
Faculty of Computer Science Institute of Artificial Intelligence Knowledge Representation and Reasoning

An Efficient Encoding of the at-most-one Constraint

Steffen Hölldobler Van Hau Nguyen

KRR Report 13-04

Mail to Bulk mail to Office Internet

Technische Universität Dresden Technische Universität Dresden Room 2006 http://www.wv.inf.tu-dresden.de

01062 Dresden Helmholtzstr. 10 Nöthnitzer Straße 46

01069 Dresden 01187 Dresden

An Efficient Encoding of the at-most-one

Constraint

Steffen Hölldobler and Van Hau Nguyen

Knowledge Representation and Reasoning Group
Technische Universität Dresden, 01062 Dresden, Germany

sh,hau@iccl.tu-dresden.de

Abstract. One of the most widely used constraint during the process
of translating a practical problem into an equivalent SAT instance is
the at-most-one (AMO) constraint. Besides a brief survey of well-known
AMO encodings, we will point out the relationship among several AMO

encodings - the relaxed ladder, sequential, regular and ladder encodings.
Therefore, it could help SAT community, especially researchers working
in SAT encoding to avoid confusing among these encodings. The major
goal of this paper is to propose a new encoding for the AMO constraint,
named the bimander encoding which can be easily extended to cardinal-
ity constraints. Experimental results reveal that the proposed method
is a significantly competitive one among other recently efficient meth-
ods. We will prove that the bimander encoding allows the unit propaga-
tion to achieve arc consistency. Furthermore, we will show that one of
special case of bimander encoding outperforms the binary encoding, a
well-known AMO encoding, in all experiments.

1 Introduction

Boolean Satisfiability problem (SAT) has been significantly investigated for the
last two decades. SAT solving comprises two essential phases: encoding a certain
problem into an equivalent SAT instance, and then solving the resulting instance
by advanced SAT solvers. Compared with considerable improvements in the
design and implementation of SAT solvers, in the last decade the progress on SAT
encoding has been very limited. Moreover, different encodings when translating
a Constraint Satisfaction Problem (CSP) into a SAT instance can get different
sizes and difficulties of the resulting CNF formula.

Generally, it is well-known that no particular encoding performs better than
others, whereas the following aspects of an encoding are always considered:

– the number of clauses required;
– the number of auxiliary variables required; and
– the strength of the encoding in terms of performance of unit propagation in

SAT solvers.

The most natural and common way to translate a CSP is the direct encoding
(see [1]). The direct encoding requires the at-least-one (ALO) and at-most-one

(AMO) constraints to let one CSP variable to assign exactly one value. While
the ALO constraint is trivial to translate to a single clause, the AMO constraint
is more complicated and it has been intensively studied ([2,3,4,5,6]). The AMO

constraint, as its name, requires that at most one of n propositional variables is
allowed to be TRUE, shortly denoted by ≤1 (X1, ..., Xn). Interest of the AMO

constraint has increased to meet requirements of different applications, such as
computer motographs [7], partial Max-SAT [8], and cardinality constraints [3].

Inspired by many interesting and recent results [2,3,4], especially when Prest-
wich used the binary AMO(X) encoding [9,10] to solve successfully many large
instances with a standard SAT local search method [5,6], after surveying several
of well-known methods of the AMO constraint, we will introduce a new way of
encoding this constraint.

In the brief survey, we will point out the identity of three AMO encodings
-the relaxed ladder, the sequential and the regular encodings. These encodings
are exact the ladder encoding after removing redundant clauses. Therefore, it
could help SAT community, especially researchers working in SAT encoding to
avoid confusing among these encodings.

The new encoding, named the bimander encoding, requires n2

2m +nlog2m− n
2

binary clauses, and log2m(1 ≤ m ≤ n) additional variables, where m is the
number of disjointed subsets by dividing from the original set of n Boolean vari-
ables {X1, ..., Xn}. Additionally, the bimander encoding can be easily extended
to cardinality constraints, ≤ k(X1, ..., Xn), which expresses that there are no
more than k of the n Boolean variables Xi, 1 ≤ i ≤ n, assigned simultaneously
to TRUE values. To the best of our knowledge, our encoding is the one that
requires least number of additional variables among known encoding methods,
except for the pairwise encoding which needs no additional variables. With re-
spect to scalability, the bimander encoding can be adjusted by changing the
number of subsets m to get a suitable encoding. For example, by setting the
parameter m to specific values, the binary and pairwise encodings can be ex-
pressed as special cases of the bimander encoding. Interestingly, a special case
of the bimander encoding, setting m = ⌈n

2 ⌉, outperforms the binary encoding,
a well-known encoding, in all our experiments. It is important to note that our
encoding allows unit propagation (UP) to preserve arc consistency.

The structure of the paper is as follows. In Section 2, we briefly represent
efficient and recent approaches to encode the AMO constraint. In Section 3
we describe the new encoding for the AMO constraint , the so-called bimander

encoding. In section 4, we compare the bimander encoding with others through
experiments. Finally, we give conclusions and future research works in Section
5.

2 Existing Encodings

Before giving a brief survey of almost all of well-known existing AMO encodings
of SAT encoding, we first define notions and notations, mainly following [3].

2

Let Xi, 1 ≤ i ≤ n, be Boolean variables; let A be a possibly empty set
of auxiliary Boolean variables supporting the encoding; and let φ(X,A) be an
encoding of ≤1 (X1, ..., Xn). The encoding φ(X,A) is correct if and only if:

– any assignment α that satisfies ≤1 (X1, ..., Xn) can be extended to a com-
plete assignment that satisfies φ(X,A), and

– for any (partial) assignment x̂ to X = (X1, ..., Xn) in which if x̂ has more

than one literals assigned TRUE values, unit propagation UP detects a
conflict (generating an empty clause).

On the SAT side, UP plays a crucial role in SAT solver by being a major
deduction in DPLL [11,12], whereas on the CSP side, arc consistency is the most
important technique since it is the best trade-off between the amount and the
cost of pruning. Therefore, when translating a CSP instance into an equivalent
SAT instance, in order to know how powerful the performance of UP of that
encoding is, one should pay much attention to determine whether UP of the
equivalent SAT instance enforces arc consistency property.

UP of a SAT encoding of ≤1 (X1, ..., Xn) constraints achieves the same prun-
ing as arc consistency on the original CSP if:

– whenever any variable Xi, 1 ≤ i ≤ n, is assigned to TRUE, all the other
variables must be forced to the values FALSE under UP.

In following sections, generally AMO(X), ALO(X) and EO(X) denote the
at-most-one, at-least-one and Exactly-One constraint, respectively for the set of
positional variables X. Furthermore, for the sake of convenience, we will illus-
trate those encoding on a running example through the set consisting 8 Boolean
variable, X = X1, ..., X8.

We briefly represent several well-known and efficient encodings of the ≤1

(X1, ..., Xn) constraint. Some notations used was taken from [3] and we give
comments for each encoding if they are necessary.

2.1 The Pairwise Encoding

There are several different names of this encoding: the naive encoding [13,2], the
pairwise encoding [14,6], and the binomial encoding [3]. In this paper, we refer
to it as the pairwise encoding. The idea of this encoding is to express that no
possible combinations of two variables are simultaneously TRUE , therefore as
soon as one literal is TRUE, the all others must be FALSE :

n−1∧

i=1

n∧

j=i+1

(X̄i ∨ X̄j)

3

In the running example, the pairwise encoding produces the following clauses:

X̄1 ∨ X̄2, X̄1 ∨ X̄3, X̄1 ∨ X̄4, . . . , X̄1 ∨ X̄8

X̄2 ∨ X̄3, X̄2 ∨ X̄4, . . . , X̄2 ∨ X̄8

X̄3 ∨ X̄4, . . . , X̄3 ∨ X̄8

...

X̄7 ∨ X̄8

The pairwise encoding is the most widely known one for encoding the AMO

constraint. Although this method does not need any auxiliary variables, it re-
quires a quadratic number of clauses (see Table 1). Generally, this encoding
performs acceptably well, particularly for small cases, but usually produces im-
practical large formulas which can be inferior to other methods, especially for
encoding the At-Most-k constraint. Nevertheless, the pairwise encoding is not
only commonly used in practical, but also easily combined with other encoding
methods [2,4].

2.2 The Binary Encoding

Frisch et al. [9,10] firstly proposed the binary encoding (Prestwich independently
named the bitwise encoding [6,15]), and Prestwich used this encoding to solve
successfully a number of large instances with a standard SAT local search method
[5,6].

New Boolean variables B1, ..., B⌈log2n⌉
1 are introduced. The expected clauses

are following: where Bj (or B̄j) is the bit j of i−1 represented by a binary string
is 1 (or 0).

n∧

i=1

⌈log2n⌉∧

j=1

〈X̄i ∨ φ(i, j)〉,

where φ(i, j) denotes Bj (or B̄j) if the bit j of i − 1 represented by a binary
string is 1 (or 0).

The running example is represented by the binary encoding as follows:

X̄1 ∨ B̄1 X̄2 ∨B1 X̄3 ∨ B̄1 . . . X̄8 ∨B1

X̄1 ∨ B̄2 X̄2 ∨ B̄2 X̄3 ∨B2 . . . X̄8 ∨B2

X̄1 ∨ B̄3 X̄2 ∨ B̄3 X̄3 ∨ B̄3 . . . X̄8 ∨B3

The hidden idea is to create the different sequences of ⌈log2n⌉-tuples Bj , 1 ≤
j ≤ ⌈log2n⌉, such that whenever any Xi is assigned to TRUE, 1 ≤ i ≤ n, then
we immediately infer that the other variables Xi′ must be FALSE, for any i′ 6= i.
With this encoding UP maintains arc consistency property.

1 ⌈x⌉ is the smallest integer not less than x.

4

2.3 The Commander Encoding

Klieber and Kwon [2] described the commander encoding by dividing the set
of Boolean variables {X1, ..., Xn} into m disjointed subsets G1, ..., Gm, and in-
troducing a commander variable ci considered as a candidate of each group Gi,
1 ≤ i ≤ m. The commander encoding requires the following clauses:

1. Exactly-One variable in each group, consisting Gi and corresponding c̄i,
is assiged to the TRUE value. Whereas the ALO constraint is trivial to
translate to a single clause, AMO can be encoded by any known methods :

m∧

i=1

〈EO(c̄i ∪Gi)〉 =
m∧

i=1

〈AMO(c̄i ∪Gi)〉 ∧
m∧

i=1

〈ALO(c̄i ∪Gi)〉

For the running example, we divide the set X = {X1, ..., X8} into m = 4
disjointed subsets: G1 = {X1, X2}, G2 = {X3, X4}, G3 = {X5, X6} and
G4 = {X7, X8}. Then, four Boolean variables c1, c2, c3 and c4 are intro-
duced as a candidate of G1, G2, G3 and G4 respectively. Consequently, the
commander produces the following clauses:

AMO(c̄1, X1, X2)∧ (c̄1∨ X1∨X2)∧ · · ·∧AMO(c̄4, X7, X8)∧ (c̄4∨X7∨X8)

2. At most one commander variable is assigned TRUE. This constraint can be
encoded either by the pairwise encoding or by the commander method:

m∧

i=1

〈AMO(ci)

The following clauses are generated in the running example:

AMO(c1, c2, c3, c4)〉
Compared with the pairwise encoding, the commander encoding requires less

the number of clauses, and introduces an acceptable number of new variables (see
Table 1). The commander encoding also allows UP to preserve arc consistency
property.

2.4 The Product Encoding

Chen [4] proposed an encoding for AMO constraint, named the product encoding.
Insteading of encoding the constraint consisting of n propositional variables ≤1

(X1, ..., Xn), he encoded the constraint consisting of corresponding n point ≤1

{(ui, vj), 1 ≤ i ≤ u, 1 ≤ j ≤ v, p× q ≥ n}. The hidden idea can be explained as
follows:

1. Firstly mapping each variable Xk, 1 ≤ k ≤ n onto one corresponding point
(ui, vj) where ui ∈ U = {u1, ..., up}, vi ∈ V = {v1, ..., vq}.

2. Then the product encoding is represented:

AMO(X) = AMO(U) ∧AMO(V)

1≤k≤n,k=(i−1)q+j∧

1≤i≤p,1≤j≤q

〈(X̄k ∨ ui) ∧ (X̄k ∨ vj)〉

5

whereas AMO(U) and AMO(V) can be encoded by either a recursive or another
way.

Regard to the running example, we choose p = 3 and q = 3, and we use
the paiwise encoding for AMO(U) and AMO(V). The derived clauses are as
follows:

AMO(U) : (ū1 ∨ ū2) ∧ (ū1 ∨ ū3) ∧ (ū2 ∨ ū3)

AMO(V) : (v̄1 ∨ v̄2) ∧ (v̄1 ∨ v̄3) ∧ (v̄2 ∨ v̄3)

AMO(X) =AMO(U) ∧AMO(V)∧
(X̄1 ∨ u1) ∧ (X̄1 ∨ v1) ∧ (X̄2 ∨ u2) ∧ (X̄2 ∨ v1)∧
(X̄3 ∨ u3) ∧ (X̄3 ∨ v1) ∧ (X̄4 ∨ u1) ∧ (X̄4 ∨ v2)∧
(X̄5 ∨ u2) ∧ (X̄5 ∨ v2) ∧ (X̄6 ∨ u3) ∧ (X̄6 ∨ v2)∧
(X̄7 ∨ u1) ∧ (X̄7 ∨ v3) ∧ (X̄8 ∨ u2) ∧ (X̄8 ∨ v3)

2.5 The Sequential Encoding

By building a count-and-compare hardware circuit and translating this circuit to
an equivalent CNF formula, Sinz [13] introduced an encoding of ≤k (X1, ..., Xn),
namely the sequential encoding.

For the case k = 1, the set of AMO(X) clauses is followed:

(X̄1 ∨ s1) ∧ (X̄n ∨ s̄n−1)
∧

1<i<n

〈(X̄i ∨ si) ∧ (s̄i−1 ∨ si) ∧ (X̄i ∨ s̄i−1)〉 (1)

where si, 1 ≤ i ≤ n− 1, are additional variables.
The running example is represented as follows:

X̄1 ∨ s1

X̄2 ∨ s2 s̄1 ∨ s2 X̄2 ∨ s̄1

X̄3 ∨ s3 s̄2 ∨ s3 X̄3 ∨ s̄2

X̄4 ∨ s3 s̄3 ∨ s4 X̄4 ∨ s̄3

X̄5 ∨ s4 s̄4 ∨ s5 X̄5 ∨ s̄4

X̄6 ∨ s5 s̄5 ∨ s6 X̄6 ∨ s̄5

X̄7 ∨ s6 s̄6 ∨ s7 X̄7 ∨ s̄6

X̄8 ∨ s̄7

As Marques-Silva and Lynce [14] pointed out that the sequence s1, ..., sn−1

is of the form ”0...01...1” and whenever any Boolean variable Xi is assigned to
TRUE (or 1), 1 ≤ i ≤ n, consequently, under unit propagation all the other
variables Xj must be forced to FALSE (or 0), 1 ≤ j 6= i ≤ n.

2.6 The Ladder Encoding

Gent and Nightingale used the ladder structure, originally proposed by Gent et
al.[16], to describe a new encoding for the alldifferent constraint into SAT [17].
It was named the ladder encoding related to its ladder structure.

6

Without loosing the correctness property, we reverse the condition of n − 1
additional Boolean variables, s1, ..., sn−1 in [13,14] (in [17], y1, ..., yn−1) which
satisfy the following ladder clauses:

n−2∧

i=1

(si+1 ∨ s̄i) (2)

and adds the channeling clauses:

n∧

i=1

〈(si ∧ s̄i−1) ⇐⇒ Xi〉 (3)

where
s0 = 0 ∧ sn = 1 (4)

are set.
The idea hidden is simple. While the sequence s1, ..., sn−1 is a sequence of 0’s

or more 1’s values, and the rest of variables assigned 1 values; i.e., the sequence
s1, ..., sn−1 is of the form ”0...01...1” (in [17], ”1...10...0”). Thus, there is at
most one adjacent pair of variables si−1 and si where si−1 = 0∧si = 1, 1 ≤ i ≤ n.
As soon as a variable Xi is assigned to TRUE , 1 ≤ i ≤ n, and consequently,
all the other variables Xj are forced to FALSE, 1 ≤ j 6= i ≤ n, under unit
propagation.

By combining (2),(3) and (4) we obtain the following set of clauses:

n∧

i=1

〈(s̄i−1 ∨ si) ∧ (s̄i ∨ si−1 ∨Xi) ∧ (X̄i ∨ si) ∧ (X̄i ∨ s̄i−1)〉 (5)

We can prove easily that the clause (s̄i∨si−1∨Xi) in (5) is redundant since it
does not affect the correctness of the at-most-one constraint. Moreover, both the
sequential encoding and the ladder encoding require the same n − 1 additional
Boolean variables. Now we realize that the sequential encoding is exact the ladder
encoding without the redundant clauses.

Prestwich [6] supposed the relaxed ladder encoding which is the ladder en-
coding without these redundant clauses. It is easy to see that the relaxed ladder

encoding and the sequential encoding are the same. Argelich et al. [18] also no-
ticed that the sequential encoding is a reformulation of a regular encoding [19].
In fact, it is a simple matter to prove that the regular encoding and the ladder

encodings are the same.
In conclusion, we shown that the two AMO encodings -the relaxed ladder

encoding and the sequential encoding are the same. These encodings are exact
the ladder encoding or the regular encoding after removing redundant clauses.
Interestingly, there are various related works. Tamura et al. used this structure
for the order encoding in their SAT-based solving system [20]. Bailleux et al.
[7] referred to this structure as the unary representation which was used during
their translation of cardinality constraints and pseudo-Boolean constraints to
SAT formulas([7,21,22]).

7

Recently, Martins et. al [23] compared both encodings in their paper. Argelich
et al. [18] compared two encodings of the alldifferent constraints, one based on
the sequential encoding and the other based on the ladder encoding. To the best
of our knowledge, we are not aware of any paper mentioning about the rela-
tionship among the ladder, sequential, relaxed ladder and regular encodings. We
hope that this work could help the SAT community to recognize the similarities
of these encodings.

3 The Bimander Encoding

The general idea of a new encoding is based on both the ideas of the binary

encoding and the commander encoding. We refer to it as the bimander encoding.
Similarly to the commander encoding, with a given positive number m, 1 ≤

m ≤ n, we partition a set of propositional variables X = (X1, ..., Xn) into
m disjoint subsets G1, ..., Gm such that each group Gi, 1 ≤ i ≤ m, consists
g = ⌈ n

m
⌉ variables. However, instead of introducing commander variables like

in the commander encoding, we introduce a set of auxiliary Boolean variables
B1, ..., B⌈log2m⌉ like in the binary encoding. The variables B1, ..., B⌈log2m⌉ play
as the roles of the commander variables in the commander encoding.

The bimander encoding is the conjunction of the clauses obtained as follows:

1. At most one variable in each group can be TRUE. we encode this constraint
for each group Gi, 1 ≤ i ≤ m, by using the pairwise method.

m∧

i=1

〈AMO(Gi)〉

Regard to the running example, by chooding m =
√
n = 3 we have:

AMO(X1, X2, X3) ∧AMO(X4, X5, X6) ∧AMO(X7, X8)

2. The following clauses are constraints between each variable in a group and
commander variables:

m∧

i=1

g∧

h=1

⌈log2m⌉∧

j=1

X̄i,h ∨ φ(i, j)

where φ(i, j) denotes Bj (or B̄j) if the bit j of i− 1 represented by a unique
binary string is 1 (or 0).

The following clauses are generated in the running example:

X̄1 ∨ B̄1 X̄4 ∨B1 X̄7 ∨ B̄1

X̄1 ∨ B̄2 X̄4 ∨ B̄2 X̄7 ∨B2

X̄2 ∨ B̄1 X̄5 ∨B1 X̄8 ∨ B̄1

X̄2 ∨ B̄2 X̄5 ∨ B̄2 X̄8 ∨B2

X̄3 ∨ B̄1 X̄6 ∨B1

X̄3 ∨ B̄2 X̄6 ∨ B̄2

8

Compared with the commander encoding, in the bimander encoding we do
not add any constraints among the binary sequences since any combination of
auxiliary Boolean variables B1, ..., B⌈log2m⌉ of a corresponding group is different
from any combinations of all the other corresponding groups.

Let us first prove some important properties of the bimander encoding.
Correctness.

Now we assume that we have a partial assignment x = (X1, ..., Xl), 1 ≤ l ≤ n,

with at most one assigned variable to TRUE. For the case of none variables
assigned to TRUE value (all variables assigned FALSE), then the first condition
is trivially satisfied, so is the second condition. In the case of an existing one
Xi = TRUE, 1 ≤ i ≤ n, there is a corresponding sequence of truth values
assigned to {B1, ...B⌈log2m⌉}. The second condition is satisfied as well. Therefore,
the partial assignment x can possibly be extended to a complete assignment that
satisfies the two above conditions.

Suppose that we have a partial assignment x = (X1, ..., Xl), 1 ≤ l ≤ n,

with more than one assigned variables to TRUE, assuming that two of them
are Xi = TRUE and Xj = TRUE, 1 ≤ i 6= j ≤ l. Each of these two as-
signments force a corresponding pattern of truth values to be assigned to the
sequence of {B1, ...B⌈log2m⌉}. As a result, the sequence exists one propositional
variable Bk, 1 ≤ k ≤ ⌈log2m⌉, that is assigned both TRUE and FALSE. It is a
contradiction!

Hence, if any partial assignment has more than one literal assigned TRUE

values, then UP produces an empty clause. It means that this partial assignment
can not be extended to a complete assignment. In conclusion, the bimander

encodes correctly the at-most-one constraint.
Propagation strength. Suppose that we have a partial assignment x = (X1, ..., Xl),

1 ≤ l ≤ n, consisting exactly one variable set to TRUE. Now we will show that
UP forces all other variables to FALSE. Indeed, we assume a variable Xi,j =
TRUE which is the jth variable in the group Gi, 1 ≤ i ≤ m, then this assignment
forces a corresponding pattern of TRUE values to {B1, ...B⌈log2m⌉}. By following
the first condition, all other variables in group Gi are set to FALSE. By following
the second condition, all the other variables in group Gi′ , 1 ≤ i′ 6= i ≤ m are set
to FALSE since they have different patterns of TRUE values {B1, ...B⌈log2m⌉}
of the corresponding Xi,j = TRUE. In conclusion, the unit propagation (UP)
of the bimander encoding forces arc consistency property.

Complexity. As we mentioned, we need a set of ⌈log2m⌉ additional Boolean
variables. The first constraint encoding by the pairwise method requires m ∗
[g(g−1)

2] =
n(n

m
−1)

2 new clauses. The second constraint requires m ∗ [g ∗ log2m] =

n ∗ ⌈log2m⌉ clauses. Hence, the encoding uses
n(n

m
−1)

2 + n⌈log2m⌉ = n2

2m +
n⌈log2m⌉ − n

2 clauses.
Related to scalability, it is interesting to note that the bimander encoding is

a general case of several encodings. For example:

– the pairwise encoding is a special case of the bimander encoding whenm = 1;
– the commander encoding is a special case of the bimander encoding when

m = 2 (when both encodings divide into 2 subsets); and

9

– the binary encoding is a special case of the bimander encoding when m = n.

It is also important to note that the bimander encoding can be easily gener-
alized to encode the At-Most-k constraint, which is described as follows.

1. At most k variables in each group can be true. We encode this constraint for
each group Gi, 1 ≤ i ≤ m, by using the pairwise (or another) method.

2. The constraints between each variable in a group and commander variables
are encoded by the following clauses:

m∧

i=1

g∧

h=1

k∨

l=1

⌈log2m⌉∧

j=1

X̄i,h ∨ φ(i, h, l, j)

where φ(i, h, l, j) denotes Bl,j (or B̄l,j) if the bit j of i − 1 represented by a
binary string is 1 (or 0).

4 Comparisons and Experimental Evaluations

In this section, we first show almost known methods for the AMO constraint.
Then we compare our encoding with several common and efficient methods
through experiments.

4.1 Comparisons

Table 1 presents a summary of main approaches of the AMO encoding meth-
ods. The ”Clauses” and ”auxiliary Vars” columns show the number of clauses
required and auxiliary variables corresponding to the methods. The ”Con.” col-
umn indicates that whether UP of the corresponding encoding achieves the arc
consistency property or not. The ”Origin” column infers the original publica-
tion where the method had been introduced. We use m to denote the disjointed
subsets by dividing the set of Boolean variables {X1, ..., Xn} occurring in the
bimander encoding.

Table 1. A summary of almost known methods of the AMO encoding.

Methods Clauses auxiliary Vars Con. Origin

pairwise
(

n

2

)

0 AC none

linear 8n 2n search [24]

totalizer O(n2) O(nlog(n)) AC [7]

binary nlog2n ⌈log2n⌉ AC [10]

sequential 3n− 4 n− 1 AC [13]

sorting networks O(nlog22n) O(nlog22n) AC [21]

commander ∼ 3n ∼ n

2
AC [2]

product 2n+ 4
√
n+O(4

√
n) 2

√
n+O(4

√
n) AC [4]

card. networks 6n− 9 4n− 6 AC [25]

PHFs-based nlog2n ⌈log2n⌉ AC [26]

bimander n
2

2m
+ nlog2m− n

2
log2m, 1 ≤ m ≤ n AC this paper

bimander (m = n

2
) nlog2n− n

2
⌈log2n⌉ − 1 AC this paper

10

With respect to the scalability, the bimander encoding can be adjusted to get
a suitable encoding. In fact, the bimander encoding requires the least auxiliary
variables, excepting the pairwise encoding, among known encoding methods.
The totalizer encoding proposed by Bailleux al et. [7] requires clauses of size at
most 3, and the commander encoding proposed by Klieber and Kwon [2] needs
m (number of disjointed subsets) clauses of size ⌈ n

m
+1⌉, whereas the sequential,

binary and bimander encodings require only binary clauses.

4.2 Experimental Evaluations

In order to evaluate the different encodings, we choose several difficult and well-
known problems which have been benchmarks not only on the CSP side, but
also on the SAT side. These benchmarks have been used in the CSP-solvers and
SAT-solvers competitions. Moreover, we take two different parameters m for the
bimander encoding, one is m =

√
n and the other one is m = n

2 .

We used clasp 2 [27] which is one of among state-of-the-art SAT solvers
[28]. All experiments were executed on a 2.66 Ghz , Intel Core 2 Quad processor
with a memory limit of 3.8 GB running Ubuntu 10.04, and all runtimes are
measured in seconds. The dashes mean that running times of instances were
over timeout of 3600 seconds. The italic font designates the minimum time for a
certain instance. We abbreviate pairwise, sequential, commander, binary, product
encoding, and bimander encoding as pw, seq, cmd, bi, pro and bim respectively.

The Pigeon-Hole Problem This problem has been a common benchmark on
the SAT and CSP sides. The goal of the problem is to prove that p pigeons can
not be fit in h = p−1 holes. We use this problem to compare the performance of
the constraint≤1 (X1, ..., Xn) of the various encodings, like Frisch and Giannaros
[3], and Klieber and Kwon [2].

Table 2. A comparison of running times of well-known encodings performed by
clasp on unsatisfiable Pigeon-Hole problem. Runtimes reported are in seconds.

method pw seq cmd bi pro bim

size m =
√
n m = n

2

10 2.1 0.73 0.56 0.80 0.22 0.33 0.22

11 22.1 5.79 4.46 6.59 6.13 5.10 2.10

12 244.5 117.3 43.2 29.5 43.21 38.19 26.06

13 - 1604.1 352.5 142.6 736.2 546.9 64.91

14 - - - 1271 - - 560

Table 2 shows that the Pigeon-Holes instances seem very hard to deal with.
The bimander encoding performs the best for all cases followed by the binary

encoding. The pairwise encoding is the worse.

11

The All-Interval Series Problem We take the All-Interval Series (AIS) prob-
lem as a benchmark in which the performance of an encoding is heavily influenced
by the performance of encoding the AMO constraint. AIS is one of classical CSPs
and usually regarded as a difficult benchmark to find all solutions (see prob007
in [29]).

Table 3. A comparison of running times of well-known encodings performed by
clasp solver on the AIS problem. Runtimes reported are in seconds.

method pw seq cmd bi pro bim solutions

size m =
√
n m = n

2

7 0.05 0.03 0.02 0.02 0.05 0.01 0.02 32

8 0.56 1.07 0.6 0.2 0.49 0.6 0.6 40

9 5.33 8.9 0.37 0.27 5.61 0.3 0.24 120

10 61.7 104 1.7 1.58 60.7 1.95 1.46 296

11 972 1387 11.9 8.9 269 11.3 6.7 648

12 - - 78 49 - 69 43 1328

13 - - 517 356 - 504 276 3200

14 - - 3200 2748 - 3537 2005 9912

Excepting for two small cases, Table 3 shows that the variant of the bimander

encoding with m = n
2 significantly surpasses all the others. Moreover, for three

last instances this variant performs in a reasonable time, whereas the pairwise

and sequential encodings carry out more than 3600 seconds. The binary encoding
gives rather good results. Another variant of the bimander encoding with m =√
n and the commander encoding perform similarly. The pairwise, sequential

and product encodings perform poorly.

The Langford Problem This problem is a classical one of CSPs (see prob024
in [29]) and it is used as a hard benchmark as well. The aim of problem is either
to find all the sequences of 2∗n numbers 1, 1, 2, 2, ..., n, n, where there exists one
number between the two 1s, and two numbers between the two 2s, and generally
k numbers between the two ks, or to prove that there are no solutions.

12

Table 4. A comparison of running times of well-known encodings performed by
clasp solver on the Langford problem. Runtimes reported are in seconds.

method pw seq cmd bi pro bim solutions

size m =
√
n m = n

2

8 0.03 0.04 0.03 0.05 0.04 0.04 0.04 150

9 0.24 0.25 0.25 0.24 0.37 0.23 0.26 unsat

10 1.65 1.88 1.65 1.87 2.03 1.60 2.02 unsat

11 7.2 7.6 7.5 12.5 7.2 8.93 12.2 17792

12 59.3 62.1 56.7 86.2 53.6 79.4 58.8 108144

13 2275 1328 1462 1955 1443 1927 1925 unsat

14 30842 14946 16204 21308 - 20125 19734 unsat

Table 4 shows that three encodings - binary, and two variants of bimander

- show no clear difference. While the pairwise, and product encodings perform
worse, the sequential tends to be the fastest one for two large cases in term of
running time, and followed by the commander encoding.

The Quasigroup With Holes Problem Achlioptas et al. [30] introduced
a method for generating satisfiable Quasigroup With Holes (QWHs) instances
which are NP-hard and considered as a structured benchmark domain for the
study of CSP and SAT. Moreover, the method can tune the generator to output
hard problem instances. We experimented these QWHs instances with different
levels of hardness.

Table 5. The running time comparison of several encodings performed by clasp

solver on QWH instances. Runtimes reported are in seconds.

method pw seq cmd bi pro bim

size m =
√
n m = n

2

qwh.order30.holes320 0.46 0.28 0.23 0.25 0.23 0.20 0.22

qwh.order35.holes405 3.6 3.5 10.3 6.5 5.7 1.6 2.1

qwh.order40.holes528 134 115 124 120 241 58.9 159

qwh.order40.holes544 39.2 14.5 47.8 123 46.7 70.8 154

qwh.order40.holes560 121 65.3 55.6 119 33.1 21.2 53.2

qwh.order33.holes381 58.7 435 174 94.2 108.0 12.7 92.3

total 356.96 633.58 411.93 462.95 434.73 165.4 460.82

As shown in Table 5, it is interesting to notice that the variant of the bi-

mander encoding with m =
√
n is clearly the best overall encoding in term of

total runtime. Furthermore, except for the instance qwh.order40.holes544, this
encoding is clearly faster than other encodings for all the other instances. Sur-
prisingly, the pairwise encoding performs very well followed by the commander

encoding. In general, the variant of the bimander encoding with m = n
2 , the

13

binary and the product encoding are slightly similar. Although the sequential

encoding carries out the instance qwh.order40.holes544 fastest, its performance
is poor in overall.

Throughout above experiments, we shown that two variants of the bimander

encoding, with certain parameters m =
√
n and m = n

2 , are very competitive.
In particular, the variant with m =

√
n performs significantly the best on QWH

instances, and rather well on the other benchmarks, whereas the variant with
m = n

2 is clear the best on the Pigeon-Hole problem, the AIS problem, and
acceptable on the Langford problem.

5 Conclusions and Future Works

Inspired by being remarkably successful at solving hard and practical problems
of SAT solving, many problems that were solved previously by other methods can
now be solved more effectively by translating them to equivalent SAT problems,
and using advanced SAT solvers to find solutions. During the encoding phase,
one of the most important constraints, occurring naturally in a wide range of real
world applications, is the at-most-one (AMO) constraint. Hence solving many
problems gets benefits from the efficiency of the encoding of the AMO constraint.

The paper has four contributions. Firstly, we pointed out that the ladder

encoding exactly consists of the sequential encoding and a set of redundant
clauses. Moreover, the relaxed ladder encoding [6] and the sequential encoding
[13] are the same. Two encodings - ladder [17] and regular [19]- are the same as
well. Hence, the prior two encodings (relaxed ladder and sequential) are exact
the latter two encodings (ladder and regular) after removing redundant clauses.
Interestingly, these ideas were exploited in the unary representation [7] and the
order encoding [20]. We hope that our work could help researchers working in
SAT encoding to avoid confusing among these encodings.

Secondly, the major goal of the paper is to propose a new method to en-
code the at-most-one constraint to a SAT formula, called the bimander encod-
ing. Compared to many efficient and well-known AMO methods, the bimander

encoding requires the least auxiliary variables, with exception of the pairwise

encoding (requires no additional variable). Although the commander and bi-

mander encodings use the same approach by dividing the original set of Boolean
variables, the commander requires clauses of size ⌈ n

m
+1⌉ (where m is the num-

ber of disjointed subsets), whereas the bimander encoding requires only binary

clauses. We believe that this helps the bimander encoding performs better than
the commander encoding. Moreover, this new encoding has the advantage of
high scalability, and it can easily be adjusted in term of the number of addi-
tional Boolean variables to get a suitable encoding. For example, the pairwise

or binary encodings are special cases of the bimander encoding by setting cer-
tain parameters. The important feature of the new encoding is to allow unit
propagation to preserve arc consistency property.

Thirdly, this paper also proposes a special case, when dividing the original
Boolean variables into m = ⌈n

2 ⌉ disjoint subsets. From a theoretical point of

14

view, this case is better than the binary encoding in term of both the number
of auxiliary variables and clauses required. From a practical point of view, we
show that the special case of the bimander encoding (m = ⌈n

2 ⌉) performs better
than the binary encoding in all experiments in term of runtime.

Fourthly, in practice, the bimander encoding is easy to implement to get
different encodings. Our experimental results reveal that the variants of the
bimander encoding are very competitive with the others. For instance, they are
the best in three of four benchmarks.

In general, a smaller encoding with respect to the number of clauses, literals
or variables tends to perform better. However, a good encoding for one algorithm
might be bad for others. For this reason, the best way to evaluate one encoding
is to experiment on particular problems. A side benefit of our encoding is to
give more the number of SAT encodings, and then to offer to SAT community
more choices to be able to deal with a wide variety of real-world applications.
This paper should also be viewed as a preliminary attempt to provides a further
choice to encode the very common alldifferent constraint (see [17]).

An interesting our future research is to study how the number of disjointed
subsets could affect the bimander encoding through realistic problems. It would
be particularly useful to further supplement by implementing and comparing our
extended At-Most-k encoding with others. Finally, the ultimate goal should carry
out a profound study of not only analytical, but also theoretical knowledge of
variants of well-known encodings. We expect that this will help us to spur further
what makes an encoding perform better than others (in specific situations).

Acknowledgements We would like to thank Christoph Wernhard
for many useful suggestions, and Martin Gebser for his helpful discussions. We
also wish to thank Carla Gomes for her kindly providing us the QWH’s genera-
tor.

References

1. Walsh, T.: SAT v CSP. In: Principles and Practice of Constraint Programming
- CP2000. Volume 1894 of Lecture Notes in Computer Science., Springer (2000)
441–456

2. Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from n objects. In:
the Fourth Workshop on Constraint in Formal Verification(CFV). (2007)

3. Frisch, A.M., Giannoros, P.A.: Sat encodings of the at-most-k constraint. some
old, some new, some fast, some slow. In: Proc. of the Tenth Int. Workshop of
Constraint Modelling and Reformulation. (2010)

4. Chen, J.C.: A new SAT encoding of the at-most-one constraint. In: Proc. of the
Tenth Int. Workshop of Constraint Modelling and Reformulation. (2010)

5. Prestwich, S.D.: Variable dependency in local search: Prevention is better than
cure. In Silva, J.M., Sakallah, K.A., eds.: Theory and Applications of Satisfiability
Testing - SAT 2007, 10th International Conference, Lisbon, Portugal, May 28-31,
2007, Proceedings. Volume 4501 of Lecture Notes in Computer Science., Springer
(2007) 107–120

15

6. Prestwich, S.D.: Finding large cliques using sat local search. Volume Trends in
Constraint Programming., ISTE (2007) 273–278

7. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality con-
straints. Principles and Practice of Constraint Programming 9th International
Conference CP-2003 (2003) 108–122

8. Argelich, J., Cabiscol, A., Lynce, I., Manyà, F.: Sequential encodings from max-csp
into partial max-sat. In Kullmann, O., ed.: Theory and Applications of Satisfiabil-
ity Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK,
June 30 - July 3, 2009. Proceedings. Volume 5584 of Lecture Notes in Computer
Science., Springer (2009) 161–166

9. Frisch, A.M., Peugniez, T.J., Doggett, A.J., Nightingale, P.W.: Solving non-
boolean satisfiability problems with stochastic local search. In: in Proc. IJCAI-01.
(2001) 282–288

10. Frisch, A.M., Peugniez, T.J., Doggett, A.J., Nightingale, P.W.: Solving non-
boolean satisfiability problems with stochastic local search: A comparison of en-
codings. J. Autom. Reason. 35 (2005) 143–179

11. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7) (1962) 394–397

12. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient sat solver. In: Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, ACM (2001) 530–
535

13. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In:
Principles and Practice of Constraint Programming, 11th International Conference,
CP 2005, Spain, October 2005, Proceedings. Volume 3709 of Lecture Notes in
Computer Science., Springer (2005) 827–831

14. Silva, J.M., Lynce, I.: Towards robust CNF encodings of cardinality constraints. In:
Proc. 13th International Conference on Principles and Practice of Constraint Pro-
gramming CP-2007. Volume 4741 of Lecture Notes in Computer Science., Springer
(2007) 483–497

15. Prestwich, S.D. In: CNF Encodings. IOS Press (2009) 75–98

16. Ian P. Gent, P.P., Smith, B.M.: A 0/1 encoding of the gaclex constraint for pairs
of vectors. In: ECAI 2002 workshop W9: Modelling and Solving Problems with
Constraints, University of Glasgow (2002)

17. Gent, I., Nightingale, P.: A new encoding of alldifferent into sat,. In Frisch,
A.M., Miguel, I., eds.: Proceedings 3rd International Workshop on Modelling and
Reformulating Constraint Satisfaction Problems, Springer (2004) 95–110

18. Argelich, J., Cabiscol, A., Lynce, I., Manyà, F.: New insights into encodings
from MaxCSP into partial MaxSAT. In: 40th IEEE International Symposium
on Multiple-Valued Logic, ISMVL 2010, Barcelona, Spain, 26-28 May 2010, IEEE
Computer Society (2010) 46–52

19. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables into
problems with boolean variables. In: SAT 2004 - The Seventh International Con-
ference on Theory and Applications of Satisfiability Testing, 10-13 May 2004, Van-
couver, BC, Canada, Online Proceedings, Springer LNCS (2004) 1–15

20. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear csp into
sat. Constraints 14(2) (2009) 254–272

21. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. Journal
on Satisfiability, Boolean Modeling and Computation 2 (2006) 1–26

16

22. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-boolean con-
straints into CNF. In Kullmann, O., ed.: Theory and Applications of Satisfiability
Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June
30 - July 3, 2009. Proceedings. Volume 5584 of Lecture Notes in Computer Science.,
Springer (2009) 181–194

23. Martins, R., Manquinho, V.M., Lynce, I.: Exploiting cardinality encodings in
parallel maximum satisfiability. In: IEEE 23rd International Conference on Tools
with Artificial Intelligence, ICTAI 2011, Boca Raton, FL, USA, November 7-9,
2011. (2011) 313–320

24. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive
normal form. Information Processing Letters 68(2) (1998) 63–69

25. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality net-
works: a theoretical and empirical study. Constraints 16(2) (2011) 195–221

26. Ben-Haim, Y., Ivrii, A., Margalit, O., Matsliah, A.: Perfect hashing and CNF
encodings of cardinality constraints. In Cimatti, A., Sebastiani, R., eds.: Theory
and Applications of Satisfiability Testing - SAT 2012 - 15th International Confer-
ence, Trento, Italy, June 17-20, 2012. Proceedings. Volume 7317 of Lecture Notes
in Computer Science., Springer (2012) 397–409

27. Gebser, M., Kaufmann, B., Schaub, T.: The conflict-driven answer set solver clasp:
Progress report. In Erdem, E., Lin, F., Schaub, T., eds.: Logic Programming and
Nonmonotonic Reasoning, 10th International Conference, LPNMR 2009, Potsdam,
Germany, September 14-18, 2009. Proceedings. Volume 5753 of Lecture Notes in
Computer Science., Springer (2009) 509–514

28. : (http://www.satcompetition.org/)
29. Brahim Hnich, Ian Miguel, I.P.G., Walsh, T.: Csplib is a library of test problems for

constraint solvers. (http://www.csplib.org/) [Online; accessed 24-August-2012].
30. Achlioptas, D., Gomes, C.P., Kautz, H.A., Selman, B.: Generating satisfiable prob-

lem instances. In Kautz, H.A., Porter, B.W., eds.: Proceedings of the Seventeenth
National Conference on Artificial Intelligence and Twelfth Conference on on In-
novative Applications of Artificial Intelligence, July 30 - August 3, 2000, Austin,
Texas, USA, AAAI Press / The MIT Press (2000) 256–261

17

http://www.csplib.org/

	An Efficient Encoding of the at-most-one Constraint
	Steffen Hölldobler and Van Hau Nguyen

