
Reasonable Highly Expressive Query Languages: Extended Technical Report

Pierre Bourhis† and Markus Krötzsch‡ and Sebastian Rudolph‡
†CNRS CRIStAL UMR 9189 ‡Technische Universität Dresden, Germany
pierre.bourhis@inria.fr {markus.kroetzsch,sebastian.rudolph}@tu-dresden.de

Abstract
Expressive query languages are gaining relevance
in knowledge representation (KR), and new reason-
ing problems come to the fore. Especially query
containment is interesting in this context. The prob-
lem is known to be decidable for many expres-
sive query languages, but exact complexities are
often missing. We introduce a new query lan-
guage, guarded queries (GQ), which generalizes
most known languages where query containment is
decidable. GQs can be nested (more expressive), or
restricted to linear recursion (less expressive). Our
comprehensive analysis of the computational prop-
erties and expressiveness of (linear/nested) GQs
also yields insights on many previous languages.

1 Introduction
The significance of query languages in KR is twofold. On
the one hand, evaluating queries in the presence of a back-
ground ontology allows us to express more complex infor-
mation needs, leading to the notion of ontology-based query
answering. This topic has been studied for a wide range of
ontology languages and many different query languages, in-
cluding conjunctive queries [Calvanese et al., 2007b; Eiter
et al., 2009] and (many variants of) regular path queries
[Calvanese et al., 2007a; Calvanese et al., 2009; Bienvenu
et al., 2014]. On the other hand, recursive queries can be
used to “implement” reasoning, such that the query language
plays the role of a logical calculus that computes subsump-
tions. Examples include [Xiao et al., 2010; Krötzsch, 2011;
Bischoff et al., 2014], and the references given therein.

In both application areas, we can see a tendency towards
more and more powerful recursive queries. Recent works in-
troduced several highly expressive query languages related
to applications in KR: Monadically Defined Queries (MQs)
[Rudolph and Krötzsch, 2013] and Monadic Disjunctive SNP
queries (coMMSNP) [Bienvenu et al., 2013]. Both can be
viewed as fragments of (disjunctive) Datalog.

The proliferation of query languages and their uses in KR
brings new questions to the fore. The complexity of ontology-
based query answering has been studied from its inception,
whereas the equally important question of relative expressive-
ness was studied only recently [Bienvenu et al., 2013]. An-

other important question is the problem of query containment,
where we consider two queries Q1 and Q2, and asks if every
answer to Q1 is also an answer to Q2 over all possible inputs.
Deciding query containment is relevant for query rewriting
algorithms, where it needs to be checked if new queries are
subsumed by previous ones to ensure termination. Further
relevant applications are query optimization (finding a sim-
pler yet equivalent query), and verification (checking that a
query contains specific test cases). In addition, query con-
tainment has a range of applications in databases, e.g. in in-
formation integration and database integrity checking.

Although Datalog provides a useful framework for study-
ing many recursive query languages, it does, unfortunately,
not have a decidable query containment problem [Shmueli,
1987]. In contrast, the containment is known to be decid-
able for regular path queries, MQs, and coMMSNP queries.
In the latter two cases, however, no upper complexity bound
is known. Nevertheless, numerous results exist for various
smaller query languages. For the following overview, recall
that a predicate in a Datalog program is intensional (IDB) if
it occurs in some rule head, and extentional (EDB) otherwise.

Non-recursive Datalog and unions of conjunctive queries
A non-recursive Datalog program is equivalent to a (pos-
sibly exponential) union of conjunctive queries (UCQ), and
thus expressible in first-order logic. Containment of Datalog
(in the following referred to as Dlog) in UCQ is 2ExpTime-
complete, while containment of Dlog in non-recursive Dat-
alog is 3ExpTime-complete [Chaudhuri and Vardi, 1997].
Some restrictions for decreasing the complexity of these
problems have been considered. Deciding if a linear Dat-
alog program (LinDlog, where rule bodies contain at most
one recursive predicate) is contained in a UCQ is ExpSpace-
complete; complexity further decreases to PSpace when the
linear Datalog program is monadic (LinMDlog, see below)
[Chaudhuri and Vardi, 1994; Chaudhuri and Vardi, 1997].

Monadic Datalog A monadic Datalog (MDlog) program
is one with only unary IDB predicates. Containment be-
tween two MDlog programs is 2ExpTime-complete. The up-
per bound is well known since the 80’s [Cosmadakis et al.,
1988], while the lower bound has been established only re-
cently [Benedikt et al., 2012]. Moreover, the containment of
Dlog in MDlog is also decidable by a straightforward appli-

LinMQ
LinMDlog

LinGQ
LinGDlog

LinMQk
LinMQ+

LinGQk
LinGQ+

MQ

GQ

MQk
MQ+

GQk
GQ+

LinDlog

Dlog

MDlog

GDlog

A
C

0

NP PH PSpace Exp
CQ
C2RPQ

N
L
o
g
Sp
a
c
e

PT
im

e
D

at
a

C
om

pl
ex

ity
of

Q
ue

ry
A

ns
w

er
in

g

Combined Complexity of Query Answering

Figure 1: Query languages and complexities; languages higher up in the graph are more expressive

cation of [Courcelle, 1991, Theorem 5.5].1 So far, however,
tight bounds have not been known for this case.

Guarded Datalog Guarded Datalog (GDlog) requires that,
for each rule, the variables of the head should appear in a
single EDB atom in the rule body. This notion of (frontier-
)guarded rules has been known for a while [Calì et al., 2008;
Baget et al., 2011], but its first use as a query language is
recent [Bárány et al., 2012]. GDlog is a proper extension
of MDlog, since monadic rules can always be rewritten into
guarded rules [Bárány et al., 2012]. Query containment for
GDlog is 2ExpTime-complete, as it corresponds to a satisfia-
bility problem for guarded negation fixed point logic [Bárány
et al., 2011].

Navigational Queries Conjunctive two-way regular path
queries (C2RPQs) generalize conjunctive queries (CQs) by
regular expressions over binary predicates [Florescu et al.,
1998; Calvanese et al., 2003]. Variants of this idea are used
in the RDF query language SPARQL 1.1 and the XML query
language XPath. Roughly, C2RPQ is a conjunction of atoms
of the form xLy where L is a two-way regular expression.
A pair of nodes 〈n1, n2〉 is a valuation of the pair 〈x, y〉 if and
only if there exists a path between n1 and n2 matching L. Con-
tainment of such queries is ExpSpace-complete [Florescu et
al., 1998; Calvanese et al., 2003; Abiteboul and Vianu, 1999;
Deutsch and Tannen, 2002], while containment of Dlog in
C2RPQ is 2ExpTime-complete [Calvanese et al., 2005].

Fragments of Monadic Second-Order Logic More re-
cently, Monadically Defined Queries (MQs) and their nested
version (MQ+s) have been introduced [Rudolph and Krötzsch,
2013] as a proper generalization of MDlog that also captures
(unions of) C2RPQs. MQs are expressible in both Dlog and
monadic second-order logic, but (in contrast to these lan-
guages), feature a decidable query containment problem. The
most general recent query language for which containment is
known to be decidable is coMMSNP [Bienvenu et al., 2013],

1We thank Michael Benedikt for this observation.

a fragment of monadic second-order logic motivated by de-
scriptive complexity. As opposed to the above languages,
coMMSNP is a non-deterministic query language, closely re-
lated to disjunctive Datalog. A simple inspection of the def-
initions shows that the deterministic (disjunction-free) frag-
ment, i.e., “Horn-coMMSNP”, agrees with MQ.

In this paper, we further extend the known recursive query
languages and at the same time settle all major questions re-
lated to the complexity of their query containment problems.
Figure 1 gives an overview of all languages we consider, to-
gether with their respective query-answering complexities.

The main new query language we consider is called
guarded queries (GQ), and is based on the use of frontier-
guarded Datalog rules. GQ can be viewed as an extension
of MQ, and is indeed inspired by a similar extension for
coMMSNP [Bienvenu et al., 2013]. GQ thus also generalizes
frontier-guarded Datalog. We further introduce the nested
and linear variant of GQ, and establish complexity results for
query answering in all cases.

We then turn towards query containment. We obtain tight
complexity bounds for (nested) GQs and many other query
languages, which are summarized in Table 1. To show the
upper bounds, we extend known automata-based approaches
by a number of new techniques. Lower bounds are obtained
by simulating space-bounded alternating Turing machines in
a way that allows for an exponential increase in space with
each nesting level. Finally, we also sketch how our results
transfer to the case of linear Datalog, where many complexi-
ties can be slightly reduced.

In summary, our results settle open problems for (nested)
MQs, and they paint a comprehensive and detailed picture of
the state of the art in Datalog query containment.

2 Preliminaries
We consider a standard language of first-order predicate
logic, based on an infinite set C of constant symbols, an infi-
nite set P of predicate symbols, and an infinite set V of first-

order variables. Each predicate p ∈ P is associated with a nat-
ural number ar(p) called the arity of p. The list of predicates
and constants forms the language’s signature S = 〈P,C〉.
We generally assume S = 〈P,C〉 to be fixed, and only refer
to it explicitly if needed.

Formulae, Rules, and Queries A term is a variable x ∈ V
or a constant c ∈ C. We use symbols s, t to denote terms,
x, y, z, v,w to denote variables, a, b, c to denote constants. Ex-
pressions like t, x, c denote finite lists of such entities. We use
the standard predicate logic definitions of atom and formula,
using symbols ϕ, ψ for the latter.

Datalog queries are defined over an extended signature
with additional predicate symbols, called IDB predicates; all
other predicates are called EDB predicates. A Datalog rule is
a formula of the form ∀x, y.ϕ[x, y]→ ψ[x] where ϕ and ψ are
conjunctions of atoms, called the body and head of the rule,
respectively, and where ψ only contains IDB predicates. We
usually omit universal quantifiers when writing rules. Sets of
Datalog rules will be denoted by symbols P,R,S. A set of
Datalog rules P is

• monadic if all IDB predicates are of arity one;

• frontier-guarded if the body of every rule contains an
atom p(t) such that p is an EDB predicate and t contains
all variables that occur in the rule’s head;

• linear if every rule contains at most one IDB predicate
in its body.

A conjunctive query (CQ) is a formula Q[x] = ∃y.ψ[x, y]
where ψ[x, y] is a conjunction of atoms; a union of conjunc-
tive queries (UCQ) is a disjunction of such formulae. A Dat-
alog query 〈P,Q〉 consists of a set of Datalog rules P and a
conjunctive query Q over IDB or EDB predicates (Q could
be expressed as a rule in Datalog, but not in all restrictions
of Datalog we consider). We write Dlog for the language of
Datalog queries. A monadic Datalog query is one where P
is monadic, and similarly for other restrictions. We use the
query languages MDlog (monadic), GDlog (frontier-guarded),
LinDlog (linear), and LinMDlog (linear, monadic).

Databases and Semantics We use the standard semantics
of first-order logic (FOL). A database instance I over a sig-
nature S = 〈P,C〉 consists of a set ∆I called domain and
a function ·I that maps constants c ∈ C to domain ele-
ments cI ∈ ∆I and predicate symbols p ∈ P to relations
pI ⊆ (∆I)ar(p), where pI is the extension of p.

Given a database instance I and a formula ϕ[x] with free
variables x = 〈x1, . . . , xm〉, the extension of ϕ[x] is the subset
of (∆I)m containing all those tuples 〈δ1, . . . , δm〉 for which
I, {xi 7→ δi | 1 ≤ i ≤ m} |= ϕ[x]. We denote this by
〈δ1, . . . , δm〉 ∈ ϕI or by I |= ϕ(δ1, . . . , δm); a similar nota-
tion is used for all other types of query languages. Two for-
mulae ϕ[x] and ψ[x] are called equivalent if their extensions
coincide for every database instance I.

The set of answers of a UCQ Q[x] over I is its extension.
A Datalog program P is satisfied by database instance I′ over
the extended signature of EDB and IDB predicates, if all rules
of P are satisfied by I′ in the usual sense. The set of answers

of a Datalog query 〈P,Q〉 over I is the intersection of the
extensions of Q over all extended database instances I′ that
satisfy P and agree with I on constants and EDB predicates.
Datalog can also be defined as the least fixpoint of the infla-
tionary evaluation of Q on I [Abiteboul et al., 1994].

Note that we do not require database instances to have a
finite domain, since all of our results are valid in either case.
This is due to the fact that every entailment of a Datalog pro-
gram has a finite witness, and that all of our query languages
are positive, i.e., that their answers are preserved under ho-
momorphisms of database instances.

One of the main tasks on reasoning on queries is to deter-
mine if a query contains another. In particular, for two Data-
log queries 〈P,Q〉 and 〈P′,Q′〉, we say that 〈P,Q〉 is contained
in 〈P′,Q′〉, denoted 〈P,Q〉 v 〈P′,Q′〉 iff for each database in-
stance I over the signature of EDB predicates and constants,
the set of answers of 〈P,Q〉 over I is included in the set of
answers of 〈P′,Q′〉 over I.

3 Guarded Queries
Rudolph and Krötzsch [2013] introduced monadically de-
fined queries (MQs2) as a generalization of conjunctive two-
way regular path queries (C2RPQs) and monadic Datalog
(MDlog) for which query containment is still decidable. The
idea underlying this approach is that candidate query answers
are checked by evaluating a monadic Datalog program, i.e., in
contrast to the usual evaluation of Datalog queries, we start
with a “guessed” answer that is the input to a Datalog pro-
gram. To implement this, the candidate answer is represented
by special constants λ that the Datalog program can refer to.
This mechanism was called flag & check, since the special
constants act as flags to indicate the answer to be checked.

Example 1. A query that computes the transitive closure over
a relation p can be defined as follows.

p(λ1, y)→ U(y)
U(y) ∧ p(y, z)→ U(z)

U(λ2)→ hit

One defines the answer of the query to contain all pairs
〈δ1, δ2〉 for which the rules entail hit when interpreting λ1 as
δ1 and λ2 as δ2.

The original approach used monadic Datalog for its close
relationship to monadic second-order logic, which was the
basis for showing decidability of query containment. In this
work, however, we develop new techniques for showing the
decidability (and exact complexity) of this problem directly.
It is therefore suggestive to consider other types of Datalog
programs for the “check” part. The next definition introduces
the general approach for arbitrary Datalog programs, and de-
fines interesting fragments by imposing further restrictions.

Definition 1. Consider a signature S . An FCP (“flag &
check program”) of arity m is a set of Datalog rules P with
k ≥ 0 IDB predicates U1, . . . , Uk, that may use the additional
constant symbols λ1, . . . , λm < S and an additional nullary
predicate symbol hit. An FCQ (“flag & check query”) P is

2Here we shorten the original acronym MODEQ to MQ.

of the form ∃y.P(z), where P is an FCP of arity |z| and all
variables in y occur in z. The variables x that occur in z but
not in y are the free variables of P.

Let I be a database instance over S . The extension PI of
P is the set of all tuples 〈δ1, . . . , δm〉 ∈ (∆I)m such that every
database instance I′ that extends I to the signature of P and
that satisfies 〈λI

′

1 , . . . , λ
I′

m 〉 = 〈δ1, . . . , δm〉 also entails hit. The
semantics of FCQs is defined in the obvious way based on the
extension of FCPs.

A GQ is an FCQ ∃y.P(z) such that P is frontier-guarded.
Similarly, we define MQ (monadic), LinMQ (linear, monadic),
and LinGQ (linear, frontier-guarded) queries.

In contrast to Rudolph and Krötzsch [2013], we do not de-
fine monadic queries as conjunctive queries of FCPs, but we
merely allow existential quantification to project some of the
FCP variables. Proposition 1 below shows that this does not
reduce expressiveness.

We generally consider monadic Datalog as a special case
of frontier-guarded Datalog. Monadic Datalog rules do not
have to be frontier-guarded. A direct way to obtain a suitable
guard is to assume that there is a unary domain predicate that
contains all (relevant) elements of the domain of the database
instance. However, it already suffices to require safety of Dat-
alog rules, i.e., that the variable in the head of a rule must
also occur in the body. Then every element that is inferred
to belong to an IDB relation must also occur in some EDB
relation. We can therefore add single EDB guard atoms to
each rule in all possible ways without modifying the seman-
tics. This is a polynomial operation, since all variables in the
guards are fresh, other than the single head variable that we
want to guard. We therefore find, in particular, that GQ cap-
tures the expressiveness of MQ. The converse is not true, as
the following example illustrates.

Example 2. The following 4-ary LinGQ generalizes Exam-
ple 1 by checking for the existence of two parallel p-chains
of arbitrary length, where each pair of elements along the
chains is connected by a relation q, like the steps of a ladder.

q(λ1, λ2)→ Uq(λ1, λ2)
Uq(x, y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ Uq(x′, y′)

Uq(λ3, λ4)→ hit

One might assume that the following MQ is equivalent:

q(λ1, λ2)→ U1(λ1)
q(λ1, λ2)→ U2(λ2)

U1(x) ∧ U2(y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ U1(x′)
U1(x) ∧ U2(y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ U2(y′)

U1(λ3) ∧ U2(λ4)→ hit

However, the latter query also matches struc-
tures that are not ladders. For example, the fol-
lowing database yields the answer 〈a, b, c, d〉, al-
though there is no corresponding ladder structure:
{q(a, b), p(a, c), p(b, e), q(c, e), p(a, e′), p(b, d), q(e′, d)}.
One can extend the MQ to avoid this case, but any such fix
is “local” in the sense that a sufficiently large ladder-like
structure can trick the query.

Rudolph and Krötzsch [2013] showed that monadically
defined queries can be expressed both in Datalog and in
monadic second-order logic. While we lose the connection
to monadic second-order logic with GQs, the expressibility in
Datalog remains. The encoding is based on the intuition that
the choice of the candidate answers for λ “contextualizes”
the inferences of the Datalog program. To express this with-
out special constants, we can store this context information in
predicates of suitably increased arity.
Example 3. The 4-ary LinGQ of Example 2 can be expressed
with the following Datalog query. For brevity, let y be the
variable list 〈y1, y2, y3, y4〉, which provides the context for the
IDB facts we derive.

q(y1, y2)→ U+
q (y1, y2, y)

Uq(x, y, y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ U+
q (x′, y′, y)

Uq(y3, y4, y)→ goal(y)

This result is obtained by a straightforward extension of the
translation algorithm for MQs [Rudolph and Krötzsch, 2013],
which may not produce the most concise representation. Also
note that the first rule in this program is not safe, since y3
and y4 occur in the head but not in the body. According to
the semantics we defined, such variables can be bound to any
element in the active domain of the given database instance
(i.e., they behave as if bound by a unary domain predicate).

This observation justifies that we consider MQs, GQs, etc.
as Datalog fragments. It is worth noting that the translation
does not change the number of IDB predicates in the body
of rules, and thus preserves linearity. The relation to (lin-
ear) Datalog also yields some complexity results for query
answering; we will discuss these at the end of the next sec-
tion, after introducing nested variants our query languages.

4 Nested Queries
Every query language gives rise to a nested language, where
we allow for nested queries to be used as if they were predi-
cates. Sometimes, this does not lead to a new query language
(like for CQ and Dlog), but often it affects complexities and/or
expressiveness. It has been shown that both are increased
when moving from MQs to their nested variants [Rudolph and
Krötzsch, 2013]. We will see that nesting also has strong ef-
fects on the complexity of query containment.
Definition 2. We define k-nested FCPs inductively. A 1-
nested FCP is an FCP. A k+1-nested FCP is an FCP that may
use k-nested FCPs of arity m instead of predicate symbols of
arity m in rule bodies. The semantics of nested FCPs is im-
mediate based on the extension of FCPs. A k-nested FCQ P
is of the form ∃y.P(z), where P is a k-nested FCP of arity |z|
and all variables in y occur in z.

A k-nested GQ query is a k-nested frontier-guarded FCQ.
For the definition of frontier-guarded, we still require EDB
predicates in guards: subqueries cannot be guards. The lan-
guage of k-nested GQ queries is denoted GQk; the language
of arbitrarily nested GQ queries is denoted GQ+. Similarly,
we define languages MQk and MQ+ (monadic), LinMQk and
LinMQ+ (linear, monadic), and LinGQk and LinGQ+ (linear,
frontier-guarded).

Note that nested queries can use the same additional sym-
bols (predicates and constants); this does not lead to any se-
mantic interactions, however, as the interpretation of the spe-
cial symbols is “private” to each query. To simplify notation,
we assume that distinct (sub)queries always contain distinct
special symbols. The relationships of the query languages we
introduced here are summarized in Figure 1, where upwards
links denote increased expressiveness. An interesting obser-
vation that is represented in this figure is that linear Datalog
is closed under nesting:
Theorem 3. LinDlog = LinDlog+.

Proof. We will prove that any LinDlog+ query can be rewrit-
ten into a LinDlog query of polynomial size. We make simpli-
fying assumptions on the structure of the nested query which
can be easily obtained by polynomial transformations and
make the presentation easier: we assume that every rule body
of any query occurring at any nesting depth contains at most
one subquery atom (using, e.g., Proposition 1). Second, we
assume that all variables and IDB predicates that are not in
the same scope are appropriately renamed apart.

In order to proof our claim, we will first show that any
LinDlog2 can be rewritten into an equivalent LinDlog query.
Applying the rewriting iteratively inside-out (and observing
that even manyfold application can be done in polynomial
total time) then allows to conclude that there is a polynomial
rewriting of any LinDlog+ query of arbitrary depth into a LinD-
log query.

Consider a LinDlog2 query P = 〈P, p〉 and assume w.l.o.g.
that every rule body of the rules contains at most one LinDlog1

subquery. Now, going through all rules of P we produce the
rules P′ of the unnested but equivalent version.

Consider a rule ρ ∈ P having the shape

Q(x1, . . . , xn) ∧ p(y1, . . . y`) ∧ B1 ∧ . . . ∧ Bk → H

where p is the body IDB predicate and where Q = 〈Q, q〉 is
a LinDlog1 query. For any k-ary IDB predicate r inside Q we
increase its arity by ` and let P′ contain all rules of Q′ which
is obtained from the rules ρ′ of Q by
• replacing any (head or body) IDB atom r(z1, . . . , zk) of
ρ′ by r(z1, . . . , zk, y1, . . . y`) and

• in case ρ′ does not contain any IDB body atom, add
p(y1, . . . y`) to the body.

Further we let P′ contain the rule

q(x1, . . . , xn, y1, . . . y`) ∧ ∧B1 ∧ . . . ∧ Bk → H.

In case of a rule ρ ∈ P having the shape

Q(x1, . . . , xn) ∧ B1 ∧ . . . ∧ Bk → H

we add Q to P′ without change and let P′ contain the rule

q(x1, . . . , xn) ∧ B1 ∧ . . . ∧ Bk → H.

In case a rule ρ ∈ P does not contain a subquery atom we
simply add ρ to P′.

It can now easily verified that 〈P, p〉 and 〈P′, p〉 are equiv-
alent: first it is straightforward, that 〈P, p〉 is equivalent
to 〈P[, p〉 where P[is obtained from P by replacing every

Q(x1, . . . , xn) by q(x1, . . . , xn) (that is, the according goal
predicate) and then adding all rules from Q with no changes
made to them. Second one can show that there is a direct
correspondence between proof trees of 〈P[, p〉 and linearized
proof trees of 〈P′, p〉 which yields the desired result. �

Another kind of nesting that does not add expressiveness
is the nesting of FCQs in UCQs. Indeed, it turns out that
(nested) FCQs can internalize arbitrary conjunctions and dis-
junctions of FCQs (of the same nesting level). This even
holds when restricting to linear rules.

Proposition 1. Let P be a positive query, i.e., a Boolean ex-
pression of disjunctions and conjunctions, of LinMQk queries
with k ≥ 1. Then there is a LinMQk query P′ of size poly-
nomial in P that is equivalent to P. Analogous results hold
when replacing LinMQk by MQk, GQk, or LinMQk queries.

Proof. We show the claim by induction, by expressing the
innermost disjunctions and conjunctions of P with equivalent
LinMQk queries of linear size. We consider positive queries
without existential quantifiers (i.e., where all variables are
answer variables), but the inner LinMQk may use existential
quantifiers.

Let P[x] = P1[x1]∨ . . .∨Pn[xn] be a disjunction of LinMQk

queries. Each query Pi is of the form ∃zi.P′i[x′
i
], where x′

i
is

the list of free variables of P′i (corresponding to constants λ),
and zi contains exactly those variables of x′

i
that do not occur

in xi. We assume without loss of generality that zi is disjoint
from z j if i , j, and that each P′i uses a unique set of IDBs
that does not occur in other queries. We consider queries P̄i
obtained by replacing the special constant that represents a
variable x j ∈ x by the special constant λ j (assumed to not
occur in P yet). Thus, the queries P̄i share special constants
exactly where queries P1 share variables. We can now define
the LinMQk P′ as ∃z1 . . . zn.P̄1∪. . .∪P̄n, where we assume that
the correspondence of special constants to free variables is
such that the existential quantifiers refer to the same variables
as before.

Let P[x] = P1[x1] ∧ . . . ∧ Pn[xn] be a conjunction of
LinMQk queries. Let Pi = ∃zi.P′i[x′

i
] as before, and let Ui

for i ∈ {1, . . . , n − 1} be fresh IDB predicates. The queries
P̄i are defined as before by renaming special constants to re-
flect shared variables. For each i ∈ {1, . . . , n}, the set of rules
P̂i is obtained from P̄i as follows: if i < n, then every rule
ϕ→ hit ∈ P̄i is replaced by the rule ϕ→ Ui(λ1), where λ1 is a
fixed special constant in the queries; if i > 1, then every rule
ϕ → ψ ∈ P̄i where ϕ does not contain an IDB predicate is
replaced by the rule ϕ ∧ Ui−1(λ1)→ ψ, where λ1 is as before.
The LinMQk P′ is defined as ∃z1 . . . zn.P̂1 ∪ . . . ∪ P̂n.

These constructions lead to equivalent LinMQk queries of
linear size, so the claim follows by inductions. The cases for
MQk, GQk, and LinMQk follow from the same constructions
(note that, without the requirement of linearity, a simpler con-
struction is possible in the case of conjunctions). �

Query answering for MQs has been shown to be NP-
complete (combined complexity) and P-complete (data com-
plexity). For MQ+, the combined complexity increases to
PSpace while the data complexity remains the same. These

results can be extended to GQs. We also note the complexity
for frontier-guarded Datalog, for which we are not aware of
any published result.

Theorem 4. The combined complexity of evaluating GQ
queries over a database instance is NP-complete. The same
holds for GDlog queries. The combined complexity of evalu-
ating GQ+ queries is PSpace-complete. The data complexity
is P-complete for GDlog, GQ, and GQ+.

Proof. The lower bounds are immediate from the matching
complexities for MQ and MQ+ queries, respectively [Rudolph
and Krötzsch, 2013].

First, we prove that checking if a tuple is an answer of a GQ
over a database instance I is in NP for combined complexity.
Let I be an instance, let P be a GQ with frontier guarded rules
P, and let δ be be a candidate answer for P as in Definition 1.

Since each rule in P is frontier-guarded, each intentional
fact that is derived when checking the answer follows from
the application of one particular rule, instantiated to match
one particular (guard) EDB fact in the body. Therefore, the
number of IDB facts that can be derived is polynomially
bounded in the size of I and P.

Thus, for every derivation of P, only a polynomial number
of rule applications are necessary, since it is enough to derive
each IDB fact once. It is clear that one can guess such a
derivation, where we guess, for each derivable IDB fact, one
specific rule instance by which it is derived. The correctness
of this guess can be checked in polynomial time, showing that
the problem can be solved in NP.

We now show that checking an answer of a GQ+ over an
instance I is in PSpace. Let I be an instance, let P be a GQk

with frontier guarded rules P (that may contain subqueries),
and let δ be be a candidate answer for P as in Definition 1. We
demonstrate by induction on k that checking if δ is a solution
for P w.r.t. I is in NPSpace. For the induction base, the claim
follows from the above result for GQs.

For the induction step, using the same argument as before,
we can see that the number of IDB facts that can be derived by
P is still polynomial. Therefore, we can again guess a poly-
nomial derivation as before, though the rule instances now
may refer to subqueries of smaller nesting depth. By the in-
duction hypothesis, whenever we need to verify the applica-
bility of such a rule, we can use an NPSpace algorithm for
the nested query. The overall number of such checks is poly-
nomial, yielding the overall NPSpace algorithm. The result
follows since NPSpace =PSpace [Savitch, 1970].

The fact that query evaluation is in P for data complexity is
immediate from the fact our queries can be expressed in Dat-
alog, which is known to have this data complexity. A direct
proof is also obtained by observing that the number of pos-
sible derivation sequences that the above algorithms need to
consider is in itself polynomial in I if P is fixed, so that the
algorithms themselves are already in P for data complexity.

�

The lower bounds in the previous case are immediate from
know results for MQs. In particular, the hardness proof for
nested MQs also shows that queries of a particular fixed
nesting level can encode the validity problem for quantified

boolean formulae with a certain number of quantifier alterna-
tions; this explains why we show the combined complexity of
MQk to be in the Polynomial Hierarchy in Figure 1. A modifi-
cation of this hardness proof of Rudolph and Krötzsch [2013]
allows us to obtain the same results for the combined com-
plexities in the linear cases; matching upper bounds follow
from Theorem 4.

Theorem 5. The combined complexity of evaluating LinMQ,
LinGDlog, or LinGQ queries over a database instance is NP-
complete. The combined complexity of evaluating LinMQ+ or
LinGQ+ queries is PSpace-complete. The data complexity is
NLogSpace-complete for all of these query languages.

Proof. The claimed NP-completeness is immediate. Hard-
ness follows from the hardness of CQ query answering.
Membership follows from the membership of GQ.

The claimed membership in PSpace follows from the
PSpace-membership of LinDlog; note that this uses Theo-
rem 3. Hardness for LinGQ+ follows from the hardness for
LinMQ+, which we show by modifying the PSpace-hardness
proof for monadically defined queries from [Rudolph and
Krötzsch, 2013].

We show the result by providing a reduction from the va-
lidity problem of quantified Boolean formulae (QBFs). We
recap that for any QBF, it is possible to construct in polyno-
mial time an equivalent QBF that has the specific shape

Q1x1Q2x2 . . .Qnxn

∨
L∈L

∧
`∈L

`,

with Q1, . . .Qn ∈ {∃,∀} and L being a set of sets of lit-
erals over the propositional variables x1, . . . , xn. In words,
we assume our QBF to be in prenex form with the propo-
sitional part of the formula in disjunctive normal form. For
every literal set L = {xk1 , . . . , xki , ¬xki+1 , . . . ,¬xk j }, we now
define the n-ary FCP pL = {t(λk1) ∧ . . . ∧ t(λki) ∧ f (λki+1) ∧
. . . ∧ f (λk j) → hit}. Moreover, we define the n-ary FCP
pL = {pL(λ1, . . . , λn) → hit | L ∈ L}. Letting pL = pn we
now define FCPs pn−1 . . . p0 in descending order. If Qi = ∃,
then the i−1-ary FCP pi−1 is defined as the singleton rule set
{pi(λ1, . . . , λi−1, y)→ hit}. In case Qi = ∀, we let pi−1 contain
the rules

f (x)→ U?(x)
U!(x) ∧ f (x) ∧ t(y)→ U?(y)

U!(x) ∧ t(x)→ hit
U?(x) ∧ pi(λ1, . . . , λi−1, x)→ U!(x)

Note that p0 is a Boolean LinMQ+ query the size of which
is polynomial in the size of the input QBF.

Now, let D be the database containing the two individu-
als 0 and 1 as well as the facts f (0) and t(1). We now show
that the considered QBF is true exactly if D |= p0(). To this
end, we first note that by construction the extension of pL
contains exactly those n-tuples 〈δ1, . . . , δn〉 for which the cor-
responding truth value assignment val, sending xi to true iff
δi = 1, makes the formula

∧
`∈L ` true. In the same way,

the extension of pL represents the set of truth value assign-
ments satisfying

∨
L∈L
∧
`∈L `. Then, by descending induc-

tion, we can show that the extensions of pi encode the as-
signments to free propositional variables of the subformula
Qi+1xi+1 . . .Qnxn

∨
L∈L
∧
`∈L ` that make this formula true.

Consequently, p0 has a nonempty extension if the entire con-
sidered QBF is true.

Finally, the NLogSpace-completeness for data complexity
is again immediate, where the upper bound is obtained from
LinDlog, and the lower bound follows from the well-known
hardness of reachability queries, which can be expressed in
LinMDlog. �

5 Complexity of Query Subsumption
In this section, we first discuss an automata-based way to de-
cide query containment, which will give rise to upper com-
plexity bounds.To obtain matching lower bounds, we provide
direct encodings of Alternating Turing Machines (ATMs)
with a fixed space bound [Chandra et al., 1981]. Finally we
show that containment checking is often slightly simpler in
fragments of linear Datalog.

5.1 Deciding Query Containment with Automata
We first recall a general technique of reducing query contain-
ment to the containment problem for (tree) automata [Chaud-
huri and Vardi, 1997], which we build our proofs on. An
introduction to tree automata is included in the appendix.

A common way to describe the answers of a Dlog query
P = 〈P, p〉 is to consider its expansion trees. Intuitively
speaking, the goal atom p(x) can be rewritten by applying
rules of P in a backward-chaining manner until all IDB predi-
cates have been eliminated, resulting in a CQ. The answers of
P coincide with the (infinite) union of answers to the CQs
obtained in this fashion. The rewriting itself gives rise to
a tree structure, where each node is labeled by the instance
of the rule that was used in the rewriting, and the leaves are
instances of rules that contain only EDB predicates in their
body. The set of all expansion trees provides a regular de-
scription of P that we exploit to decide containment.

To formalize this approach, we describe the set of all ex-
pansion trees as a tree language, i.e., as a set of trees with
node labels from a finite alphabet. The number of possible
labels of nodes in expansion trees is unbounded, since rules
are instantiated using fresh variables. To obtain a finite alpha-
bet of labels, one limits the number of variables and thus the
overall number of possible rule instantiations [Chaudhuri and
Vardi, 1997].

Definition 6. Given a Dlog query P = 〈P, p〉, RP is the set of
all instantiations of rules of P using only the variablesVP =
{v1, . . . , vn}, where n is twice the maximal number of variables
occurring in any rule of P.

A proof tree for P is a tree with labels from RP, such that
(a) the root is labeled by a rule with p as its head predicate;
(b) if a node is labeled by a rule ρ with an IDB atom B in its
body, then it has a child node that is labeled by ρ′ with head
atom B. The label of a node e is denoted π(e).

Consider two nodes e1 and e2 in a proof tree with lowest
common ancestor e. Two occurrences of a variable v in π(e1)

and π(e2) are connected if v occurs in the head of π(f) for
all nodes f on the shortest path between e1 and e2, with the
possible exception of e.

A proof tree encodes an expansion tree where we replace
every set of mutually connected variable occurrences by a
fresh variable. Conversely, every expansion tree is repre-
sented by a proof tree that replaces fresh body variables by
variables that do not occur in the head; this is always possible
since proof trees can use twice as many variables as any rule
of P. The set of proof trees is a regular tree language that can
be described by an automaton.
Proposition 2 (Proposition 5.9 [Chaudhuri and Vardi, 1997]).
For a Dlog query P = 〈P, p〉, there is a tree automatonAP of
size exponential in P that accepts exactly the set of all proof
trees of P.

In order to use AP to decide containment of P in another
query P′, we construct an automaton APvP′ that accepts all
proof trees of P that are “matched” by P′. Indeed, every proof
tree induces a witness, i.e., a minimal matching database in-
stance, and one can check whether or not P′ can produce the
same query answer on this instance. If this is the case for all
proof trees of P, then containment is shown.

5.2 Deciding Guarded Query Containment
Our first result provides the upper bound for deciding con-
tainment of GQ queries. In fact, the result extends to arbitrary
Dlog queries on the left-hand side.
Theorem 7. Containment of Dlog queries in GQ queries can
be decided in 3ExpTime.

To prove this, we need to construct the tree automaton
APvP′ for an arbitrary GQ P′. As a first step, we construct an
alternating 2-way tree automatonA+

PvP′ that accepts the proof
trees that we would like APvP′ to accept, but with nodes ad-
ditionally being annotated with information about the choice
of λ values to guide the verification.

We first construct automata to verify the match of a single,
non-recursive rule that may refer to λ constants. The rule does
not have to be monadic or frontier-guarded. Our construction
is inspired by a similar construction for CQs by Chaudhuri
and Vardi [Chaudhuri and Vardi, 1997], with the main differ-
ence that the answer variables in our case are not taken from
the root of the tree but rather from one arbitrary node that is
marked accordingly.

To define this formally, we introduce trees with additional
annotations besides their node labels. Clearly, such trees can
be viewed as regular labelled trees by considering annotations
to be components of one label; our approach, however, leads
to a more readable presentation.
Definition 8. Consider a Datalog program P, a rule ρ = ϕ→
p(x), and n ≥ 0 special constants λ = λ1, . . . , λn. The proof-
tree variablesVP used in RP are as in Definition 6.

A proof tree for P is λ-annotated if every node has an ad-
ditional λ-label that is a partial mapping {λ1, . . . , λn} → VP,
such that: every special constant λi occurs in at least one λ-
label, and whenever a constant λi occurs in two λ-labels, it is
mapped to the same variable and both variable occurrences
are connected.

A proof tree for P is p-annotated if exactly one node has
an additional p-label of the form p(v), where v is a list of
variables fromVP.

A matching tree T for ρ and P is a λ-annotated and p-
annotated proof tree for P for which there is a mapping ν :
Var(ρ) ∪ {λ1, . . . , λn} → VP such that

1. ν(p(x)) = p(v);

2. for every atom α of ϕ, there is a node eα in T such
that the rule instance that eα is labeled with contains
the EDB atom ν(α) in its body;

3. if λi occurs in α, then the λ-label maps λi to the occur-
rence of ν(λi) in eα;

4. if α, α′ ∈ ϕ share a variable x, then the occurrences of
ν(x) in eα and eα′ are connected.

Proposition 3. There is an automaton AP,ρ that accepts ex-
actly the annotated matching trees for ρ and P, and which is
exponential in the size of ρ and P.

Proof. We first construct an automaton A′P,ρ that accepts
matching trees where each node is additionally annotated by
a partial mapping of the form Var(ρ) → VP (called Var(ρ)-
label), such that: every special variable x ∈ Var(ρ) occurs in
at least one Var(ρ)-label, and whenever a variable x ∈ Var(ρ)
occurs in two, it is mapped to the same variable and both vari-
able occurrences are connected. Note that this is essentially
the same condition that we imposed for λ-annotations.

The intersection of tree automata can be computed in poly-
nomial time. We can therefore construct automata to check
part of the conditions for (annotated) matching trees to sim-
plify the definitions. We first construct an automaton Ax
for checking the condition on Var(ρ)-labels for one variable
x ∈ Var(ρ). We define Ax = 〈Σ,Qx,Qs

x, δx,Qe
x〉, where the

alphabet Σ consists of quadruples of proof-tree labels (from
RP), λ-labels, p-labels, and Var(ρ)-labels. The state set Qx
is {a, b, accept} ∪ {qv | v ∈ VP}, signifying that the current
node is above the first node annotated with a mapping for x,
below or besides any nodes that were annotated with a map-
ping for x, or at a node where x is mapped to a variable v.
That start-state set is Qs

x = {a} ∪ {qv | v ∈ VP}; the end-state
set if Qe

x = {accept}.
Consider a rule ρ′ ∈ RP of the form r1(v1) ∧ . . . ∧ rn(vn) ∧

h1(w1) ∧ . . . ∧ hm(wm) → h(v), where ri are EDB predicates
and h(i) are IDB predicates. For the case that m > 0, there
is a transition 〈q1, . . . , qm〉 ∈ δ(q, 〈ρ′, _, _, ν〉) exactly if the
following conditions are satisfied:

• if q = a and ν(x) is undefined, then qi = a for one 1 ≤
i ≤ m and q j = b for all 1 ≤ j ≤ m with i , j;

• if q = qv and ν(x) = v, then qi = qv for all 1 ≤ i ≤ m
such that v occurs in wi and qi = b for all other i;

• if q = b and ν(x) is undefined, then qi = b for all 1 ≤ i ≤
m.

For the case m = 0, there is a transition 〈accept〉 ∈
δ(q, 〈ρ′, _, _, ν〉) exactly if:

• if q = qv and ν(x) = v;

• if q = b and ν(x) is undefined.

It is easy to check that the automatonAx satisfies the required
condition. Now an automaton for checking the condition on
Var(ρ)-labels can be constructed as the intersectionA′Var(ρ) =⋂

x∈Var(ρ)Ax. The automaton A′λ for checking the condition
on λ-labels is constructed in a similar fashion. Likewise, an
automaton A′p for checking the condition on p-labels is easy
to define.

It remains to construct an automaton for checking the con-
ditions (a)–(d) of Definition 8. To do this, we interpret the
Var(ρ)-labels and λ-labels as partial specifications of the re-
quired mapping ν. Condition (a) further requires that ν(x) =
v, i.e., that the Var(ρ)-label at the unique node annotated with
p(v) contains this mapping. It is easy to verify this with an
automaton A′(a). Together, A′(a), A

′
λ, and A′Var(ρ) provide a

consistent variable mapping that respects the p-label (a) and
the connectedness of variable occurrences, i.e., (c) and (d).
To check the remaining condition (b), we use an automaton
A′(b).

The automaton for (b) will use auxiliary markers to record
which atoms have been matched in the current node and how
exactly this was done. We record such a match as a partial
function from atoms q(z) ∈ ϕ to instances q(w) of such atoms
using variables w ⊆ VP. The set of all such partial functions
is denoted Matchϕ,P. Note that this set is exponential (not
double exponential).

We now define A′(b) = 〈Σ,Q,Qs, δ,Qe〉 where Σ is as for
Ax above. The set of states Q is {accept} ∪ (2ϕ × Matchϕ,P),
where elements from 2ϕ encode the subset of ϕ that should
be witnessed at or below the current node, and the ele-
ments from Matchϕ,P encode atoms that must be matched
at the current node with their respective instantiations. The
start-state set Qs is {〈ϕ, µ〉 | µ ∈ Matchϕ,P}; the end-
state set Qe is {accept}. The transition function δ is de-
fined as follows. Consider a rule ρ′ ∈ RP of the form
r1(v1) ∧ . . . ∧ rn(vn) ∧ h1(w1) ∧ . . . ∧ hm(wm) → h(v), where
ri are EDB predicates and h(i) are IDB predicates. For the
case m > 0, there is a transition 〈〈β1, µ1〉, . . . , 〈βm, µn〉〉 ∈

δ(〈β, µ〉, 〈ρ′, νλ, _, νVar(ρ)〉) exactly if the set β ⊆ ϕ can be par-
titioned into sets β′, β1, . . . , βm such that (νλ ∪ νVar(ρ))(β′) =
µ(β′) and µ(β′) ⊆ {r1(v1), . . . , rn(vn)}. The element µi of
successor states can be chosen freely; the validity of the
choice will be checked later. For the case m = 0, there is
a transition 〈accept〉 ∈ δ(〈β, µ〉, 〈ρ′, νλ, _, νVar(ρ)〉) exactly if
(νλ∪νVar(ρ))(β) = µ(β) and µ(β) ⊆ {r1(v1), . . . , rn(vn)}. In fact,
the information from Matchϕ,P is not strictly necessary to de-
fine the transition, since the relevant elements µ are always
determined by other choices in the transition. However, hav-
ing this information explicit will be important in later proofs.

The automatonA′P,ρ is obtained as the intersectionA′Var(ρ)∩

A′λ ∩A
′
p ∩A

′
(a) ∩A

′
(b). It is easy to verify that it accepts ex-

actly the Var(ρ)-annotated matching trees. Note that A′P,ρ is
exponential in size, already due to the exponentially large al-
phabet Σ. Now the required automaton AP,ρ is obtained by
“forgetting” the Var(ρ)-label in transitions of A′P,ρ. This pro-
jection operation for tree automata is possible with a polyno-
mial increase in size: every state of AP,ρ is a pair of a state
of A′P,ρ and a Var(ρ)-label; transitions of AP,ρ are defined as

for A′P,ρ, but keeping Var(ρ)-label information in states and
introducing transitions for all possible Var(ρ)-labels in child
nodes. �

We want to use the automata AP,ρ to verify the entailment
of a single rule within a Datalog derivation. We would like
an automaton to check whether a whole derivation is possi-
ble. Unfortunately, we cannot check these derivations using
automata of the form AP,ρ, which each need to be run on a
p-annotated tree which has the unique entailment of the rule
marked. The length of a derivation is unbounded, and we
would not be able to distinguish an unbounded amount of p-
markers. To overcome this problem, we create a modified
automatonA+

P,ρ,v that simulates the behavior ofAP,ρ on a tree
with annotation p(v). For A+

P,ρ,v to know which node the an-
notation p(v) refers to, it has to be started at this node. This is
a non-standard notion of run, where we do not start at the root
of the tree. Moreover, starting in the middle of the tree makes
it necessary to consider both nodes below and above the cur-
rent position, and A+

P,ρ,v therefore needs to be an alternating
2-way tree automaton.

Proposition 4. There is an alternating 2-way tree automaton
A+

P,ρ,v that is polynomial in the size of AP,ρ such that, when-
everAP,ρ accepts a matching tree T that has the p-annotation
p(v) on node e, then A+

P,ρ,v has an accepting run that starts
from the corresponding node e′ on the tree T ′ that is obtained
by removing the p-annotation from T.

Proof. Using alternating 2-way automata, we can traverse a
tree starting from any node, visiting each node once. To con-
trol the direction of the traversal, we create multiple copies
of each state q: states qdown are processed like normal states
in AP,ρ, states qup use an inverted transition of AP,ρ to move
up the tree into a state qσ,i; these auxiliary states are used to
check that the label of the upper node is actually σ and to
start new downwards processes for all child nodes other than
the one (i) that we came from.

To ensure that the constructed automaton A+
P,ρ,v simulates

the behavior of AP,ρ in case the annotation p(v) is found,
we eliminate all transitions that mention other p-annotations.
Moreover, we assume without loss of generality that the states
of AP,ρ that allow a transition mentioning p(v) cannot be left
through any other transition; this can always be ensured by
duplicating states and using them exclusively for one kind of
transition. Let Qp be the set of states ofAP,ρ that admit (only)
transitions mentioning p(v). LetA′P,ρ = 〈Σ′,Q,Qs, δ

′,Qe〉 de-
note the automaton over the alphabet Σ′ of λ-annotated proof
trees (without p-annotations), with the same (start/end) states
asAP,ρ, and where δ′ is defined based on the transition func-
tion δ ofAP,ρ as follows: δ′(〈ρ′,M〉) is the union of all sets of
the form δ(〈ρ′, λ-label, p-label〉) where p-label is either p(v)
or empty. By this construction, there is a correspondence be-
tween the accepting runs of AP,ρ over trees where one node
e is annotated with p(v) and accepting runs of A′P,ρ (on trees
without p-annotations) for which the node e is visited in some
state of Qp.

Let s be the maximal out-degree of proof trees for P, i.e.,
the maximal number of IDB atoms in bodies of P. The state

set Q+ of A+
P,ρ,v is given by the disjoint union {qup | q ∈

Q} ∪ {qσ,i | q ∈ Q, σ ∈ Σ, 1 ≤ i ≤ s} ∪ {qdown | q ∈
Q} ∪ {start, accept}. The start-state set is Q+

s = {start} and
the end-state set is Q+

e = {accept} ∪ {qdown | q ∈ Qe}.
Transitions ofA+

P,ρ,v are defined as follows:

• For all σ ∈ Σ, let δ+(start, σ) be the disjunction of all
formulae 〈0, qup〉 ∧ 〈0, qdown〉 where q ∈ Qp.

• For states qdown and σ ∈ Σ, let δ+(qdown, σ) be the dis-
junction of all formulae 〈1, q1

down〉 ∧ . . . ∧ 〈m, q
m
down〉 for

whichA′P,ρ has a transition 〈q1, . . . , qm〉 ∈ δ′(q, σ).

• For states qup andσ ∈ Σ, let δ+(qup, σ) be the disjunction
of all formulae 〈−1, q′σ′,i〉 for whichA′P,ρ has a transition
〈q1, . . . , qi−1, q, qi+1, . . . , qm〉 ∈ δ′(q′, σ′) and the current
node is the ith child of its parent (we can assume that this
information is encoded in the labels σ, even for basic
proof trees, which increases the alphabet only linearly;
we omit this in our definitions since it would clutter all
other parts of our proof without need).

• For states qσ,i,q′ , let δ+(qσ,i,q′ , σ) be the disjunction of
all formulae 〈0, qup〉 ∧ 〈1, q1

down〉 ∧ . . . ∧ 〈i − 1, qi−1
down〉 ∧

〈i + 1, qi+1
down〉∧ . . .∧〈m, q

m
down〉 for whichA′P,ρ has a tran-

sition 〈q1, . . . , qi−1, q′, qi+1, qm〉 ∈ δ′(q, σ).

• For all starting states q ∈ Qs of A′P,ρ and σ ∈ Σ, let
δ(qup, σ) = 〈0, accept〉.

It is not hard to verify that A+
P,ρ,v has the required properties.

�

Using the automata A+
P,ρ,v, we can now obtain the claimed

alternating 2-way automaton A+
PvP′ for a GQ P′. Intuitively

speaking, A+
PvP′ concatenates the automata A+

P,ρ,v using al-
ternation: whenever a derivation requires a (recursive) IDB
atom, a suitable process A+

P,ρ,v is initiated, starting from a
node in the middle of the tree. The construction relies on
guardedness, which ensures that we can always find a suitable
start node (corresponding to the node that was p-annotated
earlier), by finding a suitable guard EDB atom in the tree.

Proposition 5. For a Dlog query P and a GQ query P′ with
special constants λ, there is an alternating 2-way automaton
A+

PvP′ of exponential size that accepts the λ-annotated proof
trees of P that encode expansion trees with λ assignments for
which P′ has a match.

Proof. Let P′ be the set {ρ1, . . . , ρ`}. For every IDB predicate
p, let P′p denote the set of rules in P′ with head predicate
p (possibly hit). Without loss of generality, we assume that
distinct rules use distinct sets of variables. For every frontier-
guarded rule ρ′, let guard(ρ′) be a fixed EDB atom that acts
as a guard in this rule, i.e., an atom that refers to all variables
in the head of ρ′.

Consider a rule ρ′ ∈ P′ with IDB atoms q1(t1), . . . , qm(tm)
in its body. We construct new rules from ρ′ by replacing
each atom qi(t i) with a guard atom guard(ρ′i), suitably uni-
fied. Formally, assume that there are rules ρ′i ∈ P′qi

with head
qi(si) and a substitution θ that is a most general unifier for
the problems t iθ = siθ, for all i ∈ {1, . . . ,m}, and that maps

every variable in ρ′i that does not occur in the head to a glob-
ally fresh variable. Then the guard expansion of ρ′ for (ρ′i)

m
i=1

and θ is the rule that is obtained from ρ′θ by replacing each
body atom qi(t i)θ by guard(ρ′i)θ. By construction, two dis-
tinct atoms guard(ρ′i)θ and guard(ρ′j)θ do not share variables,
unless at positions that correspond to head variables in rules
ρ′i and ρ′j. The atoms guard(ρ′i)θ in a guard expansion are
called replacement guards. We consider two guard expan-
sions to be equivalent if they only differ in the choice of the
most general unifier. Let Guard(ρ′) be the set of all guard
expansions of ρ′ ∈ P′, i.e., a set containing one representative
of each class of equivalent guard expansions. Guard(ρ′) is
exponential since there are up to |P′|m non-equivalent guard
expansions for a rule with m IDB atoms.

The automaton A+
PvP′ is constructed as follows. For every

guard expansion ρg ∈
⋃
ρ′∈P′ Guard(ρ′) and every list v of

proof-tree variables of the arity of the head of ρg, consider
the alternating 2-way tree automatonA+

P,ρg,v of Proposition 4.
We assume w.l.o.g. that the state sets of these automata are
mutually disjoint. Let A+

PvP′ = 〈Σ,Q,Qs, δ,Qe〉. As before,
Σ consists of pairs of a rule instance from RP and a partial
mapping of λ to VP. The state set Q is the disjoint union of
all state sets of the automata of form A+

P,ρg,v. The start-state
set Qs is the disjoint union of all start-state sets of automata
A+

P,ρg,v for which ρg is a guard expansion of a rule with head
hit (and v is the empty list). The end-state set Qe is the disjoint
union of all end-state sets of automataA+

P,ρg,v.
The transition function δ is defined as follows. By the con-

struction in Proposition 3, each state q in the automatonAP,ρ
encodes a partial mapping match(q) from body atoms of ρ
to instantiated atoms that use variables from VP, which are
matched at the current tree node. This information is pre-
served through alphabet projections, intersections, and even
through the construction in Proposition 4. We can therefore
assume that each state q of A+

PvP′ is associated with a partial
mapping match(q).

For every state q ∈ QP,ρg,v and every σ ∈ Σ, we define
δ(q, σ) = δP,ρg,v(q, σ) ∧ ψ, where ψ defined as follows. For
every replacement guard atom α of ρg for which match(q)(α)
is defined, we consider the formula ψα = 〈0, q1〉∨ . . .∨〈0, q`〉,
where

• α = guard(ρ′)θ for some rule ρ′ and substitution θ;

• match(q)(α) = αθ′ for some substitution θ′;

• q1, . . . q` are the start states of the automaton AP,ρ′,zθθ′

where p(z) is the head of ρ′.

Now ψ is the conjunction of all formulae ψα thus defined. �

We are now ready to prove Theorem 7. The automaton
A+

PvP′ allows us to check the answers of P′ on a proof tree
that is λ-annotated to assign values for answer constants. We
can transform this alternating 2-way automaton into a tree
automatonA′PvP′ that is exponentially larger, i.e., doubly ex-
ponential in the size of the input. To remove the need for
λ-labels, we modify the automaton A′PvP′ so that it can only
perform a transition from its start state if it finds that the con-
stants in λ are assigned to the answer variables of P in the
root. Finally, we obtain APvP′ by projecting to the alphabet

RP without λ-annotations; this is again possible in polynomial
effort. The containment problem P v P′ is equivalent by de-
ciding the containment of AP in APvP′ , which is possible in
exponential time w.r.t. to the size of the automata. Since AP
is exponential andAPvP′ is double exponential, we obtain the
claimed triple exponential bound.

Our proof of Theorem 7 can be used to obtain another in-
teresting result for the case of frontier-guarded Datalog. If P
is a GDlog query, which does not use any special constants
λ, then the λ-annotations are not relevant and A+

PvP′ can be
constructed as an alternating 2-way automaton on proof trees.
For this, we merely need to modify the construction in Propo-
sition 5 to start in start states of automata for rules that entail
the goal predicate of P′ with the expected binding of variables
to answer variables of P. We can then omit the projection
step, which required us to convert A+

PvP′ into a tree automa-
ton earlier. Instead, we can construct from A+

PvP′ a comple-
ment tree automaton ĀPvP′ that is only exponentially larger
than A+

PvP′ , i.e., doubly exponential overall [Cosmadakis et
al., 1988][Theorem A.1]. Containment can then be checked
by checking the non-emptiness ofAP ∩ ĀPvP′ , which is pos-
sible in polynomial time, leading to a 2ExpTime algorithm
overall.

Theorem 9. Containment of Dlog queries in GDlog queries
can be decided in 2ExpTime.

This generalizes an earlier result of Cosmadakis et al.
[1988] for monadic Datalog, using an alternative, direct
proof.

Finally, we can lift our results to the case of nested queries.
Using Proposition 1, we can make the simplifying assumption
that rules with some nested query in their body contain only
one nested query and a guard atom as the only other atom.
Thus all rules with nested queries have the form g(s)∧Q(t)→
p(u), where g is an EDB predicate, Q is a nested query, and
the variables u occur in s.

In Proposition 4, we constructed alternating 2-way au-
tomata A+

P,ρ,v that can check the entailment of a particular
atom p(v) starting from a node within the tree. Analogously,
we now construct automata A+

P,Q,θ that check that the nested
query Q matches partially, where θ is a substitution that inter-
prets query variables in terms of proof-tree variables on the
current node of the tree. Only the variables that occur in g(s)
and Q(t) are mapped by θ; the remaining variables can be
interpreted arbitrarily, possibly in distant parts of the proof
tree.

To construct A+
P,Q,θ, we use the alternating 2-way automa-

tonA+
PvQ, constructed in Proposition 5 (assuming, for a start,

that Q is not nested). This automaton is extended to an alter-
nating 2-way automatonA+

P,Q that accepts trees with a unique
annotation of the form 〈Q, θ〉, for which we check that it is
consistent with the λ-annotation (i.e., for each query variable
x mapped by θ, the corresponding constant λ is assigned to
θ(x) at the node that is annotated with 〈Q, θ〉). We then obtain
a (top-down) tree automatonAP,Q by transformingA+

P,Q into
a tree automaton (exponential), and projecting away the λ-
annotations (polynomial). The automaton AP,Q is analogous
to the tree automaton AP,ρ of Proposition 3. Using the same

transformation as in Proposition 4, we obtain an alternating
2-way automatonA+

P,Q,θ for each θ.
The automaton A+

PvP′ for a nested query P′ is constructed
as in Proposition 5, but using the automata A+

P,Q,θ instead of
automataA+

P,ρ,v to check the entailment of a subquery Q. The
size ofA+

PvP′ is increased by one exponential since the size of
A+

P,Q,θ is exponentially increased when projecting out λ-labels
for Q. Applying this construction inductively, we obtain the
following result.

Theorem 10. Containment of Dlog queries in GQk queries
can be decided in (k + 2)ExpTime.

5.3 Simulating Alternating Turing Machines
To show the hardness of query containment problems, we
generally provide direct encodings of Alternating Turing Ma-
chines (ATMs) with a fixed space bound [Chandra et al.,
1981]. To simplify this encoding, we assume without loss
of generality that every universal ATM configuration leads to
exactly two successor configurations. The following defini-
tion defines ATM encodings formally. Rather than requiring
concrete structures to encode ATMs, we abstract the encoding
by means of queries that find suitable structures in a database
instance; this allows us to apply the same definition for in-
creasingly complex encodings. The following definition is
illustrated in Figure 2.

Definition 11. Consider an ATM M = 〈Q,Σ,∆, qs, qe〉

and queries FirstConf[x, y], NextConfδ[x, y] for all δ ∈

∆, LastConf[x], Stateq[x] for all q ∈ Q, Head[x, y],
ConfCell[x, y], FirstCell[x, y], NextCell[x, y], LastCell[x], and
Symbol[x, y]. To refer to tape symbols, we consider constants
cσ for all σ ∈ Σ, and to refer to positions of the head, we use
constants h (here), l (left), and r (right).

With respect to these queries, an element c ∈ dom(I) in
a database instance I encodes an M quasi-configuration of
size s if I contains a structure

Stateq(c), FirstCell(c, d1),
ConfCell(c, d1),Symbol(d1, cσ1),Head(d1, p1),NextCell(d1, d2),
ConfCell(c, d2),Symbol(d2, cσ2),Head(d2, p2), . . . ,NextCell(ds−1, ds),
ConfCell(c, ds),Symbol(ds, cσs),Head(ds, ps), LastCell(ds),

where q ∈ Q, σi ∈ Σ, and pi ∈ {h, l, r}. We say that c encodes
an M configuration of size s if, in addition, the sequence
(pi)s

i=1 has the form l, . . . , l, h, r, . . . , r with zero or more oc-
currences of r and l, respectively.

An element c in I encodes a (quasi-)configuration tree of
M in space s if

• I |= FirstConf(c, d1) for some d1,

• d1 is the root of a tree with edges defined by NextConfδ,

• every node in this tree encodes an M (quasi-)
configuration of size s,

• if there is a transition I |= NextConfδ1 (e, e1), where δ1 =
〈q, σ, q′, σ′, d〉 and q is a universal state, then there is
also a transition I |= NextConfδ2 (e, e2) with δ1 , δ2,

• if e is a leaf node, then I |= LastConf(e).

If the tree is an accepting run, then c encodes an accepting
run (ofM in space s).

A same-cell query is a query SameCell[x, y] such that,
if c1, c2 ∈ dom(I) encode two quasi-configurations, and
d1, d2 ∈ dom(I) represent the same tape cell in the encod-
ings c1 and c2, respectively, then 〈d1, d2〉 ∈ SameCellI.

Two queries P1[x] and P2[x] containment-encode accept-
ing runs of M in space s if, for every database instance I
and element c ∈ PI1 \ PI2 , c encodes an accepting run ofM in
space s, and every accepting run ofM in space s is encoded
by some c ∈ PI1 \ PI2 for some I.

Note that elements c may encode more than one configu-
ration (or configuration tree). This is not a problem in our
arguments.

The conditions that ensure that a quasi-configuration tree
is an accepting run can be expressed by a query, based on
the queries given in Definition 11. More specifically, one
can construct a query that accepts all elements that encode a
quasi-configuration sequence that is not a run. Together with
a query that accepts only encodings of quasi-configurations
tree, this allows us to containment-encode accepting runs of
an ATM. Only linear queries, possibly nested, will be needed
to perform the required checks, even in the case of ATMs.
To simplify the statements, we use LinMQ0 as a synonym for
UCQ.
Lemma 12. Consider an ATM M, and queries as in Defi-
nition 11, including SameCell[x, y], that are MQk queries for
some k ≥ 0. There is a MQk query P[x], polynomial in the
size ofM and the given queries, such that the following hold.
• For every accepting run ofM in space s, there is some

database instance I with some element c that encodes
the run, such that c < PI.

• If an element c of I encodes a tree of quasi-
configurations of M in space s, and if c < PI, then c
encodes an accepting run ofM in space s.

Moreover, if all input queries are in LinMQk, then so is P.

Proof. We construct P from all (polynomially many) positive
queries obtained by instantiating the query patterns in Fig-
ure 3. Since P needs to be a unary query with variable x, we
extend every positive query that does not contain x with the
atom FirstConf[x, x′] (omitted for space reasons in Figure 3).
By Proposition 1 we can express the disjunctions of all the
positive queries in Figure 3 as a LinMQk P[x] of polynomial
size (for k = 0 it is a UCQ).

If an element c in a database instance I encodes an accept-
ing run ofM in space s, and I contains no other structures,
then none of the queries in Figure 3 matches. Hence c < PI.

Conversely, assume that c encodes a tree of M quasi-
configurations in space s and c < PI. If none of the queries
in Figure 3 (1) match, the head positions of every configura-
tion must form a sequence l, . . . , l, h, r, . . . , r; hence all quasi-
configurations are actually configurations. Queries (2)–(4)
ensure that the first and last configuration are in the start and
end state, respectively, and that each transition is matched by
suitable state and tape modifications. Queries (5) ensure that
tape cells that are not at the head of the TM are not modified
between configurations. Queries (6) ensure that the move-
ment of the head is consistent with the transitions, and es-
pecially does not leave the prescribed space. Note that the

FirstCell NextCelld1 NextCell
LastCell

d2 dsds−1

Stateq

Symbol
Head p1

cσ1
Symbol
Head p2

cσ2
Symbol
Head ps

cσs

FirstConf
NextConfδ1

NextConfδ2

LastConf
NextConfδ3

LastConf

Figure 2: Illustration of the ATM encoding of Definition 11: shaded configurations (top) are used within the configuration tree
(bottom); ConfCell queries are omitted for clarity

(1) Unique head marker and correct left/right head markers:
Head(y, p1) ∧ NextCell(y, z) ∧ Head(z, p2) where 〈p1, p2〉 ∈ {〈h, h〉, 〈h, l〉, 〈r, h〉, 〈r, l〉}

Head(y, h) ∧ Head(y, p) where p ∈ {r, l}

(2) Unique start configuration:
FirstConf(x, y) ∧ Stateq(y) where q , qs

FirstConf(x, y) ∧ FirstCell(y, z) ∧ Head(z, p) where p ∈ {l, r}
FirstConf(x, y) ∧ ConfCell(y, z) ∧ Symbol(z, cσ) where σ , �

(3) Valid, uniquely defined transitions:
Stateq(y) ∧ Head(z, h) ∧ ConfCell(y, z) ∧ Symbol(z, cσ) ∧ NextConfδ(y, y′) ∧ where δ = 〈q1, σ1, q2, σ2, d〉

Stateq′ (y′) ∧ ConfCell(y′, z′) ∧ SameCell(z′, z) ∧ Symbol(z′, cσ′) with q1 , q or σ1 , σ or q2 , q′ or σ2 , σ
′

(4) Unique end state:
LastConf(y) ∧ Stateq(y) where q , qe

(5) Memory:
ConfCell(y1, x1) ∧ Head(x1, r) ∧ Symbol(x1, cσ) ∧ NextConfδ(y1, y2) ∧

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ Symbol(x2, cσ′) where σ , σ′

ConfCell(y1, x1) ∧ Head(x1, l) ∧ Symbol(x1, cσ) ∧ NextConfδ(y1, y2) ∧
ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ Symbol(x2, cσ′) where σ , σ′

(6) Head movement:
ConfCell(y1, x1) ∧ Head(x1, h) ∧ NextConfδ(y1, y2) ∧ where δ = 〈q1, σ1, q2, σ2, right〉

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ NextCell(x2, x′2) ∧ Head(x′2, p) and p ∈ {r, l}
ConfCell(y1, x1) ∧ Head(x1, h) ∧ NextConfδ(y1, y2) ∧ where δ = 〈q1, σ1, q2, σ2, right〉

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ LastCell(x2) ∧ Head(x2, p) and p ∈ {r, l}
ConfCell(y1, x1) ∧ Head(x1, h) ∧ NextConfδ(y1, y2) ∧ where δ = 〈q1, σ1, q2, σ2, left〉

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ NextCell(x′2, x2) ∧ Head(x′2, p) and p ∈ {r, l}
ConfCell(y1, x1) ∧ Head(x1, h) ∧ NextConfδ(y1, y2) ∧ where δ = 〈q1, σ1, q2, σ2, left〉

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ FirstCell(z, x2) ∧ Head(x2, p) and p ∈ {r, l}

Figure 3: Queries to construct a containment encoding as in Lemma 12

queries allow transitions that try to move the head beyond
the tape and require that the head stays in its current position
in this case. This allows the ATM to recognize the end of
the tape, which is important for the Turing machines that we
consider below. With all these restrictions observed, c must
encode a run ofM in space s. �

The previous result allows us to focus on the encoding of
quasi-configuration trees and the definition of queries as re-
quired in Definition 11. Indeed, the main challenge below
will be to enforce a sufficiently large tape for which we can
still find a correct same-cell query.

5.4 Hardness of Monadic Query Containment
We can now prove our first major hardness result:
Theorem 13. Deciding containment of MDlog queries in MQk

queries is hard for (k + 2)ExpTime.
Note that the statement includes the 3ExpTime-hardness for

containment of MQs as a special case. To prove this result, we
first construct an ExpSpace ATM that we then use to construct
tapes of double exponential size.
Lemma 14. For any ATMM, there is an MDlog query P1[x],
a LinMQ P2[x], queries as in Definition 11 that are LinMQs,
and a same-cell query that is a UCQ, such that P1[x] and
P2[x] containment-encode accepting runs of M in exponen-
tial space.

Proof. Let M = 〈Q,Σ,∆, qs, qe〉 with Q partitioned into
existential states Q∃ and universal states Q∀. In order to
use Lemma 12, we first construct queries P′1 and P′2 that
containment-encode quasi-configuration trees ofM in space
2` for some ` that is linear in the size of the queries (w.r.t. to
suitable queries as in Definition 11).

Our signature contains the binary predicates (distinguished
from the queries of Definition 11 by using lower case letters)
firstConf, nextConfδ for all δ ∈ ∆, firstCell, nextCell, biti for all
i ∈ {1, . . . , `}, symbol, head, as well as the unary predicates
lastConf, and stateq for all q ∈ Q.

We define P′1 to be the following MDlog query that has the
goal predicate Ugoal and uses two further constants 0 and 1:

firstConf(x, y) ∧ Uconf(y)→ Ugoal(x)
stateq(x) ∧ firstCell(x, y) ∧

Ubit1 (y)→ Uconf(x) for q ∈ Q
biti−1(x, 0) ∧ Ubiti (x)→ Ubiti−1 (x) for i ∈ {2, . . . , `}
biti−1(x, 1) ∧ Ubiti (x)→ Ubiti−1 (x) for i ∈ {2, . . . , `}

symbol(x, cσ) ∧ Usymbol(x)→ Ubit` (x) for σ ∈ Σ

head(x, h) ∧ Uhead(x)→ Usymbol(x)
head(x, l) ∧ Uhead(x)→ Usymbol(x)
head(x, r) ∧ Uhead(x)→ Usymbol(x)

nextCell(x, y) ∧ Ubit1 (y)→ Uhead(x)
nextConfδ(x, y) ∧ Uconf(y)→ Uhead(x) for δ = 〈q, σ, q′, σ′, d〉

with q ∈ Q∃
nextConfδ1 (x, y1) ∧ Uconf(y1) ∧ for δ1 = 〈q, σ, q′, σ′, d〉,

nextConfδ2 (x, y2) ∧ Uconf(y2)→ Uhead(x) q ∈ Q∀, and δ1 , δ2

lastConf(x)→ Uhead(x)

P′1 encodes structures that resemble configuration
trees, but with each configuration “tape” consist-
ing of an arbitrary sequence of “cells” of the form
bit1(x, v1), . . . , bit`(x, v`), symbol(x, cσ), head(x, p), where
each vi is either 0 or 1. The values for the bit sequence encode
a binary number of length `. We provide a query P′2 which
ensures that each sequence of cells encodes an ascending
sequence of binary numbers from 00 . . . 0 to 11 . . . 1. More
precisely, P′2 checks if there are any consecutive cells that
violate this rule, i.e., the structures matched by P′1 but not
by P′2 are those where each configuration contains 2` cells.
The following query checks whether bit i is the rightmost bit

containing a 0 and bit i in the successor configuration also
contains a 0, which is a situation that must not occur if the
bit sequences encode a binary counter:

biti(y, 0) ∧ biti+1(y, 1) ∧ . . . ∧ bit`(y, 1) ∧ nextCell(y, z) ∧ biti(z, 0)

In a similar way, we can ensure that every bit to the right of
the rightmost 0 is changed to 0, every bit that is left of a 0 re-
mains unchanged, the first number is 0 . . . 0, and the last num-
ber is 1 . . . 1. The query P′2 is the union of all of these (poly-
nomially many) conditions, each with new atom firstConf(x,y)
added and all variables other than x existentially quantified;
this ensures that we obtain a unary query that matches the
same elements as P′1 if it matches at all.

We claim that the elements matching P′1 but not P′2 encode
quasi-configuration trees ofM in space 2`. Indeed, it is easy
to specify the queries required by Definition 11. The most
complicated query is ConfCell[x, y], which can be defined by
the following LinMQ:

stateq(λ1) ∧ nextCell(λ1, y)→ U(y) for all q ∈ Q
U(y) ∧ nextCell(y, z)→ U(y)

U(λ2)→ hit

The remaining queries are now easy to specify, where we use
ConfCell[x, y], knowing that a conjunctive query over LinMQs
can be transformed into a single LinMQ using Proposition 1:

FirstConf[x, y] B firstConf(x, y)
NextConfδ[x, y] B ∃z.ConfCell(x, z) ∧ nextConfδ(z, y)

LastConf[x] B ∃z.ConfCell(x, z) ∧ lastConf(z)
Stateq[x] B stateq(x)

Head[x, y] B head(x, y)
FirstCell[x, y] B firstCell(x, y))
NextCell[x, y] B nextCell(x, y)

LastCell[x] B lastConf(x) ∨ ∃z.nextConf(x, z)
Symbol[x, y] B symbol(x, y)

SameCell[x, y] B ∃v1, . . . , v`.bit1(x, v1) ∧ bit1(y, v1) ∧
. . . ∧ bit`(x, v`) ∧ bit`(y, v`)

Using these queries, we can construct a LinMQ P as in
Lemma 12 such that P1 = P′1 and P2 = P′2 ∨ P containment-
encode accepting runs ofM. �

Figure 4 illustrates the encoding that we use to prove
Lemma 14. While it resembles the structure of Figure 2, the
labels are now EDB predicates rather than (abstract) queries.
The encoding of tapes attaches to each cell an `-bit address
(where bits are represented by constants 0 and 1). We can
use these bits to count from 0 to 2` to construct tapes of this
length. The query on the left-hand side can only enforce that
there are cells with bit addresses, not that they actually count;
even the exact length of the tape is unspecified. The query
on the right-hand side of the containment then checks that
consecutive cells (in all tapes that occur in the configuration
tree) represent successor addresses, and that the first and last
address is as expected.

Another difference from Figure 2 is that we now treat con-
figurations as linear structures, with a beginning and an end.

In our representation of the configuration tree, we next con-
figuration therefore connects to the last cell of the previous
configuration’s tape, rather than its start. We do this to ensure
that the encoding works well even when restricting to linear
queries. Indeed, the only non-linear rules in P1 are used to
enforce multiple successor configurations for universal states
of an ATM. For normal TMs, even P1 is in LinMDlog.

Note that we do not enforce any structure to define the
query ConfCell; this query is implemented by a LinMQ that
navigates over an arbitrary number of cells within one config-
uration. This is the main reason why we need LinMQs rather
than UCQs here.

We now use the exponential space ATM of Lemma 14
to encode the tape of 2ExpSpace ATM. The following result
shows, that one can always obtain an exponentially larger tape
by nesting linear queries on the right-hand side.
Lemma 15. Assume that there is some space bound s such
that, for every DTMM, there is a MDlog query P1[x] and an
MQk+1 query P2[x] with k ≥ 0, such that P1[x] and P2[x]
containment-encode accepting runs of M in s, where the
queries required by Definition 11 are MQk+1 queries. More-
over, assume that there is a suitable same-cell query that is in
MQk.

Then, for every ATM M′, there is a MDlog query P′1[x],
an MQk+1 P′2[x], and MQk+1 queries as in Definition 11, such
that P′1[x] and P′2[x] containment-encode an accepting run of
M′ in space s′ ≥ 2s. Moreover, the size of the queries for
this encoding is polynomial in the size of the queries for the
original encoding.

Proof. There is a TMM = 〈Q,Σ,∆, qs, qe〉 that counts from
0 to 2s in binary (using space s) and then halts. M can be
small (constant size) since our formalization of (A)TMs al-
lows the TMs to recognize the last tape position to ensure
that the maximal available space is used. The computation
will necessarily take s′ > 2s steps to complete since multiple
steps are needed to increment the counter by 1. Let P1[x] and
P2[x] be queries that containment-encode accepting runs of
M in s, and let ConfCell, SameCell, etc. denote the respective
LinMQk as in Definition 11.

LetM′ = 〈Q′,Σ′,∆′, q′s, q
′
e〉 be an arbitrary ATM. We use

the signature of P1, extended by additional binary predicates
firstConf′, nextConf′δ for all δ ∈ ∆′, symbol′, head′, as well as
unary predicates lastConf′, and state′q for all q ∈ Q′. All of
these are assumed to be distinct from predicates in P1.

Let Ugoal be the goal predicate of P1, and let Utape be a new
unary IDB predicate. We construct the program P̄1 from P1
as follows. For every rule of P1 that does not contain an IDB
atom in its body we add the atom Utape(x) to the body, where
x is any variable that occurs in the rule. Intuitively speaking,
the IDBs Utape and Ugoal mark the start and end of tapes ofM′,
which are represented by runs ofM. Moreover, we modify P̄1
to “inject” additional state and head information forM′ into
configurations of M, i.e., we extend P1 to ensure that every
element e with stateq(e) also occurs in some symbol′(e, c′σ′)
and in some relation head′(e, p). This can always be achieved
by adding a linear number of IDB predicates and rules.

Now P′1 is defined to be a MDlog query with goal predicate
U′goal (assumed, like all IDB predicates of form U′ below, to

be distinct from any IDB predicate in P̄1), which is obtained
as the union of P̄1 with the following rules:

firstConf′(x, y) ∧ U′conf(y)→ U′goal(x)

state′q(x) ∧ Ugoal(x)→ U′conf(x) for q ∈ Q

nextCell′(x, y) ∧ Ugoal(y)→ Utape(x) for q ∈ Q
nextConf′δ(x, y) ∧ U′conf(y)→ Utape(x) for δ = 〈q, σ, q′, σ′, d〉

with q ∈ Q∃
nextConf′δ1

(x, y1) ∧ U′conf(y1) ∧ for δ1 = 〈q, σ, q′, σ′, d〉,
nextConf′δ2

(x, y2) ∧ U′conf(y2)→ Utape(x) q ∈ Q∀, and δ1 , δ2

lastConf′(x)→ Utape(x)

P′1 encodes trees of trees ofM quasi-configurations in space
s. The structures matched by P′1 but not by P2 encode trees
of accepting runs of M in space s (note that these runs are
linear, since M is not alternating). Every such run consists
of the same number s′ ≥ 2s of configurations; these con-
figurations represent the tape cells of our encoding of M′
sequences. This encoding is formalized by queries as fol-
lows. The queries FirstConf′[x, y], State′q[x], Head′[x, y], and
Symbol′[x, y] are directly expressed by singleton CQs that use
the eponymous predicates firstConf′(x, y), etc. To access cells
ofM′, we can use the analogous queries to access configura-
tions ofM: FirstCell′[x, y] = FirstConf(x, y), NextCell′[x, y] =
NextConf(x, y), and LastCell′[x] = LastConf(x).

The remaining queries can be expressed as LinMQ queries.
To present these queries in a more readable way, we spec-
ify them in regular expression syntax rather than giving many
rules for each. It is clear that regular expressions over unary
and binary predicates can be expressed in LinMQ (it was al-
ready shown that MQs can express regular path queries, which
is closely related [Rudolph and Krötzsch, 2013]). We use ab-
breviation P1SYMBOL to express the regular expression that
is a disjunction of all predicate symbols that occur in P1 (this
allows us to skip over any structures generated by P1; with
the specific forms of P1 that can occur in our proofs, one
could make this more specific to use only certain binary predi-
cates, but our formulation does not depend on internals of P1).
Moreover, let STATE be the disjunction of all atoms state′q(x)
and ∃y.head′(x, y) (both unary).

NextConf′δ[x, y] B STATE P1SYMBOL∗ nextConf′δ
LastConf′[x] B STATE P1SYMBOL∗ lastConf′

ConfCell′[x, y] B STATE P1SYMBOL∗ HEAD

The unary query LastConf′[x] uses the variable at the begin-
ning of the expression as its answer. It is easy to verify that
the elements accepted by P′1 but not by P2 encode sequences
of quasi-configurations ofM′ in space s′ with respect to these
queries. To apply Lemma 12, we need to specify an additional
SameCell′ query for this encoding.

SameCell′ is expressed by an MQk+1 query that can in gen-
eral not be expressed by a MQk query:

firstCell nextCelld1 nextCell
lastCell

d2 dsds−1

stateq

bit1
. . .

symbol
head

bit`

p1
cσ1

0

0

bit1
. . .

symbol
head

bit`

p2
cσ2

0

1

bit1
. . .

symbol
head

bit`

ps

cσs

1

1

firstConf
nextConfδ1

nextConfδ2

lastConf

lastConf

Figure 4: Illustration of the ATM encoding of Lemma 14: shaded configurations (top) are used within the configuration tree
(bottom)

FirstCell(λ1, x)→ U1(x)
U1(x) ∧ NextCell(x, x′)→ U1(x′)

Stateq(λ1) ∧ FirstCell(λ1, x) ∧ Symbol(x, z) ∧ Head(x, v) ∧
Stateq(λ2) ∧ FirstCell(λ2, y) ∧ Symbol(y, z) ∧ Head(y, v)→ U2(y)

for all q ∈ Q
U1(x) ∧ U2(y) ∧ SameCell(x, y) ∧

NextCell(x, x′) ∧ Symbol(x′, z) ∧ Head(x′, v) ∧
NextCell(y, y′) ∧ Symbol(y′, z) ∧ Head(y′, v)→ U2(y′)

U2(y) ∧ LastCell(y)→ hit

where FirstCell, Symbol, SameCell, and LastCell are the
queries for which P1 and P2 containment-encode runs ofM.
Note that our constructions already ensure that the sequences
ofM-cells compared by SameCell′ are of the same length.

To complete the proof, we apply Lemma 12 to construct
an MQk+1 P̄2. The MQk+1 P′2 is obtained by expressing the
disjunction of P2 and P̄2 as an MQk+1 using Proposition 1.
Then P′1 and P′2 containment-encode accepting runs ofM′ in
space s′. �

The most difficult to express in this construction is the new
same-cell query SameCell′. The first two rules simply mark
the tape starting at λ1 with U1. The next two rules then com-
pare the two (potentially very long) tapes from configura-
tions ofM to check if they contain exactly the same symbols
at each position, and the last rule finishes. Since the tapes
are not connected in any known way, we have to be care-
ful to ensure never to loose the connection to either of the
tapes, to avoid comparing random cells from other parts of
the database. Indeed, the last two rules do not mention λ1 or
λ2 at all. We need two IDB predicates to achieve this, which
carefully mark the two tapes cell by cell.

Another important thing to note is that the query SameCell
is only used exactly once in exactly one rule. Indeed, if we
were using it twice, then the length of our queries would
grow exponentially when applying the construction induc-
tively. This is the reason why we encode symbols and head
positions with constants, rather than using unary predicates
like for states. In the latter case, we need many rules, one

for each predicate, as can be seen in the third rule above.
One could try to avoid the use of constants by more com-
plex encodings that encode information using paths of dif-
ferent lengths as done by Björklund et al. [Björklund et al.,
2008]. However, some additional device is needed to ensure
that database instances are sufficiently closely connected in
this case, which may again require constants, IDBs of higher
arity, or a greater nesting level of LinMQ queries to navigate
larger distances.

With the previous results, Theorem 13 can be proved by an
easy induction: for the base case k = 1 we apply Lemma 15
to the result of Lemma 14; for the induction step we use
Lemma 15 again.

Proof. The claim is shown by induction on k. For the base
case, we show that deciding containment of MQ queries is
3ExpTime-hard. By Lemma 14, for any DTM M0, there is
a MDlog query P0

1, a LinMQ P0
2, LinMQs as in Definition 11,

and a same-cell query that is a UCQ with respect to which
P0

1 and P0
2 containment-encode accepting runs of M0 in ex-

ponential space s. By applying Lemma 15, we obtain, for an
arbitrary ATM M1, a MDlog query P1

1, an MQ P1
2, and MQ

queries as in Definition 11 (including a same-cell query), that
containment-encode accepting runs ofM1 in space s′ ≥ 2s.

The induction step for k > 1 is immediate from Lemma 15.
�

5.5 Linear Datalog
Not only query answering, but also containment checking is
often slightly simpler in fragments of linear Datalog. Intu-
itively, this is so because derivations can be represented as
words rather than as trees. Thus, the automata theoretic tech-
niques that we have used in Section 5.2 can be applied with
automata on words where some operations are easier. In par-
ticular, containment of (nondeterministic) automata on words
can be checked in polynomial space rather than in exponen-
tial time. This allows us to establish the following theorems,
which reduce the 2ExpTime upper bound of Theorem 9 to Ex-

pSpace and the (k + 2)ExpTime upper bound of Theorem 10 to
(k + 1)ExpSpace.
Theorem 16. Containment of LinDlog queries in GDlog
queries can be decided in ExpSpace.
Theorem 17. Containment of LinDlog queries in GQk queries
can be decided in (k + 1)ExpSpace.

Establishing matching lower bounds for the complexity
turns out to be more difficult. In general, we loose the power
of alternation, which explains the reduction in complexity.
The general approach of encoding (non-alternating) Turing
machines is the same as in Section 5.3, where Definition 11
is slightly simplified since we do not need to consider uni-
versal states, so that configuration trees turn into configura-
tion sequences. Moreover, Lemma 12 applies to this case
as well, since it only requires linear queries. Likewise, our
general inductive step in Lemma 15 uses deterministic (non-
alternating) TMs to construct exponentially long tapes. More-
over, it turns out that the construction of an initial exponential
space TM in Lemma 14 leads to linear queries if the TM has
no universal states.

Yet it is challenging to lift the exact encodings of
Lemma 14 and Lemma 15. The same-cell query that we
constructed in Lemma 15 for our inductive argument is non-
linear. As explained in Section 5.4, the use of two IDBs to
mark both sequences of tape cells is essential there to ensure
correctness. The main problem is that we must not loose con-
nection to either of the sequences during our checks. As an
alternative to using IDBs on both sequences, one could use
the ConfCell query to ensure that the compared cells belong
to the right configurations. This leads to the following same-
cell query:
Stateq(λ1) ∧ FirstCell(λ1, x) ∧ Symbol(x, z) ∧ Head(x, v) ∧

Stateq(λ2) ∧ FirstCell(λ2, y) ∧ Symbol(y, z) ∧ Head(y, v)→ U(y)
for all q ∈ Q

U(y) ∧ ConfCell(λ1, x) ∧ SameCell(x, y) ∧
NextCell(x, x′) ∧ Symbol(x′, z) ∧ Head(x′, v) ∧

NextCell(y, y′) ∧ Symbol(y′, z) ∧ Head(y′, v)→ U(y′)
U(y) ∧ LastCell(y)→ hit

While this works in principle, it has the problem that the
ConfCell query of Lemma 14 is a LinMQ, not a UCQ. There-
fore, if we construct a same-cell query for the 2ExpSpace case,
we obtain LinMQ2 queries, which yields the following result:
Theorem 18. Deciding containment of LinMDlog queries in
LinMQk queries is hard for kExpSpace.

In order to do better, one can try to express ConfCell as a
UCQ. In general, this is not possible on the database instances
that the left-hand query in Lemma 14 recognizes, since cells
may have an exponential distance to their configuration while
UCQs can only recognize local structures. To make ConfCell
local, we can modify the left-hand query to ensure that every
cell is linked directly to its configuration with a binary pred-
icate inConf. Using binary IDB predicates, we can do this
with the following set of frontier-guarded rules (for all q ∈ Q,
i ∈ {2, . . . , `}, σ ∈ Σ, and δ ∈ ∆, respectively):

firstConf(x, y) ∧ Uconf(y)→ Ugoal(x)
stateq(x) ∧ nextCell(x, y) ∧ inConf(y, x) ∧ Ubit1 (y, x)→ Uconf(x)

biti−1(x, 0) ∧ Ubiti (y, z) ∧ inConf(x, z)→ Ubiti−1 (x, z)

biti−1(x, 1) ∧ Ubiti (y, z) ∧ inConf(x, z)→ Ubiti−1 (x, z)
symbol(x, cσ) ∧ Usymbol(x, z) ∧ inConf(x, z)→ Ubit` (x, z)

head(x, h) ∧ Uhead(x, z) ∧ inConf(x, z)→ Usymbol(x, z)
head(x, l) ∧ Uhead(x, z) ∧ inConf(x, z)→ Usymbol(x, z)
head(x, r) ∧ Uhead(x, z) ∧ inConf(x, z)→ Usymbol(x, z)

nextCell(x, y) ∧ Ubit1 (y, z) ∧ inConf(x, z)→ Uhead(x, z)
nextConfδ(x, y) ∧ Uconf(y) ∧ inConf(x, z)→ Uhead(x, z)

lastConf(x) ∧ inConf(x, z)→ Uhead(x, z)

Structures matched by this query provide direct links from
each element to their configuration element, and we can thus
formulate ConfCell as a UCQ and obtain the following.
Theorem 19. Deciding containment of LinGDlog queries in
LinMQk queries is hard for (k + 1)ExpSpace.

It is not clear if this result can be extended to contain-
ments of LinMQ in LinMQk; the above approach does not
suggest any suitable modification. In particular, the prop-
agation of inConf in the style of a transitive closure does
not work, since elements may participate in many inConf
relations. On the other hand, the special constants λ in
LinMQs cannot be used to refer to the current configura-
tion, since there can be an unbounded number of configu-
rations but only a bounded number of special constants. It
is possible, however, to formulate a LinMQ Config[x] that
generates the required structure for a single configuration,
since one can then represents the configuration by λ. We
can generate arbitrary sequences of such structures by using
Config[x] as a nested query to that matches a regular expres-
sion firstConf (Config NextConf)∗ Config lastConf, where we
use NextConf to express the disjunction of all nextConfδ rela-
tions. This proves the following statement.
Theorem 20. Deciding containment of LinMQ2 queries in
LinMQk queries is hard for (k + 1)ExpSpace.

Finally, we can also continue to use the same approach for
encoding SameCell as in Section 5.4, without using ConfCell,
while still restricting to linear Datalog (and thus to non-
alternating TMs) on the left-hand side. This leads us to the
following result.
Theorem 21. Deciding containment of LinMDlog queries in
MQk queries is hard for (k + 1)ExpSpace.

We have thus established tight complexity bounds for the
containment of nested GQs, while there remains a gap (of one
exponential or one nesting level) for MQs.

6 Conclusions
We have studied the most expressive fragments of Datalog
for which query containment is known to be decidable, and
we provided exact complexities for query answering and con-
tainment in most cases. Our results are summarized in Ta-
ble 1. While containment tends to be non-elementary for
nested queries, we have identified tight exponential complex-
ity hierarchies depending on nesting depth. Our results settle
several open problems for known query languages: the com-
plexity of query containment for MQ and MQ+, the complex-
ity of query containment of Dlog in GDlog, and the expressiv-
ity of nested LinDlog.

UCQ,LinMDlog, MDlog, LinMQk, MQk, LinMQ+,MQ+,
LinGDlog, GDlog LinGQk GQk LinGQ+,GQ+ Dlog

LinMQ PSpace-h kExpSpace-h
[Chaudhuri and Vardi, 1994] [Th.18] (k + 1)ExpSpace-c Nonelementary Undecidable

ExpSpace (k + 1)ExpSpace [Th.21]\[Th.17] [Th.18] [Abiteboul et al., 1994]
[Th.16] [Th.17]

LinGDlog,
LinMQn (n ≥ 2), ExpSpace-c (k + 1)ExpSpace-c (k + 1)ExpSpace-c Nonelementary Undecidable
LinMQ+, LinGQ+, [Th.20]\[Th.16] [Th.19,20]\[Th.17] [Th.19,20]\[Th.17] [Th.19,20] [Abiteboul et al., 1994]
LinGQn, LinDlog

MDlog, GDlog, 2ExpTime-c
MQn, GQn, [Benedikt et al., 2012], (k + 2)ExpTime-c (k + 2)ExpTime-c Nonelementary Undecidable
MQ+, GQ+, [Chaudhuri and Vardi, 1997]\ [Th.13]\[Th.10] [Th.13]\[Th.10] [Th.13] [Shmueli, 1987]
Dlog [Cosmadakis et al., 1988], [Th.9]

Table 1: Summary of the known complexities of query containment for several Datalog fragments; sources for each claim are
shown in square brackets, using \ to separate sources for lower and upper complexity bounds, respectively

Moreover, we have built on the recent “flag & check” ap-
proach of monadically defined queries to derive various nat-
ural extensions, which lead to new query languages with in-
teresting complexity results. In most cases, we observed that
the extension from monadic to frontier-guarded Datalog does
not affect any of the complexities, whereas it might have an
impact on expressivity. In contrast, the restriction to linear
Datalog has the expected effects, both for query answering
and for containment.

The only case for which our results for containment com-
plexity are not tight is when we restrict rules to be both linear
and monadic: while small variations in the involved query
languages lead to the expected tight bounds, this particular
combination eludes our analysis. This case is closely related
to conjunctive regular path queries, and inspiration might be
drawn from recent results in this field [Reutter, 2013]. This
case could be studied as part of a future program for analyz-
ing the behavior of (nested) conjunctive regular path queries,
which are also a special form of monadic, linear Datalog.

Another interesting open question is the role of constants.
Our hardness proofs, especially in the nested case, rely on the
use of constants to perform certain checks more efficiently.
Without this, it is not clear how an exponential blow-up of
our encoding (or the use of additional nesting levels) could
be avoided. Of course, constants can be simulated if we have
either predicates of higher arity or special constants as in “flag
& check” queries. However, for the case of (linear) monadic
Datalog without constants, we conjecture that containment
complexities are reduced by one exponential each.

Promising directions for future research include the study
of practical containment algorithms, since the automata-
based techniques we use do not lend themselves for imple-
mentation yet. Another interesting topic is to study problems
where we ask for the existence of a subsuming query of a cer-
tain type rather than merely check containment of two given
queries. The most prominent instance of this scenario is the
boundedness problem, which asks whether a given Datalog
program can be expressed by some (yet unknown) UCQ. It
has been shown that this problem can be studied using tree-
automata-based techniques as for query containment [Cos-
madakis et al., 1988], though other approaches have been ap-

plied as well [Bárány et al., 2012]. Besides boundedness,
one can also ask more general questions of rewritability, e.g.,
whether some Datalog program can be expressed in monadic
Datalog or in a regular path query.

References
[Abiteboul and Vianu, 1999] Serge Abiteboul and Victor

Vianu. Regular path queries with constraints. J. Comput.
Syst. Sci., 58(3):428–452, 1999.

[Abiteboul et al., 1994] Serge Abiteboul, Richard Hull, and
Victor Vianu. Foundations of Databases. Addison Wesley,
1994.

[Baget et al., 2011] Jean-François Baget, Michel Leclère,
Marie-Laure Mugnier, and Eric Salvat. On rules with ex-
istential variables: Walking the decidability line. Artificial
Intelligence, 175(9–10):1620–1654, 2011.

[Bárány et al., 2011] Vince Bárány, Balder ten Cate, and Luc
Segoufin. Guarded negation. In Luca Aceto, Monika Hen-
zinger, and Jiri Sgall, editors, ICALP (2), volume 6756 of
LNCS, pages 356–367. Springer, 2011.

[Bárány et al., 2012] Vince Bárány, Balder ten Cate, and
Martin Otto. Queries with guarded negation. PVLDB,
5(11):1328–1339, 2012.

[Benedikt et al., 2012] Michael Benedikt, Pierre Bourhis,
and Pierre Senellart. Monadic datalog containment. In
Proc. 39th Int. Coll. on Automata, Languages, and Pro-
gramming (ICALP’12), pages 79–91, 2012.

[Bienvenu et al., 2013] Meghyn Bienvenu, Balder ten Cate,
Carsten Lutz, and Frank Wolter. Ontology-based data ac-
cess: A study through disjunctive datalog, CSP, and MM-
SNP. In Hull and Fan [2013], pages 213–224.

[Bienvenu et al., 2014] Meghyn Bienvenu, Diego Calvanese,
Magdalena Ortiz, and Mantas Simkus. Nested regular path
queries in description logics. In Chitta Baral, Giuseppe De
Giacomo, and Thomas Eiter, editors, Proc. 14th Int. Conf.
on Principles of Knowledge Representation and Reason-
ing (KR’14). AAAI Press, 2014.

[Bischoff et al., 2014] Stefan Bischoff, Markus Krötzsch,
Axel Polleres, and Sebastian Rudolph. Schema-agnostic
query rewriting for SPARQL 1.1. In Peter Mika, Tania
Tudorache, Abraham Bernstein, Chris Welty, Craig A.
Knoblock, Denny Vrandečić, Paul T. Groth, Natasha F.
Noy, Krzysztof Janowicz, and Carole A. Goble, editors,
Proc. 13th Int. Semantic Web Conf. (ISWC’14), volume
8796 of LNCS, pages 584–600. Springer, 2014.

[Björklund et al., 2008] Henrik Björklund, Wim Martens,
and Thomas Schwentick. Optimizing conjunctive queries
over trees using schema information. In Edward Ochman-
ski and Jerzy Tyszkiewicz, editors, Proc. 3rdInt. Sympo-
sium on Mathematical Foundations of Computer Science,
volume 5162 of LNCS, pages 132–143. Springer, 2008.

[Boutilier, 2009] Craig Boutilier, editor. Proc. 21st Int. Joint
Conf. on Artificial Intelligence (IJCAI’09). IJCAI, 2009.

[Calì et al., 2008] Andrea Calì, Georg Gottlob, and Michael
Kifer. Taming the infinite chase: Query answering under
expressive relational constraints. In Gerhard Brewka and
Jérôme Lang, editors, Proc. 11th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR’08),
pages 70–80. AAAI Press, 2008.

[Calvanese et al., 2003] Diego Calvanese, Giuseppe De Gia-
como, Maurizio Lenzerini, and Moshe Y. Vardi. Reason-
ing on regular path queries. SIGMOD Record, 32(4):83–
92, 2003.

[Calvanese et al., 2005] Diego Calvanese, Giuseppe De Gia-
como, and Moshe Y. Vardi. Decidable containment of re-
cursive queries. Theor. Comput. Sci., 336(1):33–56, 2005.

[Calvanese et al., 2007a] Diego Calvanese, Thomas Eiter,
and Magdalena Ortiz. Answering regular path queries in
expressive description logics: An automata-theoretic ap-
proach. In Proc. 22nd AAAI Conf. on Artificial Intelligence
(AAAI’07), pages 391–396. AAAI Press, 2007.

[Calvanese et al., 2007b] Diego Calvanese, Guiseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. J. of
Automated Reasoning, 39(3):385–429, 2007.

[Calvanese et al., 2009] Diego Calvanese, Thomas Eiter, and
Magdalena Ortiz. Regular path queries in expressive de-
scription logics with nominals. In Boutilier [2009], pages
714–720.

[Chandra et al., 1981] Ashok K. Chandra, Dexter C. Kozen,
and Larry J. Stockmeyer. Alternation. J. of the ACM,
28(1):114–133, 1981.

[Chaudhuri and Vardi, 1994] Surajit Chaudhuri and
Moshe Y. Vardi. On the complexity of equivalence
between recursive and nonrecursive Datalog programs.
In Proc. 13th Symp. on Principles of Database Systems
(PODS’93), pages 107–116, 1994.

[Chaudhuri and Vardi, 1997] Surajit Chaudhuri and
Moshe Y. Vardi. On the equivalence of recursive
and nonrecursive Datalog programs. J. of Comput. Syst.
Sci., 54(1):61–78, 1997.

[Cosmadakis et al., 1988] Stavros Cosmadakis, Haim Gaif-
man, Paris Kanellakis, and Moshe Vardi. Decidable
optimization problems for database logic programs. In
Proc. 20th Annual ACM Symp. on Theory of Computing
(STOC’88), pages 477–490. ACM, 1988.

[Courcelle, 1991] Bruno Courcelle. Recursive queries and
context-free graph grammars. Theor. Comput. Sci.,
78(1):217–244, 1991.

[Deutsch and Tannen, 2002] Alin Deutsch and Val Tannen.
Optimization properties for classes of conjunctive regular
path queries. In Revised Papers from the 8th Int. Workshop
on Database Programming Languages (DBPL’01), pages
21–39. Springer, 2002.

[Eiter et al., 2009] Thomas Eiter, Carsten Lutz, Magdalena
Ortiz, and Mantas Simkus. Query answering in description
logics with transitive roles. In Boutilier [2009], pages 759–
764.

[Florescu et al., 1998] Daniela Florescu, Alon Levy, and
Dan Suciu. Query containment for conjunctive queries
with regular expressions. In Alberto O. Mendelzon and
Jan Paredaens, editors, Proc. 17th Symp. on Principles
of Database Systems (PODS’98), pages 139–148. ACM,
1998.

[Hull and Fan, 2013] Richard Hull and Wenfei Fan, editors.
Proc. 32nd Symp. on Principles of Database Systems
(PODS’13). ACM, 2013.

[Krötzsch, 2011] Markus Krötzsch. Efficient rule-based in-
ferencing for OWL EL. In Toby Walsh, editor, Proc. 22nd
Int. Joint Conf. on Artificial Intelligence (IJCAI’11), pages
2668–2673. AAAI Press/IJCAI, 2011.

[Reutter, 2013] Juan L. Reutter. Containment of nested reg-
ular expressions. CoRR, abs/1304.2637, 2013.

[Rudolph and Krötzsch, 2013] Sebastian Rudolph and
Markus Krötzsch. Flag & check: Data access with
monadically defined queries. In Hull and Fan [2013],
pages 151–162.

[Savitch, 1970] Walter J. Savitch. Relationships between
nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2):177 – 192,
1970.

[Shmueli, 1987] O. Shmueli. Decidability and expressive-
ness aspects of logic queries. In Proc. 6th Symp. on Prin-
ciples of Database Systems (PODS’87), pages 237–249.
ACM, 1987.

[Xiao et al., 2010] Guohui Xiao, Stijn Heymans, and
Thomas Eiter. DReW: a reasoner for Datalog-rewritable
description logics and dl-programs. In Thomas Eiter,
Adil El Ghali, Sergio Fernández, Stijn Heymans, Thomas
Krennwallner, and François Lévy, editors, Proc. 1st
Int. Workshop on Business Models, Business Rules and
Ontologies (BuRO’10), pages 1–14. ONTORULE Project,
2010.

A Tree Automata
We use standard definitions for two-way alternating tree au-
tomata as introduced in [Cosmadakis et al., 1988]. A regular
(one-way, non-alternating) tree automaton is obtained by re-
stricting this definition.

Tree automata run over ranked, labelled trees of some max-
imal arity (out-degree) f . A ranked tree can be seen a function
t mapping sequences of positive natural numbers (encoding
nodes in the tree) to symbols from a fixed finite alphabet (the
labels of each node). Each letter of the alphabet is ranked, i.e.,
associated with an arity that defines how many child nodes a
node labeled with this symbol should have. The domain of t,
denoted Nodes(t), satisfies the following closure property: if
i · j ∈ Nodes(t), then i ∈ Nodes(t) and i · k ∈ Nodes(t) for all
1 ≤ k ≤ j. Given a ranked tree t, we write i ∈ Nodes(t) to
denote an arbitrary node of t and t(i) to denote the label of i
in t. We denote by Trees(Σ) the set of trees over the alphabet
Σ.

A two-way alternating tree automaton A is a tuple
〈Σ,Q,Qs, δ,Qe〉 where
• Σ is a tree alphabet;
• Q is a set of states;
• Qs ⊆ Q is the set of initial states;
• Qe ⊆ Q is the set of accepting states;
• δ is a transition function from Q×Σ: let q ∈ Q be a state

and σ ∈ Σ be a letter of arity `; then δ(q, σ) is a positive
boolean combination of elements in {−1, 0, 1, · · · , `}×Q.

The numbers used in transitions encode directions, where
−1 is up and 0 is stay. For example δ(q, σ) = (〈1, s1〉 ∧

∧1, s2) ∨ (〈−1, t3〉 ∧ 〈2, t4〉) is an example of transition for
a state q and a node labeled σ: a node labeled by σ can be in
the state q iff its first child can be in the states s1 and s2, or
its parent and its second child can be in the states s3 and s4,
respectively.

Let t be a tree over Σ. A run τ of A over t is a tree labeled
by elements of Q × {−1, 0, 1, · · · , f } × Nodes(t) ∪ {−1}. τ
satisfies the following properties:
• τ is finite.
• The root of τ is labelled by (q0, i, n), where q0 is in Qs.
• If a node v is labelled by (q, i, n) and n is not a node of t,

then v is a leaf of τ.
• If a node v is labelled by (q, i, n′), n is a node of τ labelled

by σ of arity l and v′ is labelled by (q1, j, n′) then
– if j = −1, then there exists u ≤ k such that n = n′.u
– if j = 0, then n = n′

– if j ≤ k, then n′ = n. j.
• if a node v is labelled by (q, i, n), n ∈ t labelled by σ and

the children of v are labelled by (q1, j1, n1) · · · (qk, jk, nk)
then δ(q, σ) is satisfied when interpreting the sybmols
{〈 j1, q1〉, · · · , 〈 jk, qk〉} as true and all other symbols as
false.

τ is valid iff, for each leaf of τ labelled by (q, i, n), q is in
Qe. A accepts a tree t if there exists a valid run of t over A.
We denote by Trees(A). The set of trees accepted byA.

A regular (one-way, non-alternating) tree automaton is a
2-way alternating tree automaton where all transitions for
a symbol σ of rank ` are boolean formulae of the form
(〈1, q11〉 ∧ . . . ∧ 〈`, q`1〉) ∨ . . . ∨ (〈1, q1n〉 ∧ . . . ∧ 〈`, q`n〉) for
some n ≥ 0. In particular, directions 0 and −1 do not occur. In
this case, we can represent transitions as sets of lists of states
{〈q11, . . . , q`1〉, . . . , 〈q1n, . . . , q`n〉}.

Finally, we recall two useful theorems from [Cosmadakis
et al., 1988].
Theorem 22 (Theorem A.1 of [Cosmadakis et al., 1988]).
LetA be a two-way alternating automaton. Then there exists
a tree automatonA whose size is exponential in the size ofA
such that Trees(A) = Trees(Σ) \ Trees(A).
Theorem 23 (Theorem A.2 of [Cosmadakis et al., 1988]).
LetA be a two-way alternating automaton. Then there exists
a tree automatonA whose size is exponential in the size ofA
such that Trees(A) = Trees(A).

