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The Description Logic Horn-ALC: Syntax

Definition. A Horn-ALC ontology is a set of Horn-ALC axioms:

A v ⊥ > v B A v B A u E v B ∃R.A v B A v ∀R.B A v ∃R.B

In the above; A, B, and E are concept names; and R is a role name.

Remark. Note the axioms of the form A v ∀R.B, which are not EL, such as:

CheesePizza v ∀HasTopping.Cheese

The axiom states that “all toppings in a cheese pizza are cheese toppings”.

Even though Horn-ALC is not much more expressive than EL, (Krötzsch, Rudolph, and
Hitzler 2013) have showed that:

Theorem. Solving classification over Horn-ALC is ExpTime-complete.
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The Description Logic Horn-ALC: Semantics

Definition. We define the semantics of Horn-ALC axioms via translation into
equivalent first-order logic formulas:

A v ⊥ 7→ ∀x.
(
A(x)→ ⊥

)
> v B 7→ ∀x.B(x)

A v B 7→ ∀x.
(
A(x)→ B(x)

)
A u E v B 7→ ∀x.

(
A(x) ∧ E(x)→ B(x)

)
∃R.A v B 7→ ∀x.

(
R(x, y) ∧ A(y)→ B(x)

)
A v ∀R.B 7→ ∀x.

(
A(x) ∧ R(x, y)→ B(y)

)
A v ∃R.B 7→ ∀x.

(
A(x)→ ∃y.R(x, y) ∧ B(y)

)
In the above; A, B, and E are concept names, and R is a role name.
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The Description Logic Horn-ALC: Semantics

Definition. We define the semantics of Horn-ALC axioms via translation into
equivalent first-order logic formulas:

A v ⊥ 7→ ∀x.
(
A(x)→ ⊥

)
> v B 7→ ∀x.B(x)

A v B 7→ ∀x.
(
A(x)→ B(x)

)
A u E v B 7→ ∀x.

(
A(x) ∧ E(x)→ B(x)

)
∃R.A v B 7→ ∀x.

(
R(x, y) ∧ A(y)→ B(x)

)
A v ∀R.B 7→ ∀x.

(
A(x) ∧ R(x, y)→ B(y)

)
A v ∃R.B 7→ ∀x.

(
A(x)→ ∃y.R(x, y) ∧ B(y)

)
In the above; A, B, and E are concept names, and R is a role name.

Often, we remove universal quantifiers from first-order logic formulas.
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A Consequence-Based Calculus to Solve Classification

RC
A

)
A v A

: A ∈ Concepts(O) R+
∃

) C v A
C v ∃R.B

: A v ∃R.B ∈ O

R∃A
) C v ∃R.D
D v D

: D ∈ D R−
∃

) C v ∃R.D D v A
C v B

: ∃R.A v B ∈ O

R1
u

) C v A
C v B

: > v B ∈ O R⊥
∃

) C v ∃R.D D v ⊥
C v ⊥

R1
u

) C v A
C v B

: A v B ∈ O R∀
) C v ∃R.D C v A
C v ∃R.(D u B)

: A v ∀R.B ∈ O

R2
u

) C v A C v E
C v B

: A u E v B ∈ O

Figure: Classification Calculus for Horn-ALC. Where A, B, and E are concept names; R
is a role name; and C and D are conjunctions of concept names

Remark. Original calculus by (Kazakov 2009).
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Consequence-Based Calculus: Soundness

Soundness. Show via induction that each rule only produces sound inferences.

For instance, let us show that the following production rule is indeed sound:

(R∀)
C v ∃R.D C v A
C v ∃R.(D u B)

: A v ∀R.B ∈ O

Proof:

1. By IH: O |=
∧

C∈C C(x)→ ∃y.
(
R(x, y) ∧

∧
D∈D D(y)

)
2. By IH: O |=

∧
C∈C C(x)→ A(x)

3. By the precondition of the rule: O |= A(x) ∧ R(x, y)→ B(y)

4. By (1–3) and the semantics of first-order logic:
O |=

∧
C∈C C(x)→ ∃y.

(
R(x, y) ∧

∧
D∈D D(y) ∧ B(y)

)
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Consequence-Based Calculus: Completeness

To show completeness, we verify the following theorem:

Theorem. If an axiom of the form A v B is not derived by the previously proposed
calculus on input O, then O 6|= A v B.

Proof Sketch: Using the output of the calculus on input O, we can construct a model for
this ontology that contains an element that is in the domain of A but not in the domain of
B. Therefore, O 6|= A v B.

Remark. For a complete proof, check the following references:

• (Kazakov 2009)

• (Simancik, Kazakov, and Horrocks 2011)
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Consequence-Based Calculus: Complexity

Theorem. The Horn-ALC classification calculus runs in exponential time in the
size of the input ontology O.

Remark. Note that this calculus produces inferences of the form

(1) C v B and (2) C v ∃R.D

where B is a concept name, R is a role name, and C and D are conjunctions of
concept names. Therefore, the calculus may produce at most

2|Concepts(O)| × |Concepts(O)| and 2 × 2|Concepts(O)| × |Roles(O)|

inferences of type (1) and (2), respectively.
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Implementing the Consequence-Based Calculus: Datalog

Because of the following result, we can not implement the Horn-ALC classification
calculus using a fixed Datalog rule set:

Theorem. The data complexity of fact entailment over Datalog is in P.

Proof:

1. Consider a Datalog rule set R, a fact set F , and a fact ϕ.

2. Let R′ be the grounding of R using the constants in F .

3. We have that R′ ∪ F |= ϕ if and only if R ∪ F |= ϕ.

4. Checking if R′ ∪ F |= ϕ can be reduced to fact entailment over propositional logic,
which can be solved in polynomial time.

5. If R is fixed, then R′ is polynomial in the number of constants in F .

6. By (3) and (4): if R is fixed, we can decide if R ∪ F |= ϕ in polynomial time.
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Implementing the Consequence-Based Calculus: Datalog

Because of the following result, we can not implement the Horn-ALC classification
calculus using a fixed Datalog rule set:

Theorem. The data complexity of fact entailment over Datalog is in P.

Assume that we can implement the Horn-ALC classification calculus with a fixed
Datalog rule set (as done with the EL classification calculus). Then:

1. By Theorem 3.4: we could solve Horn-ALC classification in polynomial time.

2. By (1): we could solve an ExpTime-hard problem in polynomial time.

3. By (2): P = ExpTime ( )

Remark. To implement the Horn-ALC classification calculus (or any other proce-
dure that solves Horn-ALC classification), we need a rule-based language with
ExpTime-hard data complexity!
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A Horn-ALC Classification Calculus with Datalog(S)

We study Datalog(S), an extension of Datalog that can model exponential computations.

Example. Consider the following Datalog(S) rule set:

Person(x)→ LikesAll(x, ∅)

LikesAll(x, X) ∧ Likes(x, y)→ LikesAll(x, X ∪ {y})

LikesAll(x, X)→ AllLikeAll({x}, X)

AllLikeAll(X, Y) ∧ LikesAll(x, Y)→ AllLikeAll(X ∪ {x}, Y)

AllLikeAll(X, X) ∧ alice ∈ X → CliqueOfAlice(X)

Theorem. Checking fact entailment for Datalog(S) is ExpTime-complete for both
data and combined complexity.

See (Carral et al. 2019) for a complete proof of the above result.
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A Horn-ALC Classification Calculus with Datalog(S)

Using a function to encode the axioms and entities in an input ontology as facts and a
fixed Datalog(S) rule set, we can implement the Horn-ALC classification calculus.

Example. For an ontology O, let Facts(O) be the fact set such that:

A v ⊥ ∈ O 7→ axv(cA, c⊥) ∃R.A v B ∈ O 7→ ax∃v(cA, cR, cB)

> v B ∈ O 7→ axv(c>, cB) A v ∀R.B ∈ O 7→ axv∀(cA, cR, cB)

A v B ∈ O 7→ axv(cA, cB) A v ∃R.B ∈ O 7→ axv∃(cA, cR, cB)

A u E v B ∈ O 7→ axuv(cA, cE, cB) A ∈ Concepts(O) 7→ Concept(cE)

In the above; cA, cB, cE, c>, and c⊥ are fresh constants unique for A, B, E, >, and
⊥, respectively; and cR is a fresh constant unique R.
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A Horn-ALC Classification Calculus with Datalog(S)

We translate the production rules in the Horn-ALC classification calculus (left) into
analogous Datalog(S) rules (right):

RC
A
)

A v A
: A ∈ Concepts(O)

Concept(x)
→ SC({x}, x)

R∃A
) C v ∃R.D

D v D
: D ∈ D

Ex(C, r, D) ∧ d ∈ D
→ SC(D, d)

R0
u

) C v A
C v B

: > v B ∈ O
SC(C, a) ∧ axv(c>, b)

→ SC(C, b)

R1
u

) C v A
C v B

: A v B ∈ O
SC(C, a) ∧ axv(a, b)

→ SC(C, b)

R2
u

) C v A C v E
C v B

: A u E v B ∈ O
SC(C, a) ∧ SC(C, e) ∧ axuv(a, e, b)

→ SC(C, b)
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A Horn-ALC Classification Calculus with Datalog(S)

We translate the production rules in the Horn-ALC classification calculus (left) into
analogous Datalog(S) rules (right):

R+
∃

) C v A
C v ∃R.B

: A v ∃R.B ∈ O
SC(C, a) ∧ axv∃(a, r, b)

→ Ex(C, r, {B})

R−
∃

) C v ∃R.D D v A
C v B

: ∃R.A v B ∈ O
Ex(C, r, D) ∧ SC(D, a) ∧ ax∃v(r, a, b)

→ SC(C, b)

R⊥
∃

) C v ∃R.D D v ⊥
C v ⊥

Ex(C, r, D) ∧ SC(D, c⊥)
→ SC(C, c⊥)

R⊥
∀

)
C v ∃R.D C v A
C v ∃R.(D u B)

: A v ∀R.B
Ex(C, r, D) ∧ SC(C, a) ∧ axv∀(a, r, b)

→ Ex(C, r, D ∪ {b})
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A Horn-ALC Classification Calculus with Datalog(S)

Definition. Let RHALC be the following Datalog(S) rule set:

Concept(x)→ SC({x}, x) SC(C, a) ∧ axv(c>, b)→ SC(C, b)

Ex(C, r, D) ∧ d ∈ D→ SC(D, d) SC(C, a) ∧ axv(a, b)→ SC(C, b)

SC(C, a) ∧ SC(C, e) ∧ axuv(a, e, b)→ SC(C, b)

SC(C, a) ∧ axv∃(a, r, b)→ Ex(C, r, {B})

Ex(C, r, D) ∧ SC(D, a) ∧ ax∃v(r, a, b)→ SC(C, b)

Ex(C, r, D) ∧ SC(D, c⊥)→ SC(C, c⊥)

Ex(C, r, D) ∧ SC(C, a) ∧ axv∀(a, r, b)→ Ex(C, r, D ∪ {b})

Theorem. Consider a Horn-ALC ontology O and an axiom of the form A v B.
Then, O |= A v B if and only if RHALC ∪ Facts(O) |= SC(cA, cB).

David Carral, September 4, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 15 of 23



Implementing the Classification Calculus with VLog

Alas, VLog does not support Datalog(S) reasoning. There maybe some other
rule-based language that we can use...

The following result is a recent finding by (Krötzsch, Marx, and Rudolph 2019):

Theorem. The data complexity of fact entailment over rule sets that terminate
with respect to the restricted chase is ExpTime-hard.

Moreover, (Carral et al. 2019) have proposed a translation from Datalog(S) into
existential rule programs such that:

• The resulting programs terminate with respect to the restricted chase.

• Fact entailment is preserved.
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From Datalog(S) to Existential Rules

Person(x)→ LikesAll(x, ∅) LikesAll(x, X) ∧ Likes(x, y)→ LikesAll(x, X ∪ {y})
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Experimental Evaluation: Solving Classification

ID #Ax. #Set #SC #Ex VLog Konclude

00040 223K 2K 1051K 334K 432s 5s

00048 142K 19 718K 171K 387s 3s

00477 318K 0 162K 167K 1s 3s

00533 159K 0 965K 351K 132s 2s

00786 152K 12K 2283K 978K 549s 14s

Figure: Ontologies and results for classification (A) showing: axiom count; number of
non-singleton “set terms” introduced (#Set); number of SC and Ex facts derived;
reasoning time in VLog and Konclude
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Experimental Evaluation: Assertion Retrieval

Definition. A Horn-ALC ontology is a set of Horn-ALC axioms:

A v ⊥ > v B A v B A u E v B

∃R.A v B A v ∀R.B A v ∃R.B A(a) R(a, b)

In the above; A, B, and E are concept names (i.e., unary predicates); and R is a
role name (i.e., binary predicate).

Definition. Assertion Retrieval is the reasoning task of computing all axioms of
the form A(a) or R(a, b) that ate logically entailed by some input ontology O.

Remark. The Horn-ALC classification calculus can be extended with 3 rules (as
done by (Carral et al. 2019)) to solve assertion retrieval.
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Experimental Evaluation: Assertion Retrieval

sec

1.7M 3.1M 4.4M
100

101

102

103

Number of assertions

Reactome
sec

1.9M 4M 5.9M
100

101

102

103

Number of assertions

UOBM

Figure: Experimental results for class retrieval (B) in VLog (pink/grey) and Konclude
(black); note the log scale

David Carral, September 4, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 21 of 23



Conclusions and Future Work

Remark. We can use VLog to solve ExpTime-hard problems!

Future work:

• Rulewerk Extension: translate Datalog(S) to existential rules

• VLog Extension: native support for Datalog(S)

• Implement existing calculi using our approach

Hands on Session!
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