xA

C

A
T,ε−−→ B B

R,ε−−→ C

A
T.R,ε−−−→ C

xA
C

�x,ε,x:T.R−−−−−−−→ C

Δ[xA
B/xA

C]

D
S{x�}{�x},ε,x:T.R−−−−−−−−−−−−→ E

,

where a typing derivation for B
R,ε−−→ C can be obtained from the one for

B
R,ε,x:T−−−−−→ C since neither end of tube x can occur in R.

Conjecture 8 The normalisation process is convergent modulo naming of tubes.

5 Discussion

Is all bureaucracy gone now? Unfortunately, no. This work is only at the be-
ginning and even the basic notions of types and terms in Formalism A are not
stable yet. There still is bureaucracy due to associativity of sequential and par-
allel composition, such as (R.T) .U versus R.(T .U). For sequential composition
this is easy to get rid of by using multiary function symbols and by writing
(R . T . U). We have to suitably generalise the typing rule as follows:

A1
R1−−→ A2 A2

R2−−→ A3 . . . An−1
Rn−1−−−→ An

A1
R1.R2.Rn−1−−−−−−−−−−→ An

78

For parallel composition, however, the case is more complicated. In general, we
cannot be sure that our canonical terms are bureaucracy-free until we have shown
them to be in one-to-one correspondence with equivalence classes of rewriting
derivations modulo trivial permutation. We are not there yet.

3-categories. Obtaining associativity of parallel composition will also be nec-
essary in order to achieve our goal of making terms in Formalism B form a
3-category à la Albert Burroni [3]. It seems that arrows in a 3-category capture
exactly the bureaucracy we have in mind. See also Yves Guiraud’s work [9] on
the relationship between deep inference and 3-categories.

Type checking redundancy. The system of typing rules given for formalism B
has the disadvantage that a derivation in a tube has to be type checked twice:
once for the start of the tube and once for the end of the tube. It would be
interesting to develop a type system where it has to be type checked only once,
maybe by defining proof terms and types as

A ::= f | t | a | (A ∨A) | (A ∧A) | x

and
R ::= id | ρ | (R |R) | (R .R) | x� | �x | (x,A)� | �(x,A) .

and replacing the rules for the tubes by the following ones:

A
(x,A)�,∅−−−−−→ x x

�(x,A),∅−−−−−→ A

A
R{(x,C)�}{�(x,D)},ε−−−−−−−−−−−−−−→ B C

S,ε−−→ D

A
R{x�}{�x},ε,x:S−−−−−−−−−−−→ B

.

Church vs. Curry We chose Curry-style typing for brevity, but it could be done
in Church style. Then we need two parallel constructors, one for conjunction
and one for disjunction. All inference rules are then parametrised by their types
and instead of A

id−→ A for every A, we have for each A an id(A) such that

A
id(A)−−−→ A. Church style could be more convenient for enforcing associativity of

parallel composition or for type checking.

Rewriting Logic. There is a close connection with rewriting logic that needs to
be made explicit. In the language of rewriting logic [12], our goal with Formalism
B is to give canonical representants for arrows in the initial model of a rewrite
theory if the rewrite theory is linear and without equations. Speaking of rewriting
logic: the deductive system for rewriting logic as given in [12] already provides
proof terms that are free of bureaucracy type A. Its congruence rule corresponds
to our rule for parallel composition. However, this deductive system does not
provide derivations that are free of bureaucracy of type B. To see that one needs
to consider an example with two rules that do not permute and a third rule that
permutes through both.

79

Bureaucracy in the formalism vs. bureaucracy in the logic. The axioms (or
rewrite rules) of SKSf just served as an example here, we really are addressing
bureaucracy in the formalism, which is independent of the particular logic that
we are formalising. For the attack on logic-independent bureaucracy two obvious
directions for further work are the extension of our approach 1) to term rewriting
systems in general, not only those with linear rules, and 2) to term rewriting
systems modulo equations. But there is also logic-dependent bureaucracy that
needs to be taken care of such as in classical logic a weakening followed by a
contraction, to name a simple example.

References

1. Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. PhD thesis,
Technische Universität Dresden, September 2003.

2. Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In
R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001, volume 2250 of Lecture
Notes in Artificial Intelligence, pages 347–361. Springer-Verlag, 2001.

3. Albert Burroni. Higher-dimensional word problems with applications to equational
logic. Theoretical Computer Science, 115(1):43–62, 1993.

4. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
5. Alessio Guglielmi. The calculus of structures website. Available from

http://www.ki.inf.tu-dresden.de/˜guglielm/Research/.
6. Alessio Guglielmi. A system of interaction and structure. Technical Report WV-

02-10, Technische Universität Dresden, 2002. To appear in ACM Transactions on
Computational Logic.

7. Alessio Guglielmi. Formalism A. Manuscript.
http://iccl.tu-dresden.de/˜guglielm/p/AG11.pdf, 2004.

8. Alessio Guglielmi. Formalism B. Manuscript.
http://iccl.tu-dresden.de/˜guglielm/p/AG13.pdf, 2004.

9. Yves Guiraud. The three dimensions of proofs. Manuscript.
http://iml.univ-mrs.fr/˜guiraud/recherche/cos.pdf, 2005.

10. Ozan Kahramanoğulları. Implementing system BV of the calculus of structures
in Maude. In Laura Alonso i Alemany and Paul Égré, editors, Proceedings of the
ESSLLI-2004 Student Session, pages 117–127, Université Henri Poincaré, Nancy,
France, 2004.

11. François Lamarche and Lutz Straßburger. Naming proofs in classical propositional
logic. In Pawe�l Urzyczyn, editor, Typed Lambda Calculi and Applications, TLCA
2005, volume 3461 of Lecture Notes in Computer Science, pages 246–261. Springer-
Verlag, 2005.

12. Narciso Mart́ı-Oliet and José Meseguer. Rewriting logic: roadmap and bibliogra-
phy. Theoretical Computer Science, 285(2):121–154, 2002.

13. Edmund P. Robinson. Proof nets for classical logic. Journal of Logic and Compu-
tation, 13(5):777–797, 2003.

80

Completeness of MLL proof-nets
w.r.t. weak distributivity

Jean-Baptiste Joinet

Equipe Preuves-Programmes-Systèmes
CNRS - Université Paris 7 (UMR 7126)

Case 7014, 2 place Jussieu
F-75251 Paris cedex 05, France

joinet@pps.jussieu.fr,
WWW home page: www-philo.univ-paris1.fr/Joinet

Abstract. We examine ‘weak-distributivity’ as a rewriting rule �
WD de-

fined on multiplicative proof-structures (so, in particular, on multiplica-
tive proof-nets: MLL). This rewriting does not preserve the type of proofs-
nets, but does nevertheless preserve their correctness. The specific con-
tribution of this paper, is to give a direct proof of completeness for �

WD :
starting from a set of simple generators (proof-nets which are a n-ary �

of �-ized axioms), any mono-conclusion MLL proof-net can be reached
by �

WD rewriting (up to � and � associativity and commutativity).

1 Preliminaries

1.1 Multiplicative Linear Logic: sequent calculus and proof-nets

The formulas of Multiplicative Linear Logic [1] are defined from the following
grammar:

A = X,X⊥, Y, Y ⊥, . . . | A � A | A�A

Atoms | Tensor | Par

Negation (“orthogonal”) (.)⊥ is not a connective, but a defined unary oper-
ation over formulas, inductively defined by:

(X)⊥ = X⊥, (X⊥)⊥ = X, (A � B)⊥ = A⊥
�B⊥, (A�B)⊥ = A⊥

� B⊥

A sequent is a multiset Γ of formulas, written
 Γ . The rules of sequent
calculus MLL (from which MLL sequent calculus derivations is inductively defined
as usual) are :

� A , A⊥ cut
� Γ, A � Δ , A⊥

� Γ, Δ
�
� Γ, A , B

� Γ, A � B
�

� Γ, A � Δ, B

� Γ, Δ , A � B

(Identity axiom)

Definition 1 Let A, B be any formulas. The following four minigraphs are called
the multiplicative ‘links’.

81

�
A � ��A⊥ �A � ��A⊥

A �
�

�
�

B�
A�B����

�
A �

�
�

�

B�
A � B���

�

axiom-link cut-link �-link �-link

In those minigraphs, edges are intended to be oriented: in both directions
for axiom-links and cut-links, and following the natural downward orientation
of space for the others (the curve edge in the �-link is just an indication used
later). A formula occurrence (vertex) which is a target (resp. a source) of an
(oriented) edge in a link is a ‘conclusion’ (resp. a ‘premise’) of that link if it is
reached downward (resp. if it is the source of a downward beginning edge).

Definition 2 A structure is a graph whose vertices are (labeled with) formulas
inductively built by using the rules below:

1. links are structures,
2. structures are closed by multiset-union,
3. structures are closed by identification (in a structure) of occurrences of (ver-

tices labeled with) a same formula, if this identification preserves the fact
that any formula occurrence is conclusion of at most one link and premise
of at most one link.

The top (resp. bottom) formulas of a structure are called its hypothesis (resp.
conclusions).

In the sequel, we will mainly work with the cut-free fragment of the set of
proof-structures. Also, we will only represent, in structures, the formulas being
conclusion of axiom-links. Indeed, taking account of the mark put on �-links
(the curve edge), this information is sufficient for recovering all missing formulas
(in the cut free fragment, the ambiguity occasioned, when some formulas are so
missing, by commutativity, is harmless).

Let π a sequent calculus proof in MLL. Let P(π) be the structure (with same
conclusions as π) obviously defined by recurrence on π construction as presented
below:

� A , A⊥ �−→
�

A � ��A⊥

... π
′

� Γ ′, A⊥

... π
′′

� Γ ′′, A

� Γ ′, Γ ′′ �−→

P(π′)

�
�

	

Γ ′ A

P(π′′)

�
�

	

Γ ′′A⊥�� ��

... π
′

� Γ ′, A

... π
′′

� Γ ′′, B

� Γ ′, Γ ′′, A � B
�−→

P(π′)

�
�

	

Γ ′ A

P(π′′)

�
�

	

Γ ′′B
�
�

�
�

�
���

�

A � B

82

... π
−

� Γ, A , B

� Γ, A � B
�−→

P(π−)

�
�

�

Γ A
�
�

�
�

B
�

A � B����
�

Definition 3 The set of ‘multiplicative proof-nets’ (still noted MLL) is the
range of P(.).

Let us recall that P(.) : MLL −→ {structures} is neither injective (reason
why it is interesting), nor surjective (reason why it is a little bit difficult to
deal with proof-nets). And indeed, in the prehistory of proof-nets, to find an
intrinsic characterization of proof-nets among structures (standard old “sequen-
tialization” problem) was the first question to solve :

Definition 4 A structure S is sequentializable, if P(π) = S for some sequent
derivation π∈MLL.

In this paper, we will deeply use sequentialization tools worked out by Gi-
rard [1] and Danos and Regnier [2], and in particular:

Definition 5 Let S be a structure.

– A switching in S is any sub-graph of S one gets by erasing one edge in any
�-link in S.

– A structure S satisfies the Danos-Regnier criterion (S � DR) if any of its
switchings is acyclic and connected.

– A structure S (possibly) with hypothesis, such that S � DR, is called a
module.

Proposition 6 (Danos-Regnier) Let S an hypothesis free structure.

S is sequentializable iff S � DR

1.2 Pretypes of modules and orthogonality

In this subsection a few tools and results used later are recalled. They all come
from Danos thesis (see [3]).

Definition 7 The “border” of a structure S is the multiset of its hypothesis
and conclusions (notation: Border(S)).

For sake of simplicity, every time no attention is needed to the specific formu-
las being conclusion or hypothesis of the structures under consideration, and in
particular in the present subsection, we will forget them, then just using indices
(integers) to describe their border.

83

Definition 8 Let S a structure and σ a switching of S. The partition of
Border(S) induced by σ, is the quotient of Border(S) by the relation defined by:
“n is (in σ) in the same connected component as m”.

To note a given partition of, say, {1, 2, 3, 4, 5}, for instance
{
{1}, {2, 4}, {3, 5}

}
,

we will use the simplified notation: 1 24 35.

Definition 9 The pretype1 of S is the set PS of all partitions induced over
Border(S) by all switchings of S.

Definition 10 If Border(S)= {1, . . . , n} and Border(S′)= {1′, . . . , n′}, we note
S :: S′ the graph resulting of the plugging of S and S′ together via the border
(identifying vertex i with i′).

Definition 11 The meeting graph G(p, q) of partitions p, q over {1, . . . , n}, is
the graph whose set of vertices is p�q, and such that one puts one edge between
a class in p and a class in q for each point they share.

Examples Meeting graphs of partitions over {1, 2, 3, 4, 5}
p = 1 23 45 r = 123 45

| � | � | () � � |
q = 12 34 5 q = 12 34 5

G(p, q) G(r, q)

Definition 12 p is orthogonal to q (notation: p⊥q), if G(p, q) is acyclic and
connected (so in the example above: p⊥q, but r �⊥q).

Definition 13 Two sets P and Q of partitions over {1, . . . , n} are orthogonal,
if they are pointwise orthogonal (notation: P⊥Q)

Definition 14 P⊥ = {q ; ∀p∈P, q⊥p}

Remark 1 P⊥Q ⇒ P ⊆ Q⊥

Proposition 15 (Danos) S :: S′ is a proof-net ⇔ PS⊥PS′

Examples

1. �-associativity:

1 I follow Maieli and Puite who, in [4], call ‘pretype’ of a module what Danos calls in
[3] its ‘type’ (a terminology that the former reserve to the double orthogonal of the
‘type’ in the sense of Danos)

84

�1
�

�
�

�
�

�

�

0
���

�

2�
�

�
�

3�
���

�

←→

1�
�

�
�

2�
���

�
3�

�
�

�
�

0
���

�
�

�
�

The two modules above have same pretype: { 0123 }. We thus can replace in
a given proof-net any sub-graph like one of those above by the other one:
although such a replacement changes the type of the proof-net, by proposi-
tion 15, the satisfaction of the DR-correctness criterion is preserved.

2. �-associativity:

�1
�

�
�

�
�

�

�

0
����

�

2�
�

�
�

3�
����

�

←→

1�
�

�
�

2�
����

�
3�

�
�

�
��

0
���

�
�

�
�

The two modules above have same pretype: { 01 2 3 , 1 02 3 , 1 2 03 }. Same
remark as above.

(To put in in one slogan: “Pretype equality2 = free associativity”.

Remark As far as commutative MLL is in concern, structures differing only
up to commutativity are not distinguished. This means however, that when one
plugs S and S′ together to build S ::S′, one has to pay attention to continue to
identify same indices of the border.

2 Weak-distributivity: a proof-net, a computational
morphism

The formula (A ∨ B) ∧ C → A ∨ (B ∧ C) usually called the weak-distri-
butivity formula (WD), is a theorem of LK (sequent calculus for classical logic)
and even actually of its fragment just presented: multiplicative linear logic. In-
deed, the multiplicative version of WD, the sequent (A�B) � C
 A� (B � C)
or its one-sided avatar
 (A⊥

� B⊥)�C⊥,A� (B � C) are derivable in the cor-
responding sequent calculi.

It is easy to see that in MLL proof-net syntax, there is a unique cut free
net NWD with conclusions X� (Y � Z), (X⊥

� Y⊥) �Z⊥ (X,Y,Z distinct atoms).
Here it is:

2 Notice that the equality of the pretypes, in both case above, is not affected by the
commutativity of the connective respectively involved

85

�
X � ��X⊥

�
Y �

�
�Y⊥

�
Z �

�
�Z⊥�

�
�

�
�

�
��

�

��
�

�
�

�
�

�
�

�
�

�
���

�
�
�

�
�

�
���

�
�
�

�
�

�
�

��

�

��
�

�
�

�
�

Lemma 16 Under cut-elimination, NWD dynamically acts as a ‘surgical mor-
phism’ thanks to which one is able to replace in any cut-free proof-net any
sub-graph of shape α by either the module β or the module β′ (all pictured
below), anything else remaining unchanged.

1 2 3�
�

�
�

�
����

�

�
�

�
�

�

���
�

�
�

�

α

0

↙ ↘

1 2 3 2 1 3�
�

�
�

�
���

�
�
�

�
�

�
�

�

�
����

� β

�
�

�
�

�
���

�
�
�

�
�

�
�

�

�
����

� β′

0 0

Proof One has to observe the effect of cut elimination, when NWD (or, to
be precise, NWD[A/X,B/Y,C/Z]) is cut against a proof-net with a terminal α,
thus corresponding to a conclusion (A�B) � C. Naturally, the module α being
in general ‘deep’ (i.e. not terminal) in the proof-net, one previously needs to
complete NWD downwards, in the obvious way, by identities [5]. �

Nota: in MLL, cut-elimination is deterministic (for a given instance of a cut-link,
a unique reduction step applies). So the apparent non determinism comes here
from the fact that the spatial representation of binary links (� and �-links) does
not uniquely determine their conclusion (proof-nets are defined up to commuta-
tivity).

We now internalize as a rewriting rule the transformation realized by NWD

under cut-elimination.

86

3 Weak-distributivity as a sound and complete rewriting

3.1 The completeness problem

Definition 17 Let �
WD

1 be the smallest binary relation over the set of structures
including {(α, β), (α, β′)} and compatible with structures construction. Let �

WD

denotes the transitive and reflexive closure of �
WD

1, a.k.a. the rewriting rule over
structures generated by �

WD
1.

Notice that �
WD

1 rewriting does not preserved the type (the proof-net conclusions),
nevertheless:

Proposition 18 The set of MLL proof-nets is closed under �
WD rewriting.

Proof By lemma 16 and closure of MLL proof-nets under cut-elimination.
This could as well be proved by means of the ‘Pretypes’ technics presented in
subsection 1.2 (as Maieli and Puite did in [4]). �

A natural question then is whether any proof-net can be obtained that way
from a relevant basic set of proof-nets (completeness problem). Taking account
of the kind of �/� permutations involved in �

WD rewriting, a rather natural
candidate for this set of generators is the set of proof-nets in which the �-links
are ‘as high as possible’, the �-links ’as low as possible’. To give a more compact
representation of those proof-nets, it is useful to consider proof-nets up to �

associativity, an harmless quotientation as far as conservation of proof-nets type
is no more in concern (see subsection 1.2), and to use an n-ary �-link for the
representation:

Definition 19 A proof-net is in canonical form if it is (a representative) of the
following form :�

A1 � ��A⊥
1

�
� ����

�
A2 � ��A⊥

2

�
� ����

�
Ak � ��A⊥

k

�
� ����

�������������

�
�

�
�

�
��

													

�
· · ·

We will refer to axiom links whose conclusions are both premises of a same
�-link (as above) as �-ized axioms. So a proof-net in canonical form is “a k-ary
� of �-ized axioms”.

So, to sum up within the ‘canonical form’ terminology, one knows from propo-
sition 18, that:

Proposition 20 (Soundness) Any proof-structure generated from a proof-net
in canonical form by �

WD rewriting is a proof-net.

87

And the problem which remains to solve is the following:

Problem (Completeness) Can any proof-net be generated from some canoni-
cal proof-net by �

WD rewriting ?

That question (or at least a similar one) has already been solved by categor-
ical means in [6]. The aim of the present section, however, is to give an original,
direct, combinatorial proof.

Notice that the naive idea which likely comes first in mind to prove complete-
ness (namely by just reversing the rewriting) is wrong: the converse �WD−

1 of �
WD

1

rewriting does not generally preserve the correctness criterion : proof-nets are
not closed under �WD− (the transitive and reflexive closure of �WD−

1). Worst, there
exists proof-nets for which any �WD− rewriting leads out of the set of proof-nets
(examples listed at the beginning of subsection 3.3).

However, we are going to show that inasmuch one considers only proof-nets
with a unique conclusion (‘mono-conclusion’ proof nets) and one works up to
associativity and commutativity, then:

1. in a proof-net (not being in canonical form), there exists a sub-graph of shape
β for which one of the corresponding �WD− replacements is correct;

2. some ordinal attached to proof-structures decreases when one performs such
a replacement.

3.2 Doubly splitting �

�

Definition 21

1. Following Girard’s terminology in [1], an instance of a �-link in a (say, con-
nected) structure S is a splitting-�, if the erasure in S of that link (conclusion
vertex and edges) produces two unconnected structures.

2. Following Danos terminology in [3], an instance of a �-link in a (say, con-
nected) structure S is a splitting-� (un � scindant), if the erasure of the two
edges of that link in S produces two unconnected graphs (we will then note
the upper one - a structure - by S+).

3. In a proof-structure S, a splitting �-link surmounted by a �-link which itself
splits the corresponding S+, will be called a doubly splitting �

�.

Concerning proof-nets splittings, we will use soon the two following lemmas
both picked up from the saga of proof-nets ‘sequentialization’ tools.

Lemma 22 (Girard, [1]) Let N a proof-net with no terminal �-link. If the set
of �-link in N is not empty, then (the set of terminal �-link in N is not empty
and) one of them is a splitting-�.

Lemma 23 (Danos, [3] Let N a proof-net. If the set of �-link in N is not
empty, one of them is a splitting-�.

88

Proposition 24 The �WD− rewriting rule preserves correctness when applied
to a doubly splitting �

�.

Proof Let us consider again the module β met in lemma 16 (the treatment of
β′ is similar). Up to � and � commutativity, β has two images (α and α′′) by
�WD− as pictured below:

�1
�

�
�

�
�

�

�

0
����

�

2�
�

�
�

3�
���

�

�WD−

β α

1�
�

�
�

2�
����

�
3�

�
�

�
�

0
���

�
�

�
�

�1
�

�
�

�
�

�

�

0
����

�

2�
�

�
�

3�
���

�

�WD−

β α′′

1�
�

�
�

3�
����

�
2�

�
�

�
�

0
���

�
�

�
�

Let us calculate, for each module above, its pretype (the various partitions in-
duced by switchings over its border {0, 1, 2, 3}) and the orthogonal of this pre-
type. We have:

Pβ = {023 1 , 10 23}
P ⊥
β = { 0 12 3︸ ︷︷ ︸

p1

, 0 13 2︸ ︷︷ ︸
p2

}
Pα = {023 1 , 013 2}
P ⊥
α = {p1}

Pα′′ = {023 1 , 012 3}
P ⊥
α′′ = {p2}

Let N[β] be a proof-net containing β as a sub-module. We note N[] the comple-
mentary module to β in N[β] (a.k.a. the context). Because N[] :: β is a proof-net,
we know that PN[]⊥Pβ (by proposition 15), and thus that PN[] ⊆ P ⊥

β (by re-
mark 1). From our computation just above, we thus have PN[] ⊆ {p1, p2}.
However, by invoking now our computations for α (resp. α′′) and the results just
cited again, one sees that N[α] (resp. N[α′′]) is a proof-net only if PN[] ⊆ {p1}
(resp. PN[] ⊆ {p2}). In other words, applying �WD− rewriting to N[β] is correct if
and only if either PN[] = {p1} or PN[] = {p2}.

But this is precisely what happens when the �-link and the �-link of β form
together a doubly splitting �

� in N[β]. �

89

3.3 Existence of a correct WD−
� strategy

We will now show that it is always possible to find such a doubly splitting �

�

situation. Such a statement happens to be false while one keeps the usual syntax
unquotiented, but true when one considers only mono-conclusion nets (in terms
of expressive power, nothing is lost:
MLL Γ iff
MLL�Γ) and up to associativity and
commutativity of � and �.

All of the three conditions: (1) mono-conclusion proof-nets, (2) associativity,
and (at least some form of) (3) commutativity appear compulsory. Indeed, If
we drop condition (n) (where n ∈ {1, 2, 3}), keeping the two others, the unique
cut-free proof-net having for conclusions the formula(s) indicated in the corre-
sponding item [n] below is a counter-example (it does not include any sub-graph
of shape β for which the corresponding �WD− replacement is correct):

(X�Y) � Z , Z⊥
� (Y⊥

� X⊥) (mono-conclusion) [1]
((X�Y) � Z) � (Z⊥

� (Y⊥
� X⊥)) (associativity) [2]

X� ((Y �Y⊥) � X⊥) (commutativity) [3]

We now state the series of lemmas, combined hereafter to prove the existence
of a correct WD−

� strategy.

Lemma 25 Let N be a mono-conclusion cut-free proof-net. If the terminal
link of N is a �-link whose premises (up to associativity) all are conclusions of
identity-axioms, then N does not contain any �-link.

Proof Else, let us consider a �-link in N and p a maximal downward path in
N beginning with one of the edges of that �-link. N being mono-conclusion, the
last edge of p must be one of the edges of the terminal �-link of N. Hence in p
(sequences of) �-link edges alternates at least once with (sequences of) �-link
edges. Up to associativity, the terminal �-link of N thus should be surmounted
by a �-link. �

To save time (by avoiding drawings), the proofs we give now (of lemmas 26
and 28) release upon sequentialization. This is of course just a matter of conve-
nience.

Notation: if π is a sequent calculus derivation, we note |π| the number of
non 0-ary rules in π.

Lemma 26 Let N be a cut-free proof-net. If N do not contain any �-link, then
N is either an identity-axiom or a �-ized identity-axiom.

Proof By sequentialization theorem, it suffices to prove the lemma for cut-free
sequent calculus. Let π an MLL derivation of
 Γ and let r be the last rule of
π. If |π| = 0, then r is an identity-axiom and we are done. Else, as there is no
�-rule, r has to be a � rule. Let π− the immediate sub-proof of π. By induction
hypothesis (and the case as of a �-ized identity-axiom being impossible, π−’s
terminal sequent having more than one formula, namely the two sub-formulas

90

of the formula having the introduced � as main connective) it has to be an
identity-axiom, as expected. �

Lemma 27 Let N be a mono-conclusion cut-free proof-net. If the terminal
link of N is a �-link whose premises (up to associativity) all are conclusions of
axioms, then N is a �-ized identity-axiom.

Proof By lemmas 25 and 26. �

Lemma 28 In any mono-conclusion proof-net, there exists a �-link.

Proof (induction on sequentialization) Let N : A a proof-net. Let π a sequen-
tialization of N and r its last rule:

π

⎧⎨
⎩

...
r
 A

1. The case r = axm is impossible.
2. If r =�-rule, we have it.

3. If r = �-rule, then A :=A′
�A′′ and π :=

⎧⎪⎪⎨
⎪⎪⎩

... π1

 A′

... π2

 A′′
r

 A′
� A′′

. By induction

hypothesis on πi, one concludes. �

Lemma 29 Let N a mono-conclusion proof-net. If no splitting � has a �

among its premises (up to associativity and commutativity), then N is in canon-
ical form (tensorization of �-ized axioms).

Proof Let us consider the terminal vertex of N.

1. If it is a �-link, being terminal, it is a splitting one. Thus by our main
hypothesis each of its premises (up to associativity) is conclusion of an axiom.
So, by lemma 27, N is a �-ized axiom.

2. If it is a � node, the mono-conclusion proof-net N has no terminal �. So,
lemma 22 applies, and deleting that �, one gets proof-nets which themselves
are mono-conclusion (else, N itself would not be mono-conclusion). While one
of the mono-conclusion proof-nets so produced ends with a �-link, we are
allowed to use lemma 22 again. Obstinately performing the corresponding
� deletion process until it ends, we eventually get a set of mono-conclusion
proof-nets Mi, each of them ending with a �-link (indeed, any such Mi

being mono-conclusion, the case where its conclusion vertex is conclusion of
an identity axiom link is excluded). Those �-links are themselves splitting
(in N) and, by our main hypothesis, they are thus surmounted by identity-
axioms only. Hence by lemma 27, they are the �-links of �-ised axioms. So
that N actually is a k-ary tensor (k ≥ 1) of �-ized axioms. �

91

Notation

- N− is the proof-net one gets from N by deleting iteratively and obstinately
terminal �-links (any conclusion vertex in N− thus is conclusion of either a
�-link or an identity-axiom link).

- let v be the conclusion vertex of a given ‘terminal’ (up to associativity) �-

link in N. Then N
v
�

−
the proof-net obtained from N by deleting iteratively

terminal (up to associativity) �-links only up to v (i.e. we delete only those
terminal �-links that one can reach without deleting v).

Lemma 30 Let N be a mono-conclusion cut-free proof-net whose terminal link
is a �-link. If N includes a � link, then N contains a �

� for which �WD− rewriting
is correct.

Proof Every terminal vertex of N− is conclusion of an axiom or a �-link and,
by the � existence hypothesis and lemma 27 applied to N, at least one of those
vertices is conclusion of a �-link. Hence, by lemma 22 applied to N−, at least
one of them is a splitting �. Let v1 be the conclusion vertex of that �. Because
N is mono-conclusion and terminates with a �-link, in N, v1 is premiss of a
�-link. Let v2 the conclusion vertex of that �-link. Up to � associativity and
commutativity, the other premiss v3 of that �-link can be chosen terminal in N−.

So that in N
v2
�

−
, the superposition v1

v2
(or more precisely the superposition of the

corresponding links) forms a double splitting �

�. By proposition 24, performing
in Nv

�
− the corresponding �WD− reduction step preserves correctness. If we finally

reintroduce as terminal �-links as previously dropped from N (an operation
which always preserves correctness), one finally gets a correct �WD− reduct of N.

�

Remark 2 Let N be a cut-free proof-net. If N is mono-conclusion, then any
proof-net N+ (see def. 21) produced by a splitting of N due to a splitting � in
N, has no other conclusions than the two premises of that splitting �.

Theorem 31 Let N a mono-conclusion cut-free proof-net. Then either N is in
canonical form (n-ary � of �-ized axioms) or there exists in N a �

� whose �WD−

rewriting is correct.

Proof N is mono-conclusion. So by lemma 28, it contains a �-link. Hence, by
lemma 23, there exists a splitting �. Thus:

1. If none of those splitting � is surmounted (up to �-associativity) by a �-link:
then, by lemma 29, N is a n-ary tensor of “�-ized axioms”.

2. Else, there exists a splitting � surmounted (up to �-associativity) by a �-
link: let us complete N+ (the “upper” proof-net produced by the correspond-
ing splitting) by applying a �-link to both its conclusions (see remark 2).
Applying lemma 30 to that proof-net, one can find above its terminal �-
link, a � s.t. the corresponding �

� is doubly splitting (in that proof net).

92

The �WD− step thus preserves correctness (and remains so when performed in
the original proof-net: indeed, proof-nets are closed by the replacement of a
mono-conclusion sub-proof-net by a mono-conclusion proof-net). �

Remains now to prove that the �WD− rewriting is noetherian. For this, we
will use the definition below, inspired by the one given in [4] for �

WD . Let us
first present two notations. Omitting in a given cut-free structure the identity-
axioms, one gets a multi-set of trees which, following ordinary conventions for
spatial representation of partial orders, defines a partial strict order < over the
vertices of the structure (so < means “strictly below”). Also, in what follows, ∧
stands for the ‘infimum’ relative to <.

Definition 32 The complexity C(v) of a vertex v in N is defined by

C(v) = �{p, �-link in N, s.t. p ∧ v < v}

Remark If N is a mono-conclusion proof-net, then for any v in N, C(v) is the
number of �-links in N which are not above v.

Definition 33 The complexity C(N) of a proof-net N is defined as:∑
t �-link in N

C(t)

Proposition 34 The �WD−
1 rewriting rule makes the complexity decrease. Asso-

ciativity and commutativity, however, left it unchanged.

Theorem 35 (Completeness) Any mono-conclusion proof-net can be obtained
from a proof-net in canonical form (a big � of �-ized axioms links) by �

WD rewrit-
ing.

Proof By theorem 31 and proposition 34.

4 Epilogue

This result was first proved to build a bridge between MLL proof-nets and ‘deep
inference’ formalisms (Calculus of Structure, CoS) elaborated by the proof theory
group in Dresden (A. Guglielmi [7] and others).

Roughly speaking, a given derivation in the multiplicative fragment of the
calculus of structures, corresponds to a given �

WD rewriting strategy. Roughly only,
because, in Calculus of structures, ‘generators’ are only �-ized axioms (not n-
ary � of them), a specific construction being separately added to introduce new
�-ized axioms at any time of the rewriting).

Even if this simple remarks could seem self evident for the Calculus of struc-
tures community, I nevertheless hope it could be a useful mean for improving
the dialogue between deep-inference and proof-nets workers.

93

References

[1] Girard J.-Y. (1987), Linear logic. Theoretical Computer Science, 50:1–102.
[2] Danos V. and Regnier L. (1995), The structure of multiplicatives. Archives

for Mathematical Logic, 28, 181-203, 1989.
[3] Danos V. (1990), La logique linéaire appliquée à l’étude de divers processus de

normalisation (principalement du λ-calcul). Thèse de doctorat, Université Paris 7,
juin 1990.

[4] Maieli R. and Puite Q. (2005), Modularity of proof nets: generating the type
of a module. Archive for Mathematical Logic, Volume 44, Number 2, 167-193,
February 2005.

[5] Danos V., Joinet J-B., Schellinx H. (2003), Computational isomorphisms in
classical logic. Theoretical Computer Science, Vol. 294, issue 3, pp.353-378”, 2003

[6] Devarajan H., Hughes D., Plotkin G., Pratt V. (1999), Full completeness
of the multiplicative linear logic of Chu spaces. Logic in Computer Science, 234-
242, 1999

[7] Guglielmi A. (2004), A System of Interaction and Structure. Technical Report
WV-02-10 (8 November 2004), International Center for Computational Logic
Technische Universität Dresden, 01062 Dresden, Germany to appear on ACM
Transactions on Computational Logic

[8] Bechet D., P. de Groote, Retoré C. (1997), A complete axiomatisation for
the inclusion of series-parallel orders. RTA 97 LNCS volume 1232, 1997

[9] Retoré C. (1999), Handsome proof-nets: R&B graphs, perfect matchings and
Series-Parallel graphs. INRIA Research report RR-36-52, 1999

94

Rewritings in Polarized (Partial) Proof Structures�

Christophe Fouqueré and Virgile Mogbil

LIPN – UMR7030
CNRS – Université Paris 13

99 av. J-B Clément, F–93430 Villetaneuse, France
{christophe.fouquere,virgile.mogbil}@lipn.univ-paris13.fr

Abstract. This paper is a first step towards a study for a concurrent construction
of proof-nets in the framework of linear logic after Andreoli’s works, by taking
care of the properties of the structures. We limit here to multiplicative linear logic.
We first give a criterion for closed modules (i.e. validity of polarized proof struc-
tures), then extend it to open modules (i.e. validity of partial proof structures)
distinguishing criteria for acyclicity and connectability. The keypoint is an exten-
sive use of the fundamental structural properties of the logics. We consider proof
structures as built from n-ary bipolar objects and we show that strongly conflu-
ent (local) reductions on such objects are an elegant answer to the correctness
problem. This has natural applications in (concurrent) logic programming.

1 Introduction

Girard in his seminal paper [8] gave a parallel syntax for multiplicative linear logic as
oriented graphs called proof-nets. A correctness criterion enables one to distinguish
sequentializable proof-structures (the so called proof-nets) from "bad" structures. After
Girard’s long trip correctness criterion, numerous equivalent properties were found. In
particular, Danos and Regnier [7] proved that switched proof-structures should be trees.
Furthermore, Danos implemented the criterion by means of a contraction relation on
proof structures: binary connectives are the main elementary objects of the structures
and are reduced by the relation. While a lot of research has been done on such correct-
ness criteria, it still remains to study sequentialization of polarized as well as partial
proof-structures. We generalize in this paper Danos and Regnier results to these two
cases and show that the framework of proof-net rewritings leads to elegant results. In
our case, structures are built from n-ary bipolar objects and we show that a strongly
confluent (local) reduction may be defined as these elementary objects really take care
of fundamental properties.

Such structures arise naturally after Andreoli’s works [2–4] in logic programming:
after showing in [1] that linear logic, a resource-conscious logic, may be used as a pro-
gramming language1 using a standard, sequential approach, he switches to a proof-net
presentation as this syntax affords a desequentialized presentation of proofs, hence a

� Partially supported by ACI NIM project Géométrie du Calcul (GEOCAL), France.
1 Full first-order linear logic can be used as a programming language. However, we restrict in

this paper to propositional multiplicative linear logic.

95

concurrent way to compute them at the expense of a correctness criterion that guaran-
tees to recover sequentialization, i.e. validity of proofs.

In this paper, we search for a generalization of Andreoli’s results in order to have full
expressivity. For that purpose, we depart from his approach by adopting a graph point
of view. Modules, as graph elements, arise naturally from proof nets. In a few words,
associativity, commutativity and focalization lead to polarize formulae, hence to stratify
proofnets.2 It turns out that polarization may enhance proof search, hence is central to
prove that full linear logic could be a logic programming language. This fundamental
notion was later considered in Girard’s works [9], and also in Laurent’s works about
Polarized Linear Logic (LLP). Consequently our basic objects are proof structures with
two strata we call bipolar structures: bipolarity is a key tool to get a rewriting system
for checking correctness (2). Bipolar structures become computational structures as
composition of such structures corresponds to some kind of progression rule in logic
programming. As we shall show in the next sections, applying such a rule is nothing
more than a composition of partial proof structures whose correctness is stated locally.

Andreoli set up this desequentialized framework for middleware infrastructures. In
such applications, software agents must satisfy requests or goals by executing concur-
rently actions on a shared environment: actions transform the environment by delet-
ing resources and creating new sets of results. Andreoli focused on transitory proof-
structures, i.e. actions always create new resources. Moreover, he imposes prerequi-
sites of actions to be satisfied in order to execute them: the proof construction is done
bottom-up. As we shall see, these two hypotheses greatly simplify the problem of defin-
ing formally conditions under which actions may be undertaken. On the contrary, we
constrain neither the structure of modules, nor the application order. It is then possible
to define actions that kill resources or to anticipate consequences of resources still to be
acquired. Furthermore, we depart from Andreoli’s approach for defining a correctness
criterion. His method is based on a computation of domination forests in the spirit of
Murawski and Ong’s approach [14]. We adopt here a completely different strategy. We
define reduction relations in order to get the correctness property.

The following section gives basic definitions. We formally present modules from
elementary ones, graphically and in terms of formulae. We specify in which sense a
module is correct, i.e. computation is allowed. Section 3 is devoted to closed mod-
ules. A closed module is equivalent to a proof structure. Although closed modules are
an extreme special case of modules, the methodology we use introduces naturally the
way we consider open modules. In a first attempt, in the spirit of the resolution rule in
logic programming we define a rewriting rule on modules: a transformation of a mod-
ule may be viewed as a deconstruction of the proof structure. Correct normal forms
are easily characterized. Extending the Danos-Regnier criterion,3 we deduce a correct-
ness criterion for closed modules as our rewriting rule and its inverse are stable wrt
connectedness and acyclicity. We define next a modified version of the previous rewrit-
ing system: using polarization and focalization, the reduction becomes fully local: each
step reduces one elementary object of our system without any global condition. Open

2 Distributivity contributes to it when dealing with the additive part of linear logic.
3 The Danos-Regnier criterion is based on graph properties of proof nets: correct proof struc-

tures, i.e. proof nets, are in some sense the connected and acyclic ones.

96

modules, i.e. modules without constraints, are studied in section 4. We prove that the
Danos-Regnier criterion may be extended to open modules replacing the connected-
ness by a connectability property. We give two rewriting systems as acyclicity and con-
nectability differ fundamentally. These two systems may be viewed as variations over
the one we give for closed modules. We end with a study on incrementality wrt com-
position of modules. In terms of computation, elementary modules compete to modify
some current open module (the environment): actions are concurrent when two such el-
ementary modules are composed in disjoint parts of the environment. It is then crucial
to be able to define rewriting systems that commute with composition. We show that
we have to restrict previous rewriting systems for that purpose. However, the rewriting
systems have to be split into two parts: one commutes with composition, the other is a
post-treatment necessary to test correctness of composition.4

2 Basic definitions

Elementary bipolar modules are our basic blocks. They are interpreted as elementary
actions that can take place during an execution. In terms of graph, applying an action is
represented as a wire, i.e. composition, of the corresponding (elementary) module onto
the current graph.

Definition 1. An elementary bipolar module (EBM) M is given by a finite setH(M) of
propositional variables (called hypotheses) hi and a non empty finite set C(M) varying
over k of finite sets of propositional variables (called conclusions) cj

k. Variables are
supposed pairwise distinct.5 The set of propositional variables appearing in M is noted
v(M). Equivalently, one can define it as an oriented graph with labelled pending links
and one positive pole under a finite set of negative poles. Its type t(M) and drawing
are given in the following way:

t(M) = (
⊗

i hi)−◦(k(
⊗

jk
cjk

k)) ��

� � � � �cj1
1

� � � ��

� � � � �cjK

K

� � �
hi

Informally, the EBM has the following operational bottom-up reading: being given
in some context a multiset of hypotheses (i.e. their tensor), this one is replaced by (−◦)
each of the mutisets of conclusion, these last have to be used in separate contexts (is
the logical dual of ⊗). This specification of modules comes from the fact that connec-
tives are naturally split into two sets: e.g.⊗ is said positive, while is negative. Propo-
sitional variables are declared positive, and their negation negative. Formulae alternate
positive and negative levels up to propositional variables. Note that we use conveniently
a two-sided style for formula and sequent presentations, even if our basic objects are
proofnets. It is in fact possible to flatten proofnets to get bipolar structures related by
links on fresh variables:

4 Complements and some technical proofs are available in http://xxx.lanl.gov/cs/0411029.
5 This restriction is taken for simplicity. The framework can be generalized if we consider mul-

tisets (of hypotheses and conclusions) instead of sets, and add as required a renaming mecha-
nism: the results in this paper are still true.

97

⊗�� � �� �

�� � �� �
⊗�� � �� �

︷ ︸︸ ︷α

−→
⊗�� � �� �

�� � �� �

pα p⊥α

⊗�

�

� � �︷︸︸︷α

If we notice that a variable and its negation cannot be together linked to negative nodes
(it would contradict the correctness criterion), we can always suppose that, say, positive
variables are linked to negative nodes. Finally, it may be the case that some bipolar
structure (thus beginning with a positive node at bottom) has no negative variable: add
then the constant 1, neutral for⊗. Allowing abusively unary⊗ and connectives, these
(elementary) bipolar structures are the clauses of our programming language. We thus
conveniently suppose that k Fk =

⊗
k Fk = F1 when the domain of k is of cardinal

1. Moreover, if the domain of i is empty, (
⊗

i hi)−◦C = 1−◦C and if the domain of jk

for some k is empty (
⊗

jk
cjk

k) = ⊥.

Example 1. The EBMs α, β and γ of respective types t(α) = a−◦(b ⊗ c), t(β) =
b−◦(d (e⊗ f)) and t(γ) = c−◦((g ⊗ h) i) are drawn in the following way:

α:
��

b c

a

β:
��

e f

��

d

b

γ:
��

i

��

g h

c

Three kinds of EBMs are of special interest: An EBM is initial (resp. final) iff its set of
hypotheses is empty (resp. its set of conclusions is empty). An EBM is transitory iff it is
neither initial nor final. Initial EBMs allow to declare available resources, though final
EBMs stop part of a computation by withdrawing a whole set of resources. Transitory
EBMs can be seen as definite clauses in standard logic programming. Roughly speak-
ing, a (bipolar) module (BM) is a set of EBMs such that a label appears at most once
as a conclusion and at most once as a hypothesis. A label appears as a conclusion and
as a hypothesis when two EBMs are linked by this label. As we search for correctness
criteria wrt composition of modules (i.e. execution of the program), we give below an
inductive definition of bipolar modules.

Definition 2 (BM). A bipolar module (BM) is defined inductively in the following way:

– An EBM is a BM.
– Let M and N be a BM, let I = (C(M)∩H(N))∪ (H(M)∩ C(N)), their compo-

sition wrt the interface I , M ◦I N is a BM with :
• the set of hypothesis (resp. conclusions) H(M ◦I N) is the hypothesis (resp.

conclusions) of M and N which are not in I
• t(M ◦I N) = t(M)⊗ t(N) and v(M ◦I N) = v(M) ∪ v(N).

The border b(M) of a BM M is the union of the hypotheses and the conclusions.

The informal explanation given before is more general than this definition because
we define BM incrementally. However, we abusively do not consider these differences
in the following as properties will be proven in the general case. The interface will

98

be omitted when it is clear from the context. Note that the interface may be empty: it
only means that two computations are concurrently undertaken, currently without any
shared resources. A BM may not correspond to a valid computation: e.g. we do not
want to accept that some action uses two resources in disjunctive situation! Correctness
has obviously to be defined wrt the underlying Linear Logic as we do below. Finally,
note that when a BM is correct, it represents the history of the computation whereas its
conclusion is the current available environment.

Example 2. The composition of the EBMs α, β and γ is the BM α ◦{b} β ◦{c} γ drawn
below.Its type is t(α)⊗ t(β) ⊗ t(γ).

α ◦{b} β ◦{c} γ

��

i

��

g h

��

e f

��

d

����
����

b c

a

α ◦ β ◦ γ ◦ δ

��

j

��

i

��

g h

��

e f

��

d

����
����

b c

a

β ◦ ε

��

e f

��

d

b

��

k

Definition 3 (Correctness (wrt sequentialization)). Let M be a BM, M is correct iff
there exists a formula C built with the connectives ⊗ and , and the variables C(M)
such that the sequentH(M), t(M)
 C is provable in Linear Logic.

Example 3. Let us give two more BMs δ and ε of respective types (f ⊗ g)−◦j and
(d⊗ e)−◦k.

– The following sequent is provable in LL: a, t(α ◦ β ◦ γ ◦ δ)
 d (e⊗ j ⊗h) i.
The (correct) BM α ◦ β ◦ γ ◦ δ is drawn in the previous figure.

– The BM β ◦ ε is not correct: there is a cycle through d and e.

As we shall focus first on characterizing correctness on closed modules, and then
generalize our results to open modules, we adjoin to the term correct the kind of mod-
ules we speak of, e.g. c-correct when the module is closed, o-correct when it is open.

3 Closed modules

A closed module is a BM where the sets of hypotheses and conclusions are empty. Cor-
rectness of closed modules may be tested either in sequent calculus or by means of (sim-
ple oriented) graphs called proof-nets. We use this latest representation in this section.
A correctness criterion enables one to distinguish sequentializable proof-structures (say
such oriented graphs) from "bad" structures. The reader may find in [7] the definitions
of proof structures and switchings. One generalizes this definition to n-ary connectives
in the obvious way (taking care of associativity and commutativity of ⊗ and) in
place of standard binary ones. One modifies in the same way the definitions of switch-
ing introducing generalized switches. In particular a n-ary connective has n switched

99

positions. One still can define switched proof-structures and a criterion generalizing
Danos-Regnier correctness criterion: A closed module M is DR-correct iff for all gen-
eralized switches s on M o, s(Mo) is acyclic and connected, where M o is the proof
structure associated to t(M)⊥.6 We immediately have the following proposition as a
corollary of the DR-criterion theorem (remember that a c-correct module is a correct
closed module):

Proposition 1 (c-correction). Let M be a closed module,
M is c-correct iff t(M)
 is provable in Linear Logic, iff M is DR-correct.

Remember that the equivalent (binary) Danos correctness criterion may be imple-
mented by means of a contraction relation on proof structures. However, intermediate
reduced structures may not be describable in terms of (bipolar) modules. Moreover such
a contraction relation does not take advantage of the incremental definition of modules
as a composition of elementary bipolar modules. A first idea consists of representing
the resolution step (implicit in EBMs composition) in terms of modules. We first give
below such a (small step) reduction rule that is stable wrt correctness with

∪⊥
�as the cor-

rect normal form, where
∪⊥
�denotes the terminal EBM (i.e. smallest final and initial). We

give then a second proposal that takes care of the focalization property. Though a reso-
lution step reduces one variable, this second formulation uses as a whole the structure
of a module thanks to focalization. The focalization property states that a sequent is
provable iff there exists a proof s.t. decomposition of the positive stratum of formulae is
done in one step. Considering bipolar modules, it means that one may define a reduction
relation s.t. each step reduces one positive-negative pair of nodes.

Let �∗
Θ be the transitive closure of the following relation defined on literals of a

proof-structure Θ: let u and v be two literals of Θ, u �Θ v iff u⊥ and v are in the same
subtree with root ⊗ of the formula corresponding to Θ. We note u �∗ v when there is
no ambiguity. In the following, we consider proof-structures modulo neutrality of the
constant 1 and associativity of connective .

Definition 4 (Small step reduction rule).
Let→ be the reduction relation given by:
if ∀v a literal of ψ, v ��∗ x⊥ then

1

�
φ

�

 ψ

�

2

x⊥ x

3

−→

1

φ
2

ψ
3

�1

Theorem 1 ((small steps) Correctness criterion). Let M be a closed BM, M is cor-
rect iff Mo →∗ 1.

Briefly speaking, one can prove that the relation −→ and the inverse relation are
stable wrt DR-correctness by induction over the height of ψ. One may want to get rid
of the (global) condition in favor of a local condition. This is possible thanks to the
structure of modules. Suppose M is a correct closed module, then one may define an
equivalent proof-net by sufficiently adding fresh variables as described in the introduc-
tion. It is easy to prove that the constraint is satisfied by x or x⊥ for each variable x.

6 The type is sufficient to build a proof structure as by construction of modules axioms are
uniquely defined. We abusively note s(M) in place of s(Mo) in the following.

100

However, the reduction system being not strongly confluent, a reduction on a variable
may lead to a proof structure on which the condition is not always satisfied. There are
two cases where this does not happen: either all variables on a tensor have their nega-
tion on the same , or the converse interchanging and ⊗. The (big step) reduction
relation 	 in Fig. 1 uses this fact. Note that this system is confluent and terminates.

��

� � � � �
� � � ��

� � � � �z }| {
α

� � �
β

� � �
�� ��

� � � � �
� � � ��

� � � � �z }| {
γ

� � �
δ

−→→ ��

� � � � �
� � � ��

� � � � �z }| {
α

��

� � � � �
� � � ��

� � � � �z }| {
γ

� � �
β

� � �
δ

��

� � � � �α

� � �
		��

� � �β

��

� � � � �
� � � ��

� � � � �z }| {
γ

� � �
δ

−→→ 		��
� � �α � � �β

��

� � � � �
� � � ��

� � � � �z }| {
γ

� � �
δ

Fig. 1. Big step reduction relation.

Proposition 2 (Stability). Let M and N be two closed modules and M 	 N , M is
c-correct iff N is c-correct.

Proof. One can define a function from left switched module onto right switched module
stable wrt acyclicity, connectedness, and the inverse properties. $%

Theorem 2. A closed module M is c-correct iff M →→∗
∪⊥
�.

Proof. As the reduction rules are stable wrt correctness, it remains to prove that a cor-
rect non-terminal closed module M can always be reduced. We define a partial relation
on negative poles: a negative pole is smaller than another one if there exists a positive
pole s.t. the first negative pole is linked to the bottom of the positive pole and the second
negative pole is linked to the top of the positive pole. We consider the transitive closure
of this relation.

If maximal negative poles do not exist then there exists at least one cycle in the
module alternating positive and negative poles. We can then define a switching function
on the module (choosing the correct links for negative poles) s.t. the switched module
has a cycle. Hence contradiction.

So let us consider one of the maximal negative pole, and the corresponding positive
pole. We remark that such a negative pole has no outcoming links (the module is closed
and the negative pole is maximal). If the positive pole has other negative poles, we
can omit the maximal negative pole by neutrality. Otherwise, let us study the incoming
negative poles.

If there is no such incoming link, then M is the terminal module. If each incoming
negative pole has at least one link going to another positive pole, then one can define a
switching function using for each of these negative poles one of the link that does not
go to the positive pole we considered first. Hence the switched module is not connected

101

(there are no outgoing links). Hence contradiction. So there exists at least one incoming
negative pole with the whole set of links associated to the positive pole: the first rule
applies and we are finished. $%

Note that this proof extensively uses the bipolar nature of modules. Moreover, the
proof may have been given considering minimal poles in place of maximal poles, and
for each proof only one of the two reduction rules is sufficient and necessary! Finally,
the same technique as Guerrini [10] used for Danos criterion may be applied here to
get a linear algorithm. The technique we present here is quite close to the one used by
Bechet [5]. However his definitions of modules were more restrictive, and the applica-
tion concerne mainly non commutative logic.

4 Open modules

We focus in this section on open modules, i.e. partial polarized proof-structures. An
open module is a possibly non closed BM. Studying correctness of open modules is
a necessary step towards the specification of a logic programming language based on
bipolar modules. We search for correctness criteria valid in the general case, hence
extending Andreoli’s works based on Murawski and Ong criterion. The criterion we
give for closed modules is a good basis as it is well suited for bipolar modules and takes
care simultaneously of acyclicity and connectedness.

4.1 O-correction

The bigstep reduction relation presented in the previous section is not sufficient to char-
acterize again correctness of open module. Let U be the first module of the next exam-
ple. Bigstep reductions on U leave the negative pole with variable a unchanged, hence
the normal form is not the one required by the c-correctness theorem, though U has to
be considered correct. The c-correctness theorem 2 cannot be straightfully extended to
open modules.

Correctness of open modules is defined wrt correctness of closed extensions. We
define a closed module N to be a closure of an open module M iff M is a submodule
of N . Such closures are abusively noted M without referring to N when there is no
ambiguity. As a BM is a graph with pending edges, one defines submodules and induced
modules as expected. We use the notation M̃ for the module M without M but with
border b(M) (cf def.2).

Example 4. In the next figure, U is a closure of U .

U :

���
���

c

��

a
b

��

eU :

c

��

b

��

��

a

U :

���
���

��

��

�� ��

��

102

Note that he composition of U with a set of only initial/final EBMs is a closure too.
An open module M is o-correct iff there exists a c-correct closure of M . The open

module U of the example is o-correct because the given closure is c-correct. Note that
there is no other c-correct closure. Hence it is not possible in general to split the prob-
lem of finding a closure into finding a completion by initial modules and final modules.
In the previous section, we defined a rewriting system able to test the correctness of a
closed module. As this system is stable wrt connectedness and acyclicity, it is invariant
wrt the Danos-Regnier criterion. In order to take care of open modules, we extend con-
nectedness to connectability (acyclicity is treated easily) and prove that connectability
and acyclicity are necessary and sufficient for o-correctness. However, we are not able
to define a single rewriting system that commutes with composition. An open mod-
ule M is acyclic if for all generalized switches s on M , s(M) is acyclic. Note that a
submodule of an acyclic module is obviously acyclic.

An open module M is connectable iff there exists a connected closure M s.t. M̃
is acyclic. As a connected closed module is already connectable (just take itself as
closure), the connectability is an extension of the connectedness property. We give an
equivalent definition: an open module M is connectable iff the closed module M ◦ F
is connected where F is a full connector EBM for M , i.e. F has as hypotheses the set
of conclusions of M , is final if M has no hypothesis or has a negative pole with one
conclusion for each of its hypotheses. In fact if there exists a connected closure M then
M ◦ M̃ is connected. So a fortiori, M ◦ F is connected. The converse comes from the
definition.

Theorem 3 (o-correctness). An open module M is o-correct iff M is acyclic and con-
nectable.

Proof. By definition o-correctness implies acyclicity and connectability. If M is acyclic
and there exists a connected closure M st M̃ is acyclic then by induction on the number
of cycles of M , one can construct an acyclic and connected closure of M .
If there is a cycle σ in M then by hypothesis σ ∩ b(M) �= ∅. Suppose there exists a
hypothesis of M h ∈ σ ∩ b(M), one defines N to be M̃ where we substitute a fresh
label h′ to h. Let N ′ be the composition of the initial EBM of border {h}, the final
EBM of border {h′} and N . M ◦ N ′ has one cycle less than M and is a connected
closure.
Otherwise the elements of σ ∩ b(M) are conclusions of M . Let c be such a conclusion.
We consider the following cases:

- if c in σ ∩ b(M) is the only conclusion of a negative pole n, then one can do the
same thing as in the previous case.

- else let d be a conclusion in σ ∩ b(M) distinct from c of n. One renames c (resp.
d) in M̃ in c′ (resp. d′) to get N . One defines also an EBM D with one conclusion
d′ and two hypotheses c and d, and an initial EBM E with conclusion c′. Then
X = M ◦D ◦E ◦N is a connected closure of M and D ◦E ◦N is acyclic. Hence
X is a connected closure of M ◦D and E ◦N is acyclic. We suppressed the cycle
σ. However, it may be the case that there were a cycle through d and D doubles it !
For that purpose, we transform M to get rid of this extra cycle. Let M ′ be M where

103

we identify the two edges labelled c and d in one labelled d′. Then M ′ ◦ E ◦N is
a connected closure of M ′ and E ◦N is acyclic. Moreover the number of cycles in
M ′ ◦ E ◦N is one less than in M . Thus there exists N ′ acyclic such that M ′ ◦N ′

is c-correct. Hence M ◦D ◦N ′ is c-correct. $%

4.2 Acyclicity criterion: a contraction relation →→
An open module M restricted to the subset I of b(M) is the subgraph of M where
we omit pending edges not in I . We denote it M
I . Informally an open module M
restricted to I is a submodule of border I . The restriction of an open module to the
empty set is a closed module. Restriction gives naturally an equivalent definition of
acyclicity for open modules: an open module M is acyclic iff the closed module M
∅
is acyclic. Hence the proposition given in the previous section applies:

Proposition 3 (acyclicity). An open module M is acyclic if M
∅→→∗
∪⊥
�.

Proof. M
∅ is a closed module and M
∅→→∗
∪⊥
� then by stability of acyclicity (of the

inverse relation) M
∅ is acyclic. M is then acyclic. $%

Note that the converse is not true, otherwise acyclic closed modules would be cor-
rect! A way to characterize acyclicity by means of a reduction relation is to enlarge
the reduction→→ (quotienting the set of normal forms). Splitting the negative poles suf-
fices to continue reduction until we get a non-empty set of

∪⊥
�: closing modules may link

disjoint connected components. It is then obvious to deduce a necessary and sufficient
condition for acyclicity. Andreoli considered in [4] only transitory proof-structures. A
transitory proof-structure is equivalent to a BM without hypothesis7 such that negative
poles have always conclusions and obtained by a bottom-up composition of EBMs. As
negative poles have pending edges, there is always a way to connect it to other parts of
the module: if a transitory module M is acyclic then M is connectable. Hence a tran-
sitory module M is o-correct iff M is acyclic. The reduction relation we give to test
acyclicity can be considered as an alternative to Andreoli’s method.

4.3 Connectability criterion: a contraction relation →c

The proof of the correctness of the big step reduction relation for closed modules gives
the keys for finding a connectability property that relies on the structure of an open
module (and not on the modules candidate to close it !). Proof of theorem 2 is based on
reducing first maximal negative poles. In the case of open modules, maximal elements
may have pending edges that should be connected in the closure. But we notice that we
keep connectability if we replace the whole set of pending edges for such an element
by just one pending edge. With this in mind, we consider the (non directed) contraction
relation of Fig. 2 on (contracted) modules. The first three rules are a n-ary formulation
of Danos contraction relation. Danos [6] proved correctness of the relation for (closed)
proof-structures only, though we extend the results to (open) bipolar modules.

7 In fact, there may be hypotheses in built modules but these are unused.

104

(1) ��

� � � � �
� � � ��

� � � � �
� � �

−→

� ��

��

� � �
� � � ��

� � �
(2)

� ��

� ��

−→

� ��

� �

(3)
��

� � ��

� �

−→ �

� �

(4)

���
���

� � �α �i∈I

�� ��

� �
� �

αi

��� � � � −→

∪
i∈I

αi ∪ α

�

� �

Fig. 2. Contraction relation.

Rule (4) is restricted to cases where the negative pole is such that for all i ∈ I ,
αi ∩ b(M) �= ∅ and α ⊆ b(M) where b(M) is the set of pending edges of M , i.e. the
border set. The sets I and α may be empty. We denote by→c one rewriting step and by
→∗

c the reflexive and transitive closure of→c. We call contracted node a black node.
Note that rule (4) is simply the rewriting of a negative pole in a contracted node if the
condition is satisfied. Thus acyclicity is not preserved but connectability is.

Proposition 4. The relation→∗
c is strongly confluent and terminates.

Proof. The first rule acts just as a mark. We can forget it: it is just for convenience. Each
rule applies locally and strictly decreases the number of negative poles and contracted
nodes. The rules are disjoint except for a pair of negative poles linked by the same
contracted node i0 for which rule (4) can be applied (it is a trivial case), and except in
the particular case where the left hand side of rule 4 is reduced to the one of rule 3: in
this case the results are identical. $%

���
���

��
� � �α � � ���� � � �

i0

� � ����
���

���

��
� � � � �βk

��� � � ���

� � � � �

N

︸ ︷︷ ︸
ck ∈ C

︷︸︸︷hl ∈ H We extend the notions of switching to
modules with contracted nodes: contracted
nodes are treated as positive poles. Acyclic-
ity, connectedness, closure and connectabil-
ity are extended in the same way. As in sec-
tion 3, our strategy consists of characteriz-
ing amongst normal forms of this relation
the correct ones, and prove stability of, say,
connectability.

Let M be an open module and f the corresponding normal form. By definition if
f does not contain a negative pole then f is a set of contracted nodes {nj}j∈J s.t.
all pending egdes are in b(M). We use the notation cc for a set of contracted nodes
{nj}j∈J s.t. for all j ∈ J nj has at least one edge in the border b(M) except if | J |= 1.
If f contains a negative pole N then, f being a normal form of relation →c, rule (4)
does not apply on N . Hence the set I as defined by rule (4) is st there exists i0 ∈ I ,
αi0 ∩ b(M) = ∅. Moreover this contracted node i0 is linked to hypotheses of negative
poles {hl}l∈L and to conclusions of only negative poles {ck}k∈K st each of them has
other conclusions βk �= ∅ not linked to i0 (otherwise rule (2) applies for such nodes):
see figure just above.

105

If we suppose the negative pole N is a maximal one (i.e. H = ∅), there is a switch-
ing (on α or on some i �= i0 and on one of each βk) s.t. f (as closures of f) is not
connected. Thus f is not connectable.

Example 5. The following subform implies not connectability:

����

a

��

����

b
−→c ����

a
�

����

b

Proposition 5 (stability). Connectability is stable wrt (resp. inverse) contraction rules.

Proof. The three first rules satisfy obviously stability as does the reverse relation. Let
M be an open module s.t. M →c M ′ by the contraction rule (4) and there exists M

connected and M̃ acyclic. Obviously M ′ ◦ M̃ is connected. Concerning stability of the
inverse relation, let M be an open module s.t. M →c M ′ by the contraction rule (4) and
let F be a full connector EBM for M ′. Note that b(M ′) = b(M). The connectability of
M ′ implies that M ′ ◦F is connected. Wrt rule (4), because for all i ∈ I , αi∩b(M) �= ∅
and α ⊆ b(M), for every switches s, s(M ◦ F) is connected too. $%

By stability of connectability of the relation and its inverse we have:

Theorem 4. Let M be an open module, M is connectable iff M →∗
c cc. Hence an open

module M is o-correct iff M is acyclic and M →∗
c cc.

5 Composition of modules

In the sequel we discuss an incremental criterion to test the composition of an open
module with an EBM. Let M be an o-correct open module and E an EBM s.t. b(M) ∩
b(E) �= ∅ (otherwise the test is easy). As seen above, acyclicity and connectability,
hence o-correctness, of M may be decided by computing normal forms. Our aim is to
decide the o-correctness of the composition M ◦ E ’incrementally’ i.e. not directly but
o-correctness of M being given. This leads us to define a specific contraction relation
→w to replace→c. From the previous section we have:

M is o-correct iff M
∅→→∗
∪⊥
� and M →c cc

Because of the restriction of M to the empty border, the acyclicity condition given
above does not commute with composition. It is the same for connectability: even if
there is preservation of the border with→c, a choice is made for the completion of M
which may be different from the way composition with E is done. For example:

����

a b
−→c ��

�
a

b and

��

��
�
a −→c ��

�a but

����

a

��

−→c ����

a �

In the sequel we show that if we release the restriction operation we can incremen-
tally manage acyclicity. The relax of the (implicit) completion in the rewriting rules
dealing with connectability gives also an incremental criterion for connectability.

106

5.1 Incremental acyclicity: →→
The restriction to empty set is stable wrt the reduction→→ i.e. if M is an open module
s.t. M →→ N then M
∅→→ N
∅. Hence an incremental test for acyclicity follows:

Proposition 6. Let M be an open module s.t. M →→∗ f and E an EBM. M ◦ E is
acyclic if (f ◦ E)
∅→→∗

∪⊥
�.

Proof. If M →→∗ f then (M ◦E)→→∗ (f ◦E). Following previous remark, (M ◦E)
∅→
→∗ (f ◦ E)
∅. Thus if (f ◦ E)
∅→→∗

∪⊥
� then (M ◦ E)
∅→→∗

∪⊥
�. $%

5.2 Contraction relation (without completion): →w

We consider the rewriting system given to test connectability where rule (4) is restricted
to the following degenerated case (α = I = ∅ and application of rule (2)):

� ��
�� −→

� ��

We denote by→w one rewriting step and by→∗
w the reflexive and transitive closure of

→w. As it is a subsystem of the previous one, the relation →∗
w terminates and is still

strongly confluent (there is only trivial independant pairs).
We study the normal forms. By definition an open module contracts in a normal

form composed with only contracted nodes or contracted modules where each negative
pole N is of the following form:

���
���

��
� � �α � � ���� � � �

� �αi

i ∈ I � � ����
���

���

��
� � � � �βi

��� � � ���

� � � � �

︸ ︷︷ ︸
N

︸ ︷︷ ︸
ci ∈ Ci

︷︸︸︷hi ∈ Hi

- I is a (possibly empty) set of contracted
nodes,

- each i ∈ I is linked to a set Ci of
other negative poles by conclusions and
to a set Hi of other negative poles by
hypothesis (the sets Ci and Hi may
be empty). Moreover for all ci ∈ Ci

βi �= ∅,
- α and αi are (possibly empty) subsets

of b(M) for all i ∈ I .

We focus on the two possible forms of negative pole:

- there exists i0 ∈ I s.t. αi0 = Hi0 = ∅. We denote such forms by notcc.
- for all i ∈ I , αi �= ∅ or Hi �= ∅. These negative poles may be considered in the

previous system→∗
c .

If a normal form has no negative poles then it is a set of contracted nodes. We add
to the notcc forms the case where there is at least one contracted node without pending
edges and other nodes.

In order to compare these normal forms with the normal forms of→c observe that:
(i) by definition of normal forms, if I = ∅ then α �= ∅, and if I �= ∅ then | I |� 2 or
α �= ∅, (ii) for all i ∈ I for all ci ∈ Ci we have βi �= ∅. It follows that if a normal form

107

g wrt→∗
w of an open module M contains a notcc subform then there is a generalized

switch s.t. g is not connected. The stability of connectedness wrt→∗
w being given, M

is not connected (neither its closures), thus not connectable.
Remark that the notcc forms are already in the previous system: they are normal

forms which are not the cc forms! In fact the notcc subforms are invariant wrt the
previous system →∗

c . Moreover as stability of connectability of the inverse relation is
easily proven, we have:

Theorem 5. Let M be an open module, M is connectable iff M →∗
w g s.t. notcc �∈ g.

Proof. Let M be s.t. M →∗
w g. If notcc ∈ g then g is not connected (neither its clo-

sures) and by stability of connectedness M is not connectable. Conversely, if notcc �∈ g
then g →∗

c cc by invariance of notcc wrt→∗
c . By theorem 4, g is connectable. The result

is obtained by stability of connectability of the inverse relation wrt→∗
w. $%

Hence, an open module M is o-correct iff M is acyclic and M →∗
w g s.t. notcc �∈

g. By confluence property and theorem 5 we have an incremental test: Let M be a
connectable open module s.t. M →∗

w g and E an EBM s.t. b(M)∩ b(E) �= ∅. We have:

M ◦ E is connectable iff f ◦ E →∗
w g s.t. notcc �∈ g.

5.3 A test for composition

Testing the composition of an EBM E on a correct module M may be done in the
following way. We associate to such a module M a pair (f, g) such that M →→∗ f
and M →∗

w g. We compute the pair (f ′, g′) associated to M ◦ E: f ◦ E →→∗ f ′ and
g ◦ E →∗

w g′. Then E may be plugged onto M , i.e. the composition is correct, iff
f ′
∅→→∗

∪⊥
� and notcc �∈ g′. This test may be implemented in such a way that pre-

computations are done in M in order to optimize the test. Moreover this allows for
a concurrent treatment for testing composition by only locking a reduced part of the
module M .

6 Conclusion

Studying the correctness of open modules is a necessary condition towards incremental
composition of partial proof-nets. Furthermore their concurrent construction allows for
a new approach in designing logic programming languages besides standard ones [1, 11,
13]. In the Horn fragment as well as with linear logic, ’classical’ logic programming is
based on a step by step reduction of goals to be proven by means of a resolution or a
progression rule, i.e. the correctness of a computation is reduced to a pattern recognition
between some part of the current goal and the head of a chosen clause. More complex
than the propositional Horn fragment, pattern recognition is done wrt the whole current
environment when considering, e.g. the full linear logic [12]. In all these cases, the
operational model is unable to reveal possible concurrent computations. A contrario,
the proof net approach is a natural framework as each proof net represents a whole
bunch of sequentialized computations: commuting rules lead to the same proof net.

108

For that purpose, we first extend the classical rewriting criterion of Danos to the n-ary
bipolar case for testing the correctness of closed modules. We show in particular that
polarization greatly simplifies the rewriting procedure. We finally modify the criterion
to take care of open modules proving that correctness of open modules reduces to testing
linearly acyclicity and connectability. This includes Danos results in a more general
framework. It also extends Andreoli’s works by removing constraints on objects we
consider.

An interesting remaining question is to take care of exponential modalities in po-
larized and partial proof-structures. Even if Andreoli proves the focalisazion property
for the whole linear logic, management of exponentials with proof nets requires ex-
tra structure such as boxes, i.e. bounded regions, as their behaviour is context depen-
dent. In our opinion, this could yield a local management of the boxes, just considering
transformation on part of the region border thanks to polarization and focalisation. Our
characterization of proofs as a composition of complex objects can then be extended to
multiplicative exponential polarized proof-structures in the same spirit, i.e. by (concur-
rently) reducing such structures.

References

1. Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of

Logic and Computation, 2(3):297–347, 1992.
2. Jean-Marc Andreoli. Focussing and proof construction. Annals of Pure and Applied Logic,

107(1–3):131–163, 2001.
3. Jean-Marc Andreoli. Focussing proof-net construction as a middleware paradigm. In

A. Voronkov, editor, CADE, volume 2392 of Lecture Notes in Computer Science, pages 501–
516. Springer, 2002.

4. Jean-Marc Andreoli and Laurent Mazaré. Concurrent construction of proof-nets. In M. Baaz
and J. A. Makowsky, editors, CSL, volume 2803 of Lecture Notes in Computer Science,
pages 29–42. Springer, 2003.

5. Denis Béchet. Incremental parsing of lambek calculus using proof-net interfaces. In
ACL/SIGPARSE, editor, Eigth International Workshop on Parsing Technologies, Nancy,
France, April. citeseer.ist.psu.edu/668958.html.

6. Vincent Danos. Une application de la logique linéaire à l’étude des processus de normali-

sation (principalement de λ-calcul). PhD thesis, Université Denis Diderot, Paris 7, 1990.
7. Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for Mathe-

matical Logic, 28(3):181–203, 1989.
8. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
9. Jean-Yves Girard. On the unity of logic. Ann. Pure Appl. Logic, 59(3):201–217, 1993.

10. Stefano Guerrini. Correctness of multiplicative proof nets is linear. In LICS, 1999.
11. Dale Miller. Forum: A multiple-conclusion specification logic. Theor. Comput. Sci.,

165(1):201–232, 1996.
12. Dale Miller. Overview of linear logic programming. In T. Ehrhard, J.-Y. Girard, P. Ruet, and

P. Scot, editors, Linear Logic in Computer Science, volume 316 of London Mathematical

Society Lecture Note. Cambridge University Press, 2004.
13. Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a

foundation for logic programming. Ann. Pure Appl. Logic, 51(1-2):125–157, 1991.
14. Andrzej Murawski and Luke Ong. Dominator trees and fast verification of proof nets. In

LICS’00, pages 181–191. IEEE Computer Society Press, 2000.

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

Purity through Unravelling

Robert Hein and Charles Stewart

Technische Universität Dresden, Germany

Abstract. We divide attempts to give the structural proof theory of
modal logics into two kinds, those pure formulations whose inference rules
characterise modality completely by means of manipulations of boxes and
diamonds, and those labelled formulations that leverage the use of labels
in giving inference rules. The widespread adoption of labelled formula-
tions is driven by their ability to model features of the model theory of
modal logic in its proof theory.
We describe here an approach to the structural proof theory of modal
logic that aims to bring under one roof the benefits of both the pure
and the labelled formulations. We introduce two proof calculi, one la-
belled sequent formulation and one pure formulation in the calculus of
structures that are shown to be in a systematic correlation, where the
latter calculus uses deep inference with shaped modal rules to capture in
a pure manner the manipulations that the former calculations mediates
through the use of labels.
We situate this work within a larger investigation into the proof theory
of modal logic that solves problems that existed with the earlier inves-
tigation based on prefix modal rules. We hold this development provides
yet stronger evidence justifying the claim that good, pure proof theory
for modal logic needs deep inference.

1 Introduction

Modal logic is an essential part of both computational logic and philosophical
logic, for reasons among which we bring attention to:

1. Modalities allow parts of propositions to be marked as having different se-
mantics to other parts, for example in the way that various flavours of linear
logic use the ”!” and ”?” modalities to indicate where structural identities
are valid;

2. Modal propositional logic allows increased expressivity over classical propo-
sitional logic, but in a controlled manner allowing many useful, decidable
languages to be formulated, by contrast to the situation in predicate logic;

3. Modal logic captures a notion of locality that has proven especially useful in
the theory of concurrency, due to the close relationship of model invariance
and bisimulation, a closeness that has resulted in the fundamental charac-
terisation of bisimulation in Hennessy-Milner logic;

4. Classical modal logic is well suited to algebraic semantics, since if we regard
classical propositional logic as receiving its most fundamental semantics in

126

terms of Boolean algebras, modalities are then modelled by operators on
these algebras. Hence if we are interested in the relationship between logic
and algebra, modal logic provides good soil.

However, proof theory has been the least successful part of the investiga-
tion into modality, by comparison with the success the parallel investigations
into the model theory by means of Kripkean frame semantics, Jónsson-Tarski
algebraic semantics, and characterisations of decision procedures using tableaux
algorithms.

Phiniki Stouppa’s work on the proof theory of S5 [Sto04], provides a survey of
calculi used to express theories of modal logic and classifies them into two types:
those that attempt to give direct formulations of inference rules using box and
diamond, which we here call pure formulations and those labelled formulations
that leverage the use of labels in giving inference rules, which allow them to
model features of frame semantics in proof theory. She observes that all of the
pure formulations that are capable of giving cut-free characterisations of S5 need
to use forms of inference less shallow than those of Gentzen’s sequent calculus.
Her survey concentrated on describing the pure formulations, which were, with
the exception of display logic, observed to achieve a fairly low level of generality:
that is to say, most of the calculi proposed could give cut-free characterisations
of only a few modal logics. The joint paper of Stewart and Stouppa advanced
the hypothesis that non-shallow inference is necessary for cut-free pure systems
that express S5 [SS04].

Deep inference is a property of inference systems that is sharper than merely
being non-shallow, representing the possibility of performing inferences at any
depth. It is not immediate to observe that display logic, like the calculus of
structures, is a system of deep inference, however it follows from regarding the
reversible structural rules as defining an equivalence class of inferential judge-
ments that allow the logical inferences to be applied to formulae occurring in
structures of arbitrarily complex relationships to one another. This view is con-
sistent with the algebraic semantics of display logic as structads of Lamarche
[Lam01].

Labelled formulations have captured more modal logic systems, and have
described them in a way that has a stronger intuitive connection with the model
theory and algebraic semantics of modal logic than pure formulations. However,
pure formulations retain their interest, for a number of reasons:

– Following Avron, we may say that one of reasons proof theory is valuable
is that it expresses logical concepts in a manner independent from a given
model theory [Avr01]. This issue is essential to the idea of proof-theoretic
semantics;

– Pure characterisations tend to wear the locality of modal logic on their
sleeves, as it were, and so we may hope that they are a better source of
intuitions for applications in concurrency and in the war against bureau-
cracy;

– Labels provide a very strong structural glue, similar to the predicate calculus
in expressivity, and so we may be concerned about an issue dual to that

127

which led to Guglielmi’s characterisation of mismatch [Gug03]. Mismatch,
as Guglielmi described it, occurs when the structural glue of a certain proof
calculus is not strong enough to characterise cut-free characterisations of
certain logics; here, we have that the glue is extremely strong relative to the
modelled logics, and the resulting concern is that the expressions of the logic
are not constrained to be natural, in the way that Gentzen’s characterisations
of classical propositional logic are widely viewed to be natural.

We will outline here an approach to the structural proof theory of modal logic
that aims to combine the benefits of both the pure and the labelled formulations.
We introduce two classes of proof systems, one labelled and one pure for what
we call the 3/4-Scott-Lemmon modal logics, which are those normal modal logics
characterised by axioms of the shape �h�iA ⊃ �jA (or equivalently, of shape
�jA ⊃ �h�iA):

1. A reformulation of Alex Simpson’s graph-structured labelled sequent calcu-
lus where the labels are restricted to be tree-structured, a change which can
be regarded an unravelling of the graph-structured calculus, by analogy to
the standard technique of unravelling used in the model theory of modal
logic.

2. A proof calculus with deep inference rules, given as an extension of Brünnler’s
system SKS of classical logic in the calculus of structures. We call this the
shaped modal rule calculus, or just shaped calculus by contrast to the earlier
calculus of Stewart and Stouppa based on prefixed modal rules.

The significance of these calculi is established by a number of results and one
conjecture:

1. It is shown that, with cut, both of these calculi are complete with respect to
provability of the various systems they are intended to capture.

2. Cut-elimination for the tree-structured calculus is conjectured; some evi-
dence for this conjecture is discussed in [Hei05] and in an extended version
of this paper [HS05]. The problems are named and possible solutions sug-
gested.

3. A structurally recursive transformation from proofs in the tree-structured
sequent calculus to proofs in the shaped calculus is given, where the tree
structure of labels maps directly onto the hierarchical shape of structures
in the calculus of structures. This map does not introduce cuts, hence we
obtain cut-elimination for the shaped calculus as a corollary.

More broadly, we can say that the formulation of the tree-structured calculus
shows that the methodology of unravelling, used as a part of the model-theoretic
proof of the Goldblatt–Thomason theorem [BdRV01], has a proof-theoretic ap-
plication, while the translation shows that tree-structured use of labels can be
captured in a calculus of deep inference; the combination of these claims we can
summarise by means of the slogan deep inference can express labels purely.

The next section introduces the calculus of structures for classical logic and
the basic normal modal logic K. Section 3 describes the prefixed modal charac-
terisation of the so-called systems of the cube. Section 4 gives a graph-structured

128

calculus characterisation essentially the same as that given in Alex Simpson’s
PhD thesis. Section 5 describes the unravelling intuition, the tree-structured
calculus and the shaped modal calculus.

2 The Basic Modal Logic in the Calculus of Structure

The calculus of structures (CoS) is a proof formalism that can be seen as a
generalisation of Gentzen’s sequent calculus. In sequent calculus, rules translate
formula syntax into proof structure, when seen bottom-up. For instance, con-
junction is translated into proof tree branching and disjunction into the multiset
comma. In CoS this distinction between formulae and proof structure disappears,
both receive the same syntactic treatment, resulting in what we simply call a
structure. Further, CoS enjoys deep inference, i.e. proof rules in CoS do not apply
just on the top connective, but anywhere inside a structure. Many rules known
from the sequent calculus, like the identity axiom and the cut-rule, as well as the
structural rules for weakening and contraction have closely corresponding rules
in CoS. Brünnler [Brü04] gives a detailed account of the CoS in particular for
classical propositional and predicate logic.
We will first present the system for the normal modal logic K. It is a conserva-
tive extensions of Brünnler’s propositional system. The design of the additional
pair of rules, k ↓ and k ↑, follows Guglielmi’s recipe [Gug02].

Definition 1. The language of pre-structures the generated by the following
syntax:

S ::= a | S | �S | �S | [S, . . . , S] | (S, . . . , S)

where a is a propositional variable and � and � are the usual modal operators.
(. . .) and [. . .] are conjunction and disjunction. Empty conjunction and disjunc-
tion are denoted as tt and ff respectively. The set of structures is the set of
equivalence classes as defined by the smallest congruence relation that respects
the equations of figure 1. A structure context S{ } is a structure with exactly
one occurrence of the hole { }. That hole may not be in the scope of a nega-
tion. The empty context is just the hole. The structure S{R} is a context S{ },
where the hole has been replaced by the structure R. We drop the curly brackets
if the hole is filled by a disjunction, i.e. S[R, T] = S{[R, T]} and similar for
conjunction.

Definition 2. A derivation is a sequence of structures, such that a single struc-

ture S is a derivation, and, if
R··········

S{U}
is a derivation and

S{U}
ρ

S{V }
is an instance of

some given rule, then

R··········
S{U}

ρ
S{V }

is a derivation. Let D be a derivation and S{ } a

context. Then the derivaton S{D}, called D in context S{ }, is the derivation
derived from D by putting each structure of D into the context S{ }, leaving

129

Assiociativity Commutativity Identity
(R, (T, U)) = (R, T, U) (R,T) = (T, R) (R, tt) = R
[R, [T, U]] = [R, T, U] [R, T] = [T, R] [R,ff] = R

DeMorgan duality

tt = ff (R, T) = [R, T] ∀R = ∃R �R = �R

ff = tt [R, T] = (R, T) ∃R = ∀R �R = �R

[tt, tt] = tt (ff,ff) = ff �tt = tt �ff = ff

Double negation Congruence

R = R if R = T , then S{R} = S{T}
Variables (y is not free in R)

∀xR = ∀yR[x/y] ∃xR = ∃yR[x/y] ∀yR = ∃yR = R

Fig. 1. Equations for structures.

S{tt}
i ↓

S[R, R]

S(R, R)
i ↑

S{ff}

S{�[R, T]}
k ↓

S[�R, �T]

S([R, U], T)
s

S[(R, T), U]

S(�R, �T)
k ↑

S{�(R, T)}

S{ff}
w ↓

S{R}
S{R}

w ↑
S{tt}

S[R, R]
c ↓

S{R}
S{R}

c ↑
S(R, R)

Fig. 2. System SKS − K.

the order and the applied rules in place, i.e for some D =
R··········
T

and S{ } we get

S{D} =
S{R}··········
S{T}

. A proof is a derivation that starts with tt .

Figure 2 depicts the rules for the CoS system for modal logic K. We call the
system SKS−K. The system is symmetric, i.e. it is divided into up and down
fragment. Two rules which share the name but have opposing arrows form a dual
pair. They are in this simple syntactic relation:

S{U}
ρ ↓

S{V }
is dual to

S{V }
ρ ↑

S{U}
which is of course symmetric. So, the identity axiom i ↓ is dual to the cut rule
i ↑. Rules w ↓ and w ↑ are called weakening and co-weakening, while c ↓ and c ↑
are contraction and co-contraction respectively. The switch-rule s is dual to itself
and is therefore written without arrows. The rule k ↓ resembles the axiom K:

�(A ⊃ B) ⊃ (�A ⊃ �B)

130

Its dual is k ↑. Having this symmetry, all derivations can be flipped upside down,
and with all structures negated, this results in the dual derivation where all in-
stances of rules are replaced by their dual in reverse order.
In CoS, showing the admissibility of the up fragment, corresponds to cut-elimination
Due to the duality, it is a straightforward exercise to remove any up-rule as long
as the cut-rule i ↑ itself remains available.

This characterisation of the basic normal modal logic K provides the common
basis point for how both the earlier prefix modal and the shaped modal approach
introduced in this paper axiomatise modal theories in the calculus of structures,
and we regard the treatment here as a canonical expression of this modal logic in
the calculus of structures, because of the naturality of the three design elements
of the logic:

1. Modalities are regarded as unary operators on propositions that may freely
be regarded as determining the contexts in which inference rules may be
applied. This is the most free, and thus most natural way, in which we may
interpret the abolition of the distinction between formula and structure that
characterises the calculus of structures;

2. The necessitation rule, from
 φ infer
 �φ, can captured by the equation
tt = �tt in the presence of the above characterisation of deep inference.
This characterisation is preferred, since we attempt to put propositional
biequivalences that can be captured by linear equations in the equational
theory.

3. The k ↓ rule is the inference rule that was determined as we said, by the so-
called recipe, which determines how pairs of structure-forming connectives
in duality are related. Together with the specification of dual structures and
the rules for switch and cut, it is the recipe that characterises how duality
is handled in the calculus of structures.

Hence, we consider this characterisation to be essentially the right characterisa-
tion of K in the calculus of structures.

3 Prefix Modal Rules

By contrast to this, the methodology of the calculus of structures does not obvi-
ously determine how modalities other than K are to be given. The prefix modal
characterisation was the first approach to be studied, according to the dictum
that one should begin by tackling the simplest approach that could possibly
work. It follows from the observation than many of the most studied axioms for
modal logic can be presented in the form:

μφ =⇒ νφ

where μ and ν are possibly empty sequences of modalities, for example the
modal logic K4 is characterised in the Hilbert system by adding the 4 axiom
�φ =⇒ ��φ to the system characterising K. More examples of axioms of this
form are listed in figure 5, together with two important axioms that do not take
this form, namely the axiom �M and the Gödel-Löb axiom.

131

Given an axiom of this form, one can realise it as a rule in one of two possible
ways, either by adding the down rule:

S{μR}
S{νR}

or its converse as the up rule:
S{ν̄R}
S{μ̄R}

The choice of which rule to adopt is not free, since we want the set of down
rules to be cut-free. Stewart and Stouppa [SS04] studied the ‘cube’ of modal
logics obtained from the 32 axiomatisations of modal logic which correspond to
the possible subsets of the set of axioms {D,T, 4,B, 5}, including the six most
intensively studied modal logics:
1. K itself;
2. D, obtained by extending system K with rule D;
3. M, obtained by extending system K with rule T: note this system is often

named T, a nomenclature we avoid to prevent confusion with Gödel’s system
T.

4. S4, obtained by extending system M by rule 4;
5. B, obtained by extending system M by rule B;
6. S5, obtained by extending system M by rule 5, or equivalently by extending

system M by rules B and 4.

The system there gives the orientations of the rules as follows:
S{�R}

d
S{�R}

S{�R}
t ↓

S{R}
S{��R}

4 ↓
S{�R}

S{��R}
b ↓

S{R}
S{��R}

5 ↓
S{�R}

Note that the d rule is self-dual, and so needs no choice. The choice for the rule 5
in fact changed from the earliest presented system to the choice above, and Hein
observed that the converse of the rule 4 is more robust [BS04]. The methodology
for choosing a orientation is rather ad-hoc, based on testing possible combina-
tions of rival orientations, and seeing if one can either show cut-elimination (in
that paper, by model-theory or by cut-freeness preserving translation) or find
a counter-example. Due to the huge range of possible combinations, and the
difficulty of finding general cut-elimination arguments, this approach ran out of
steam.

4 Labelled Modal Logic

We now present a labelled sequent calculus that is based on Alex Simpson’s
PhD thesis [Sim93]. In fact, we only changed the formalism from intuitionistic to
classical logic, a move whose correctness was a design goal of Simpson. The idea

132

is that, after putting label to formulae, we can use a directed graph (on labels)
to represent the modal (or intensional) relationship between all the formulae
in a sequent. Of course, a directed edge between two labels is nothing but a
binary first-order predicate (the accessibility relation!). If we now think of labels
as possible worlds and interpret labelled formulae as some sort of valuation we
shall recognise that Simpson took Kripke semantic verbatim and mixed it up
with proof theory.

Note that there are plenty of other labelled systems in the literature whose
labelling algebras try to implement Kripke semantics. None of them is as simple
and as useful to proof theory as Simpson’s.

It is a good practise in sequent calculus to have a designated rule for each
logical connective. This is troublesome for the modalities. Take the following
candidate of a �-rule in a one-sided system, ignoring any context for now:

 A�
 �A
This rule is too strong, as it does not take the intensionality of � into account.
The system designer has to somehow drag along the context in the right way,
depending on the particular modal logic. Since we employ Kripke semantics, we
can have a rule that exactly characterises the meaning of �A, namely that ”A
holds at all accessible worlds” regardless of context

x�y
 Δ, y:A
�

x
 Δ,x:�A

Read x�y as y is accessible from x and y:A as A holds at y. Sequents are one-
sided, however the directed graph that occupies the left side can be can be seen
a premise or guard when reading the sequent. Consequently, y is not meant to be
a particular ”possible world” but any accessible. For instance, read the premise
of the above �-rule instance as: Given an arbitrary Kripke model, if x�y maps
onto the model, then A is true at y under the same mapping.

Here, we shall not further deal with the details of labelled sequent semantics.
Consequently we omit a soundness proof for the rules below. We will present
syntactic side more formally. There is some notation and other changes compared
to Simpson [Sim93], in particular the treatment of graphs, however they are not
essential to the spirit:

Definition 3. A labelled sequent is a structure G
 Δ, where G is a (directed)
graph and Δ is a multiset of labelled modal formulae. Here, a graph is a finite set
of binary relations on variable labels x�y. We call a graph empty, if it does not
contain any relations. However, an empty graph must still contain a singleton
node or label. We usually write ∅ for the empty graph instead of the singleton
label. Which label that is, can always be inferred from context. Consider a se-
quent G
 Δ. For any x:A ∈ Δ, x must occur in G, or if G is empty, x must
be its singleton node. The graph must be rooted, i.e. there must be a label from
which every other label can be reached by the transitive-reflexive closure of the
graph. Such a label is called the root. Roots do not have to be unique.
Given a set of labelled sequent rules G1
Δ1 ··· Gn
Δn

G
Δ
for n ≥ 0, a deriva-

tion is a tree of labelled sequents, where each node is an instance of a rule.

133

Ax
G � x:A,x:¬A

�
G � x:�

G � Δ
weak

G � Δ, x:A

G � Δ, x:A,x:A
contr

G � Δ, x:A

G � Δ, x:A G � Δ, x:B
∧

G � Δ, x:A ∧ B
G � Δ, x:A

∨L

G � Δ, x:A ∨ B

G � Δ, x:B
∨R

G � Δ, x:A ∨ B

G, x�y � Δ, y:A
�

G � Δ, x:�A

G, x�y � Δ, y:A
�

G, x�y � Δ, x:�A

G � Δ, x:A G � Δ′, x:¬A
cut

G � Δ, Δ′

G, x11�x′
11, . . . , x1k1 �x′

1k1 � Δ · · · G, xn1�x′
n1, . . . , xnkn �x′

nkn
� Δ

geom
G, x1�x′

1, . . . , xm�x′
m � Δ

For �, y must not occur in the conclusion.
For geom, none of the variables in yi, 1 ≥ i ≥ n may occur in the conclusion.

(yi are the ones that are existentially quantified in the corresponding first-order
condition.)

Fig. 3. System GS1g − K with cut and geom rule scheme.

A proof of a modal formula A, is a derivation ending in ∅
 x:A, whose leafs
are instances of zero-premise rules.
Now, have a look at the top half of figure 3. Note, that once one ignores graphs
and labels, it shows the Gentzen-Schütte system with explicit structural rules
GS1 for classical propositional logic. Note, how adding graphs and labels does
not affect the propositional rules. Remember how the �-rule precisely encodes
the meaning of � in Kripke semantics. The �-rule does the same for �. Here,
the relation x�y remains in the conclusion because �A means that only at
some accessible world y formula A holds and other y might exist. Adding the
two modal rules yields a system for modal logic K, that we consequently call
GS1−K.

How can we characterise modal logics stronger than K, say S4 or S5? We
systematically extend the system with certain instances of the geom rule scheme.
Read on, on how it works, the motivation will follow shortly. Observe, how geom
regards individual relations of the graph, i.e. works on the graphs ”atomic” level
and leaves the formula context intact. As such, geom is able to encode first-order
conditions on directed graphs, or better now, on Kripke frames. Formally, given
a first-order condition ρ:

134

G, x�x � Δ
T

G � Δ

G, x�y, y�x � Δ
B

G, x�y � Δ

G, x�y, y�z, x�z � Δ
4

G, x�y, y�z � Δ

G, x�y, x�z, y�z � Δ
5

G, x�y, x�z � Δ

G, x�y � Δ[y/z] G, x�y, x�z, y�z � Δ G, x�y, x�z, z�y � Δ
.3

G, x�y, x�z � Δ

Fig. 4. Some instances of the geom rule scheme. See figure 5 for the corresponding
axioms.

∀xP1 ∧ · · · ∧ Pm ⊃
∨
j

∃yjQj1 ∧ · · · ∧Qjkj

there is a corresponding instance of the geom rule scheme:
G, Q11, . . . , Q1k1 � Δ · · · G, Qn1, . . . , Qnkn � Δ

ρ
G, P1, . . . , Pm � Δ

with the proviso that none of the variables in yj may occur in the conclusion. The
Qij and Pl are some binary relations u�v. To understand the correspondence,
view geom as using two-sided sequents. The placement of the graph on the left,
or negative side, was not accidental. Ignore the context Δ. Now, flip the rule
upside down, i.e. make the contrapositive and get the first-order condition. The
existential quantifiers come from the rules proviso.

We obtain a particular class of first-order formulae, called geometric sequents
that play an important role in geometric logic, cf. Vickers [Vic93]. The proof
theoretical interest in geometric sequents lies in the fact that any theory whose
axioms are geometric sequents have a cut-free characterisation in sequent cal-
culus. See Negri [Neg01] how in the first-order case, ordinary cut-elimination
is easily extended to geometric theory. Simpson [Sim93] shows cut-elimination
indirectly through normalisation as he is more focused on the natural deduction
systems, while Hein [Hei05] shows that cut-eliminations extends easily for the
labelled sequent calculus presented above.

Theorem 4. The cut-rule is admissible for system GS1−K + geom.

How does adding geom-rules give us logics other than K? Recall that in Hilbert
systems we systematically get stronger systems by adding more axioms. The
branch of modal logic known as correspondence theory tells us that many of
these axioms correspond to first-order frame conditions, i.e. the resulting logic
is semantically characterised by Kripke frames under the respective conditions.
For instance, axiom T corresponds to

reflexivity: ∀x.x�x

Figure 5 gives the frame conditions associated with other logics. As it happens,
many of the interesting frame conditions are geometric, including not only the
aforementioned ”cube” of modal logics, but all Scott-Lemmon axioms and more,
and all of these can be captured by instances of geom; figure 4 gives examples.

135

To characterise for instance the logic S5, we add the rules T and 5 to system
GS1−K. For logic M we just add rule T.

As an example, see the this proof in GS1−K + T of �(�¬A∨A), which is
a theorem of M:

Ax
x�y, y�y
 y:¬A, y:A

�
x�y, y�y
 y:�¬A, y:A

T
x�y
 y:�¬A, y:A∨R

x�y
 y:�¬A, y:�¬A ∨A∨L
x�y
 y:�¬A ∨A, y:�¬A ∨A

contr
x�y
 y:�¬A ∨A

�
∅
 x:�(�¬A ∨A)

Of course, not all normal modal logics can be characterise by geometric con-
ditions, some even require second-order conditions. Also, not every geometric
condition characterises a normal modal logic. While reflexivity corresponds to
logic M, its negation irreflexivity: ∀x(x�x ⊃ ⊥), which is also a geometric
condition, is not modally definable.

Unfortunately, with the inclusion of first-order machinery, labelled sequent
calculus becomes a not conceptually pure formalism. As hinted in the previous
paragraph, it allows some weird systems that correspond to non-modal logics,
but even within derivations for modal systems, sequents may occur that can not
be described using a modal formula. A well known tool from modal logic, the
standard translation STx(), defines a satisfiability preserving map from modal
formulae into first-order formulae. It so characterises which first-order formulae
can be represented modally:

STx(�A) = ∀y(x�y ⊃ STy(A))
STx(�A) = ∃y(x�y ∧ STy(A))

The propositional connectives are mapped in the obvious way. Atomic formulae
are mapped to unary predicates. The translation of � is the important bit. Note,
how the case for � resembles a labelled sequent: x�y
 x :A. Unfortunately,
standard translation is not surjective, i.e. there are first-order formulae that do
not correspond to a modal formula. For instance, a formula z�z ⊃ φ can never fit
the scheme, since in x�y the variables x and y must be different. Let us consider
an example to see what works. Take the formula �(�A ∨ �B) and apply the
standard translation recursively. We get:

ST (�(�A ∨ �B))x = ∀y(x�y ⊃ ∀z(y�z ⊃ Bz) ∨ ∀u(y�u ⊃ Au))

Since we did not translate any � we did not generate existential quantifiers. con-
sequently all the variables are essentially free, i.e. only in the scope of universal
quantifiers. Dropping the quantifiers and applying some logical manipulations,
we get an equivalent formula:

x�y ∧ y�z ∧ y�u ⊃ STz(A) ∨ STu(B)

Observe that the relations x�y, y�z ,y�u in the premise, viewed as a directed
graph, form a tree with root x:

136

3/4-Scott-Lemmon axioms
T �A ⊃ A reflexive ∀x.x�x
B ��A ⊃ A symmetric ∀xy.x�y ⊃ y�x
4 �A ⊃ ��A transitive ∀xyz.x�y ∧ y�z ⊃ x�z
5 ��A ⊃ �A euclidian ∀xyz.x�y ∧ x�z ⊃ y�z

CD �A ⊃ �A unique ∀xyz.x�y ∧ x�z ⊃ y = z
C4 ��A ⊃ �A dense ∀xy.x�y ⊃ ∃z(x�z ∧ z�y)

other Scott-Lemmon axioms
D �A ⊃ �A serial ∀x∃y.x�y

CR ��A ⊃ ��A confluency ∀xyz.x�y ∧ x�z ⊃
∃u(x�u ∧ y�u)

non-Scott-Lemmon
�M �(�A ⊃ A) shift-reflexive ∀xy(x�y ⊃ y�y)
GL �(�A ⊃ A) ⊃ �A Gödel-Löb

Fig. 5. Some modal axioms and their corresponding frame conditions.

x

y

z u

And in fact, it should be easy to see that the binary predicates, or accessibility
relations, that appear during recursive application of the � case of STx() must
always form a tree. Consequently, if we want a conceptually pure labelled cal-
culus we need to restrict the graphs to trees. Unfortunately, looking just at the
examples in figure 4, they all introduce, when looking bottom up, relations to
the graph that make it less tree-like. And in fact, through a naive restriction we
would lose almost all interesting systems. We need to unravel!

5 Unravelling

We need to unravel the geometric rules. All other rules are blind with respect to a
restriction to trees. What do we mean by unravelling? Unravelling or unfolding is
a well know technique from modal model theory. It exploits a property of modal
logic known as the tree-model-property, cf. e.g. Blackburn, et al. [BdRV01]. It
says, that any satisfiable formula is also satisfiable in a finite model, whose
underlying frame relation forms a tree. Unravelling is the procedure to build
the tree-model out of the original. As hinted above, we can pretend our labelled
sequents to be Kripke models. To unravel a graph, we need to pick a label from
which every other label can be reach via some path. We call that label the
root. In practice there is always such a root, since the rules only ever introduce
new labels that succeed old ones. Unravelling generates for each possible finite
path that starts at the root a label in the unfolded graph. Of course, cycles

137

x x0 x1 x2 x3

u

v w

z

u0

v0 w0

z0
z1

a)

b)

Fig. 6. a) unfolding a single reflexive relation. b) unfolding a converging graph.

allow arbitrary long paths, hence unfolding will give us trees with infinite long
branches. Remember, that graphs store a record of the course of the proof. Proofs
are, of course, always finite objects, hence we will not need infinite branches.
As unravelling may produce infinite trees, our new rules will unravel only a
single step at once. A consequence is, that we may have to apply an unravelled
rule many times compared to a single application for a ”folded” rule, in what
otherwise may essentially be the same proof.

Figure 6 only give some very simple examples of how directed graphs un-
ravel. However, it should be obvious, that unravelling can produce highly com-
plex results. System GS1g−K + geom covers logics corresponding to arbitrary
geometric frame conditions. With what we call 3/4-Scott-Lemmon, we have iden-
tified a class of geometric frame conditions and corresponding rules, that unravel
simply enough for us to handle during this early stage of research. Yet this small
fragment will allow us to formulate many interesting modal logics, such as the
”cube”: M, B, S4 and S5. Correspondence theory is the branch of modal logic
that studies the relationship between modal logic and classical (first- and second-
order) logic. An early correspondence result by Lemmon and Scott [LS77] states
that for h, i, j, k ≤ 0, modal formulae of type

�h�iA ⊃ �j�kA (1)

correspond to the first-order frame condition

∀w, v, u(w�hv ∧ w�ju ⊃ ∃x(v�ix ∧ u�kx)) (2)

Notation: We write �n for
n-times︷ ︸︸ ︷
� · · ·� , and similarly for �n. We write x�ny as

abbreviation of ∃x1, . . . , xn−1 (x�x0 ∧ x0 �x1 ∧ · · · ∧ xn−1 �y) if n ≥ 1, and
x = y if n = 0. Instead of actually using equations like x = y, we will commonly
substitute y for x throughout the respective formula or sequent. Note also, that
we can drop the existential quantifiers in the antecedent of (2) that are hidden

138

by the �n notation in favour of universal quantification. For now, Scott-Lemmon
axioms are still a bit to broad, we further restrict the class of axioms of the form
(1) and (2) to those with k = 0.

�h�iA ⊃ �jA (3)

corresponds to the first-order frame condition

∀w, v, u(w�hv ∧ w�ju ⊃ v�iu) (4)

Still, most of the interesting modal logic axioms are captured. We will call this
class of axioms 3/4-Scott-Lemmon.

As an exception, we will additionally consider axiom D, which is of form (1)
with i = k = 1 and h = j = 0. It simplifies in a convenient way to make it
work with our technique. In fact, it is so simple that it does not actually need
to unravel. We shall call the resulting labelled calculus GS1−K(t) for logic K,

G, w�
hv, w�

ju, v�
iu′ � Δ, u′:Δ′

3/4SL
G, w�

hv, w�
ju � Δ, u:Δ′

G, x�y � Δ
D

G � Δ

For D, y must not occur in the conclusion.
For 3/4SL, u′ and vk,1≤k<i in v�iu′ must not occur in the conclusion.

Fig. 7. System GS1 − K(t): unraveled rule schemes 3/4SL and D.

where the (t) indicates the restriction to trees. Except for the geometric ones,
its rules are identical to the unrestricted calculus, presented earlier. To generate
systems for the stronger logics, we will add instances of the unravelled geometric
rules instead. Figure 9 illustrates the unfolding in the case of 3/4-Scott-Lemmon.
For each geometric condition of the form (4)

ρ : ∀wvu(w�hv ∧ w�ju ⊃ v�iu)

that characterises the desired modal logic, add an instance of the scheme 3/4SL:

G, w�
hv, w�

ju, v�
iu′ � Δ, u′:Δ′

ρ
G, w�

hv, w�
ju � Δ, u:Δ′

where, u:Δ′ denotes a multiset of modal formulae which are all labelled with u. If
the logic characterised by seriality: ∀x∃y.x�y, then add the rule D to the system.
Cf. figure 7. We write GS1−K(t)+ for an arbitrary extension of GS1−K(t).
We append the names of the respective rules if we need to name a particular
system.

G, x�x′ � Δ, x′:Δ′
T

G � Δ, x:Δ′
G, x�y, y�x′ � Δ, x′:Δ′

B
G, x�y � Δ, x:Δ′

G, x�y�z, x�z′ � Δ, z′:Δ′
4

G, x�y, y�z � Δ, z:Δ′
G, x�y, x�z, y�z′ � Δ, z′:Δ′

5
G, x�y, x�z � Δ, z:Δ′

Fig. 8. Some instances of the 3/4SL rule scheme. See figure 4 for their ”folded” cousins.

139

w

v u

w

v u

u′

h

i

j
h

i

j

Fig. 9. Unravelling 3/4-Scott-Lemmon frame conditions.

Of course, unravelling comes at a price. We lose the easy cut-elimination
argument we had due to the geometric origin of our rules. The reason is that
unravelling duplicates labels, with new labels being semantically identical to old
ones. Accordingly, in the 3/4SL-rule scheme, cf. figure 7, it is label u that gets
replicated as u′. Because the graphs are trees now, we have no direct machinery
available to refer from one to the other. To nevertheless characterise that they are
meant to be the same ”possible world,” we may change labels of some formulae
from u′ to u, when viewed top down. Unravelled geometric rules can not leave
the formulae context untouched, which was crucial for easy cut-elimination.

6 Forget about Labels, Use Deep Inference!

Thanks to unravelling, we get this:

Proposition 5. For any GS1t−K(t)+ derivation
G1	Δ1···Gn	Δn·········· D

G	Δ

, where n ≥ 0,

if G is a tree, then every graph occurring in D is a tree with the same root.

Proof. By inspection of the rules of GS1t−K(t)+. No relations ever get added
to the graph going top down in a derivation. Any new labels added going up are
fresh, so the graph remains a tree.

We claimed that GS1−K(t)+, the unravelled labelled calculus was concep-
tually pure, i.e. every step of a derivation could be represented using a modal
formula. This can in fact be done by applying the inverse standard translation
to each sequent. The technicalities are available at [Hei05]. We will make an
informal argument considering as example the sequent

x�y, y�z, y�u
 z:A, u:B, y:C.

We will change this representations stepwise. Let us draw the graph, which the
proposition assures to always be a tree. Then, we attach each labelled formula to
the node that carries its label. As we can see, labels have become unnecessary,
so we remove them (a):

140

S(�R, �T)
h ↓

S{�(R, T)}
S{�[R, T]}

h ↑
S[�R, �T]

S{�[Rh�[Rh−1, � · · ·�[R1, �
iT] · · ·]]}

3/4SL ↓
S[�[Rh, �[Rh−1, � · · ·�[R1] · · ·]], �jT]

S{�ff}
D ↓

S{ff}

S{�(Rh, �(Rh−1, � · · ·�(R1, �
jT) · · ·))}

3/4SL ↑
S(�(Rh, �(Rh−1, � · · ·�(R1) · · ·)), �iT)

S{tt}
D ↑

S{�tt}
Fig. 10. Additional rules for system SKS − K+

(a)

x:

y:C
z:A u:B

C
A B

According to the standard translation, relations, i.e. the arrows, correspond to
boxes, so let us replace them (b):

(b)
�� ��

��

(c) ∨

C
C

AA BB

In the original sequent, the formulae A, B and C were in a disjunctive relation-
ship. A and B are now behind boxes, but the propositional relationship remains.
If we put them in disjunction accordingly (c), we get a modal syntax tree of the
following formula, which is equivalent to the original sequent:

�(�A ∨ �B ∨C)
Observe this: Rules of the sequent calculus that were able to apply to the original
sequent can not apply anymore to the result of this transformation. The formulae
A, B and C that were exposed in the sequent are now hidden deep inside a larger
formula. What we now need is deep inference!

We now return to the calculus of structures. All we need to do to transform
whole derivations is to map rules of the labelled sequent calculus GS1−K(t)+

to derivations in CoS. The needed CoS system will be based on SKS−K that
was introduced in section 2.

In [Brü04] Brünnler translates from the propositional sequent calculus to
CoS. Since both GS1−K(t)+ and SKS−K are conservative extensions of
propositional systems, we only need to extend Brünnler’s method to the modal-
ities and the geometric rules. To get a system equivalent to GS1−K(t)+ we

141

S{�T}
T ↓

S{T}
S{�[R, �T]}

B ↓
S[�R, T]

S{�T}
4 ↓

S{��T}
S{�[R, �T]}

5 ↓
S[�R, �T]

Fig. 11. Instances of scheme 3/4SL ↓ for T,B,4,5.

need to add the rules of figure 10 to SKS−K. We name the system SKS−K+.
The translation to CoS does not introduce any new cuts. A detailed technical
account can be found at [Hei05]. The following presentation will be less formal.
Translation in the case of the �-rule is trivial. Both, premise and conclusion map
to the same structure (or formulae), so the rule maps to identity and disappears
in CoS.

x�y
 y:A
�

x
 x:�A
=⇒ �A=

�A

The �-rule maps to the k ↓-rule:
x�y
 y: , y:A

�
x�y
 y: , x:�A

=⇒ �[, A]
k ↓

[� ,�A]
A notable anomaly occurs in the translation of the conjunction rule with es-
sentially corresponds to the switch. Here, and only here, we need a new rule
h ↓ in order to distribute boxes over conjunctions. No similar rule is needed for
first-order predicate logic, nor do Stewart and Stouppa [SS04] need it. Finally,
the 3/4SL rule scheme maps to 3/4SL ↓. See figure 11 for some instances of the
3/4SL ↓ scheme. They remain simple, despite the complexity of the scheme, as
the parameter h is 0 or 1 for the interesting cases.

Theorem 6. For any derivation in GS1−K+ with cut, there exists a deriva-
tion in SKS−K+ with the same number of cuts and equivalent premise and
conclusion.

7 Conclusion

This paper has:

1. Argued for the desirability of approaches to modal logic that can move be-
tween pure and labelled formalisation;

2. Provided a labelled sequent calculus formalism that can be mapped in a
straightforward, cut-freeness preserving manner onto a pure formalism in
the calculus of structures;

3. Situated this research within an ongoing research investigation into the char-
acterisation of modal logic in calculi with deep inference, in particular it is
observed that the proof-theoretic embedding depends in a strong manner on
arbitrary deepness of inference.

4. An extended version of this paper [HS05] provides grounds for the conjecture
that the two formalisms are cut-free.

142

Naturally, this achievements would be strengthened by settling properly the
status of cut-elimination for the systems. Furthermore, the value of proof theories
of modal logic that span labelled and pure formalisations would be increased if
we were to have a deeper connection between them, such as a reverse mapping
from the pure formalisation to the labelled whose compositions with the given
mapping conserved useful structural properties.

Lastly, the prefix modal programme need not be considered a dead end. The
properly displayed rules characterising many axioms of modal logic introduced
by Kracht for display logic [Kra96] can be regarded a prefix modal rules, and so
examining the relationship between the calculus of structures and display logic
has particular value.

References

[Avr01] A. Avron. The method of hypersequents in the proof theory of propositional
non-classical logics. In W. Hodges et al. (eds.), Logic: From Foundations to
Applications, pages 1–32. Oxford University Press, 1996.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, vol-
ume 53 of Cambridge Tracts in Theoretical Computer Science, 2001.

[Brü04] Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. Logos
Verlag, Berlin, 2004.

[BS04] Robert Hein. Counterexample.
URL http://alessio.guglielmi.name/res/cos/cex.html, 2004.

[Gug02] Alessio Guglielmi. Recipe.
URL http://iccl.tu-dresden.de/ guglielm/p/AG2.pdf, 2002.

[Gug03] Alessio Guglielmi. Mismatch.
URL http://iccl.tu-dresden.de/ guglielm/p/AG9.pdf, 2003.

[Hei05] Robert Hein. Geometric theories and proof theory of modal logic. Master’s
thesis, Technische Universität Dresden, 2005.
URL http://bitschnitzer.de/robert thesis.ps.gz.

[HS05] Robert Hein and Charles Stewart. Purity through Unravalling with a Dis-
cussion of Cut-Elimination. URL http://bitschnitzer.de/ptu+ce.ps, 2005.

[Kra96] M. Kracht. Power and weakness of the modal display calculus. In, H. Wans-
ing (ed.), Proof Theory of Modal Logic, pages 93–121. Kluwer, Dordrecht,
1996.

[Lam01] Francois Lamarche. On the algebra of structural contexts. Manuscript, 2001.
[LS77] E. J. Lemmon and Dana Scott. An Introduction to Modal Logic, 1977.
[Neg01] Sara Negri. Contraction-free sequent calculi for geometric theories, with an

application to Barr’s theorem. Report No.22, Institut Mittag-Leffler, The
Royal Swedish Academy of Science, 2001.

[Sim93] Alex Simpson. The Proof Theory and Semantics of Intuitionistic Modal
Logic. PhD thesis, University of Edinburgh, 1993.

[SS04] Charles Stewart and Phiniki Stouppa. A systematic proof theory for several
modal logics. In Proceedings of the 5th International Conference on Advances
in Modal logic (AiML-2004). King’s College Publications, 2004.

[Sto04] Phiniki Stouppa. The design of modal proof theories: the case of S5. MSc
thesis, Technische Universität Dresden, 2004.

[Vic93] Steven Vickers. Geometric logic in computer science. In Theory and Formal
Methods 1993, pages 37–54. Springer Workshops in Computer Science, 1993.

143

Hierarchical Proof Structures

Ewen Denney1, John Power2�, and Konstantinos Tourlas2

1 USRA/RIACS, NASA Ames Research Center, CA 94035, USA
2 Laboratory for the Foundations of Computer Science, King’s Buildings,

University of Edinburgh, EH9 3JZ, SCOTLAND

Abstract. Motivated by structure arising in tactic-based theorem prov-
ing, we develop the concept of hierarchical proof tree or hiproof by char-
acterising a geometrically natural definition in terms of its family of proof
views. We first recall a definition of hierarchical proof tree, explaining its
axioms and illustrating by example. We then describe notions involved
with proof views. Then we characterise hierarchical proof trees in terms
of dags of proof views. Our ultimate goal is to axiomatise the structure
required for constructing and navigating tactic-based proofs. This is work
in progress towards that end.

1 Introduction

Consider a proof by induction as represented by Figure 1(a): the nodes are la-
belled by tactic identifiers, inclusion of one node in another indicates a subtactic
relationship, and the arrows represent sequential composition. The diagram is
read as follows: the proof consists of invoking an induction tactic, Induction.
That consists of applying an induction rule, Ind-Rule, which then generates two
subgoals. The first subgoal is handled by the Base tactic, the second by the Step
tactic. In turn, Step is defined as first applying the Rewrite tactic, and then
the Use-Hyp tactic, with Base, Rewrite and Use-Hyp treated as primitive. In
contrast to the usual presentations of a proof by induction, the emphasis is on
tactics rather than on goals and proof steps.

For a structurally somewhat more complex proof, consider Figure 1(b). At
the most abstract level, the proof consists of applying T1, and then DP. The
tactic T1 first applies T2, generating two subgoals, the first of which is handled
by WF. The second is handled by DP, which applies Normalise and then Taut.

These examples reflect, albeit very abstractly, the hierarchical structure of
tactics as appear in proof assistants such as [1–3]. In [4], we took a first abstract
step towards developing a definition and mathematical theory of such hierarchy,
ultimately aimed towards the development of interfaces, both graphical inter-
faces for individual theorem provers and interfaces between theorem provers.
Our central definition, abstracting from Figures 1(a) and 1(b), was that of a
hierarchical proof tree or hiproof. We analysed an appropriate choice of axioms
for hiproofs, repeated here in Section 2, then we studied the relationship be-
tween a hiproof and its underlying ordinary proof, gave a notion of refinement of
� John Power has been supported by EPSRC grant no. GR/586372/01.

144

(a) (b)

Fig. 1. Two hierarchical proofs

hiproofs, and characterised hiproofs in terms more amenable to implementation.
In particular, using a subtle notion of map, we showed that the obvious inclusion
of a category of ordinary proof trees into one of hierarchical proof trees has a
left adjoint, with that left adjoint yielding a natural notion of the skeleton of a
hierarchical proof.

For the purposes of this paper, we shall refer to the notion of hierarchical
proof we developed in [4] as a hiproof of type 1. In [4] we also introduced type
2 hiproofs, which are an equivalent formulation of type 1 hiproofs designed to
facilitate implementation. We do not discuss type 2 hiproofs in this paper, but
we want to give a third equivalent formulation of the notion. So, for overall
consistency, we shall refer to the central new construct of this paper as a type 3
hiproof. One of the overall goals of this work is to study a diversity of possible
formulations of hierarchical proof structure in order to understand the common
structure behind hierarchy in tactic-based theorem proving.

Now consider a hiproof of type 1. A user is unlikely to view all the information
it contains at once: the main point of structuring it hierarchically is that the
proof can be viewed at different levels of abstraction in a sense we shall make
precise. In particular, consider the hiproof in Figure 1(b). At the highest level of
abstraction it can be thought of as the two step proof, T1 followed by DP. We can
think of this as an abstract proof, where T1 and DP have no internal structure,
and so are regarded as atomic steps. At the lowest level of abstraction, on the
other hand, the proof tree is formed from the atomic steps T2, WP, Normalise,
and Taut, in the obvious way. This is the skeleton of the hiproof, as defined in

145

[4], where it was characterised as a naturally arising left adjoint. Rather than
consider the whole skeleton directly, we could have unfolded just one of the top-
level tactics, T1 or DP, thus yielding four possible “views” of this hiproof (see
Figure 2) in total. More generally, we could unfold any abstract node (which
may itself be a tree of abstract nodes), replacing the node with its immediate
contents, yielding another tree.

Fig. 2. Four views of a single hiproof

We call the proof trees that result from such sequences of unfolding proof
views. The skeleton of a hiproof is the special case where no nodes are abstract.
A proof view is a tree of inferences where some of the nodes may be abstract
steps, i.e., tactics. Sets of proof trees can be seen as a dynamic interpretation of
a tactic-based proof, where the possible traces of the proof’s unfolding embody
its hierarchy. This raises the question: can we take such views as primitive? In
other words, can we reformulate the notion of hiproof in terms of a set of proof
trees which are self-consistent in some sense? In this paper, we formalise the
various relevant concepts and constructions, and formulate the theorem.

In Section 2, we recall the definition of type 1 hiproof and explain its axioms,
illustrated by examples. In Section 3, we define the notion of type 3 hiproof. In
Section 4, we show how to construct a type 1 hiproof from a type 3 hiproof. And
in Section 5, we give the converse, constructing a type 3 hiproof from a type 1
hiproof.

2 Hierarchical proof trees

In this section, we recall the notion of a hierarchical proof tree or type 1 hiproof
from [4]. To motivate the definition, we first analyse, by means of an example,
the relationship between tactics and standard notions of formal proof such as
proofs in natural deduction style.

Example 1. Consider a natural deduction proof of A ⇒ A ∧ (x = x), as in
Figure 3. The obvious (backwards) proof is implication introduction, followed

146

by conjunction introduction, and then applying axiom and reflexivity to the
two subgoals. The essential information of the proof is the sequence of inference

A � A
Ax

A � x = x
Refl

A � A ∧ (x = x)
And-I

� A ⇒ A ∧ (x = x)
Imp-I

Fig. 3. A simple natural deduction proof

rules, with the order of those rules represented by a proof tree as in Figure 4(a).
Typically, however, theorem provers allow the use of higher-level tactics that

(a) (b) (c)

Fig. 4. Introducing hierarchy in proof diagrams by grouping

group together the application of a number of low-level inferences. For example, it
is common to have an Intros command, which performs all possible introduction
rules. We can indicate this on the proof diagram by grouping Imp-I and And-I
together, as in Figure 4(b). We could go further and define a tactic, Prop, which
first calls Intros, and then tries to use axioms wherever possible. This gives the
hierarchical structure of Figure 4(c). $%

Example 1 shows that proofs can be represented as tactic- (or axiom and
inference)-labelled trees with hierarchical structure on the set of nodes. The tree
structure is straightforward, but the hierarchical structure and its interaction
with the tree structure are more complex. We formalise the hierarchical structure
by a partial order, with v ≤i w represented visually by depicting the node v as

147

sitting inside the node w. The partial order satisfies axioms to the effect that
it is generated by a (finite) forest, and it is sometimes convenient to regard it
as such. Our hierarchical trees are labelled by tactics, so we henceforth assume
that Λ is a fixed non-empty set of tactic identifiers or method identifiers. We
write isrootF (v) (or isroot→) for the assertion that there is a tree in forest F
with root v, and we write siblingsF (v, v′) (or siblings→(v, v′)) if v and v′ have
the same parent or are both roots.

Definition 1. A hierarchical proof tree, or (type 1) hiproof for short, consists
of a tuple 〈V,≤i,→s, tac〉, comprising a (necessarily finite) forest qua poset
i = 〈V,≤i〉 and a forest s = 〈V,→s〉, together with a function tac : V → Λ
which labels the nodes in V with tactic identifiers in Λ, subject to the following
conditions:

1. arrows always target outer nodes: whenever v →s w1 and w1 <i w2, then
v <i w2

2. arrows always emanate from inner nodes: whenever w1 ≤i v and v →s w2

then v = w1

3. inclusion and sequence are mutually exclusive: whenever v ≤i w and v →�
s w,

then v = w
4. given any two nodes v and v′ which both lie at the top inclusion level, or are

both immediately included in the same node, then at most one of v, v′ has no
incoming →s edge:

∀v, v′ ∈ V. siblings i(v, v
′) ∧ isroots(v) ∧ isroots(v′) =⇒ v = v′.

$%

Note the subtlety in the first condition, especially in combination with the
third: an arrow from a node v can only go to an outer node relative to the
inclusion level of v. So, for instance, Example 1 satisfies the condition. Observe
that the fourth condition together with finiteness imply that there is a unique
node that is maximal with respect to ≤i and has no incoming →s edge, acting
as a kind of hierarchical root.

The main theorem justifying the axioms in [4] shows that every hiproof un-
folds to give an ordinary proof (its skeleton). But here we analyse the axioms by
looking at some non-examples. The axioms are designed to ensure that none of
the diagrams in Figure 5 forms a hiproof.

In tactical theorem proving, one tactic is followed by another, which unfolds
to give another tactic, and so on. So tactics are invoked ‘at the most abstract
level.’ But Figure 5(a) contradicts that because if T1 is followed by T3 and T2
unfolds to T3, the more abstract T2 should follow T1. Equivalently, it would be
permissible for T3 to follow T1, but then the fact that T2 is an abstraction of T3
would be irrelevant to the proof and should not be added after the composition
of T1 and T3. Conversely, when a tactic finishes executing, control flows from
the most recently executed tactic, i.e. the innermost, outwards, but Figure 5(b)
contradicts that. We want to exclude Figure 5(c) too in order to avoid circularity

148

(a) (b) (c) (d)

Fig. 5. Four non-examples of hiproofs

of unfolding and sequencing. Finally, Figure 5(d) fails because tactic T1 should
unfold to give a unique subsequent tactic to execute, not two.

The first condition in the definition of hiproof prohibits the inclusion hierar-
chy from being ‘downwards’ transcended by composition, e.g. as in Figure 5(a).
The second condition precludes Figure 5(b). The third condition precludes Fig-
ure 5(c): the similar structure with the arrow pointing the other direction is
already precluded by the second condition. And the fourth condition precludes
Figure 5(d) as well as the similar non-proof example obtained from Figure 5(d)
by removing the node labelled T1. For a positive example of a hiproof, consider
Figure 1(b).

The main ideas behind the definition of hiproof can be understood in terms
of Figures 1(a) and 1(b). Although motivated by diagrams, we have abstracted
away from geometry to discrete mathematical structure. The central features
are as follows:

– we do not require tactic identifiers to be unique as a tactic may be applied
repeatedly in a proof. But we informally refer to proof nodes by their tactic
identifiers where there is no ambiguity.

– there are only two relationships that can hold between nodes: inclusion, rep-
resenting the unfolding of a tactic into its definition, with arrows representing
sequential composition. For example, in Figure 1(b), the decision procedure
DP unfolds to give the composition of Normalise with Taut.

– hiproofs are essentially tree-like in that subgoals are independent: a tactic
acts on a single subgoal. That is not generally the case in tactical theorem
proving, and we intend to extend the definition accordingly in future work.
Tactics usually return a list of subgoals, but we abstract away from the order
on child tactics.

A hiproof, therefore, consists of a finite collection of tactic-labelled nodes, related
by inclusion and composition. Although the diagrams represent abstract versions
of full proofs, we are interested in how such proofs are constructed, and so we
consider partial proofs as well-formed.

149

3 Hiproofs as families of proof views

A hierarchical proof yields and can be characterised by a collection of non-
hierarchical proofs, i.e., by simple inference trees, that are self-consistent in a
sense that we make precise in this section. These ordinary proofs generated by the
hiproof can be regarded as views of the hiproof at various levels of abstraction
given by all possible “unfoldings”. Such views may, for instance, appear on a
computer screen when one clicks on a particular node of a hiproof.

A first attempt to characterise hiproofs in terms of such views is to try to
characterise a hiproof by the set of its partial underlying proofs. But that is not
subtle enough as it does not distinguish between the two hiproofs in Figure 6,
both of which would be interpreted as the set of two trees, {T1, T2→ T3}. So
we need to consider the total underlying proofs of a hiproof. The second hiproof
in Figure 6 now has interpretation {T1 → T3, T2 → T3}, and the first is as
before.

Fig. 6. Two distinct hiproofs with the same underlying proof

But that is still not delicate enough: taking the sets of the underlying proofs of
a hiproof does not distinguish between hiproofs with the structures T1 ≤i T2 and
T2 ≤i T1. So we replace sets by lists that represent the sequence of unfoldings
of a hiproof. But there are several ways in which a hiproof can be unfolded. If
we take all possible unfoldings, we obtain the structure of a dag, which, finally,
has sufficient structure to provide a characterisation. The main technical part of
our work involves characterising those dags that thus arise.

The characterisation requires a delicate operation that grafts a tree t′ at a
vertex v of a given tree t, with an embedding map, f , from the children of v into
the nodes of t, thus generalising the idea of substituting a tree for a leaf vertex
in another tree. Formally, the definition is as follows:

150

Definition 2. Let tA = 〈VA,→A, rA〉 and tB = 〈VB ,→B , rB〉 be (rooted) trees,
v0 ∈ VA, and f a map from the children of v0 to VB. Then graft(tA, v0, tB , f) def=
〈V,→, r〉 is the tree where

– V = VA \ {v0}+ VB,
– v → v′ if and only if either of the following hold

1. v, v′ ∈ VA \ {v0} and v →A v′

2. v, v′ ∈ VB and v →B v′

3. v ∈ VA, v′ = rB and v →a v0

4. v′ is a child of v0 and v = f(v′)
– r = rB if v0 = rA or otherwise r = rA. $%

Note that we discard the vertex v0 instead of the root of the tree being
grafted.

Example 2.

graft

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

, a2 , , {a3 �→ b1, a4 �→ b0, a5 �→ b2}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

It is routine to extend the definition of grafting to incorporate labelling.
Labels are taken in the set Λ of tactic identifiers. We do not insist that the
labelling functions on the two trees be consistent with each other on v0 and rB .

Definition 3. Let 〈tA, lA〉 and 〈tB , lB〉 be trees labelled over Λ and v0 ∈ VA.
Then

graft(〈tA, lA〉, v0, 〈tB , lB〉, f)

is the labelled tree 〈graft(tA, v0, tB , f), l〉 where l : VA \ {v0}+ VB → Λ is defined
as follows:

1. whenever v ∈ VB, l(v) = lB(v)
2. whenever v ∈ VA and v �= v0, l(v) = lA(v). $%

For simplicity of presentation we shall tacitly assume that, whenever we write
graft(tA, v0, tB , f), the sets VA and VB of vertices in tA and tB are disjoint,
i.e., VA ∩ VB = ∅, whereby also v0 �∈ VB . So the set of vertices underlying
graft(tA, v0, tB , f) is VA \ {v0} ∪ VB .

In order to give a coherent definition of a type 3 hiproof, we first need to
observe a few facts about grafting. They are as follows:

151

Lemma 1. (Injectivity of grafting) graft(t, v0, t1, f) = graft(t, v0, t
′
1, f

′) implies
t1 = t′1 and f = f ′. $%

Lemma 2. (Commutativity of grafting)
graft(graft(t0, v1, t1, f1), v2, t2, f2) = graft(graft(t0, v2, t2, f2), v1, t1, f1). $%

Lemma 3. (Independence of grafts) Let t0 = 〈V0,→0, r0〉 be a tree and v1, v2

be distinct vertices in V0. Then

graft(graft(t0, v1, t1, f1), v2, t2, f2) = graft(graft(t0, v2, t
′
2, f

′
2), v1, t

′
1, f

′
1)

implies ti = t′i and fi = f ′
i , for i = 1, 2. $%

We can now formally define type 3 hiproofs:

Definition 4. A hiproof of type 3 is a tuple 〈U,�, τ, β〉, where

– 〈U,�〉 is a dag,
– τ : U → Λ-Tree is a function, assigning to each vertex u ∈ U a Λ-labelled

tree τ(u), and
– β assigns to each pair 〈u, u′〉 ∈� a vertex in τ(u).

Writing u
v� u′ to mean the existence of u, u′ ∈ U such that 〈u, u′〉 ∈ � and

β(〈u, u′〉) = v, the above data is subject to the following conditions:

1. 〈U,�〉 has a source, which we denote by u�
2. if u

v� u′, there exists a labelled tree γ and a map f such that τ(u′) =
graft(τ(u), v, γ, f)

3. if u0
v� u1 and u0

v� u2, then u1 = u2, and
4. if u0

v1� u1 and u0
v2� u2, there exists u3 such that u1

v2� u3 and u2
v1� u3. $%

This definition formulates the discussion at the beginning of the section, that a
hiproof can be represented as a dag of proof trees. The top is the most abstract
proof, the bottom (as we will see) is the most concrete proof, i.e. the underlying
skeleton. The second and third conditions give the meaning of the dag in terms
of the grafting of proof trees, while the fourth is a completeness condition: if you
can unfold nodes separately, then you can unfold them together.

Proposition 1. A dag 〈U,�〉 satisfying the conditions on a dag in Definition 4
has a (necessarily unique) sink u⊥.

Proof. (Sketch) This follows from general theorems on abstract rewriting systems
satisfying the diamond property, as the rewriting system in question is strongly
and uniquely normalising. $%

152

4 From hiproofs of type 3 to hiproofs of type 1

In this section, we construct a type 1 hiproof from a type 3 hiproof. This first
requires some notation, then a subtle construction combining a type 1 hiproof
with a tree: we build our final type 1 hiproof by an inductive process, requir-
ing several intermediary type 1 hiproofs as inductive steps, hence the need to
combine a type 1 hiproof inductively with a tree.

First observe that by Lemma 1, whenever u v� u′ holds in a type 3 hiproof, the
labelled tree γ and map f given by the third condition are unique up to isomor-
phism such that τ(u′) = graft(τ(u), v, γ, f). We shall therefore write u

v,γ,f� u′, in-
stead of u v� u′, when knowledge of the unique γ and f is required. By Lemma 3,
we have the following:

Proposition 2. For v1 �= v2, whenever u0
v1,γ1,f1� u1

v2,γ2,f2� u3 and u0
v2,γ′

2,f ′
1�

u2
v1,γ′

1,f ′
2� u3 in a type 3 hiproof, one has γ1 = γ′

1, γ2 = γ′
2, f1 = f ′

1 and f2 = f ′
2.
$%

We extend the notation to finite lists of 〈v, γ〉 pairs. Then for every such list
σ = 〈v0, γ0〉, . . . , 〈vn−1, γn−1〉, we write

u
σ� u′

to mean
u

v0,γ0� u0
v1,γ1� . . .

vn−1,γn−1� un and un = u′ .

As usual, we write 〈v, γ〉 ::σ for the list with head 〈v, γ〉 and tail σ.
Now we inductively present a family F of operations on hiproofs of type 1,

indexed by paths u
σ� u′ in a hiproof of type 3. The idea is to gradually build up

a (type 1) hiproof by combining all the trees along a path in a hiproof of type
3. We need an operation h �v0 γ extending a type 1 hiproof h using the labelled
tree γ at the node v0. This is defined as follows:

Definition 5. Let h = 〈Vh,≤i,→s, tac〉 be a hiproof of type 1, and let v0 ∈ Vh be
≤i-minimal. Then given a Λ-labelled tree γ = 〈Vγ ,→, r, l〉, and a map f from the
children of v0 (with respect to→s) into Vγ , define h�v0,f γ to be 〈V ′,≤′

i,→′
s, tac

′〉
where

– V = Vh + Vγ

– v ≤′
i u if and only if either of the following hold

1. v, u ∈ Vh and v ≤i u
2. v ∈ Vγ , u ∈ Vh and v0 ≤i u

– v →′
s u if and only if either of the following hold

1. v, u ∈ Vγ and v → u
2. u ∈ Vh, v ∈ Vγ , u is a child of v0, and f(u) = v
3. v, u ∈ Vh, v �= v0 and v →s u

– tac′ = tac + l. $%

153

The difference between this construction and that of graft(h, v0, γ, f) is that
here h can be an arbitrary hiproof (whereas for grafting h must be a tree) and we
keep the node v0 and put γ inside it (since v0 is ≤i-minimal it has no ‘contents’)
rather than replacing v0 by γ. Again, when we write h �v0,f γ, we shall tacitly
assume that the sets Vh and Vγ underlying h and γ respectively, are disjoint. This
allows us to regard the set of vertices underlying h�v0 γ as being simply Vh∪Vγ .
And by “suitable” labelled trees, we mean γ1 and γ2 for which Vh ∩ Vγ1 = ∅,
Vh ∩ Vγ2 = ∅ and Vγ1 ∩ Vγ2 = ∅.
Lemma 4. (Commutativity of �) If v1 and v2 are distinct vertices in a type 1
hiproof h, then h�v1,f1 γ1 �

v2,f2 γ2 = h�v2,f2 γ2 �
v1,f1 γ1 for any suitable Λ-labelled

trees. $%
Proposition 3. (Well-definedness of �) Let h = 〈V,≤i,→s, tac〉 be a hiproof of
type 1 and γ any suitable Λ-labelled tree. h �v,f γ is a hiproof of type 1 whenever
v ∈ V is ≤i-minimal and f is a suitable map. $%

Now let u
σ� u′ be a path in a hiproof of type 3 and h any hiproof of type 1.

We proceed to define Fσ by induction on the length of the list σ:

– Fu(h) = h
– F

u
v,γ,f� u′σ′�u′′(h) = F

u′σ′�u′′(h �v,f γ).

Any labelled tree may be trivially regarded as a “flat” hiproof of type 1.
Formally:

Definition 6. We define the embedding, E : Tree → Hiproof 1, as the map
which takes γ = 〈V,→, r, l〉 to 〈V, idV ,→, l〉. $%
However, we will often blur the distinction and regard trees as type 1 hiproofs
when convenient.

We showed in [4] that E extends to a functor from a category whose objects
are proof trees to one whose objects are type 1 hiproofs, and proved that it has a
left adjoint, characterising a natural construction of the skeleton, or underlying
ordinary proof, of a type 1 hiproof.

Corollary 1. F
u

σ�u′(τ(u)) is always a well-formed hiproof of type 1. $%
Writing σ ∼ σ′ to mean that (v, γ, f)-lists σ and σ′ are permutations of one

another, we finally have:

Theorem 1. Whenever u
σ� u⊥ and u

σ′
� u⊥ are paths in a type 3 hiproof, one

has

1. σ ∼ σ′; and
2. for all h, F

u
σ�u⊥

(h) = F
u

σ′�u⊥
(h).

$%
Theorem 1 shows that no matter which path is used from a type 3 hiproof,

F combines the trees along that path into the same type 1 hiproof. We can now
define μ31.

Definition 7. μ31(h3) = Fσ(E(u�)), where u�
σ� u⊥ is any path in h3. $%

154

5 From type 1 to type 3 hiproofs

In this section, we give a converse to our construction of a type 1 hiproof from
a type 3 hiproof. We first recall the definition of the skeleton of a type 1 hiproof
from [4].

Definition 8. Let h = 〈V,≤i,→s, t〉 be a type 1 hiproof. We define the skeleton
of h, written sk1(h), to be the Λ-labelled tree 〈VT ,→T , r〉, corresponding to the
finite poset T = 〈VT ,≤T 〉, where VT are the leaves of ≤i, and v1 ≤ v2 if and
only if there exists a v ∈ V such that v2 ≤i v and v1 →s v. $%

For example, the skeleton of Figure 1(b) is the rightmost tree in Figure 2.

Proposition 4. The definition above gives a well-formed tree.

Proof. We must show that for all v ∈ VT , there exists a unique path from r to v.
There must exist a (>1

i ∪ →s)-path from the root of h1 to v, by induction. This
path must be unique since each vertex has a unique predecessor. $%

Definition 9. Let h3 = 〈U,�, τ, β〉 be a type 3 hiproof. We define the skeleton
of h3, written sk3(h3), to be the tree, τ(u⊥), where u⊥ is the sink guaranteed by
Proposition 1. $%

The next result shows that this is a reasonable definition of skeleton. In other
words, it corresponds to skeletons of type 1.

Proposition 5. For all hiproofs h3 of type 3, sk3(h3) = sk1(μ31(h3)) and for
all hiproofs h1 of type 1, sk1(h1) = sk3(μ13(h1)). $%

In order to define the translation from type 1 to type 3, we first need to
define a notion of abstraction of hiproofs at a node.

Definition 10. Let h1 = 〈V,≤i,→s, t〉 be a type 1 hiproof, and let z ∈ V . We
define the abstraction of h1 at z, written abs1(z, h1), to be the type 1 hiproof
〈V ′,≤′

i,→′
s, t

′〉, where V ′ = {v ∈ V |v �<i z}, ≤′
i and t′ are the restrictions of

≤i and t to V ′, and v1 →′
s v2 if and only if v1, v2 ∈ V ′, and either v1 �= z and

v1 →s v2, or v1 = z and there exists a v ≤i z such that v →s v2. $%
This is, in some sense, dual to the skeleton since it throws away the contents of
a node. We say that h′ is an abstraction of h if h′ is the abstraction of h at v
for some v.

To define a map from type 1 to type 3, we must extend the definition of
abstraction for type 1 to sets of nodes. First note that if h1 nodes z1 and z2 are
≤i-incomparable, then abs1(z1, abs1(z2, h1)) = abs1(z2, abs1(z1, h1)).

Let I be a ≤i-incomparable set of nodes in h1. Then, abs1(I, h1) is well-
defined via

abs1({}, h1) = h1

abs1(I ∪ {z}, h1) = abs1(z, abs1(I, h1)), for z �∈ I.

Abstraction can also be defined for type 3 hiproofs but this is not needed
here to define the translation.

155

Definition 11. Define μ13 : Hiproof1 → Hiproof3 as the function sending
each hiproof h1 = 〈V,≤i,→s, tac〉 of type 1 to the hiproof 〈U,�, τ, β〉 of type 3
given by the following data:

– The component trees are the skeletons of the abstractions of h1 for all ≤i-
incomparable subsets

– t1
v� t2 if and only if t1 = sk1(abs1(I1, h1)), t2 = sk1(abs1(I2, h1)), where

I1 = I ∪ {v}, v �∈ I, I2 = I ∪ {v′ | v′ <1
i v}.

$%
We can show that u� = sk1(abs1(Imax , h1)), where Imax is the set of ≤i-
maximal nodes, and u⊥ is the skeleton of h1, i.e. sk1(abs1({}, h1)). When t =
sk1(abs1(I, h)), we will write t as tI . Note that I is not unique, in general, since
any node which is ≤i-minimal, for example, can be added with no effect.

Proposition 6. μ13 is well-defined.

Proof. To show that μ13 is well-defined, we must show that μ13(h1) is a valid
type 3 hiproof.

First we characterise �∗. Define I <1
i I ′ if and only if I ′ = I0 ∪{v}, v �∈ I0,

and I = I0 ∪ {v′ | v′ <1
i v}. Then define I ≤i I ′ if and only if I (<′

i)
∗ I ′. Now,

we have that I ≤i I ′ implies ∀i ∈ I .∃i′ ∈ I ′ . i ≤i i′ (though not in the other
direction). Clearly, tI �∗ tI′ if and only if I ′ ≤i I.

Next, we show that ≤i is a partial order. It is reflexive and transitive by
definition. To see that it is antisymmetric, suppose I ≤i I ′ and I ′ ≤i I. Let
v ∈ I. Then there exists a v′ ∈ I ′ such that v ≤i v′, and a v2 ∈ I such that
v ≤i v2. Hence v = v′ (by antisymmetry of ≤i), and so I ⊆ I ′. Likewise, I ′ ⊆ I,
so I = I ′, and we have shown antisymmetry.

This shows that μ13(h1) is a dag. We must also check the type 3 conditions:

1. u� is the top, since each I ≤i {i | i is ≤i −maximal}.
2. Define the shell of a hiproof, shell(h), as abs1(Imax, h), and sub(h, v) to

be the hiproof ‘inside the node v in h’, i.e. the hiproof rooted at the top node
included in v, and with no nodes outwith v.
Then, if t1 = sk1(abs1(I ∪ {v}, h)) v� t2 = sk1(abs1(I ∪ {v′|v′ <1

i v}, h)),
then it can be shown that t2 = graft(t1, v, γ, f), where γ = tree(h, v), is
defined as shell(sub(h, v)), and f , mapping the children of v in t1 to nodes
in t2, is given by v1 �→ v2 if and only if v2 is the parent of v1 in t2, and so
v2 ∈ γ.

3. By the definition of v�, u0 = sk1(abs1(I ∪{v}, h)) v� u1, u2 implies u1, u2 =
sk1(abs1(I ∪ V ′, h)), where V ′ = {v′ | v′ <′

i v}.
4. Suppose t

v1� t1 and t
v2� t2, then we have t = sk1(abs1(I ∪ {v1, v2}, h)) v1�

sk1(abs1(I ∪V ′
1 ∪{v2}, h)), and t

v2� sk1(abs1(I ∪{v1}∪V ′
2 , h)). Then these

come together confluently as sk1(abs1(I ∪ V ′
1 ∪ V ′

2 , h)).
$%

One needs to do a little work to show that the constructions yielding type 1
and type 3 hiproofs from each other are mutually inverse up to coherent isomor-
phism: the latter point requires some straightforward category theory to make
precise.

156

6 Conclusions

We have presented definitions of two structures arising in tactic-based theorem
proving. The primary definition encapsulates our graphical intuition for this form
of hierarchical proofs, and the other corresponds more closely to dynamic traces
of unfoldings or proof views.

In work that we have not described in this paper, we have also looked at
ordered hiproofs, where the underlying proof structures are ordered trees (in
contrast to the unordered trees considered here), and hierarchical structures
induced from proofs forests, which we call hitacs. Indeed, there is a wide range
of hi-structures which can be induced from a correspondingly wide range of tree-
based proof structures. We aim to develop the necessary categorical machinery
for placing them in a common framework. Finally, we have also developed a
term language and equational calculus, as well as the natural connections to the
semantic structures presented here.

References

1. Cheikhrouhou, L., Sorge, V.: PDS — A Three-Dimensional Data Structure for
Proof Plans. In: Proceedings of the International Conference on Artificial and
Computational Intelligence for Decision, Control and Automation in Engineering
and Industrial Applications (ACIDCA’2000), Monastir, Tunisia (2000)

2. Kapur, D., Nie, X., Musser, D.R.: An overview of the Tecton proof system. Theo-
retical Computer Science 133 (1994) 307–340

3. Richardson, J.D.C., Smaill, A., Green, I.: System description: proof planning in
higher-order logic with Lambda-Clam. In: 15th International Conference on Auto-
mated Deduction. (1998) 129–133

4. Denney, E., Power, J., Tourlas, K.: Hiproofs: A hierarchical notion of proof tree.
In: Proceedings of Mathematical Foundations of Programing Semantics (MFPS).
Electronic Notes in Theoretical Computer Science (ENTCS), Elsevier (2005)

157

Implementing Deep Inference in TOM

Ozan Kahramanoğulları1, Pierre-Etienne Moreau2, Antoine Reilles3

1 Computer Science Institute, University of Leipzig
International Center for Computational Logic, TU Dresden

ozan@informatik.uni-leipzig.de
2 LORIA & INRIA, Nancy, France
3 LORIA & CNRS, Nancy, France

{Pierre-Etienne.Moreau,Antoine.Reilles}@loria.fr

Abstract. The calculus of structures is a proof theoretical formalism
which generalizes sequent calculus with the feature of deep inference:
in contrast to sequent calculus, the calculus of structures does not rely
on the notion of main connective and, like in term rewriting, it permits
the application of the inference rules at any depth inside a formula. Tom

is a pattern matching processor that integrates term rewriting facilities
into imperative languages. In this paper, relying on the correspondence
between the systems in the calculus of structures and term rewriting
systems, we present an implementation of system BV of the calculus of
structures in Java by exploiting the term rewriting features of Tom. This
way, by means of the expressive power due to Java, it becomes possible to
implement different search strategies. Since the systems in the calculus
of structures follow a common scheme, we argue that our implementa-
tion can be generalized to other systems in the calculus of structures for
classical logic, modal logics, and different fragments of linear logic.

1 Introduction

Developing new representations of logics, which address properties that are cen-
tral to computer science applications, has been one of the challenging goals of
proof theory. One of the crucial needs of such a line of research is the appro-
priate set of implementation tools, which are in harmony with the underlying
proof theoretical formalism. Such tools then make it possible to test conjectures
on the logic, proof theory of which is studied. This way, they do not only allow
researchers to save time by producing counter examples for false conjectures,
but also shed light to potential applications of the logic being studied.

The calculus of structures [5] is a proof theoretical formalism, like natural de-
duction, sequent calculus, and proof nets. The calculus of structures generalizes
the sequent calculus while keeping properties, such as locality and modularity
(see, e.g. [3, 15]), in focus that are important for computer science applications.
Structures are expressions intermediate between formulae and sequents which
unify these two latter entities. This way, they provide a greater control over
the mutual dependencies between logical relations. The main feature that dis-
tinguishes this formalism is deep inference: in contrast to the sequent calculus,

158

the calculus of structures does not rely on the notion of main connective, and
permits the application of the inference rules at any depth inside a structure.
Applicability of the inference rules at any depth results in a richer combinatorial
analysis of proofs than in the sequent calculus. Because proofs are constructed
by manipulating and annihilating substructures, this formalism brings shorter
proofs than all other formalisms supporting analytical proofs.

The calculus of structures was conceived, in [5], for introducing a logical
system, called system BV, which extends multiplicative linear logic with the rules
mix, nullary mix, and a self-dual, non-commutative logical operator. Due to the
self-dual, noncommutative operator, system BV is of interest for applications
where sequentiality plays an important role. In particular, as Bruscoli showed
in [4], the non-commutative operator of BV captures precisely the sequential
composition of process algebra, e.g. CCS. In fact, system BV can not be designed
in the sequent calculus, as it was shown by Tiu in [17], since deep inference is
crucial for deriving the provable structures of system BV. Kahramanoğulları
showed, in [11], that system BV is NP-complete.

The calculus of structures also provides systems which bring insights to proof
theory of different logics: in [2], Brünnler presents systems in the calculus of
structures for classical logic; in [16], Straßburger presents systems for different
fragments of linear logic; in [14], Stewart and Stouppa give systems for a collec-
tion of modal logics; in [18], Tiu presents a local system for intuitionistic logic.
All the above mentioned systems follow a common scheme due to deep inference,
which we exploit in this paper.

In the sequent calculus, because of the meta-level which causes branching
while going up in the proofs, proofs are trees. However, in the calculus of struc-
tures, because meta-level of the sequent calculus is represented at the object level
of the logical system [6], proofs are chains of inferences rather than trees. This
observation and the applicability of the inference rules at any depth draws at-
tention to a correspondence between the term rewriting systems [1] and systems
of the calculus of structures. However, structures in a logical system are consid-
ered equivalent modulo an equational theory which makes it possible to observe
the structures as equational classes of formulae with respect to the underlying
equational theory of the system. Exploiting these observations, in [7], Hölldobler
and Kahramanoğulları showed that systems in the calculus of structures can be
expressed as term rewriting systems modulo equational theories.

Tom [13, 12] is a pattern matching preprocessor that integrates term rewrit-
ing and pattern matching facilities into imperative and functional languages such
as C, Java, and Caml. In this paper, by resorting to the term rewriting features
of Tom, we present a proof search implementation of system BV in Java. For this
purpose, in several steps, we simulate the role played by the equational theory
during proof search in the inference rules. We show that, instead of expressing
commutativity and units as equalities in the underlying equational theory, role
played by the equalities for unit and commutativity can be embedded into the
inference rules of the system. This way, we express associativity in a list repre-

159

sentation of the structures, and implement the inference rules as term rewriting
rules which apply to terms that represent structures.

Because, of the expressive power of Java, it becomes possible to easily im-
plement any search strategy for proof search. In our implementation, we resort
to a global search strategy: we stack the structures which are premises of the all
bottom-up instances of the inference rules with respect to a heuristic function,
and proceed with applying this procedure to the topmost structure in the stack
till the top-most structure is the unit. Since proofs are constructed by annihi-
lating dual atoms, the heuristic function is chosen in a way which respects the
mutual relations between dual atoms.

Because systems in the calculus of structures follow a common scheme, our
implementation provides a recipe for implementing systems for other logics in
the calculus of structures.

The rest of the paper is organized as follows: in Section 2, we re-collect the
notions and notations of the calculus of structures and system BV. Then, in
Sections 3 and 4, we remove the equalities for unit, and commutativity from the
equational theory, respectively, by simulating their roles in the inference rules.
After presenting some methods for reducing the nondeterminism in proof search
in Section 5, we describe our implementation in Sections 6 and 7. We conclude
with summary and discussions in Section 8.

2 The Calculus of Structures and System BV

In this section, we re-collect some notions and definitions of the calculus of
structures and system BV, following [5].

In the language of BV atoms are denoted by a, b, c, . . . Structures are denoted
by R,S, T, . . . and generated by

S ::= ◦ | a | 〈S; . . . ;S︸ ︷︷ ︸
>0

〉 | [S, . . . , S︸ ︷︷ ︸
>0

] | (S, . . . , S︸ ︷︷ ︸
>0

) | S ,

where ◦, the unit, is not an atom. 〈S; . . . ;S〉 is called a seq structure, [S, . . . , S] is
called a par structure, and (S, . . . , S) is called a copar structure, S is the negation
of the structure S. A structure R is called a proper par structure if R = [R1, R2]
where R1 �= ◦ and R2 �= ◦. Structures are considered equivalent modulo the
relation ≈, which is the smallest congruence relation induced by the equations
shown in Figure 1. There R, T and U stand for finite, non-empty sequence of
structures. A structure context, denoted as in S{ }, is a structure with a hole
that does not appear in the scope of negation. The structure R is a substructure
of S{R} and S{ } is its context. Context braces are omitted if no ambiguity is
possible: for instance S [R, T] stands for S{[R, T]}. A structure, or a structure
context, is in normal form when the only negated structures appearing in it are
atoms and no unit ◦ appears in it.

There is a straightforward correspondence between structures which do not
involve seq structures and formulae of multiplicative linear logic (MLL) which

160

Associativity

〈R; 〈T 〉; U 〉 ≈ 〈R; T ; U 〉
[R, [T]] ≈ [R, T]

(R, (T)) ≈ (R, T)

Context Closure

if R = T then S{R} = S{T}
and R̄ = T̄

Commutativity

[R, T] ≈ [T , R]

(R, T) ≈ (T , R)

Units

〈◦; R〉 ≈ 〈R; ◦〉 ≈ 〈R〉
[◦, R] ≈ [R]

(◦, R) ≈ (R)

Negation

◦ ≈ ◦
〈R; T 〉 ≈ 〈R; T 〉
[R, T] ≈ (R, T)

(R, T) ≈ [R, T]

R ≈ R

Singleton

〈R〉 ≈ [R] ≈ (R) ≈ R

Fig. 1. Equivalence relations underlying BV.

do not contain the units 1 and ⊥. For example [(a, b), c̄, d̄] corresponds to ((a�

b) � c⊥ � d⊥), and vice versa. Units 1 and ⊥ are mapped into ◦, since 1 ≡ ⊥,
when the rules mix and mix0 are added to MLL.

 Φ
 Ψ
mix

 Φ, Ψ
mix0

For a more detailed discussion on the proof theory of BV and the precise relation
between BV and MLL, the reader is referred to [5].

In the calculus of structures, an inference rule is a scheme of the kind
T

ρ
R

,

where ρ is the name of the rule, T is its premise and R is its conclusion. A

typical (deep) inference rule has the shape
S{T}

ρ
S{R}

and specifies the implication

T ⇒ R inside a generic context S{ }, which is the implication being modeled in
the system4. When premise and conclusion in an instance of an inference rule are
equivalent, that instance is trivial, otherwise it is non-trivial. An inference rule
is called an axiom if its premise is empty. Rules with empty contexts correspond
to the case of the sequent calculus.

A (formal) system S is a set of inference rules. A derivation Δ in a certain
formal system is a finite chain of instances of inference rules in the system. A
derivation can consist of just one structure. The topmost structure in a deriva-
tion, if present, is called the premise of the derivation, and the bottommost
structure is called its conclusion. A derivation Δ whose premise is T , conclusion

is R, and inference rules are in S will be written as
T

R
SΔ . Similarly,

R

SΠ

will denote a proof Π which is a finite derivation whose topmost inference rule
is an axiom. The length of a derivation (proof) is the number of instances of
inference rules appearing in it.
4 Due to duality between T ⇒ R and R̄ ⇒ T̄ , rules come in pairs of dual rules: a

down-version and an up-version. For instance, the dual of the ai↓ rule in Figure 2
is the cut rule. However, in the calculus of structures, the down rules provide sound
and complete systems.

161

◦↓ ◦
S{◦}

ai↓
S [a, ā]

S([R, T], U)
s

S [(R, U), T]

S〈[R, U]; [T, V]〉
q↓

S [〈R; T 〉, 〈U ; V 〉]

Fig. 2. System BV

Two systems S and S ′ are equivalent if for every proof of a structure T in
system S , there exists a proof of T in system S ′, and vice versa.

The system {◦↓,ai↓, s,q↓}, shown in Figure 2, is denoted by BV, and called
basic system V. The rules of the system are called unit (◦↓), atomic interaction
(ai↓), switch (s) and seq (q↓).

3 Removing the Equalities for Unit

In this section, we present a system equivalent to system BV where the applica-
tion of inference rules is explicit with respect to equalities for unit. We assume
that these rules are applied to structures which are in normal form. However, this
is not restrictive since a normal form of a structure can be equivalently obtained
by applying the terminating and confluent term rewriting system resulting from
orienting the equalities for negation and unit in Figure 1 from left to right [7].
Hence, the equalities for unit and negation can be equivalently removed from
the underlying equational theory by considering only those structures that are
in normal form.

ax
[a, ā]

S([R, W], T)
s1

S [(R, T), W]

S{R}
ai1↓

S [R, [a, ā]]

S{R}
ai2↓

S(R, [a, ā])

S{R}
ai3↓

S〈R; [a, ā]〉
S{R}

ai4↓
S〈[a, ā]; R〉

S〈[R, T]; [U, V]〉
q1↓

S [〈R; U〉, 〈T ; V 〉]
S〈R; T 〉

q2↓
S [R, T]

S〈[W, T]; U〉
q3↓

S [W, 〈T ; U〉]
S〈T ; [W, U]〉

q4↓
S [W, 〈T ; U〉]

Fig. 3. System BVu

Definition 1. The system in Figure 3 is called unit-free BV or BVu. The equali-
ties for unit do not apply to system BVu.

Theorem 1. [9] System BV and system BVu are equivalent.

The inference rules of system BVu allow the unit to be completely removed
from the language of the BV structures. Furthermore, trivial application of in-
ference rules are not possible in system BVu.

162

4 Removing the Equalities for Commutativity

In this section, we will remove the equalities for commutativity from the equa-
tional theory underlying system BVu by making the role played by these equal-
ities explicit in the inference rules. We first need some modifications on the
inference rules:

Definition 2. We put the following restriction on system BVu: The structures
W in the rules are restricted to atoms, copar structures and seq structures. In
other words, structure W is not a proper par structure. We will call this system
unit-free lazy BV or BVul.

Proposition 1. System BV and system BVul are equivalent.

Proof: Observe that the rules in BVul are instances of the rules in BVu with
restrictions on switch and seq rules. The case where W is a proper par structure
is derivable in BVul: the case of the rule q4↓ being analogous to the case for the
rule q3↓, for the rules s, and q3↓ take the following derivations:

S([R, T, V], U)
s1

S [([R,U], T), V]
s1

S [[(R, T), U], V]
=

S [(R, T), [U, V]]

S〈[R, V, T];U〉
q3↓

S [R, 〈[V, T];U〉]
q3↓

S [R, [V, 〈T ;U〉]]
=

S [[R, V], 〈T ;U〉]

Definition 3. The system in Figure 4 is called commutativity-free BV or BVc,
where W is either an atom or a copar structure or a seq structure, and the
equalities for unit and commutativity do not apply to BVc.

Proposition 2. System BV and system BVc are equivalent.

Proof: Inference rules of BVc are instances of the inference rules of BV. The
proof of the other direction is by inductive case analysis on the commutative
application of the inference rules of BVul: let Π be the proof of R in BVul. By
induction on Π, we construct a proof Π ′ of R in BVc.

– If Π is ax
[a, ā]

, take the same rule in BVc. (observe that ax
[ā, a]

is an

instance of this rule, also when commutativity does not apply, since ā is an
atom, and ¯̄a = a.)

– If ai1↓ is the last rule applied in Π, such that

S{R}
ai1↓

S{R, [a, ā]}
=

Q

, there are the following possibilities for Q : If

• Q = S [R, a, ā]; take ai11↓. • Q = S(R, [a, ā]); take ai21↓.

• Q = S [a, ā, R]; take ai12↓. • Q = S([a, ā], R); take ai22↓.

• Q = S [a,R, ā]; take ai13↓. • Q = S〈R; [a, ā]〉; take ai3↓.

163

• Q = S〈[a, ā];R〉; take ai4↓.

– If s1 is the last rule applied in Π, such that

S([R,W], T)
s1

S [(R, T),W]
=

Q

, there are the following possibilities for Q : If

• Q = S [(R, T),W]; take s11a. • Q = S [(T,R),W]; take s12a.

• Q = S [W, (R, T)]; take s13a. • Q = S [W, (T,R)]; take s14a.

• Q = S [(R, T, U),W]; take s15a. • Q = S [W, (R, T, U)]; take s16a.

• Q = S′ [(R, T), P,W] such that S{ } = S ′ [{ }, P]; take s11b.

• Q = S′ [(T,R), P,W] such that S{ } = S ′ [{ }, P]; take s12b.

• Q = S′ [W,P, (R, T)] such that S{ } = S ′ [{ }, P]; take s13b.

• Q = S′ [W,P, (T,R)] such that S{ } = S ′ [{ }, P]; take s14b.

• Q = S′ [(R, T, U), P,W] such that S{ } = S ′ [{ }, P]; take s15b.

• Q = S′ [W,P, (R, T, U)] such that S{ } = S ′ [{ }, P]; take s16b.

– If q1↓ is the last rule applied in Π, such that

S〈[R, T]; [U, V]〉
q1↓

S [〈R;U〉, 〈T ;V 〉]
=

Q

, there are the following possibilities for Q : If

• Q = S [〈R;U〉, 〈T ;V 〉]; take q11↓.

• Q = S′ [〈R;U〉, P, 〈T ;V 〉] such that S{ } = S ′ [{ }, P]; take q12↓.

– If q2↓ is the last rule applied in Π, such that

S〈R;T 〉
q2↓

S [R, T]
=

Q

, there are the following possibilities for Q : If

• Q = S [R, T]; take q21↓. • Q = S [T,R]; take q22↓.

• Q = S′ [R,P, T] such that S{ } = S′ [{ }, P]; take q23↓.

• Q = S′ [T, P,R] such that S{ } = S′ [{ }, P]; take q24↓.

164

– If q3↓ is the last rule applied in Π, such that

S〈[W,T];U〉
q3↓

S [W, 〈T ;U〉]
=

Q

, there are the following possibilities for Q : If

• Q = S [W, 〈T ;U〉]; take q31↓. • Q = S [〈T ;U〉,W]; take q32↓.

• Q = S′ [W,P, 〈T ;U〉] such that S{ } = S ′ [{ }, P]; take q33↓.
• Q = S′ [〈T ;U〉, P,W] such that S{ } = S ′ [{ }, P]; take q34↓.

– If q4↓ is the last rule applied in Π, such that

S〈T ; [W,U]〉
q4↓

S [W, 〈T ;U〉]
=

Q

, there are the following possibilities for Q : If

• Q = S [W, 〈T ;U〉]; take q41↓. • Q = S [〈T ;U〉,W]; take q42↓.

• Q = S′ [W,P, 〈T ;U〉] such that S{ } = S ′ [{ }, P]; take q43↓.
• Q = S′ [〈T ;U〉, P,W] such that S{ } = S ′ [{ }, P]; take q44↓.

5 Reducing the Nondeterminism

In a proof search episode, inference rules can be applied to a structure in many
different ways, however only few of these applications can lead to a proof. For
example, to the structure [(a, b), ā, b̄] switch rule can be applied bottom-up in
twelve different ways, but only two of these instances can lead to a proof. With
the below definition, we will redesign the inference rules such that the instances
of the inference rules which do not provide a proof will not be possible. For an
extensive exposure to these ideas the reader is referred to [10].

Definition 4. Given a structure S, the notation atS indicates the set of all the
atoms appearing in S. Let lazy interaction switch be the rule

S([R,W], T)
lis

S [(R, T),W]
,

where structure W is not a proper par structure and atW ∩ atR �= ∅. The
following rules are called interaction seq rule 1, lazy interaction seq rule 3, and
lazy interaction seq rule 4, respectively,

S〈[R, T]; [U, V]〉
iq1↓

S [〈R;U〉, 〈T ;V 〉]
S〈[R,W];T 〉

liq3↓
S [W, 〈R;T 〉]

S〈T ; [R,W]〉
liq4↓

S [W, 〈T ;R〉]

165

where structure W is not a proper par structure and, in iq1↓, atR ∩ atT �= ∅

and atU ∩ atV �= ∅; in liq3↓ and in liq4↓, atR ∩ atW �= ∅. The system resulting
from replacing the rules s1, q1↓, q3↓, and q4↓, in BVu with the rule lis, iq1↓, q2↓,
liq3↓, and liq4↓ is called interaction system BV, or BVi.

Theorem 2. [10] System BV and system BVi are equivalent.

With the below definition, we will combine the ideas from systems BVc and
BVi in a single system, that is, we will impose the restrictions on the rules of
BVi analogously on the inference rules of system BVc. This way, we will obtain
a system where the equalities for unit and commutativity are redundant, and
non-determinism is reduced.

Definition 5. Let commutativity-free interaction system BV or system BVci be
the system obtained by imposing the following restrictions on system BVc: in
the rules s11a, s12a, s13a, s14a, s11b, s12b, s13b, s14b we have atR ∩ atW �= ∅;
in the rules s15a, s16a, s15b, s16b we have at (R,U) ∩ atW �= ∅; in the rules
q11↓, q12↓ we have atR ∩ atT �= ∅ and atU ∩ atV �= ∅; in the rules
q31↓, q32↓, q33↓, q34↓ we have atW ∩ atT �= ∅; in the rules q41↓, q42↓, q43↓, q44↓
we have atW ∩ atU �= ∅.

Theorem 3. [10] System BV and system BVci are equivalent.

Proof: Follows immediately from Proposition 2 and Theorem 2.

6 From Inference Rules to Term Rewriting Rules

The systems in the calculus of structures can be represented as term rewriting
systems modulo equational theories.5 In such a representation, the notion of a
structure is replaced by a notion of term, considering terms over variables. Thus,
bottom up application of an inference rule is represented as a rewriting rule that
rewrites the conclusion to the premise of the inference rule. Similarly, inference
rules with conditions are represented as conditional rewriting rules. For instance,
consider the following rewrite rules for the inference rules switch and interaction
seq rule 1, respectively:

s : [(R, T), U] → ((R,U), T)

iq1↓ : [〈R;U〉, 〈T ;V 〉] → 〈[R, T]; [U, V]〉 if atR ∩ atT ∧ atU ∩ atV

Such rewrite rules are applied modulo the equational theory underlying the proof
theoretical system. Because we use structures as terms the equalities for context
closure and singleton become redundant. This leaves us with only equalities for
associativity for system BVci when expressed as term rewriting system. In the
next section, by resorting to a list representation of n-ary terms which captures
associativity, we will present an implementation of the term rewriting system for
system BVci.
5 For an indepth exposure on the correspondence between systems of the calculus of

structures and term rewriting systems the reader is referred to [7].

166

7 Implementation in TOM

Tom is a language extension which adds syntactic and associative pattern-
matching facilities to existing languages like Java, C, and OCaml. This hybrid
approach is particularly well-suited when describing transformations of struc-
tured entities like trees/terms and XML documents, for example. In this work,
we use Tom, combined with Java, to implement our prototype.

An interesting feature of the language is to provide support for matching
modulo sophisticated theories. In particular, pattern-matching modulo associa-
tivity and neutral element (also known as list-matching) is both useful and effi-
cient to model the exploration of a search space.

For expository reasons, we assume that Tom only adds two new constructs:
%match and back-quote (‘). The first construct is similar to the match primitive
of ML and related languages: given a term (called subject) and a list of pairs
pattern-action, the match primitive selects a pattern that matches the subject
and performs the associated action. The second construct is a mechanism that
allows one to easily build ground terms over a defined signature. This operator,
called back-quote, is followed by a well-formed term, written in prefix notation.

A main originality of this system is to be data-structure independent. This
means that a mapping has to be defined to connect algebraic data-structure, on
which pattern matching is performed, to low-level data-structures, that corre-
spond to the implementation. Most of the time, Tom is used in conjunction with
the ApiGen system [19], which generates abstract syntax tree implementations
and a mapping, from a given datatype definition. The input format for ApiGen
is a concise language defining sorts and constructors for the abstract syntax.
The output is an efficient, in time and memory, Java implementation for this
datatype. This implementation is characterized by strong typing and maximal
sub-term sharing, providing both memory efficiency and constant-time equality
checking.

For an interested reader, design and implementation issues related to Tom
are presented in [13, 12].

7.1 Data structures

A main difficulty, when implementing the systems of the calculus of structures, is
to find a good representation for the par, cop, and seq structures ([R, T], (R, T)
and 〈R;T 〉). In our implementation of BVci, we considered these constructors as
unary operators which take a list of structures as argument. Using ApiGen, the
considered data-type can be described by the following signature:

module Struct
public sorts Struc StrucPar StrucCop StrucSeq
abstract syntax
a -> Struc
b -> Struc
...other atom constants

167

neg(Struc) -> Struc
par(StrucPar) -> Struc
cop(StrucCop) -> Struc
seq(StrucSeq) -> Struc
concPar(Struc*) -> StrucPar
concCop(Struc*) -> StrucCop
concSeq(Struc*) -> StrucSeq

The grammar rule par(StrucPar) -> Struc defines a unary operator par
of sort Struct which takes a StrucPar as unique argument. The grammar rule
concPar(Struc*) -> StrucPar defines the concPar operator of sort StrucPar.
The special syntax Struc* indicates that concPar is a list-operator which takes
a list of Struc as argument. Thus, by combining par and concPar it becomes
possible to represent the structure [a, [b, c]] by par(concPar(a,b,c)). Note
that structures are flattened. In Tom, list-operators are interesting because their
arity is not fixed. Thus, concPar(a,b,c) corresponds to a list of 3 elements,
concPar(a) corresponds to a list of single element, namely a, whereas concPar()
denotes the empty list. (R, T) and 〈R;T 〉 are represented in a similar way, using
cop, seq, concCop, and concSeq.

A problem with this approach is that we can manipulate objects, like
par(concPar()), which do not necessarily correspond to intended structures.
It is also possible to have several representations for the same structure. Hence,
par(concPar(a)) and cop(concCop(a)) both denote the structure a. To avoid
such situations, we have encoded, in the defined mapping, a notion of canonical
form which avoids building uninteresting terms. Thus, we ensure that

– [], 〈〉 and () are reduced when containing only one sub-structure:
par(concPar(x))→ x

– nested structures are flattened:
par(concPar(..., par(concPar(x1, ..., xn)), ...)→ par(concPar(..., x1, ..., xn, ...)

– subterms are sorted (according to a given total lexical order <):
concPar(..., xi, ..., xj , ...)→ concPar(..., xj , ..., xi, ...) if xj < xi.

This notion of canonical form allows us to efficiently check if two terms represents
the same structure with respect to commutativity of those connectors.

7.2 Rewrite rules

The rewrite rules define the deduction steps in system BVci. They are imple-
mented by a match construct which matches a sub-term with the left-hand side
of the rewrite rule. Then the right-hand side of the rule builds the deduced
structure.

For instance, the rules [(R, T), U] → ([R,U], T) and [(R, T), U] → ([T,U], R)
are encoded by the following match construct.

%match(Struc t) {
par(concPar(X1*,cop(concCop(R*,T*)),X2*,U,X3*)) -> {

168

if(‘T*.isEmpty() || ‘R*.isEmpty()) {
} else {

StrucPar context = ‘concPar(X1*,X2*,X3*);
if(canReact(‘R*,‘U)) {
StrucPar parR = cop2par(‘R*);

// transform a StrucCop into a StrucPar
Struc elt1 = ‘par(concPar(

cop(concCop(par(concPar(parR*,U)),T*)),context*));
c.add(elt1);

}
if(canReact(‘T*,‘U)) {
StrucPar parT = cop2par(‘T*);
Struc elt2 = ‘par(concPar(

cop(concCop(par(concPar(parT*,U)),R*)),context*));
c.add(elt2);

} } } }

We ensure that we do not execute the right-hand side of the rule if either R or T
are empty lists. The other tests implements the restrictions on the application of
the rules detailed in Section 5 for reducing the non-determinism. This is done by
using an auxiliary predicate function canReact(a,b) which collects all atoms
in structures a and b and returns true only if a contains at least one atom
which is contained in a negated form in b. This function can be made efficient
by using the features of the host language of Tom, in our case, by using an
efficient hash-set implementation in Java. The remaining rules are expressed in
a similar way.

7.3 Strategy

When designing a proof search procedure, implementing the set of inference rules
is very important, but this is only one part of the job. The second part consists
in defining a strategy which describes how to apply the rules. In rule based
systems like ELAN or MAUDE, it is very easy to describe such strategies, using
primitive operators or meta-level capabilities. However, in some cases, it may be
difficult to express strategies which take time and space into consideration. In
ELAN for example, the search is implemented using a backtracking mechanism.
This is a good approach to implement depth-first search strategies. However,
while efficient in space, such a strategy may lead to explore infinite branches
and non-terminating programs. On the other hand, breadth-first search, as in
MAUDE, usually terminates when a proof exists, but the memory needed can be
considerably huge. In languages like ELAN, the backtracking based mechanism
makes the definition of strategies difficult.

In Tom, there is no particular support for implementing search space explo-
ration strategies. Thus, the search space has to be handled explicitly. On one
hand, this leads to more complex implementations, but on the other, this allows
us to define very fine and efficient search strategies.

169

In our implementation, we have implemented a global search strategy which
combines the advantages of both depth- and breadth-first search strategies: given
an ordered list of elements, we select the first term and compute the set of its
successors by applying all rules at every position. Implementing a breadth-first
search strategy can be done by adding this resulting set of elements at the end
of the list. To implement a depth-first search strategy, the set has to be inserted
at the beginning of the list. In our case, the elements of the set are inserted and
inter-mixed in the initial list, according to the given order. In one sense, the
order implements a heuristic which characterizes the interesting structures that
have to be explored first, since they may lead to the proof in an efficient way.
This mechanism is iterated until the main list contains the unit element.

The order used for those lists is the main parameter of the method, and can
be changed at will to find a suitable order for fast proof finding.

8 Summary and Discussions:

We have presented a proof search implementation of system BV of the calculus of
structures by resorting to the correspondence between the systems of the calculus
of structures and term rewriting systems modulo equational theories. The term
rewriting rules corresponding to inference rules of system BV are applied modulo
an equational theory which admits associativity, commutativity and a unit for
different logical operators. By making the role played by the equalities for unit
and commutativity in the application of the inference rules explicit, we presented
a system equivalent to system BV where these equalities become redundant. This
way, we expressed associativity in a list representation.

Our implementation, in Java, uses the pattern matching preprocessor Tom
in order to integrate term rewriting features into Java. By exploiting the expres-
sive power due to Java, we provided a search algorithm which combines different
search strategies and heuristic search. The source code of the implementation is
available at the Tom distribution6. A representative applet of this implementa-
tion can be found at http://tom.loria.fr/examples/structures/BV.html.

Our implementation respects a common scheme which is shared by all the
systems of the calculus of structures for classical logic, modal logics, and linear
logic. For this reason, our implementation can be easily generalized for imple-
menting different tools for these systems, also by employing different search
strategies at will.

In [8], Kahramanoğulları presents an implementation of system BV in MAUDE
by using the search function of this system which implements breadth-first
search on the search space of term rewriting systems modulo equational theo-
ries. Although this implementation benefits from the simple high-level language
of MAUDE, implementation of a certain strategy, different from breadth-first
search, remains complicated due to the complex meta-level language. However,
in the implementation presented in this paper, the availability of the Java lan-
guage provides a great ease on implementing different search strategies.
6 http://tom.loria.fr

170

References

1. Franz Baader and Tobias Nipkow. Term Rewriting and All That, volume 1. Cam-
bridge University Press, 1998.

2. Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. PhD thesis,
Technische Universität Dresden, 2003.

3. Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In
R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001, volume 2250 of Lecture
Notes in Artificial Intelligence, pages 347–361. Springer-Verlag, 2001.

4. Paola Bruscoli. A purely logical account of sequentiality in proof search. In Peter J.
Stuckey, editor, Logic Programming, 18th International Conference, volume 2401
of Lecture Notes in Computer Science, pages 302–316. Springer-Verlag, 2002.

5. Alessio Guglielmi. A system of interaction and structure. Technical Report WV-
02-10, TU Dresden, 2002. To app. in ACM Transactions on Computational Logic.

6. Alessio Guglielmi. Mismatch. Available on the web at http://iccl.tu-
dresden.de/˜guglielm/p/AG9.pdf, 2003.

7. Steffen Hölldobler and Ozan Kahramanoğulları. From the calculus of structures to
term rewriting systems. Technical Report WV-04-03, TU Dresden, 2004.

8. Ozan Kahramanoğulları. Implementing system BV of the calculus of structures in
maude. In L. A. i Alemany and P. Égré, editors, Proc. of the ESSLLI-2004 Student
Session, pages 117–127, Université Henri Poincaré, Nancy, France, 2004.

9. Ozan Kahramanoğulları. System BV without the equalities for unit. In C. Aykanat,
T. Dayar, and I. Körpeoğlu, editors, Proc. of the 19th Int. Symp. on Computer and
Information Sciences, ISCIS’04, volume 3280 of LNCS. Springer, 2004.

10. Ozan Kahramanoğulları. Reducing the non-determinism in the calcu-
lus of structures. Technical report, TU Dresden, 2005. Available at
http://www.informatik.uni-leipzig.de/˜ozan/reducingNondet.pdf.

11. Ozan Kahramanoğulları. System BV is NP-complete. to appear in Proceedings of
WoLLIC’05, http://www.informatik.uni-leipzig.de/˜ozan/BVnpc.pdf, 2005.

12. Claude Kirchner, Pierre-Etienne Moreau, and Antoine Reilles. Formal validation
of pattern matching code. 2005. To appear in PPDP ’05: Proceedings of the 7th
ACM SIGPLAN Int. Conf. on Principles and practice of declarative programming.

13. Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vittek. A Pattern
Matching Compiler for Multiple Target Languages. In G. Hedin, editor, 12th Con-
ference on Compiler Construction, Warsaw (Poland), volume 2622 of LNCS, pages
61–76. Springer-Verlag, May 2003.

14. Charles Stewart and Phiniki Stouppa. A systematic proof theory for several modal
logics. Technical Report WV-03-08, TU Dresden, 2003. Accepted at Advances in
Modal Logic 2004, to app. in proceedings published by King’s College Publications.

15. Lutz Straßburger. A local system for linear logic. In Matthias Baaz and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning,
LPAR 2002, volume 2514 of LNAI, pages 388–402. Springer-Verlag, 2002.

16. Lutz Straßburger. Linear Logic and Noncommutativity in the Calculus of Struc-
tures. PhD thesis, TU Dresden, 2003.

17. Alwen Fernanto Tiu. Properties of a logical system in the calculus of structures.
Technical Report WV-01-06, Technische Universität Dresden, 2001.

18. Alwen Fernanto Tiu. A local system for intuitionistic logic: Preliminary results.
http://www.loria.fr/˜tiu/localint.pdf, 2005.

19. Mark van den Brand, Pierre-Etienne Moreau, and Jurgen Vinju. A generator of
efficient strongly typed abstract syntax trees in java. Technical report SEN-E0306,
ISSN 1386-369X, CWI, Amsterdam (Holland), November 2003.

171

ax
[a, ā]

S{R}
ai11↓

S [R, a, ā]

S{R}
ai12↓

S [a, ā, R]

S{R}
ai13↓

S [a, R, ā]

S{R}
ai21↓

S(R, [a, ā])

S{R}
ai22↓

S([a, ā], R)

S{R}
ai3↓

S〈R; [a, ā]〉
S{R}

ai4↓
S〈[a, ā]; R〉

S([R, W], T)
s11a

S [(R, T), W]

S([R, W], T)
s12a

S [(T, R), W]

S([R, W], T)
s13a

S [W, (R, T)]

S([R, W], T)
s14a

S [W, (T, R)]

S([(R, U), W], T)
s15a

S [(R, T, U), W]

S([(R, U), W], T)
s16a

S [W, (R, T, U)]

S [([R, W], T), P]
s11b

S [(R, T), P, W]

S [([R, W], T), P]
s12b

S [(T, R), P, W]

S [([R, W], T), P]
s13b

S [W, P, (R, T)]

S [([R, W], T), P]
s14b

S [W, P, (T, R)]

S [([(R, U), W], T), P]
s15b

S [(R, T, U), P, W]

S [([(R, U), W], T), P]
s16b

S [W, P, (R, T, U)]

S〈[R, T]; [U, V]〉
q11↓

S [〈R; U〉, 〈T ; V 〉]
S [〈[R, T]; [U, V]〉, P]

q12↓
S [〈R; U〉, P, 〈T ; V 〉]

S〈R; T 〉
q21↓

S [R, T]

S〈R; T 〉
q22↓

S [T, R]

S [〈R; T 〉, P]
q23↓

S [R, P, T]

S [〈R; T 〉, P]
q24↓

S [T, P, R]

S〈[W, T]; U〉
q31↓

S [W, 〈T ; U〉]
S〈[W, T]; U〉

q32↓
S [〈T ; U〉, W]

S [〈[W, T]; U〉, P]
q33↓

S [W, P, 〈T ; U〉]
S [〈[W, T]; U〉, P]

q34↓
S [〈T ; U〉, P, W]

S〈T ; [W, U]〉
q41↓

S [W, 〈T ; U〉]
S〈T ; [W, U]〉

q42↓
S [〈T ; U〉, W]

S [〈T ; [W, U]〉, P]
q43↓

S [W, P, 〈T ; U〉]
S [〈T ; [W, U]〉, P]

q44↓
S [〈T ; U〉, P, W]

Fig. 4. System BVc

172

Abstract derivations, equational logic and
interpolation (extended abstract)

Gerard R. Renardel de Lavalette

Department of Mathematics and Computing Science
University of Groningen, the Netherlands

Abstract. We define abstract derivations for equational logic and use
them to prove the interpolation property.

1 Introduction

In this paper, we introduce a notion of abstract derivation for equational logic
and use it to prove the interpolation property. The work reported here has the
character of an experiment, intended to sharpen and test our initially rather
vague ideas about abstract derivations. These ideas came from a feeling of dis-
satisfaction about the low level of abstraction in traditional proof theory, where
derivations are trees consisting of sequents, i.e. strings of symbols, with great
redundancy by repeating in every proof step the parts of a sequent that do
not change. As a consequence, operations on derivations (normalization, e.g. via
cut elimination, interpolant extraction) only admit a precise definition in local
terms, on the level of proof steps, and global properties are left to intuition. More
particular, in [4] and [15] we were able to prove interpolation for several frag-
ments of intuitionistic propositional logic, but we admit that full understanding
of what is really happening on a global level in our proofs is lacking, because of
the reasons sketched above.

The choice for equational logic as a basis for the elaboration of our ideas was
motivated by two reasons. Firstly, the prooftheoretical proof for interpolation
in equational logic by Rodenburg in [12] is rather involved, especially when
compared with the algebraic proof by the same author in [11], and constitutes
a challenge for proof theory to try to fill the gap with model theory. Secondly,
equational logic is a very general and rather strong system: it is undecidable,
and virtually all propositional, modal and linear logics can be embedded in it.
Moreover, proof theory for equational logic seems to be a rather underdeveloped
area of research.

The experiment in abstract derivation design is by no means finished yet,
but we think the time has come to report on the first results, in the hope that
this may lead to constructive comments. After a short sketch of the ideas behind
abstract derivations and a survey of interpolation in equational logic, we present
the main definitions, prove soundness, derive some relevant properties and prove
the interpolation theorem. We end with some suggestions for further research.

Because of space constraints, most proofs have been omitted in this extended
abstract. See [5] for a full version.

173

1.1 Abstract derivations

The notion of abstract derivation we present here is based on an abstract view on
the traditional notion of derivation for equational logic. We see two fundamental
and general principles at work here. Firstly the idea of matching : e.g. f(s) ≡ f(t)
follows from s ≡ t since the f in f(s) matches the f in f(t). Secondly the idea
of abstraction, or its dual instantiation: r(t) ≡ s(t) follows from r(x) ≡ s(x)
since the latter equation is to be read as ’r(x) and s(x) are equal for all x’. We
consider the fact that ≡ is an equivalence relation to be less fundamental for the
proof system: it is of course essential for a logic called equational, but another
interesting logic may be obtained if we would replace ≡ by ≤, a partial order.

Now the idea of abstract derivation can be explained as follows. Start with
an abstract representation of terms: the obvious choice is trees consisting of
nodes labeled by signature elements (is there an alternative?). Then abstract
equations become pairs of nodes, and binary relations on nodes are sets of
equations. The proof rules become operations on relations, so e.g. Re, the least
equivalence relation containing R, corresponds with application of the proof
rules of reflexivity, symmetry and transitivity. For the congruence rule, we put
cong(R) = M∩ lift(R). Here lift(R) is the collection of pairs (k, l) such that k and
l represent terms with an equal number of direct subterms, and for all k′, l′ rep-
resenting corresponding direct subterms we have (k′, l′) ∈ R. M is the matching
relation: we have that (k, l) ∈ M implies that k and l are labeled by the same
signature element, but the converse implication does not hold in general. The
role of M is to regulate the development of the abstract derivation. In order to
deal with the instantiation rule, we work with abstractions, a kind of inverse of
substitutions. Abstractions α are partial mappings on nodes yielding variables,
and when applied to a term structure T they yield a new term structure Tα

where some terms are replaced by variables. Now an abstract derivation is a
tuple D = 〈T,E,M,α〉 where T is an abstract term structure, E is a relation
on nodes in T representing a set of equations, M is a matching relation, and α
is an abstraction. An operator der = μR.(E ∪ cong(R))e, defined in terms of T
and M and applied to E, yields the set der(E) of equations that are derived in
D from E, where E is now seen as a relation on nodes in the term structure
Tα. Moreover, D is required to be wellfounded, and the abstraction α should be
justified by D. See Definition 5 for the details.

For the moment, we choose to represent the steps in the proof and its
conclusion implicitly: only the premiss E is present in the representation, its
consequences after n proof steps can be computed by applying the operator
λR.(E ∪ cong(R))e n times. For our experiment with interpolation, this repre-
sentation will do, but for other purposes it may be useful to work with other,
more explicit variants.

For conciseness’ sake, we will often drop the epitheton abstract, and refer to
derivations when we mean abstract derivations.

174

1.2 Equational logic

A signature SIG is a collection of constants and function symbols. The arity of a
signature element s ∈ SIG is given by arity(s) ∈ N. VAR is an infinite collection
of variable symbols, with SIG ∩ VAR = ∅. For variables x ∈ VAR, arity(x) = 0.
Terms built from signature elements and variables are defined as usual; we write
sig(t) for the collection of signature elements that occur in term t. [x := s]t
denotes substitution of term s for all occurrences of variable x in term t, and
[xi := si]i<nt is used for simultaneous substitution. Equations between terms
are denoted by s ≡ t: they are the formulas ϕ of equational logic. Sequents are
of the form Γ
 ϕ where Γ is a collection of equations. As usual, the derivability
relation
 is the least relation satisfying

assumption Γ
 ϕ if ϕ ∈ Γ
reflexivity Γ
 t ≡ t
symmetry Γ
 s ≡ t ⇒ Γ
 t ≡ s
transitivity Γ
 r ≡ s & Γ
 s ≡ t ⇒ Γ
 r ≡ t
congruence Γ
 s0 ≡ t0 & . . .& Γ
 sn−1 ≡ tn−1

⇒ Γ
 f(s0, . . . , sn−1) ≡ f(t1, . . . , tn−1)
instantiation Γ
 ϕ ⇒ Γ
 [x := t]ϕ

The instantiation rule can be generalized to

Γ
 t0 ≡ t1 & Γ
 t1 ≡ t2 & . . . & Γ
 tn−1 ≡ tn & Γ
 ϕ(x, . . . , x)
⇒ Γ
 ϕ(t0, . . . , tn)

which says that we may substitute provably equal terms for different occurrences
of the same variable. This principle underlies Definition 5 of abstract derivation.

1.3 Interpolation

Interpolation is the following property;

if Γ,Δ
 ϕ, then there is a collection of formulae Θ such that
Γ
 θ for every θ ∈ Θ, Θ,Δ
 ϕ, and sig(Θ) ⊆ sig(Γ) ∩ sig(Δ ∪ {ϕ}).

Θ is called the interpolant. The first formulation and proof are by Craig in [3],
first for classical predicate logic without function symbols; the case with function
symbols is reduced to the former case by replacing function symbols by pred-
icates. Craig’s proof is prooftheoretical and proceeds via proof normalization.
Since then, interpolation has been shown for many logics, with either prooftheo-
retic or modeltheoretic means. All prooftheoretic proofs work with proof normal-
ization, usually obtained via cut elimination. This can be seen as a disadvantage,
since proof normalization may lead to an exponential increase in size.

Interpolation as defined above does not hold for equational logic, as is shown
in the following counterexample: take

Γ = {f(a) ≡ b, f(c) ≡ d},Δ = {a ≡ c}, ϕ = (b ≡ d).

175

The only possible interpolant would be something like (a ≡ c) → (b ≡ d), but
this is not expressible in equational logic.

However, the weaker version of interpolation with Δ = ∅ is valid for equa-
tional logic. It was first proved by Rodenburg in [11] with a rather short and
perspicuous algebraic proof, using Birkhoff’s HSP theorem. (Birkhoff’s theorem
states that a class of algebras K is equational, i.e. characterized by a set of equa-
tions, iff it is a variety, i.e. closed under homomorphic images, subalgebras, and
direct products; see e.g. [8].) Rodenburg’s proof is not constructive in the sense
that the proof does not contain an effective method to construct the interpolant.
In [12], Rodenburg gives a prooftheoretical proof of the same theorem, which
is constructive but not very perspicuous. The proof transforms a derivation in
equational logic step by step into a derivation in a related system, from which
an interpolant can be obtained easily. (As Rodenburg points out, an apparently
different interpolant construction for equational logic is already implicit in the
proof of the main theorem of [9] by Pigozzi.)

A constructive proof of interpolation for equational logic can also be ex-
tracted from the prooftheoretical proof for interpolation for predicate logic with
function symbols given by Felscher in [6]. This proof (which is also rather in-
volved) does not eliminate function symbols, but uses what is called Takeuti’s
Lemma (Felscher gives the obscure reference [14]) to eliminate spurious function
symbols from a candidate interpolant. Takeuti’s Lemma indicates when, in a
derivation, a term t can be replaced by a variable x, so it is a kind of inverse
substitution property. Our Lemma 5 is related to Takeuti’s Lemma.

Let us see what has to be done for the construction of an interpolant for
a provable sequent Γ
 ϕ in equational logic. The general situation is: there
are enough candidate interpolants Θ, e.g. Γ or {ϕ}, but in general they do not
satisfy the signature condition sig(Θ) ⊆ sig(Γ) ∩ sig(ϕ). This is caused by the
proof rules, which may add signature elements to or eliminate them from the
conclusion (observe that all proof rules leave the premiss Γ intact and only
modify the conclusion ϕ). The congruence rule and the instantiation rule may
add signature elements. In the transitivity rule, the term s is eliminated, and
possibly some signature elements that occur in it. In that sense, the transitivity
rule is comparable with the cut rule of propositional and predicate logic. There
is no Transitivity Elimination Theorem, however, which would help us here.
But we do have a partial result in that direction: Lemma 3, which splits an
abstract derivation in two parts: in the first part no signature elements are
added, and the second part contains no transitivity steps. With this lemma, we
obtain interpolation for a weakening of equational logic, obtained by removing
the instantiation rule. For interpolation in full equational logic, we need Lemma
5 to eliminate signature elements that were introduced in the conclusion by the
instantiation rule, in a way comparable to Felscher’s use of Takeuti’s Lemma as
described in the previous paragraph.

176

2 Preliminaries

For any set X, X∗ denotes the collection of finite sequences of elements of X.
If xs ∈ X∗, then lth(xs) is the length of xs, and xsi (where 0 ≤ i < lth(xs))
denotes the i-th element of xs. We write x ∈ xs to denote that x occurs in the
sequence xs, and the empty sequence is denoted by ().

If R ⊆ X × Y is a relation between X and Y , then we can extend R to
R⊗ ⊆ X∗ × Y ∗ by defining

R⊗ = {(xs, ys) | lth(xs) = lth(ys) ∧ ∀i < lth(xs) (xsi, ysi) ∈ R}

and likewise for functions, so

f⊗(x0, . . . , xn−1) = (f(x0), . . . , f(xn−1))

Composition of relations is defined as usual: R · S = {(x, z) | ∃y(xRy ∧ ySz)}.
If f : X → Y , then ker(f) ⊆ X2 is the equivalence relation defined by

ker(f) = {(x, y) | f(x) = f(y)}.

car(R), the carrier of R, is the least set X with R ⊆ X2, so

car(R) = {x | ∃y((x, y) ∈ R ∨ (y, x) ∈ R)}

If f, g are partial functions, then we define f :g (f before g) by

f :g = f ∪ (g
(dom(g)− dom(f)))

Here
 denotes restriction: f
X = f ∩ (X × rg(f)).
As usual, we write R+ for the transitive closure of R, and R∗ for the reflexive
transitive closure. Moreover, Re is the smallest equivalence relation containing
R, so Re = (R ∪R−1)∗.
Let R ⊆ X2 and Y ⊆ X: we define

R respects Y iff R ⊆ Y 2 ∪ (X − Y)2

so if (x, y) ∈ R then x ∈ Y iff y ∈ Y . If f : X .→ Z is a partial function,

R respects f iff R ⊆ ker(f) ∪ (X − dom(f))2

3 Term structures and abstractions

3.1 Forests

The idea to represent terms by trees is straightforward. The context for an
abstract derivation will be a forest, i.e. a collection of trees that represent terms.
A forest is a pair F = 〈K, arg〉, where K is a collection of nodes, and arg : K →
K∗; moreover, the relation [arg] on K, defined by

[arg] = {(k, l) | k ∈ arg(l)}

177

is wellfounded. As a consequence, we have the following induction principle for
forests: for all L ⊆ K,

∀k(arg(k) ⊆ L→ k ∈ L)→ L = K (1)

The subnode relation ≤ is defined as the transitive closure of [arg]−1. The arity of
a node k is defined as the length of its sequence of children: arity(k) = lth(arg(k)).
When 0 ≤ i < arity(k), we may write argi(k) for (arg(k))i, the i-th element of
arg(k): so arg(k) = (arg0(k), . . . , argarity(k)−1(k)). A path in F is a finite nonempty
sequence (k0, . . . , kn) ∈ K+ satisfying (ki, ki+1) ∈ [arg] for 0 ≤ i < n. We call
L ⊆ K arg-closed if arg[L] ⊆ L∗. For arg-closed l, we defined the restriction argL

of arg by argL = arg ∩ (L× L∗). It is obvious that 〈L, argL〉 is a forest.
Parallel to (1), we have a recursion principle for forests: if f : (K ⊗X)→ X,

where K⊗X = {(k, (x0, . . . , xn−1)) | n = arity(k), x0, . . . , xn−1 ∈ X}, then there
is a unique g : K → X with

g(k) = f(k)(g⊗(arg(k)))

For later use, we define the operator lift on relations R ⊆ K2 by

lift(R) = arg ·R⊗ · arg−1

As a consequence, we see that

(k, l) ∈ lift(R)⇔ arity(k) = arity(l) ∧ ∀i < arity(k) (argi(k), argi(l)) ∈ R

lift will be used for the congruence step in the derivations we will define later
on.

Definition 1 (Term structures). A term structure over SIG is a triple T =
〈K, arg, σ〉, where 〈K, arg〉 is a forest, and σ : K → SIG ∪ VAR preserves arity.

So a term structure is a forest where every node is labeled with a signature
element or a variable, in such a way that the arity of node and label correspond.
It is clear that every node k represents a term: to obtain this term, we define
(with recursion) the term operator term by

term(k) = (σ(k))(term⊗(arg(k)))

The formula operator form is defined in terms of term:

form(k, l) = (term(k) ≡ term(l))

termT is extended to sets of nodes by term(L) = {term(k) | k ∈ L}; idem for sig.
form is extended analogously to relations: form(R) = {form(k, l) | (k, l) ∈ R}.

The signature sig(k) of a node k is the signature of the term represented by
k, so sig(k) = sig(term(k)). We trust that this overloading of sig will not cause
confusion. Observe that sig satisfies

sig(k) = ({σ(k)} ∩ SIG) ∪
⋃

sig⊗(arg(k))

178

We also define, for Σ ⊆ SIG:

KΣ = {k ∈ K | σ(k) ∈ Σ} = σ−1[Σ]
KΣ = {k ∈ K | sig(k) ⊆ Σ} = sig−1[℘(Σ)]

Observe that KΣ and KΣ are different and even incomparable. KΣ contains all
nodes that represent terms with their principal signature element in Σ, while KΣ

contains nodes representing terms that are made from variables and elements of
Σ. So k ∈ KΣ −KΣ if σ(k) ∈ VAR, and k ∈ KΣ −KΣ if σ(k) ∈ Σ, arg(k) = (l)
and σ(l) ∈ SIG−Σ.

For technical reasons, we work with abstractions, which are the dual of sub-
stitutions.

Definition 2 (Abstraction). Let T = 〈K, arg, σ〉 be a term structure. A partial
mapping α : K .→ VAR is an abstraction of T if rg(α) ∩ rg(σ) = ∅.
Tα, the result of applying α to T , is defined as Tα = 〈K, argα, α :σ〉, where argα

is defined by
argα(k) = () if k ∈ dom(α)

= arg(k) if k �∈ dom(α)

By the definition of α :σ (see section 2), we have

(α :σ)(k) = α(k) if k ∈ dom(α)
= σ(k) if k �∈ dom(α)

The idea behind the definition of abstraction is that, for k ∈ dom(α), the term
term(k) represented by k is replaced by the variable α(k). The restriction rg(α)∩
rg(σ) = ∅ ensures that the variables in rg(α) are fresh.

Combining abstraction with the signature function sig, we have the following
properties. Let sigα be the signature function of Tα then, for all k ∈ K:

sigα(k) ⊆ sig(k) (2)
KΣ ⊆ dom(α)⇒ sigα(k) ∩Σ = ∅ (3)

(2) follows from the fact that sig(k) = ∅ if σ(k) ∈ VAR. For (3), we argue as
follows: if sigα(k) ∩ Σ �= ∅, then there is an l with σ(l) ∈ Σ and a path from k
to l which does not meet dom(α); this yields contradiction, for l ∈ dom(α), since
KΣ ⊆ dom(α).

4 Derivations

Now we can define derivations, the central notion of this paper. We proceed in
two steps: first we introduce basic derivations, which correspond with proofs in
equational logic without the substitution rule; to deal with substitution, we add
abstrations and come to the full definition of derivation.

179

Definition 3 (Basic derivation and derivability). A triple B = 〈T,E,M〉
is a basic derivation if T = 〈K, arg, σ〉 is a term structure, E ⊆ K2, and M ⊆
ker(σ) is an equivalence relation on K. E is called the equality relation, and M
the matching relation of B. The derivability operator der is defined by:

der(E) = μR.(E ∪ (M ∩ lift(R)))e

We also define cong (congruence) on ℘(K2) by

cong(R) = M ∩ liftB(R)

so cong(R) = M ∩ arg ·R⊗ · arg−1, and der(E) = μR.(E ∪ cong(R))e.
We write E
B G when B is a basic derivation with G ⊆ derB(E).

So a basic derivation is a term structure with an equality relation and a matching
relation. The equality relation indicates which pairs of (abstract) terms are given
to be equal. The matching relation is a restriction on the possible pairs of terms
that may be proved to be equal via congruence (i.e. via equality of corresponding
direct subterms). One might expect M = ker(σ) here: when two terms have the
same leading signature element and the corresponding direct subterms are equal,
then they are equal. However, this leads to a notion of derivability that is too
strong for our purposes, in the sense that it may spoil a notion of wellfoundedness
of derivations that we shall introduce below. We use M for a kind of locality
restriction: a congruence step in an abstract derivation, establishing the equality
of two nodes with identical signature elements and equal corresponding direct
subterms, is only allowed when these two nodes are, in some sense, on the same
level in the derivation.

By definition, der(E) is the least equivalence relation containing E and closed
under cong:

der(E) = (E ∪ cong(der(E)))e (4)
if (E ∪ cong(R))e ⊆ R, then der(E) ⊆ R (5)

We shall refer to these as the defining property and the minimality property of
der, respectively. Moreover, we have

E ⊆ der(E) = der(der(E)) ⊆ (E ∪M)e (6)

E ⊆ der(E) ⊆ der(der(E)) is obvious; der(E) ⊆ (M ∪ E)e follows from (E ∪
cong((E ∪M)e))e = (E ∪ (M ∩ lift((E ∪M)e)))e ⊆ (E ∪M)e and the minimality
property of der. der(der(E)) ⊆ der(E) follows via the minimality property of der
from (der(E) ∪ cong(der(E)))e ⊆ der(E).

Definition 4 (Wellfounded basic derivations). Let B = 〈T,E,M〉 be a
basic derivation. B is wellfounded if ≺ is wellfounded, where ≺ is defined by
der(E) · [arg]−1. If B is wellfounded, we have the following induction principle:
for all L ⊆ K,

∀k(arg[k] ⊆ L→ k ∈ L)→ L = K, (7)

where [k] = {l | (k, l) ∈ der(E)}.

180

So arg[k] = {argi(l) | (k, l) ∈ der(E) & i < arity(l)}, and

≺B = {(k, argi(l)) | (k, l) ∈ der(E) & i < arity(l)}

The induction principle (7) will be used in the proof of the Soundness Theorem.

Definition 5 (Derivation). A derivation D is a pair 〈B,α〉 where B is a well-
founded basic derivation and α : K .→ VAR is an abstraction of T that is justified
by B, i.e. satisfies

ker(α) ⊆ ker(σ) ∩ lift(der(E)) (8)

The idea is that B proves, in some sense, the equalities implicit in α.
We write E
D G when D is a derivation with G ⊆ der(E).

So a derivation is a wellfounded basic derivation B together with an abstraction α
such that B proves, in some sense, ker(α), i.e. the equalities that are implicit in α.
Observe the particular form of (8), the definition of justification: ker(α) ⊆ der(E)
would be more natural. However, both (8) and the wellfoundedness requirement
are essential in the proof of the Soundness Theorem: together, they ensure the
provable equality of terms before this equality is used in the rest of the derivation.

This definition of derivation, especially the justification condition (8), mod-
els a version of the strong instantiation rule that we mentioned at the end of
Subsection 1.2. An alternative definition of derivation is possible which stays
closer to the ordinary instantiation rule: replace the justification condition (8)
by ker(α) ⊆ ker(term), and drop the wellfoundedness condition (since it is not
required for proving soundness). However, proving interpolation for this notion
of derivation is harder in this case: the obvious abstraction required for the
interpolant does not satisfy this stronger notion of justification.

For later use, we introduce the notion of parsimony.

Definition 6 (Parsimony). Basic derivation B = 〈T,E,M〉 is parsimonious
if M ⊆ lift(der(E)); derivation 〈B,α〉 is parsimonious whenever B is.

The idea is that, in a parsimonious derivation, the matching relation M is min-
imal: all pairs (k, l) ∈ M are needed to establish der(E). This is made explicit
in the first part of the next lemma. The second part shows that we may al-
ways assume that a derivation is parsimonious: for if it is not, we can make it
parsimonious without changing der(E).

Lemma 1 (Parsimony). Let B = 〈T,E,M〉 be a basic derivation.

1. If B is parsimonious, then der(E) = (E ∪M)e.
2. There is a parsimonious basic derivation B′ = 〈T,E,M ′〉 with derivation

operator der′ such that der(E) = der′(E).

Proof. (1) is rather easy, and for (2) take M ′ = cong(der(E)). Details are omit-
ted.

181

5 Interpretation

In this section, we define the interpretation of abstract derivations and prove a
Soundness Theorem. Let a signature SIG be given. A signature interpretation of
SIG in universe U is a mapping I : SIG ∪ VAR →

⋃
n(Un → U) that respects

arity, i.e. if I(f) ∈ (U arity(f) → U). We write Int(SIG, U) for the collection of all
interpretations of SIG in U . The relation ∼ on Int(SIG, U) is defined by

I ∼ J ⇔ ∀f ∈ SIG I(f) = J(f)

Now let some term structure T = 〈K, arg, σ〉 be given, with rg(σ) ⊆ SIG ∪
VAR. A model M = 〈U, I〉 for T consists of a universe U �= ∅ and a signature
interpretation I ∈ Int(SIG, U). With recursion, we define Iσ : K → U :

Iσ(k) = I(σ(k))(I
⊗
σ (arg(k)))

For F,G ⊆ K2 and abstraction α, we define several notions of validity:

〈U, I〉 |= G iff G ⊆ ker(Iσ)
〈U, I〉 |=α G iff G ⊆ ker(Iα :σ)
〈U, I〉 |=α ∀G iff ∀J ∼ I(〈U, J〉 |=α G)
F |= G iff ∀M(M |= F ⇒M |= G)
∀F |=α G iff ∀M(M |=α ∀F ⇒M |= G)

Theorem 1 (Basic soundness). Basic derivations are sound: if B is a basic
derivation, then E |= der(E).

Proof. We have to show, for arbitraryM = 〈U, I〉:M |= E ⇒M |= der(E), i.e.

E ⊆ ker(Iσ)⇒ der(E) ⊆ ker(Iσ)

So assume E ⊆ ker(Iσ). Now

der(E) ⊆ ker(Iσ)
⇐ {minimality property of der}

(E ∪ cong(ker(Iσ))e ⊆ ker(Iσ)
⇔ {ker(Iσ) is an equivalence relation, and E ⊆ ker(Iσ) is given}

M ∩ lift(ker(Iσ)) ⊆ ker(Iσ)
⇐ {M ⊆ ker(σ)}

ker(σ) ∩ lift(ker(Iσ)) ⊆ ker(Iσ)
⇔ {property of interpretations}

true

Theorem 2 (Soundness). Derivations are sound: if 〈B,α〉 is a derivation,
then ∀E |=α der(E).

The proof is omitted.

182

6 Some important lemmata

In this section, we prove some properties of abstract derivations. They provide
insight in the nature of derivations, and they will be applied in the proof of
the Interpolation theorem given in the next section. The proofs of the lemmata
presented here are rather involved generally, and we postpone them to the Ap-
pendix.

We start with introducing a notion of weak derivability, where only congru-
ence steps are allowed, ignoring the proof rules for reflexivity, symmetry and
transitivity. The weak derivability operator der− is defined by:

der−(E) = μR.(E ∪ cong(R))

By definition, der−(E) is the least relation containing E and closed under cong.
So the defining and the minimality property of der− are

der−(E) = E ∪ cong(der−(E)) (9)
if E ∪ cong(R) ⊆ R, then der−(E) ⊆ R (10)

Moreover, we have E ⊆ der−(E) ⊆ der(E). In the next lemma, we show that,
contrary to derivability, weak derivability commutes with restriction to arg-closed
substructures.

Lemma 2 (der− and intersection). Let B = 〈T,E,M〉 be a basic derivation,
and let L ⊆ K be arg-closed. Then der−(E) ∩ L2 ⊆ der−(E ∩ L2).

The proof is omitted.

The following counterexample shows that Lemma 2 does not hold for der:

K = {a, b, c}, L = {a, c}, E = {(a, b), (b, c)}

(we identify nodes and signature elements). Now

der(E) ∩ L2 = K2 ∩ L2 = L2 �= {(a, a), (b, b), (c, c)} = der(∅) = der(E ∩ L2)

The next Lemma indicates how we can reduce der to der− without affecting the
signature.

Lemma 3 (reduction of der to der−). Let B = 〈T,E,M〉 be a basic deriva-
tion. Then there is a relation E′ ⊆ der(E) satisfying der(E) = der−(E′) and
sig(E′) ⊆ sig(E).

Proof. E′ = der(E)− cong(der(E)) does the trick. Details are omitted.

Lemma 3 can be paraphrased as follows: E′ is part of the sig(E)-consequences
of E, and all consequences of E follows from E′ via only congruence steps.

The two previous lemmata are sufficient to prove interpolation for basic
derivations, as we shall see in the next section. For the full interpolation re-
sult, we need two properties involving abstractions. The first is about the result
of applying an abstraction to a basic derivation. We start with a definition.

183

Definition 7 (Applicability and neutrality). Let B = 〈T,E,M〉 be a basic
derivation and α an abstraction of T . The result of applying α to B is defined
as Bα = 〈Tα, E,M〉. We also define

α is applicable to B if M respects α (i.e. M ⊆ ker(α)∪ (K−dom(α))2);
α is neutral for B if der(E) = derα(E).

It is easy to see that if α is applicable to B, then Bα is a basic derivation:
for M ⊆ ker(α) ∪ (K − dom(α))2 and M ⊆ ker(σ) imply that M ⊆ ker(α : σ).
The next Lemma states that an applicable abstraction has no influence on the
derivability operator.

Lemma 4 (applicable implies neutral). If abstraction α is applicable to ba-
sic derivation B and B is parsimonious, then α is neutral for B.

The proof is omitted.

The lemma addresses only parsimonious derivations; however, as we have
observed above Lemma 1, this restriction is not essential. Observe that we did
not require that B justifies α.

The last lemma is an existence lemma about abstractions. As we mentioned
in the Introduction, it is related to Takeuti’s Lemma. For its formulation we
need the notion of separation, which we define now.

Definition 8 (Separation). Let 〈K, arg〉 be a forest with L,L1, L2 ⊆ K. We
say that L separates L1 from L2 if every path from L1 to L2 meets L: so if
(k0, . . . , kn) is a path in T with k0 ∈ L1 and kn ∈ L2, then ki ∈ L for some i
with 0 ≤ i < n.
Let α, β be abstractions. We say that α separates L from β if dom(α) separates
L from dom(β), i.e. every path from L to dom(β) meets dom(α).

The idea behind separation is that, from the perspective of L, the effect of
applying β is hidden by α. This is made explicit in the following property:

α separates L from β ⇒ ∀k ∈ L termα(k) = termβ :α(k) (11)

To see that this holds, we argue as follows: if termβ :α(k) and termα(k) differ
somewhere, then there is a path that starts in k, avoids dom(α) and ends in
k′ ∈ dom(β). But this contradicts the fact that α separates L from β.

Lemma 5 (existence of eliminating abstraction). Let 〈B,α〉 be a parsi-
monious derivation, and let Σ be some signature. Then there is an abstraction
β : KΣ → VAR that satisfies the following conditions

1. B justifies β (so 〈B, β〉 is a derivation);
2. β is applicable to B and Bβ justifies α (so 〈Bβ , α〉 is a derivation);
3. if sigα(E) ∩Σ = ∅, then α separates car(E) from β.

184

Proof. Define β : KΣ → (VAR− rg(σ)) implicitly by

ker(β) = ((M ∪ ker(α)) ∩K2
Σ)+

Observe that ((M ∪ ker(α)) ∩ K2
Σ)+ is an equivalence relation on KΣ , since

M ∪ ker(α) is reflexive and symmetric, and car(M) = K. Such a β can always
be found, since VAR is infinite. β is an abstraction, for rg(β)∩ rg(σ) = ∅. Details
are omitted.

7 Interpolation

Definition 9 (Interpolation). Let B = 〈K, arg, σ, E,M〉 be a basic derivation,
and assume that E
B G, i.e. G ⊆ der(E). A basic interpolant for E and G in
B is an I ⊆ K2 with

1. E
B I and I
B G;
2. sig(I) ⊆ sig(E) ∩ sig(G).

Moreover, if 〈B,α〉 is a derivation, then (J, β) is an interpolant for E and G in
〈B,α〉 if

1. β is an abstraction justified by B and separated from E by α;
2. 〈Bβ , α〉 is a derivation, E
Bβ

J and J
B G;
3. sigβ(J) ⊆ sigα(E) ∩ sig(G).

This translates to the usual notion of interpolation in the context of equational
logic, via the mapping form:

form(E)
 form(I) and form(I)
 form(G)
sig(form(I)) ⊆ sig(form(E)) ∩ sig(form(G))

formα(E)
 formβ(J) and formβ(J)
 form(G)
sig(formβ(J)) ⊆ sig(formα(E)) ∩ sig(form(G))

In the last two lines, we used that formα(E) = formβ :α(E); this follows via (11)
from the fact that α separates β from E.

Now we formulate the Interpolation Theorem for abstract derivations. The
lemmata of the previous section are applied in its proof.

Theorem 3 (Interpolation). Let B be a basic derivation with E
B G. Then
there is a basic interpolant I for E and G in B, which even satisfies I
−B G.
Moreover, if 〈B,α〉 is a derivation, then there is an abstraction β such that (I, β)
is an interpolant for E and G in 〈B,α〉.

Proof. Let Π = sig(G). Define

I := der(E)− cong(der(E)) ∩K2
Π

We check the conditions for basic interpolation.

185

1. E
B I is evident, for I ⊆ der(E). I
−B G, i.e. G ⊆ der−(I), is shown as
follows:

G
⊆ {G ⊆ der(E) and sig(G) = Π}

der(E) ∩K2
Π

= {Lemma 3}
der−(der(E)− cong(der(E))) ∩K2

Π
⊆ {Lemma 2}

der−(der(E)− cong(der(E)) ∩K2
Π

)
= {definition of I}

der−(I)

2. By Lemma 3, sig(der(E)− cong(der(E))) ⊆ sig(E), so sig(I) ⊆ sig(E)∩Π =
sig(E) ∩ sig(G).

So I is indeed a basic interpolant.

Now assume that 〈B,α〉 is a derivation. Without loss of generality (Lemma
1) we assume that B is parsimonious. Let Σ = sig(E), Σ− = sigα(E). Let β be
the abstraction of Lemma 5 with dom(β) = KΣ−Σ−∩Π . We show that (I, β) is
an interpolant by checking the conditions for interpolation.

1. By Lemma 5.1, B justifies β; by sigα(E)∩ (Σ−Σ− ∩Π) = Σ− ∩ (Σ−Σ− ∩
Π) = ∅ and Lemma 5.3, α separates E from β.

2. E
B I and I
−B G are proved above. By Lemma 5.2, β is applicable to
B and Bβ justifies α, so by Lemma 4 derB(E) = derBβ

(E), and we have
E
Bβ

I.
3. Above, we showed that sig(I) ⊆ sig(E) ∩ sig(G) = Σ ∩Π. Since dom(β) =

KΣ−Σ−∩Π , we have by (2) and (3) that sigβ(I) ⊆ sig(I) − (Σ − Σ− ∩Π),
so sigβ(I) ⊆ (Σ ∩Π)− (Σ −Σ− ∩Π) = Σ− ∩Π = sigα(E) ∩ sig(G).

8 Concluding remarks

We presented abstract derivations for equational logic and established some in-
teresting properties which we applied in a proof of the Interpolation theorem.
The proof is constructive in that the interpolant is given explicitly, using rather
perspicuous global operations on the relations that represent equations. We see
this as an advantage over other proofs for the same theorem, which are either
not constructive or proceed via incremental proof transformations. It came as a
surprise that, in the proof of interpolation, the underlying term structure is not
modified. Another surprise (now a negative one) was the involvedness of many of
the proofs of the lemmata we needed, especially since their formulation is quite
simple.

As we explained in the Introduction, we consider the development of this
result as an experiment in working out the proper definitions of abstract deriva-
tions. We find the present outcome of the experiment satisfactory, but it is

186

not finished yet. The main thing that has to be done is to firmly establish the
correspondence between traditional derivations in equational logic and abstract
derivations. Going from abstract derivations to traditional derivations is the easy
direction: for the other direction, most of the work will lie in proving that the
resulting abstract derivation is wellfounded.

We finish with an unordered list of ideas for further research. We chose equa-
tional logic for its general nature, in the sense that equality is a fundamental
notion, and many logics can be naturally embedded in equational logic. But it
remains to be investigated what happens with derivations in these embeddings.
It may also be interesting to extend the notion of abstract terms and to allow for
bags or sets instead of sequences as the datatype for the immediate subterms of
a compound term: by doing so, properties like commutativity, associativity and
idempotency can be ’hardwired’ in the abstract terms. Another idea is to replace
term structures by sequent structures (after all, sequents can be considered as a
kind of generalized terms) so as to investigate sequent-based derivation systems.
The representation of quantifiers is an open question. Furthermore, there is con-
ditional equational logic, where implications (s0 ≡ t0 ∧ . . . sn−1 ≡ tn−1)→ s ≡ t
are allowed: Rodenburg proved interpolation in [10] via an adaptation of the
algebraic proof for equational logic in [11], but a prooftheoretic proof has not
been given yet. Another direction for research is proof complexity. In principle,
abstract derivations allow for efficient representation of proofs by sharing of sub-
terms: the question is how efficient this representation is. Are they comparable
with extended Frege systems, as defined by Cook and Reckhow in [2]? Are there
general methods to reduce the size of derivations? The relation between abstract
derivations and other alternative representation of proofs, like proof nets (see [7])
and deep derivations (see [1], [13]), is another open question.

Three anonymous referees and Piet Rodenburg are acknowledged for their
constructive criticism on an earlier version of this paper.

References

1. Kai Brünnler. Deep inference and symmetry in classical proofs. Logos Verlag,
Berlin, 2004.

2. Stephen A. Cook and Robert A. Reckhow. Time bounded random access machines.
Journal of Computer and System Sciences, 7:354–375, 1973.

3. W.W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem.
Journal of Symbolic Logic, 22:250–268, 1957.

4. Gerard R. Renardel de Lavalette. Interpolation in fragments of intuitionistic propo-
sitional logic. Journal of Symbolic Logic, 54:1419 – 1430, 1989.

5. Gerard R. Renardel de Lavalette. Abstract derivations, equational logic and inter-
polation. http://www.cs.rug.nl/~grl/pub/lisbon2005full.pdf, 2005.

6. Walter Felscher. On interpolation when function symbols are present. Archiv für
mathematische Logik und Grundlagenforschung, 17:145–158, 1976.

7. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

8. G. Grätzer. Universal Algebra (2nd edition). Springer-Verlag, New York, 1979.

187

9. Don Pigozzi. The join of equational theories. Colloquium Mathematicum, 30:15–25,
1974.

10. Piet Rodenburg. Interpolation in conditional equational logic. Fundamenta Infor-
maticae, 15:80–85, 1991.

11. Piet Rodenburg. A simple algebraic proof of the equational interpolation theorem.
Algebra Universalis, 28:48–51, 1991.

12. Piet Rodenburg. Interpolation in equational logic. Technical report, University
of Amsterdam, Department of Mathematics and Computer Science, Programming
Research Group, January 1992. Report P9201.

13. Charles Stewart and Phiniki Stouppa. A systematical proof theory for several
modal logics (extended abstract). In Renate Schmidt, Ian Pratt-Hartmann, and
Mark Reynolds, editors, AiML2004 — Advances in Modal Logic (conference pro-
ceedings), pages 357–371. Department of Computer Science, University of Manch-
ester, Technical Report Series UMCS-04-9-1, 2004.

14. Gaisi Takeuti. Lecture notes on proof theory (mimeographed). Urbana, 1971.
15. A. Visser, J. van Benthem, D. de Jongh, and G.R. Renardel de Lavalette. NNIL, a

study in intuitionistic propositional logic. In A. Ponse, M. de Rijke, and Y. Venema,
editors, Modal Logic and Process Algebra, pages 289 – 326. CSLI Publications,
Stanford (USA), 1995.

188

Intersection Types:
a Proof-Theoretical Approach

Elaine Pimentel1,2, Simona Ronchi Della Rocca1, and Luca Roversi1�

1 Dipartimento di Scienze dell’Informazione, Università di Torino, Italy
{pimentel,ronchi,roversi}@di.unito.it

2 Departamento de Matemática, UFMG, Brasil
{elaine@mat.ufmg.br}

Abstract. In this work we present a proof-theoretical justification for
IT by means of the logical system Intersection Synchronous Logic (ISL).
ISL builds equivalence classes of deductions of the implicative and con-
junctive fragment of NJ. ISL results from decomposing intuitionistic
conjunction into two connectives: a synchronous conjunction, that can
be used only among equivalent deductions of NJ, and an asynchronous
one, that can be applied among any sets of deductions of NJ. A term
decoration of ISL exists so that it matches both: the IT assignment
system, when only the synchronous conjunction is used, and the sim-
ple types assignment with pairs and projections, when the asynchronous
conjunction is used. Moreover, the proof of strong normalization prop-
erty for ISL is a simple consequence of the same property in NJ and
hence strong normalization for IT comes for free.

1 Introduction

The intersection type assignment system (IT) [4] is a deductive system that
assigns formulae (built from the intuitionistic implication→ and the intersection
∩) as types to the untyped λ-calculus. IT has been used as an investigation tool
for a large variety of problems, like, for example, characterizations of the strongly
normalizing λ-terms [11].

The main goal of this work is to to give a proof-theoretical justification
to IT. 1 To this aim a basis step is to clarify, within a pure logical system, the
difference between the connectives intersection (∩) and intuitionistic conjunction
(∧), by imposing constraints on the use of the logical and structural rules of
intuitionistic logic.
� All authors supported by MIUR national project PROTOCOLLO. Pimentel is also

supported by CNPq.
1 This goal sounds very much alike, for example, to the one of giving a proof-theoretical

characterization of linear functions. To that purpose one could use λ-terms with ex-
actly a single occurrence of every free and bound name. However, proof-theoretically
equivalently, the same set, under the “derivations-as-programs” analogy, is charac-
terized by a deductive system of second order propositional logic without weakening
and contraction.

189

Recall that derivations of IT form a strict subset of derivations of the im-
plicative and conjunctive fragment of Intuitionistic logic (NJ), in the sense that
the λ-terms to which IT gives types to are used as meta-theoretical modalities.
More specifically, for every Π : Γ
IT M : σ of IT, the term M records where
→-introductions and eliminations are used inside Π. Then the intersection can
be introduced only between formulas typing the same term. Hence the rule for
the introduction of the intersection (∩I) can be seen, roughly speaking, as a
“mistaken decoration” of the rule for the introduction of the conjunction (∧I)
of NJ, where pairs are forgotten:

Γ � N : σ Γ � M : τ
Γ � (M, N) : σ ∧ τ

(∧I)
Γ �IT M : σ Γ �IT M : τ

Γ �IT M : σ ∩ τ
(∩I)

In order to evidence, at the level of λ-terms, the difference between the usual
conjunction ∧ of NJ and the intersection ∩ of IT, we start by defining a non
standard decoration for NJ (called NJr) that has explicit structural rules and
where the original conjunction ∧ is split into two conjunctions ∩ and &, in the
spirit of Linear Logic [6]. Note that this decomposition cannot be expressed
directly inside NJ without collapsing ∩ and &.

From NJr, we build ISL, a logical system that internalizes this decompo-
sition, maintaining explicit the structural rules. The rules of ISL inductively
build equivalence classes. The basis of the inductive definition is any set of rel-
evant axioms. The inductive steps, represented by the rules of ISL, preserve
the structural invariant as follows: (A) →-introduction and elimination must
be applied synchronously on all the components of a set of already equivalent
deductions; (B) weakening must be applied synchronously on all the assump-
tions of the judgments of already equivalent deductions of NJ; (C) the order
of assumptions matters as far as two derivations must be declared structurally
equivalent, or not. So the explicit use of the exchange rule is required. Without
the careful management of structural equivalences, ISL would collapse to NJ—
see Subsection 4.1 for a better understanding of the role played by structural
rules in this setting.

Given the notion of equivalence classes above, the intersection operator of
IT becomes a conjunction of ISL that can be introduced only between the
components of a given class. That conjunction is dubbed as synchronous, to
recall the kind of building process we use for the derivations it is applied to.

We should conclude by saying that the present work gives a complete proof-
theoretical justification for IT since ISL: (i) highlights the role of structural
rules to delineate IT inside intuitionistic logic; (ii) reinterprets the intersection
operator ∩ of IT in terms of an operator that can be used among sets of struc-
turally equivalent deductions of intuitionistic logic; (iii) reformulates the tree
structures that IL [14] required in order to characterize IT. The reformulation
is in terms of (simultaneous) logical and structural operations on the equivalence
classes. Finally, ISL is technically good, since it enjoys strong normalization and
sub-formula properties.

The rest of the paper is organized as follows: Section 2 recalls the implicative
and conjunctive fragment of Intuitionistic Logic (NJ) and introduces the system

190

NJr, a refinement of the standard decoration for NJ. The Intersection Types
Assignment System (IT), with explicit weakening and exchange rules, is then
introduced as a subsystem of NJr. Section 3 introduces ISL, which embodies
all our intuitions into a formal system. Section 4 formalizes how ISL, NJ and
IT correspond. Also in this section, we give a technical justification for the
conditions on the explicit structural rules, required to reformulate IT in terms
of ISL. Section 5 proves that ISL is a good deductive system and describes the
behavior of the two ISL conjunctions with respect to the implication. Finally,
Section 6 describes the relationship between this and some related work.

2 Splitting the conjunction

In this section we first recall the implicative and conjunctive fragment of Intu-
itionistic Logic (NJ) in natural deduction style. We then present NJr, a type
assignment system based on the splitting of the conjunction into two connectives,
each one grasping a particular aspect of its behavior. Finally, the Intersection
Types Assignment System (IT) will be presented as a subsystem of NJr.

Definition 1 ({∧ →}-fragment of NJ).

i) The formulae of the implicative and conjunctive fragment of NJ are gen-
erated by the grammar: σ ::= a | σ → σ | σ ∧ σ, where a belongs to a
denumerable set of constants. As usual, → is right-associative while ∧ is
left-associative. Formulae of NJ will be denoted by Greek small letters.

ii) We will denote by FNJ the set of formulae of NJ. A context is a finite
sequence σ1,. . ., σm of formulae. Contexts are denoted by Γ and Δ.

iii) The implicative and conjunctive fragment of NJ proves statements Γ
NJ σ,
where Γ is a context and σ a formula. It consists of the following rules:

(A)
σ �NJ σ

(W)
Γ �NJ σ

Γ, τ �NJ σ

(X)
Γ1, σ1, σ2, Γ2 �NJ σ

Γ1, σ2, σ1, Γ2 �NJ σ
(∧I)

Γ �NJ σ Γ �NJ τ

Γ �NJ σ ∧ τ

(∧El)
Γ �NJ σ ∧ τ

Γ �NJ σ
(∧Er)

Γ �NJ σ ∧ τ

Γ �NJ τ

(→ I)
Γ, σ �NJ τ

Γ �NJ σ → τ
(→ E)

Γ �NJ σ → τ Γ �NJ σ

Γ �NJ τ

Π : Γ
NJ σ means that the deduction Π concludes by proving Γ
NJ σ.

NJ σ is a short notation for ∅
NJ σ.

By somewhat abusing the name, NJ will always name the implicative and con-
junctive fragment of NJ.

NJr is a type assignment for λ-terms with pairs. It splits the original con-
junction ∧ of NJ

(∧I)
Γ �NJ σ Γ �NJ τ

Γ �NJ σ ∧ τ

191

into two conjunctions, depending on the form of the λ-terms M and N that
could be typed by the premises Γ
NJ σ and Γ
NJ τ . In particular, when the
conclusion of the two premises is the type of the same λ-term, it is possible
to replace ∧ by a synchronous conjunction (∩) that keeps giving type to M ,
identical to N . Otherwise, the refinement of ∧ consists of the asynchronous
conjunction (&) that gives type to the pair (M,N).

Definition 2 (NJr).

i) The grammar defining the set of formulae of NJr (FNJr) is obtained from
that of Definition 1 by replacing the rule σ ::= σ ∧ σ by the following rules:
σ ::= σ ∩ σ | σ&σ, where ∩ and & and are, respectively synchronous and
asynchronous conjunctions.

ii) A NJr-context is a finite sequence of pairs x1 : σ1, . . . , xn : σn that assigns
formulae to variables so that i �= j implies xi �≡ xj. By abusing the notation,
NJr-contexts will be denoted by Γ . If Γ = x1 : σ1, . . . , xn : σn, then
dom(Γ) = {x1, ..., xn}.

iii) Terms of the λ-calculus (Λ) are defined by the following grammar:
M ::= x | λx.M |MM , where x belongs to a countable set of variables.
Terms of the λ-calculus with pairs (Λp) are obtained by adjoining to the
previous grammar the following terms: M ::= (M,M) | πl(M) | πr(M). As
usual, terms will be considered modulo α-conversion and application is left
associative.

iii) NJr derives judgments Γ
NJr M : σ where M ∈ Λp, Γ is an NJr-context,
and σ is a formula. The rules of NJr are:

(A)
x : σ �NJr x : σ

(W)
Γ �NJr M : σ x �∈ dom(Γ)

Γ, x : τ �NJr M : σ
(X)

Γ1, x : σ1, y : σ2, Γ2 �NJr M : σ

Γ1, y : σ2, x : σ1, Γ2 �NJr M : σ

(∩I)
Γ �NJr M : σ Γ �NJr M : τ

Γ �NJr M : σ ∩ τ
(&I)

Γ �NJr M : σ Γ �NJr N : τ

Γ �NJr (M, N) : σ&τ

(∩El)
Γ �NJr M : σ ∩ τ

Γ �NJr M : σ
(∩Er)

Γ �NJr M : σ ∩ τ

Γ �NJr M : τ

(&El)
Γ �NJr M : σ&τ

Γ �NJr πl(M) : σ
(&Er)

Γ �NJr M : σ&τ

Γ �NJr πr(M) : τ

(→ I)
Γ, x : σ �NJr M : τ

Γ �NJr λx.M : σ → τ
(→ E)

Γ �NJr M : σ → τ Γ �NJr N : σ

Γ �NJr MN : τ

Π : Γ
NJr σ means that the deduction Π concludes by proving Γ
NJr σ.

Intuitively, NJr identifies derivations of NJ which are synchronous with
respect to the introduction and the elimination of the implication. In other
words, ∩ merges sub-deductions where → is introduced or eliminated in the
“same points”.

192

Formally, let e : FNJr −→ FNJ be defined as follows:

e(a) = a, e(σ → τ) = e(σ) → e(τ) e(σ&τ) = e(σ ∩ τ) = e(σ) ∧ e(τ)

The function e can be extended to contexts in the obvious way:

e(x1 : σ1, . . . , xn : σn) = e(σ1), . . . , e(σn)

Moreover, let E be an erasure function from NJr-proofs to NJ-proofs, that
erases all type information from NJr-proofs and collapses the introduction and
elimination rules of (∩) and (&) to the corresponding rules for (∧).

The following theorem shows the relation between NJ and NJr:

Theorem 1. i) If Π : Γ
NJr M : σ then E(Π) : e(Γ)
NJ e(σ).
ii) If Π : Γ
NJ σ then there is a proof Π ′ : Γ ′
NJr M : σ′ such that E(Π) =

Π, e(Γ ′) = Γ and e(σ′) = σ.

Now we can define the Intersection Type Assignment System IT as a sub-
system of NJr where only synchronous conjunction is used.

Definition 3 (IT).

i) The set FIT of types of IT is the subset of FNJr generated by the grammar:
σ ::= a | σ → σ | σ ∩ σ, where a belongs to a denumerable set of constants.

ii) The Intersection Type Assignment System IT proves statements of the shape:
Γ
IT M : σ where M is a λ-term, Γ is an IT-context, assigning types to
variables, and σ is a type. The rules of the system are the rules of NJr but
(&I), (&El) and (&Er).
Π : Γ
IT M : σ means that the deduction Π concludes by proving Γ
IT σ.

Note that also the Curry’s type assignment for Λp can be seen as a sub-system
of NJr, where only the asynchronous conjunction is used.

2.1 An Example

The difference between synchronous and asynchronous conjunction, being related
to a meta-condition on the form of proofs, cannot be expressed inside NJ. The
following example can be useful for better understanding this point.
Let σ = ((α → α) → α → α)&(α → α) and let us consider the following
derivation:

Π ′′
2 :�NJr λx.π1(x)π2(x) : σ → α → α Π ′′

1 :�NJr (λx.x, λx.x) : σ

�NJr (λx.π1(x)π2(x))(λx.x, λx.x) : α → α
(→ E)

where Π ′′
1 is:

x : α → α �NJr x : α → α
(A)

�NJr λx.x : (α → α) → α → α
(→ I)

x : α �NJr x : α
(A)

�NJr λx.x : α → α
(→ I)

�NJr (λx.x, λx.x) : ((α → α) → α → α)&(α → α)
(&I)

193

and Π ′′
2 is:

x : σ �NJr x : σ
(A)

x : σ �NJr π1(x) : (α → α) → α → α
(&El)

x : σ �NJr x : σ
(A)

x : σ �NJr π2(x) : α → α
(&Er)

x : σ �NJr π1(x)π2(x) : α → α
(→ E)

�NJr λx.π1(x)π2(x) : σ → α → α
(→ I)

In the derivation Π ′′
1 , the conjunction & has been introduced. But since the

two terms typing the premises are syntactically the same, we could replace it by
∩, so obtaining the following derivation, where τ = ((α → α) → α → α)∩ (α → α):

Π ′
2 :�NJr (λx.xx) : τ → α → α Π ′

1 :�NJr λx.x : τ

�NJr (λx.xx)(λx.x) : α → α
(→ E)

where Π ′
1 is:

x : α → α �NJr x : α → α
(A)

�NJr λx.x : (α → α) → α → α
(→ I)

x : α �NJr x : α
(A)

�NJr λx.x : α → α
(→ I)

�NJr λx.x : ((α → α) → α → α) ∩ (α → α)
(∩I)

and Π ′
2 is:

x : τ �NJr x : τ
(A)

x : τ �NJr x : (α → α) → α → α
(∩El)

x : τ �NJr x : τ
(A)

x : τ �NJr x : α → α
(∩Er)

x : τ �NJr xx : α → α
(→ E)

�NJr λx.xx : τ → α → α
(→ I)

Both the previous derivations correspond, in the sense of Theorem 1, to the
following derivation in NJ:

Π2 :�NJ ρ → α → α Π1 :�NJ ρ

�NJ α → α
(→ E)

where: ρ = e(σ) = e(τ) = ((α → α) → α → α) ∧ (α → α) and Π1,Π2 are,
respectively:

α → α �NJ α → α
(A)

�NJ (α → α) → α → α
(→ I)

α �NJ α
(A)

�NJ α → α
(→ I)

�NJ ((α → α) → α → α) ∧ (α → α)
(∧I)

and
σ �NJ σ

(A)

σ �NJ (α → α) → α → α
(∧El)

σ �NJ σ
(A)

σ �NJ α → α
(∧Er)

σ �NJ α → α
(→ E)

�NJ σ → α → α
(→ I)

194

3 The logical system ISL

The logical system ISL, that will be presented below, internalizes at the logical
level the two different behaviors of the conjunction, the synchronous and asyn-
chronous one. The notion of molecule is the one we use to obtain the result.
A molecule is the technical tool to represent the equivalence classes, informally
described in the introduction.

Definition 4. i) Formulae of ISL are formulae of NJr. Contexts are finite
sequences of such formulae, ranged over by Δ,Γ .

ii) An atom is a pair (Γ ;α), where Γ (the context) is a finite sequence of for-
mulas. A,B will range over atoms.

iii) A finite multiset of atoms, such that the contexts in all atoms have the same
cardinality is called a molecule. [A1, . . . ,An] denotes a molecule consisting of
the atoms A1, . . . ,An.M,N will range over molecules. ∪ is multiset union.

iv) ISL derives molecules by the following rules:

[(αi; αi) | 1 ≤ i ≤ r]
(A) M∪N

M (P)

[(Γi; βi) | 1 ≤ i ≤ r]

[(Γi, αi; βi) | 1 ≤ i ≤ r]
(W)

[(Γ i
1 , βi, αi, Γ

i
2 ; σi) | 1 ≤ i ≤ r]

[(Γ i
1 , αi, βi, Γ

i
2 ; σi) | 1 ≤ i ≤ r]

(X)

[(Γi, αi; βi) | 1 ≤ i ≤ r]

[(Γi; αi → βi) | 1 ≤ i ≤ r]
(→ I)

[(Γi; αi → βi) | 1 ≤ i ≤ r] [(Γi; αi) | 1 ≤ i ≤ r]

[(Γi; βi) | 1 ≤ i ≤ r]
(→ E)

[(Γi; αi) | 1 ≤ i ≤ r] [(Γi; βi) | 1 ≤ i ≤ r]

[(Γi; αi&βi) | 1 ≤ i ≤ r]
(&I)

[(Γi; αi&βi) | 1 ≤ i ≤ r]

[(Γi; αi) | 1 ≤ i ≤ r]
(&EL)

[(Γi; αi&βi) | 1 ≤ i ≤ r]

[(Γi; βi) | 1 ≤ i ≤ r]
(&ER)

M∪ [(Γ ; α), (Γ ; β)]

M∪ [(Γ ; α ∩ β)]
(∩I)

M∪ [(Γ ; α ∩ β)]

M∪ [(Γ ; α)]
(∩EL)

M∪ [(Γ ; α ∩ β)]

M∪ [(Γ ; β)]
(∩ER)

v)
ISL M denotes the existence of an ISL deduction rooted at M.

A molecule contains sets of deductions of NJ on which some building steps
are performed synchronously. On the other side, two different molecules, the
elements of which have been built asynchronously, cannot belong to the same
molecule and can be merged only through the introduction of a conjunction or
an elimination of an implication.

195

Making a parallel with the so called hypersequents, this means that the in-
tersection is an internal connective, while the conjunction and implication are
external. More about the relationship between molecules and hypersequents (in
fact, with hyperformulae since ISL is in natural deduction style) can be seen in
Section 6.

Example 1. Let τ denote α→ α, ρ denote (τ → τ)&τ , and σ denote (τ → τ)∩τ .
The deductions of the Section 2.1 can be developed inside ISL, without the need
of λ-terms:

[(τ ; τ), (α; α)]
(A)

[(∅; τ → τ), (∅; τ)]
(→ I)

[(∅; σ)]
(∩I)

[(σ; σ)]
(A)

[(σ; τ → τ)]
(∩EL)

[(σ; σ)]
(A)

[(σ; τ)]
(∩ER)

[(σ; τ)]
(→ E)

[(∅; σ → τ)]
(→ I)

[(∅; τ)]
(→ E)

[(τ ; τ)]
(A)

[(∅; τ → τ)]
(→ I)

[(α; α)]
(A)

[(∅; τ)]
(→ I)

[(∅; ρ)]
(&I)

[(ρ; ρ)]
(A)

[(ρ; τ → τ)]
(&EL)

[(ρ; ρ)]
(A)

[(ρ; τ)]
(&ER)

[(ρ; τ)]
(→ E)

[(∅; ρ → τ)]
(→ I)

[(∅; τ)]
(→ E)

4 ISL, NJ and IT

This section states the formal correspondence between ISL, NJ and IT. This
is done decorating proofs of ISL by means of λ-terms. The decoration is similar
to the one described in [14] and it is inspired by the so called “Curry-Howard
isomorphism”: every deduction Π is associated to a λ-term in order to keep track
of some structural properties of Π.

Note that this decoration is not standard: the λ-term associated to Π is
untyped, and does not encode the whole structure of Π, but only the order of
occurrences of the rules for the implication and conjunction.

Definition 5. i) Let Γ ≡ β1, ..., βn be a context. A decoration of Γ , with re-
spect to a sequence of different variables x1, ..., xn, is (Γ)x1,...,xn ≡ x1 :
β1, ..., xn : βn. The symbol s denotes a sequence of variables, different from
each other.

ii) Every Π that proves the moleculeM = [(Γi;βi) | 1 ≤ i ≤ r] can be decorated
so that the result is a type assignment that proves Ms : (M)s, where (M)s ≡
[((Γi)s;βi) | 1 ≤ i ≤ r], and Ms is a λ-term. The decoration procedure is
inductively defined in Figure 1.

iii)
∗ISL M : (M)s denotes the existence of a decorated proof of ISL rooted at
M : (M)s.

Observe that the decoration is defined in a parametric way with respect to
the sequence of variables s.

196

– Π :
[(αi; αi) | 1 ≤ i ≤ m]

(A) ⇒
Mx ≡ x : [(x : αi; αi) | 1 ≤ i ≤ m]

(A∗);

– Π :
Π1 : [(Γi; βi) | 1 ≤ i ≤ r]

[(Γi, αi; βi) | 1 ≤ i ≤ r]
(W) ⇒

Ms(Π1) : [((Γi)
s; βi) | 1 ≤ i ≤ r] x /∈ dom(Γ)s

Ms,x(Π) ≡ Ms(Π1) : [((Γi)
s, x : αi; βi) | 1 ≤ i ≤ r]

(W ∗);

– Π :
Π1 : [(Γ i

1 , βi, αi, Γ
i
2 ; σi) | 1 ≤ i ≤ r]

[(Γ i
1 , αi, βi, Γ

i
2 ; σi) | 1 ≤ i ≤ r]

(X) ⇒

Ms1,y,x,s2(Π1) : [((Γ i
1)

s1 , y : βi, x : αi, (Γ
i
2)

s2 ; σi) | 1 ≤ i ≤ r]

Ms1,x,y,s2(Π) ≡ Ms1,y,x,s2(Π1) : [((Γ i
1)

s1 , x : αi, y : βi, (Γ
i
2)

s2 ; σi) | 1 ≤ i ≤ r]
(X∗);

– Π :
Π1 : [(Γi, αi; βi) | 1 ≤ i ≤ r]

[(Γi; αi → βi) | 1 ≤ i ≤ r]
(→ I) ⇒

Ms,x(Π1) : [((Γi)
s, x : αi; βi) | 1 ≤ i ≤ r]

Ms(Π) ≡ λx.Ms,x(Π1) : [((Γi)
s; αi → βi) | 1 ≤ i ≤ r]

(→ I∗);

– Π :
Π1 : [(Γi; αi → βi) | 1 ≤ i ≤ r] Π2 : [(Γi; αi) | 1 ≤ i ≤ r]

[(Γi; βi) | 1 ≤ i ≤ r]
(→ E) ⇒

M1 : [((Γi)
s; αi → βi) | 1 ≤ i ≤ r] M2 : [((Γi)

s; αi) | 1 ≤ i ≤ r]

Ms(Π) ≡ M1M2 : [((Γi)
s; βi) | 1 ≤ i ≤ r]

(→ E∗),

where M1 ≡ Ms(Π1), M2 ≡ Ms(Π2) ;

– Π :
Π1 : [(Γi; αi) | 1 ≤ i ≤ r] Π2 : [(Γi; βi) | 1 ≤ i ≤ r]

[(Γi; αi&βi) | 1 ≤ i ≤ r]
(&I) ⇒

Ms(Π1) : [((Γi)
s; αi) | 1 ≤ i ≤ r] Ms(Π2) : [((Γi)

s; βi) | 1 ≤ i ≤ r]

Ms(Π) ≡ (Ms(Π1), Ms(Π2)) : [((Γi)
s; αi&βi) | 1 ≤ i ≤ r]

(&I∗);

– Π :
Π1 : [(Γi; α

l
i&αr

i) | 1 ≤ i ≤ r]

[(Γi; αi) | 1 ≤ i ≤ r]
(&EX) ⇒

Ms(Π1) : [((Γi)
s; αl

i&αr
i) | 1 ≤ i ≤ r]

Ms(Π) = πt(Ms(Π1)) : [((Γi)
s; αi) | 1 ≤ i ≤ r]

(&E∗
X)

where X ∈ {L, R}, and, if X = L then t = l else t = r;

– Π :
Π1 : M1

M2

(R) ⇒ Ms(Π1) : (M1)
s

Ms(Π) = Ms(Π1) : (M2)
s

(R∗)

where R ∈ {(∩I), (∩EL), (∩ER), (P)};

Fig. 1. The decoration of ISL.

197

The next theorem, together with Theorem 1, proves that ISL is as powerful
as NJ. Moreover, it puts into evidence the fact that a molecule represents a set
of proofs of NJ, built synchronously. The proofs of this and the next theorem
are by induction on derivations.

Theorem 2 (ISL and NJ). LetM = [(Γ1;α1), . . . , (Γm;αm)]. Then
∗ISL M :
(M)s if and only if (Γi)s
NJr M : αi for all 1 ≤ i ≤ m.

ISL can be proposed as the logic for IT, thanks to the following theorem:

Theorem 3 (ISL and IT).

i) Let M = [(Γ1;α1), . . . , (Γm;αm)], where αi and all types in Γi belong to
FIT, and let
∗ISL M : (M)s with M ∈ Λ, for some s . Then (Γi)s
IT M :
αi.

ii) Γ
IT M : α implies
∗ISL M : [(Γ ;α)].

Corollary 1. IT collects the synchronous behavior of NJ.

4.1 The role of structural rules

There is in the literature a lot of intersection types assignment systems. Here
clearly we want to consider a ”minimal” version, in the sense that only the rules
dealing with the two connectives → and ∩ occur (while there are systems with
various kinds of subtyping and eta-rules) and also there is no universal type. The
reason for this choice is clear, being this a foundational investigation, and being
these extra features not motivated from a logical point of view. But also in this
minimal version IT is usually presented in a different style, i.e. contexts are sets
of pairs {x1 : σ1, . . . , xn : σn}, and the three rules (A),(W),(X) are replaced by:

(A)
x : σ ∈ Γ

Γ �NJ x : σ

The two formulations are equivalent. But the design of ISL, and consequently
a logical account of IT, needs explicit structural rules.

In fact, let ISL′ be defined from ISL by considering contexts as sets and by
replacing the rules (A) and (W) by the axiom:

[(Γi ∪ {αi}; αi) | 1 ≤ i ≤ r]
(A′)

Then the following molecules could be proved:

[({α ∩ β → γ}; α → β → γ)] and [({α → β → γ}; α ∩ β → γ)]

hence collapsing ∩ to ∧ (see also Section 5). This shows that implicit weakening
cannot be used in the definition of ISL.

198

On the other hand, let ISL′′ be defined from ISL by using contexts as sets
(instead of sequences) but maintaining the explicit weakening rule (thus still
having a linear axiom). Then it would be possible to derive:

[({α}; α), ({β}; β)]

[({α, β}; α), ({β}; β)]
(W)

[({α, β}; α), ({α, β}; β)]
(W)

[({α, β}; α ∩ β)]
(∩I)

The proof above does not correspond to any derivation of IT. Indeed, assume
the two atoms ({α, β};α) and ({α, β};β) represent the two judgments
x : α, y : β
IT x : α and x : α, y : β
IT y : β. They have the same context,
being, however, labelled by different terms. So ∩ cannot be introduced.

Hence, in order to capture correctly the behavior of the intersection connec-
tive, we need both contexts as sequences and explicit structural rules.

5 Properties of ISL

This section proves that ISL enjoys properties expected for logical systems, like
strong normalization and sub-formula. Both proofs follow the method described
in [14] showing that, in fact, these properties are inherited from NJ. We also
discuss the behavior of the two ISL conjunctions with respect to the implication.

Strong normalization. We start by noting that the rule (P) can be elimi-
nated, and that the weakening can be moved up on the proof, being it applied
just after the axioms.

Lemma 1. Let Π be a derivation for M. Then there is a derivation Π ′ of M
without any occurrences of the rule (P) and all applications of the weakening
rule follow the axioms.

Definition 6. A derivation is said to be in pre-normal form if it doesn’t have
any occurrences of the rule (P) and all applications of the weakening rule follow
the axioms.

Definition 7. Let Π be a derivation.

i. A ∩-redex of Π is one of the sequences:

M∪ [(Γ ; α), (Γ ; β)]

M∪ [(Γ ; α ∩ β)]
(∩I)

M∪ [(Γ ; α)]
(∩EL)

M∪ [(Γ ; α), (Γ ; β)]

M∪ [(Γ ; α ∩ β)]
(∩I)

M∪ [(Γ ; β)]
(∩ER)

ii. A &-redex of Π is the sequence:

[(Γi; αi) | 1 ≤ i ≤ r] [(Γi; βi) | 1 ≤ i ≤ r]

[(Γi; αi&βi) | 1 ≤ i ≤ r]
(&I)

[(Γi; αi) | 1 ≤ i ≤ r]
(&EL)

or the similar sequence for the right case.

199

iii. A →-redex of Π is the sequence:

[(Γi, αi; βi) | 1 ≤ i ≤ r]

[(Γi; αi → βi) | 1 ≤ i ≤ r]
(→ I)

[(Γi; αi) | 1 ≤ i ≤ r]

[(Γi; βi) | 1 ≤ i ≤ r]
(→ E)

It is easy to see that the exchange rule can be moved up when between
redexes. This result, together with Lemma 1, shows that the structural rules do
not interfere with the normalization process.

Lemma 2. Let , ∈ {→,&,∩} and let SR be a certain number of occurrences of
the rule (X). Then

G
G′ (�I)

G′′ (SR)

G′′′ (�E)
can be rewritten as

G
Giv

(SR)

Gv (�I)

G′′′ (�E)

where Giv and Gv are formed accordingly.

The following Lemma is proved by structural induction.

Lemma 3 (Substitution lemma). Let Π0 be a proof of [(Γi, αi;βi) | 1 ≤ i ≤
r] and Π1 be a proof of [(Γi;αi) | 1 ≤ i ≤ r]. Suppose that both Π1 and Π2 are in
pre-normal form. Let S(Π0,Π1) be the deductive structure obtained from Π0 by
substituting all axioms [(αi;αi) | 1 ≤ i ≤ r] by Π1 (using weakening and exchange
rules where necessary in order to re-arrange contexts), and by eliminating all
occurrences of weakening over αi. Then S(Π1,Π0) : [(Γi;βi) | 1 ≤ i ≤ r].

Definition 8. Let Π be a derivation in pre-normal form.

i. A ∩-rewriting step on Π is:

M∪ [(Γ ; α), (Γ ; β)]

M∪ [(Γ ; α ∩ β)]
(∩I)

M∪ [(Γ ; α)]
(∩EL)

↪→ M∪ [(Γ ; α), (Γ ; β)]

M∪ [(Γ ; α)]
(P)

The (∩ER) case is analogous.
ii. A &-rewriting step on Π is:

Π1 : [(Γi; αi) | 1 ≤ i ≤ r] Π2 : [(Γi; βi) | 1 ≤ i ≤ r]

[(Γi; αi&βi) | 1 ≤ i ≤ r]
(&I)

[(Γi; αi) | 1 ≤ i ≤ r]
(&EL)

↪→ Π1 : [(Γi; αi) | 1 ≤ i ≤ r]

The (&ER) case is analogous.
iii. A →-rewriting step on Π is:

Π0 : [(Γi, αi; βi) | 1 ≤ i ≤ r]

[(Γi; αi → βi) | 1 ≤ i ≤ r]
(→ I)

Π1 : [(Γi; αi) | 1 ≤ i ≤ r]

[(Γi; βi) | 1 ≤ i ≤ r]
(→ E)

↪→ S(Π1, Π0)

200

Theorem 4. ISL is strongly normalizable.

Proof Lemmas 1, 2 show that (P) can be eliminated and that the other
structural rules can be moved up from redexes, so they do not play a significant
role in the normalization process. Consider a sequence of normalization steps in
ISL: Π1 → . . . → Πn. By Theorem 2, there is a one-to-many correspondence
between proofs in ISL and proofs in NJ. This means that the every redex of a
derivation Πi in the sequence above can be translated to redexes in NJ and the
number of redexes of Πi is bounded by the number of analogous redexes of any
projection of Π in NJ. Hence the result follows from the fact that NJ has the
property of strong normalization.

The proof above shows how strong normalizability in ISL is a simple con-
sequence of the same property in NJ. This is, indeed, a very interesting result
since strong normalization for IT comes for free while most of the known proofs
of this fact uses very complicated techniques, like the Tait-Girard reducibility
predicates [7, 15].

Sub-formula property. Sub-formulae in ISL are defined as follows:

Definition 9 (Sub-formula). Let α be a formula of ISL. Then:

i. α is a sub-formula of α.
ii. If β , γ is a sub-formula of α, then so are β and γ for , ∈ {&,∩,→}.

Definition 10 (Sub-formula property). Let Π be a ISL derivation of the
molecule [(Γi;αi) | 1 ≤ i ≤ r]. Π enjoys the sub-formula property, written
sf(Π), if every formula appearing in Π is a sub-formula of one of those occurring
in Γi ∪ {αi}.

Theorem 5 (Sub-formula property). Let Π be a ISL proof in normal form.
Then sf(Π).

Proof The proof is an easy extension of the same property for NJ, given the
relationship between NJ and ISL described by Theorem 2.

The adjoint property. In NJ, the conjunction (∧) is the adjoint of the
implication, that is, the formulae:

α ∧ β → γ and α→ β → γ

are isomorphic. The question that arises then is if the conjunctions of ISL (&,∩)
also have this property.

It is easy to see that the answer is yes for the asynchronous conjunction: the
molecules

[(∅;α&β → γ)] and [(∅;α→ β → γ)]

are provable equivalent in ISL.
However, the answer is no for the synchronous conjunction (∩). In fact, in

the formula α ∩ β → γ it is implicit that α and β are dependent in the sense

201

presented on Section 4, that is, these formulae are labelled by the same λ-term,
while in the formula α→ β → γ, α and β are completely independent.

This same kind of behavior is observed, for example, in Linear Logic where the
additive conjunction (&) is the adjoint of the implication, while the multiplicative
one (⊗) is not.

6 Related work

The idea of studying the relationship between the intersection and intuitionistic
conjunction connectives is not new. In fact, this kind of discussion started with
Pottinger’s observation [11] that ∩ does not correspond to the traditional con-
junction (this was later formally proved by Hindley [8]). This subject was further
motivated in [1, 2]. But still, the study of the behavior of these two connectives
were always restricted to type assignment systems.

The first attempt of giving a logical foundation for IT appears in [16], where
a new type inference system equivalent to IT was defined. This system, called
TA∗

∧ avoids the traditional introduction rule for the intersection, and the logic
L∧ in a Hilbert-style axiom based formulation was proposed in such a way that
combinators in the type assignment system can be associated to logical proofs.
This approach is indeed very interesting, and it follows in many ways the ideas
already in [11]. Still, the intersection type inference is investigated in the context
of combinatory logic instead of λ-calculus and the presentation of the resultant
logic is axiomatic. This work was further extended in order to support also union
types [5].

In [3], hyperformulae were used in order to obtain the logic HL presented in
standard natural deduction style, hence abandoning the axiomatic framework.
Molecules are very much alike hyperformulae, the differences consisting in the
fact that a context inside an atom (sequent) is a list of formulae (and hence
the ordering is crucial), the existence in HL of a distinguished formula ε (the
empty formula) and explicit substitutions. 2 This makes the syntax of HL more
complicated than the one presented here, but still easier to handle than kits
appearing in [14] (see comment below).

However, in the logic HL hyperformulae cannot interact. That means they
just have internal rules. This interaction is achieved in ISL by introducing the
conjunction that can merge arbitrary construction processes. In other words,
ISL has external rules as well.

Another approach on the logical foundation for IT is given in [14], where IL
has been introduced. Roughly speaking, ISL can be viewed as IL enriched with
conjunction. But, although inspired in this former work, the notation designed
for ISL is completely different from that presented for IL, where kits (i.e., trees
labelled by formulas) where used in order to keep track of the structure of proofs.
The presence of trees introduces a beautiful geometry within the logical system,
but at the same time it makes the definition of derivations harder to manipulate,

2 This permitted the implication to become an internal connective as well.

202

in the sense that it is necessary the introduction of classes of equivalence between
proofs in order to define valid derivations. It turns out that kits aren’t really
necessary: controlling the order of the leaves is enough in this case. That made
it possible to choose a much simpler approach based on molecules, where we
don’t record the shape of proofs, but only group the equivalent ones, step by
step.

In any case, the logical systems proposed so far admit the presence of only
one between intersection and conjunction, giving the idea that it was impossible
to mix them in the same setting. The main contribution of this work is to
present a logical system in natural deduction style in which conjunction and
intersection can be represented and hence making it possible to characterize, at
the proof theoretical level, the behavior of these two connectives. In this way, the
intersection ∩ leaves the stigma of being a truly proof-functional connective (as
described in [10]) in order to become a connective with synchronous behavior,
contrasting with the asynchronous nature of the conjunction.

A logic for IT always gives, as sub-product, a typed version of Λ with inter-
section types, through a complete decoration of proofs [13]. But typed versions
of IT can be obviously defined following a non logical approach: examples are
in [9, 12, 17].

References

1. Alessi, F. and Barbanera, F. Strong conjunction and intersection types. In
16h International Symposium on Mathematical Foundation of Computer Science
(MFCS91), volume Lecture Notes in Computer Science 520. Springer-Verlag, 1991.

2. Barbanera, F. and Martini, S. Proof-functional connectives and realizability.
Archive for Mathematical Logic, 33:189–211, 1994.

3. Capitani, B., Loreti, M. and Venneri B. Hyperformulae, parallel deductions and
intersection types. Electronic Notes in Theoretical Computer Science, 50(2), 2001.

4. Coppo, M. and Dezani-Ciancaglini, M. An extension of the basic functionality
theory for the λ-calculus. Notre Dame J. Formal Logic, 21(4):685–693, 1980.

5. Dezani-Ciancaglini, M., Ghilezan, S. and Venneri, B. The “relevance” of intersec-
tion and union types. Notre Dame J. Formal Logic, 38(2):246–269, 1997.

6. Girard, J-Y. Linear Logic. Theoretical Computer Science, 50:1-102, 1987.
7. Girard, J-Y., Lafont, Y. and Taylor, P. Proofs and types. Cambridge University

Press, 1989.
8. Hindley, J.R. Coppo Dezani types do not correspond to propositional logic. The-

oret. Comput. Sci., 28(1-2):235–236, 1984.
9. Liquori, L. and Ronchi Della Rocca, S. Toward an Intersection-Typed System la

Church. Presented at ITRS’04, to appear.
10. Lopez-Escobar, E. K. G. Proof-functional connectives. Methods of Mathematical

Logic, Proceedings of the 6th Latin-American Symposium on Mathematical Logic,
Caracas, 1983 LNCS, 1130:208–221, 1985.

11. Pottinger, G. A type assignment for the strongly normalizable λ-terms. In To
H. B. Curry: essays on combinatory logic, lambda calculus and formalism, pages
561–577. Academic Press, London, 1980.

12. Reynolds, J. C. Design of the programming language Forsythe. In P. O’Hearn and
R. D. Tennent editors, Algol-like Languages, Birkhauser, 1996.

203

13. Ronchi Della Rocca, S. Typed Intersection Lambda Calculus. In LTRS 2002,
volume 70(1) of Electronic Notes in Computer Science. Elsevier, 2002.

14. Ronchi della Rocca, S., Roversi, L. Intersection Logic. In Proceedings of CSL’01,
volume 2142 of LNCS, pages 414-428. Springer-Verlag, 2001.

15. Tait, W.W. Intensional interpretation of functions of finite type I. Journal of
Symbolic Logic, 32:198–212, 1967.

16. Venneri, B. Intersection types as logical formulae. J. Logic Comput., 4(2):109–124,
1994.

17. Wells, J. B. and Haack, C. Branching types. In Programming Languages & Sys-
tems, 11th European Symp. Programming, volume 2305 of LNCS, pages 115-132.
Springer-Verlag, 2002.

204

Cut Elimination in Propositional Based Logics

João Rasga

Center for Logic and Computation, Department of Mathematics,
IST, Lisbon, Portugal

jfr@math.ist.utl.pt

Abstract. Sufficient conditions for sequent calculi for propositional ba-
sed logics to enjoy cut elimination are established. These conditions are
satisfied by a wide class of sequent calculi encompassing among others
calculi for classical and intuitionistic logic, modal logic S4, and classical
and intuitionistic linear logic and some of their fragments. The conditions
can be checked in finite time and define relations between the rules and
the provisos so that the calculus can enjoy cut elimination. A general
result of cut elimination is obtained for any calculus satisfying those
conditions.

1 Introduction

Cut elimination has been studied in sequent calculi for a wide variety of logics,
but most of the times in a case by case basis [6, 5, 2, 4, 8].

Herein conditions for sequent calculi in a certain class to enjoy cut elimination
are investigated and a general cut elimination result is obtained for the sequent
calculi satisfying that conditions. 1 These conditions can be checked in finite
time and are satisfied by sequent calculi for a wide variety of logics including
classical and intuitionistic logic, modal logic S4, and classical and intuitionistic
linear logic and some of its fragments. Proving cut elimination for a class of
sequent calculi has several advantages: i) bring to clarity relationships between
the rules and the provisos in the calculi, or between other aspects of the calculi,
that guarantee cut elimination, ii) a unique general proof of cut elimination for
the sequent calculi in that class, and iii) to show cut elimination for sequent
calculi not already known whether to enjoy cut elimination.

Another interesting aspect made clear by this work is the relation between
the presence of structural rules, the multiplicative and the additive character
of the introduction rules for a connective, and the number of premises that are
used in the cut elimination process when the cut formula is introduced by that
rules.

In Section 2, the notions necessary to the definition of the sequent calculi
considered in our study of cut elimination are introduced. In section 3, sufficient
conditions for a calculus to enjoy cut elimination are presented. The general
result stating that any calculus satisfying those conditions enjoys cut elimination
1 This work is the conference version of [9].

205

is introduced in Section 4. Finally in Section 5, a brief discussion of related work
is made.

2 Sequent Calculi

A general result of cut elimination is provided in Section 4 for any calculus
satisfying a collection of conditions checkable in finite time. In order to define
that conditions it is necessary to refer to common aspects of the calculi. So, in
this section, it is defined in a general form notions like rule, proviso, deduction,
sequent calculus, in order for them to apply to several calculi, if necessary.

A signature C is a family {Ck : k ∈ N} where each Ck is a countable set of
connectives of arity k. All the sets are assumed to be pairwise disjoint. We assume
given once and for all two denumerable sets: the set {ξi : i ∈ N} of formula meta-
variables, and the set {Γi : i ∈ N} of multiset meta-variables. Meta-variables will
be only used in rules and in provisos, and their role is to indicate the places
where a formula or a multiset of formulas, can and should appear when using
that rule or proviso in a deduction. The language of formulas over a signature
and the sets of meta-variables is inductively defined in the usual way. A sequent
is a pair 〈Ψ,Δ〉, written Ψ → Δ where Ψ and Δ are finite multisets of formulas.
A proviso π is a map that given a substitution of the meta-variables returns
1 or 0, meaning that the substitution satisfies or does not satisfy the proviso.
For instance the proviso Γ is • closed, where • is a connective, is satisfied by
any substitution that assigns to Γ a multiset of formulas having as the main
connective •. A rule is a triple 〈{s1, . . . , sp}, s, π〉 written s1...sp

s �π where s and
s1, . . . , sp are sequents and π is a proviso. A sequent calculus C is a pair 〈C,R〉
where C is a signature and R is a finite set of rules. The deduction of a sequent
s from a set S of sequents in the context of a sequent calculus C, written S
C s
is defined in the usual way as a labelled tree, see [12].

In the sequel, boolean combinations of the following provisos will be consid-
ered: |Γ | ≤ a, denoted by cardinality proviso, where Γ is a multiset meta-variable
and a is a natural, and the proviso Γ is • closed, denoted by • closure proviso,
where Γ is a multiset meta-variable and • is a connective. Moreover, we denote
by π|| the boolean combination of cardinality provisos, which may be empty,
and, given a unary connective c we will denote by c(ξi) a formula whose main
connective is c. When convenient we will refer to the • closure proviso simply
by closure proviso. Each of these provisos when appearing in rules are such that
its meta-variables appear in the rule.

A cardinality proviso is imposed by a sequent calculus or in other words
a sequent calculus has or imposes a cardinality proviso when the number of
formulae at one side or both sides of any sequent in a rule in the calculus is
limited by cardinality provisos present in the rules to a same number for all the
rules.

206

2.1 Rules

The class of the calculi to be considered for cut elimination is characterized by
having rules of a certain specific type. We now describe the types of rules that
can be used and the allowed variants for each type, starting by the axiom rule.
An axiom rule has the form

Γ1, ξ1 → ξ1, Γ2

� π||,

and is named Ax. A left weakening rule for a connective c has the form

Γ1 → Γ2

Γ1, c(ξ1) → Γ2

� π||,

and is named Lw c. Similarly for a right weakening rule for a connective c. A
left weakening rule is a similar rule but without any restriction on the princi-
pal formula. Similarly for a right weakening rule. A left contraction rule for a
connective c has the form

Γ1, c(ξ1), c(ξ1) → Γ2

Γ1, c(ξ1) → Γ2

� π||,

and is named Lc c. Similarly for a right contraction rule for c. A left contrac-
tion rule is a similar rule but without any restriction on the principal formula.
Similarly for a right contraction rule. The cut rule has the form

Γ1 → Γ2, ξ1 ξ1, Γ
′
1 → Γ ′

2

Γ1, Γ
′
1 → Γ2, Γ

′
2

� π||

and is named Cut. The multicut rule has the form

Γ1 → Γ2, ξ1
m ξ1

n, Γ ′
1 → Γ ′

2

Γ1, Γ
′
1 → Γ2, Γ

′
2

� π||, m, n > 0

and is named Multicut. The left multicut rule has the form

Γ1 → Γ2, ξ1 ξ1
n, Γ ′

1 → Γ ′
2

Γ1, Γ
′
1 → Γ2, Γ

′
2

� π||, n > 0

and is named LMulticut. Similarly for the right multicut rule. The left multicut
rule for a connective c has the form

Γ1 → Γ2, c(ξ1) c(ξ1)
n, Γ ′

1 → Γ ′
2

Γ1, Γ
′
1 → Γ2, Γ

′
2

� π||, n > 1

and is named LMulticut c. Similarly for a right multicut rule over c. In the
sequel, we may designate any of the cut rules presented above simply by a cut
rule or when referring to all of them by the cut rules. Moreover the rule Multicut
may be designated by the general multicut rule. An additive left introduction rule
for a connective c has the form

Γ1, Ψ1 → Δ1, Γ2 . . . Γ1, Ψk → Δk, Γ2

Γ1, c(ξ1, . . . , ξn) → Γ2

� π

207

where k is greater than or equal to 0 and the multiset meta-variables in the
premises are the multiset meta-variables in the conclusion. A multiplicative left
introduction rule for c has the form

Γ11, Ψ1 → Δ1, Γ21 . . . Γ1k, Ψk → Δk, Γ2k

Γ11, . . . , Γ1k, c(ξ1, . . . , ξn) → Γ21, . . . , Γ2k

� π

where k is greater than or equal to 0 and the multiset meta-variables in the
conclusion are obtained from the multiset meta-variables in the premises. Both
types of rules are designated by Lc and satisfy the following conditions:

- Ψi and Δi for i = 1, . . . , k are multisets of formula meta-variables in ξ1, . . . , ξn;
- a formula meta-variable appears in more than one premise only if it appears

in the same side in each of the premises;

and similarly for an additive or a multiplicative right introduction rule for c.
We use the term introduction in the name of these rules to avoid the situations
where it is not clear which type of rule for connectives is being referred.

When we want to stress that a rule is not for a connective we will designate
it by generic rule. In general when there is no ambiguity we will omit that
designation. So by a contraction rule it should be understood a contraction rule
that it is not for a connective. When we want to stress that a rule can be either
generic or for a connective, we will say it explicitly. When we want to refer to
a rule for a connective it is explicitly referred the fact that the rule is for a
connective.

3 Conditions for Cut Elimination

The conditions for a calculus to enjoy cut elimination are presented in this
section. The calculi satisfying these conditions are denoted by cut suitable calculi.
To simplify the presentation, we introduce first the conditions imposing that the
rules in the calculus are not redundant except when necessary for cut elimination,
then we specify the conditions for pairs of introduction rules, and finally we
present all the conditions in the definition of cut suitable calculus.

To simplify the presentation, in the sequel, when writing conditions like the
left (right) multicut rule is in the calculus only if the calculus has a cardinality
proviso for the right (left) side it is meant the following two conditions: the left
multicut rule is in the calculus only if the calculus has a cardinality proviso for
the right side and the right multicut rule is in the calculus only if the calculus
has a cardinality proviso for the left side.

The first conditions presented, impose that a calculus, named a suitable cal-
culus, has no redundancies in terms of rules except when necessary for cut elim-
ination. These conditions can be checked in finite time for any sequent calculus.

Definition 1. A sequent calculus is suitable if

S1 a rule in the calculus is of a type described in section 2;

208

S2 the cut rules in the calculus are such that
1 a generic multicut rule is in the calculus only if no other cut rule is

present;
2 the generic multicut rules are not simultaneously in the calculus;
3 the left (right) multicut rule for a connective is present only if the mul-

ticut rule and the left (right) multicut rule are not present;
S3 the contraction rules in the calculus are such that

1 left (right) contraction rule r is present only if the calculus has no car-
dinality proviso over the left (right) side imposing that the number of
formulas is at most 1 - similarly if r is for a connective;

2 the left (right) contraction rule for a connective is present only if the left
(right) contraction rule is not present;

S4 the left (right) weakening rule for a connective is in the calculus only if the
left (right) weakening rule is not present.

Introduction rules for a connective at opposite sides should satisfy specific
constraints in order for a cut in a deduction to be propagated for the premises,
when the cut formula is introduced by these rules.

Definition 2. Consider a calculus with the cut rule or with a generic multicut
rule. A right and a left introduction rules for a same connective are a cut suitable
pair whenever there is a sequence (s1, . . . , su) with no repetitions, of premises
without multiset meta-variables, of both rules, for u greater than 0, such that

s1 s2

s1,2
cut s3

s1,2,3
cut

. . . su

s1,...,u
cut

is a deduction where s1,...,u is the empty sequent →, and if the left (right) intro-
duction rule, denoted by r, does not have neither closure provisos nor provisos
imposing that both contexts are empty then, setting

np = number of premises of r, without multiset variables, in (s1, . . . , su)

and

cnp =
{

number of premises of r if r is multiplicative
1 if r is additive

we have that if np < cnp then the calculus has the right (left) weakening rule, and
also the left (right) weakening rule if the calculus does not impose a cardinality
proviso over the left (right) side. The same for the contration rule if np > cnp.

The sequence (s1, . . . , su) is denoted by cut sequence. The existence of this se-
quence tries to capture the idea that the premises s1, . . . , su lead to a contra-
diction, or, in other words, that there is a classical refutation of the clauses
corresponding to s1, . . . , su. The condition on the relation between the number
of premises in the cut sequence, the multiplicative and additive character of the

209

rules, and the presence of the structural rules of weakening and contraction is
important to guarantee that it is always possible when eliminating cuts to obtain
the sequent, in the original deduction, that results from the cut. Note that each
condition in the definition of cut suitable pair can be checked in finite time.

We now illustrate Definition 2 by concluding that the conjunction rules

L∧i
Γ1,ξi→Γ2

Γ1,ξ1∧ξ2→Γ2
� |Γ2| ≤ 1 (i = 1, 2) R∧ Γ1→ξ1,Γ2 Γ1→ξ2,Γ2

Γ1→ξ1∧ξ2,Γ2
� |Γ2| = 0

in the intuitionistic calculus G1i described in [12], with the left multicut rule,
constitute a cut suitable pair with cut sequence (s1, s2) where s1 is the sequent
ξ1 → corresponding to premise Γ1, ξ1 → Γ2 in L∧1 and s2 is the sequent → ξ1
corresponding to premise Γ1 → ξ1, Γ2 in R∧. This happens because

– R∧ does not have neither closure provisos nor provisos imposing that both
contexts are empty;

– the number of sequents corresponding to premises of R∧ in the cut sequence
is 1;

– the value of cnp corresponding to R∧ is 1, since R∧ is additive;

and, for i = 1, 2,

– L∧i does not have neither closure provisos nor provisos imposing that both
contexts are empty;

– the number of sequents corresponding to premises of L∧i in the cut sequence
is 1;

– the value of cnp corresponding to L∧i is 1, since L∧i is additive.

3.1 Cut suitable calculus

The conditions allowing that a calculus enjoy cut elimination, are put together
in the definition of a cut suitable calculus.

Definition 3. A sequent calculus is cut suitable if it is suitable and

C1 if the calculus has a cardinality proviso for side l then that proviso imposes
that the number of formulas at that side of each sequent in a rule is at most
1;

C2 the axiom rule is in the calculus only if it has a cardinality proviso imposing
that the contexts are empty if the left or the right weakening rule is not in
the calculus;

C3 contraction, multicut, and weakening rules, either for a connective or generic,
and the cut rule, are such that

1 the general multicut rule is in the calculus iff the contraction rules are
present;

2 the left (right) multicut rule is in the calculus iff the left (right) con-
traction rule is in the calculus and the right (left) contraction rule is
not;

210

3 the left (right) multicut rule is in the calculus only if the calculus has a
cardinality proviso for the right (left) side;

4 the left (right) multicut rule for a connective is in the calculus iff the left
(right) contraction rule for that connective is also in the calculus;

5 the left (right) multicut rule for a connective c is in the calculus only
if (i) introduction rules with closure provisos, the axiom rule and the
generic weakening rule, are the only rules in the calculus that have a
principal formula in the right (left) side of the conclusion that may have
c as main connective, (ii) the cut rule is present, and (iii) the right (left)
multicut rule is not in the calculus;

6 multicut rules for connectives are not in the calculus only if the left and
right weakening rules are in the calculus;

7 the left weakening rule is in the calculus iff the right weakening is in the
calculus;

8 the left (right) weakening rule for a connective c is in the calculus only
if (i) the right (left) introduction rules for c have closure provisos, and
(ii) the right (left) weakening rule for c is not in the calculus;

9 the contraction rules for a connective are not simultaneously in the cal-
culus;

10 the cardinality provisos in these rules are the ones imposed by the cal-
culus;

C4 a left (right) introduction rule r for a connective c is in the calculus only if
1 r does not have premises only if r does not have closure provisos over

the l side if the weakening rule over side l is not in the calculus;
2 either r does not have any cardinality proviso, or has the cardinality

proviso imposed by the calculus, or has a cardinality proviso imposing
that all the contexts are empty;

3 all the left (right) introduction rules for c in the calculus have the same
provisos;

C5 a rule r with closure proviso(s) is in the calculus only if its number is at
most 2, and

1 if it is 1 and the proviso is c left (right) then i) r is a right (left) intro-
duction rule for c, and ii) there is a restriction in the calculus imposing
that the number of formulas at the right (left) side is 1;

2 if it is 2 then the provisos are over opposite sides, and if one is c left and
the other is c′ right then i) either r is a right introduction rule for c or a
left introduction rule for c′, ii) if r is a right (left) introduction rule then
all the left (right) introduction rules for c′ (c) in the calculus have the
same provisos;

3 if r has a c left (right) closure proviso then there are in the calculus
i) a left (right) contraction rule, generic or for c, and ii) a left (right)
weakening rule, generic or for c;

C6 each pair of rules in the calculus with closure provisos is such that either
for each side they have the same closure provisos or the provisos are all over
different connectives;

211

C7 each pair of rules in the calculus formed by a right and a left introduction
rule for the same connective is cut suitable.

The conditions in the definition of a cut suitable calculus avoid the problem-
atic cases of the cut elimination proof.

4 Cut Elimination

In this section cut elimination is stated for any cut suitable calculus. The proof
follows the Tait style proof of cut elimination [11] as described in [12] and the
proofs of the lemmas are outlined.

We start by introducing some basic definitions needed in the cut elimination
proof. Our reference is [12]. The depth of a formula ϕ, denoted by |ϕ|, is the
maximum length of a branch in its construction tree minus 1. The depth of a
deduction D is the maximum length of a branch in D minus 1. The level of a
cut is the sum of the depths of the deductions of the premises. The rank of a cut
over a formula ϕ is |ϕ|+ 1. The cutrank of a deduction D, denoted by cr(D), is
the maximum of the ranks of cuts in D over formulae. If there are no cuts in D
over formulae, the cutrank is 0.

Lemma 1. Given a deduction D◦ for
C s where s is obtained by a cut from
deductions D and D′ with a lower cutrank than D◦, in the context of a cut
suitable calculus C, then there is a deduction D• for
C s with lower cutrank
than D◦.

The proof of this lemma follows by complete induction on the level of the cuts.
The base and the step follows by case analysis using the induction hypothesis
and the cut suitable conditions.

The next lemma extends the previous one by proving a similar result for any
deductions and so not only for deductions ending in a cut with greater rank
than the cutrank of the deductions of the premises. That is it shows that for any
deduction with non null cutrank there is a deduction with lower cutrank.

Lemma 2. Given a deduction D for
C s with non null cutrank, where C is a
cut suitable calculus, then there is a deduction D• for
C s with lower cutrank
than D.

The proof follows straightforwardly by complete induction on the depth of the
deduction.

The cut elimination theorem can be seen as resulting by the successive appli-
cation of the cutrank reduction lemma until a deduction without cuts is obtained.

Theorem 1. Given a deduction for
C s where C is a cut suitable calculus then
there is a deduction for
C s without cuts.

The proof follows straightforwardly by complete induction on the cutrank of the
deduction.

212

5 Related Work

Herein we studied sufficient conditions for sequent calculi for propositional based
logics to enjoy cut elimination. There are only a few works in the literature
dedicating some attention to this issue, like [4, 7, 13] where sufficient conditions
for a display calculus to enjoy cut elimination are described, and [10] where these
conditions are studied in the context of substructural logics.

Interesting results appear also in [1] and [3], where a condition similar to the
existence of a cut sequence for each pair of introduction rules, see Definition 2,
is present. This condition, nevertheless, do not contemplate the relation between
the number of premises in the cut sequence and the multiplicative and additive
character of the rules.

6 Acknowledgments

The author wishes to express his gratitude to Cristina Sernadas for the sugges-
tions made on an earlier version of this work, as well as to the participants of
the Logic and Computation Seminar of the CLC for the useful feedback on a
related presentation. This work was partially supported by FCT and FEDER
through POCI, namely via the QuantLog POCI/MAT/55796/2004 Project.

References

1. A. Avron and I. Lev. Non-deterministic multiple-valued structures. Journal of
Logic and Computation, 15:241–261, 2005.

2. M. Baaz and A. Leitsch. Cut normal forms and proof complexity. Annals of Pure
and Applied Logic, 97:127–177, 1999.

3. M. Baaz and A. Leitsch. Cut-elimination and redundancy-elimination by resolu-
tion. Journal of Symbolic Computation, 29:149–176, 2000.

4. N. Belnap. Display logic. Journal of Philosophical Logic, 11:375–417, 1982.
5. S. R. Buss. An introduction to proof theory. In Handbook of Proof Theory, pages

1–78. Elsevier, 1998.
6. G. Gentzen. Untersuchungen über das logische Schliessen. Mathematische

Zeitschrift, 39:176–210, 405–431, 1934-35. English translation in ”The collected
papers of Gerhard Gentzen”, M. E. Szabo ed., North-Holland, 1969, pages 68–131.

7. R. Goré. Substructural logics on display. Logic Journal of the IGPL, 6(3):451–504,
1998.

8. P. Mateus, J. Rasga, and C. Sernadas. Modal sequent calculi labelled with truth
values: Cut elimination. Logic Journal of the IGPL, 13(2):173–199, 2005.

9. J. Rasga. Cut elimination for a class of propositional based logics. Techni-
cal report, CLC, Department of Mathematics, Instituto Superior Técnico, 1049-
001 Lisboa, Portugal, 2005. Submitted for publication. Preprint available from
http://slc.math.ist.utl.pt/jfr.html.

10. G. Restall. An Introduction to Substructural Logics. Routledge, 2000.
11. W. W. Tait. Normal derivability in classical logic. In J. Barwise, editor, The

Sintax and Semantics of Infinitary Languages, volume 72 of LNM, pages 204–236.
Springer, 1968.

213

12. A. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University
Press, 1996.

13. H. Wansing. Strong cut-elimination in display logic. Reports on Mathematical
Logic, 29:117–131, 1995. First German-Polish Workshop on Logic & Logical Phi-
losophy (Bachotek, 1995).

214

