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Abstract

Previous results have shown that weak completion semantics
based on three-valued Łukasiewicz logic can adequately rep-
resent and explain human behavior in the suppression task.
Weak completion semantics corresponds to well-founded se-
mantics for tight logic programs. In this paper we apply both
semantics to the selection task – probably the most famous
and best investigated research paradigm in the psychology of
reasoning. In its abstract version, people are presented with
cards and have to check if a conditional statement about the
cards holds true. Numerous psychological studies show that
most people do not solve this task correctly in terms of clas-
sical propositional logic and tend to make similar reasoning
errors. Once the same reasoning problem is framed within a
social setting, most people solve the task correctly. By distin-
guishing belief and social constraints, we formalize the ab-
stract and the social case within the weak completion and the
well-founded semantics and show that when reasoning to-
wards the corresponding representations, our computational
approach adequately reflects the psychological results. Fi-
nally, we present a psychological study testing different pre-
dictions of the weak completion and the well-founded seman-
tics on programs which are not tight.

Introduction

In the last century the classical (propositional) logic calculus
has played an important role as a normative concept for psy-
chologists investigating human reasoning. Psychological re-
search, however, showed that humans systematically deviate
from the logically correct answers. Some attempts to formal-
ize this behavior are already made in the field of Computa-
tional Logic such as in non-monotonic logic, common sense
reasoning or three-valued logics, where incomplete informa-
tion is expressible. Furthermore, the field of Artificial Neural
Networks and Cognitive Science focus on challenging prob-
lems that aim to simulate and understand human reasoning.
Their results give detailed insight about reasoning processes
relative to human behavior.

Computational approaches that try to explain human rea-
soning should be evaluated based on their cognitive ad-
equacy. The concept of adequacy has been defined in a
linguistic context to compare and explain language theo-
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ries and their properties (Strube, 1996). Two different ad-
equacy measures are defined: conceptual adequacy and in-
ferential adequacy. Conceptual adequacy reflects in how far
the language represents the content correctly. Inferential ad-
equacy is about the procedural part when the language is ap-
plied on the content (Strube, 1996). In Computational Logic,
the interpretation of these measurements can be understood
as follows: conceptual adequacy deals with the representa-
tional part of the system. The aim is to have a representa-
tion of the given information such that it captures the struc-
ture of how it appears in human knowledge. Inferential ade-
quacy measures whether the computations behave similarly
to human reasoning. Analogously, Stenning and van Lam-
balgen (2008) argue that human reasoning should be mod-
eled by, first, reasoning towards an appropriate representa-
tion and, second, by reasoning with respect to this represen-
tation.

As appropriate representation to model the suppres-
sion task, Stenning and van Lambalgen (2008) propose
logic programs under completion semantics based on the
three-valued logic used by Fitting (1985), which itself is
based on the three-valued Kleene logic (Kleene, 1952).
Unfortunately, some technical claims made by Stenning
and van Lambalgen are wrong. Hölldobler and Kencana
Ramli (2009a, 2009b) have shown that the three-valued
logic proposed by Stenning and van Lambalgen is inad-
equate for the suppression task. Somewhat surprisingly,
the suppression task can be adequately modeled if the
three-valued Łukasiewicz logic (Łukasiewicz, 1920) is used.
The computational logic approach (Hölldobler & Ken-
cana Ramli, 2009b; Dietz, Hölldobler, & Ragni, 2012) mod-
els the suppression task as logic programs under the so-
called weak completion, a variation of Clark’s completion.
They show that the conclusions drawn with respect to least
models correspond to the findings in Byrne (1989) and con-
clude that the derived logic programs under Łukasiewicz
logic are inferentially adequate for the suppression task. Fur-
thermore, in Dietz, Hölldobler, and Wernhard (2013), it is
shown that there is a strong correspondence between weak
completion and well-founded semantics (Van Gelder, Ross,
& Schlipf, 1991) for the class of tight programs.

In this paper, we apply our approach to another psycho-
logical study, the Wason selection task (Wason, 1968). In
the Wason selection task participants had to check a given



conditional statement on some instances. The problem was
presented as a rather abstract description and almost all par-
ticipants made the same classical logical mistakes. Griggs
and Cox (1982) developed an isomorphic representation of
the problem in a social context, and surprisingly almost all of
the participants solved this task correctly. Kowalski (2011)
gives an interesting interpretation for this difference which
we will apply to our formalization.

In the following we briefly review three-valued logics and
give the necessary definitions for weak completion seman-
tics. After that, we explain the Wason selection task and
our computational logic approach. Finally, we present re-
sults from a psychological experiment to evaluate whether
well-founded or weak completion semantics is more ade-
quate. The last section concludes.

Three-valued Logics

Three-valued logics were introduced by Łukasiewicz (1920)
and since then different interpretations about the connec-
tives have been proposed. Table 1 gives the truth tables of
three-valued conjunction, disjunction and the different vari-
ations of implication and equivalence. Kleene (1952) intro-
duced an implication (←K), whose truth table is identical
to Łukasiewicz implication (←L) except in the cases where
precondition and conclusion are both mapped to U: in this
case, the implication itself is mapped to U by Kleene, but
mapped to ⊤ by Łukasiewicz. The set of connectives un-
der Łukasiewicz semantics is {¬,∧,∨,←L,↔L}. A fur-
ther common variant of three-valued implication (←S) is
called seq3 in Gottwald (2001). The corresponding equiv-
alence (↔S) assigns true to F ↔ G if and only if F and G
are assigned to identical truth values, and ⊥ is assigned oth-
erwise. Fitting (1985) combined the truth tables for ¬, ∨
and ∧ from Łukasiewicz with the equivalence ↔S for in-
vestigations within Logic Programming. Hence, the set of
connectives used by Fitting is {¬,∧,∨,↔S}.

Stenning and van Lambalgen (2008) modeled the sup-
pression task by extending the logic used by Fitting with
←K . Hölldobler and Kenana Ramli (2009b) showed that this
logic is inadequate and proposed to use Łukasiewicz seman-
tics which corrects some technical mistakes and adequately
models the suppression task.

Under well-founded semantics the interpretation of the
implication corresponds to ←S (Przymusinski, 1989),
which corresponds to the interpretation of the implication
in logic S3 (Rescher, 1969), that is {¬,∧,∨,←S ,↔S}. As
indicated by the highlighted ⊤ signs in Table 1, whenever
a formula is true under ←S then it is true under ←L, and
vice versa. The underlying three-valued logic for weak com-
pletion semantics which we present in the following, corre-
sponds to three-valued Łukasiewicz logic.

Preliminaries

We define the necessary notations we will use throughout
this paper and restrict ourselves to propositional logic as this
is sufficient for our purpose. A logic program P is a finite
set of clauses of the form

A← A1 ∧ · · · ∧An ∧ ¬B1 ∧ · · · ∧ ¬Bm (1)

where A is an atom called head and A1 ∧ · · · ∧ An ∧
¬B1 ∧ · · · ∧ ¬Bm is called body of the clause, where Ai,
with 1 ≤ i ≤ n, and Bi, with 1 ≤ j ≤ m, are atoms.
⊤ and ⊥ are special atoms where A← ⊤ expresses the fact
that A is true and A← ⊥ expresses the negative fact that A
is false. Without loss of generality we assume that the bod-
ies of clauses are not empty and restrict the use of ⊤ and ⊥
to facts as indicated. Atoms(P) denotes the set of all atoms
occurring in the program P . An atom A is defined in P if
there is a clause with head A; otherwise it is said to be un-
defined in P; udP = {A | there is no clause C in P such
that A is the head of C} is the set of undefined atoms in P .
A normal logic program is a logic program without negative
facts. If P is a logic program then P+ denotes the program
obtained from P by deleting all negative facts.

Program Classes

The following three programs can be classified with respect
to whether they contain cycles:

P1 P2 P3

{p← q} {p← q, q ← p} {p← ¬q, q ← ¬p}

Cycles occur in programs when at least one atom depends on
itself: we say that p depends on q if and only if there exists a
clause p← A1∧· · ·∧An∧¬B1∧· · ·∧¬Bm such that q = Ai

or q = Bj where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Dependency is
transitive, thus if p depends on q and q depends on r, then p
depends on r. We distinguish dependency in the following
two ways: p depends positively on q if q = Ai and p depends
negatively on q if q = Bj . We have a cycle in a program
if at least one atom depends on itself. If the dependency is
positive, then it is a positive cycle, otherwise it is a negative
cycle.

Accordingly, we distinguish between the following pro-
gram classes: Acyclic programs do not contain cycles. P1 is
an acyclic program, whereas P2 and P3 are not. Stratified
programs (Apt, Blair, & Walker, 1988) only contain posi-
tive cycles. P2 is a stratified program but P3 is not. Tight
programs (Erdem & Lifschitz, 2003) only contain negative
cycles. P3 is a tight program but P2 is not.

Interpretations and Models

An interpretation I is a mapping from formulas to the set of
truth values {⊤,⊥,U}, where ⊤ means true, ⊥ means false
and U means unknown. The truth value of a given formula
under a given interpretation is determined according to the
corresponding three-valued logic. We represent an interpre-
tation as a pair I = 〈I⊤, I⊥〉 of disjoint sets of atoms
where I⊤ is the set of all atoms that are mapped by I to ⊤
and I⊥ is the set of all atoms that are mapped by I to ⊥. If
atoms are mapped to U, they are neither in I⊤ or in I⊥. A
total interpretation with respect to a program P is an inter-
pretation I = 〈I⊤, I⊥〉 such that Atoms(P) = I⊤ ∪ I⊥.

One should observe that in contrast to two-valued
logic, A← B and A ∨ ¬B are not semantically equivalent,
neither for←L nor for←S . E. g., consider the case I(A) =
I(B) = U. Then, I(A ∨ ¬B) = U whereas I(A←L B) =
I(A ←S B) = ⊤. However, for the ←K implication we
have that I(A ∨ ¬ B) = I(A ←K B) = U.



Table 1: Truth tables for three-valued logics. The highlighted ⊤’s indicate that formulas of the form A ← B which are true
under←L are true under←S , and vice versa.

F ¬F

⊤ ⊥
⊥ ⊤
U U

∧ ⊤ U ⊥

⊤ ⊤ U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

←L ⊤ U ⊥

⊤ ⊤ ⊤ ⊤
U U ⊤ ⊤
⊥ ⊥ U ⊤

←S ⊤ U ⊥

⊤ ⊤ ⊤ ⊤
U ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊤

←K ⊤ U ⊥

⊤ ⊤ ⊤ ⊤
U U U ⊤
⊥ ⊥ U ⊤

∨ ⊤ U ⊥

⊤ ⊤ ⊤ ⊤
U ⊤ U U
⊥ ⊤ U ⊥

↔L ⊤ U ⊥

⊤ ⊤ U ⊥
U U ⊤ U
⊥ ⊥ U ⊤

↔S ⊤ U ⊥

⊤ ⊤ ⊥ ⊥
U ⊥ ⊤ ⊥
⊥ ⊥ ⊥ ⊤

A model of a formula F is an interpretation I such
that I(F ) = ⊤. A model of a set of formulas is an inter-
pretation that is a model of each formula in the set. Whether
a formula is true under the given interpretation depends on
the underlying three-valued logic. As we can see from Ta-
ble 1, a model of P under S3 logic is a model of P under
Łukasiewicz logic, and vice versa.

Weak Completion Semantics

Consider the following transformation for a given P:

1 Replace all clauses with the same head A ← body1,
. . . , A← bodyn by A← body1 ∨ . . . ∨ bodyn.

2 If A ∈ udP then add A← ⊥.

3 Replace all occurrences of← by↔.

The resulting set of equivalences is called the completion
of P (Clark, 1978). If Step 2 is omitted, then the resulting
set is called the weak completion of P (wcP) (Hölldobler &
Kencana Ramli, 2009b). For instance, the weak completion
of P = {p ← q} is wcP = {p ↔ q}. Consequently,
the three interpretations 〈{p, q}, ∅〉, 〈∅, ∅〉 and 〈∅, {p, q}〉 are
models for wcP under Łukasiewicz logic. But how to know
which model is the intended one?

In Computational Logic this model is often the least
model, which in many cases can be computed as least fixed
points of an appropriate semantic operator (Apt & van Em-
den, 1982). Stenning and Lambalgen (2008) devised such an
operator for programs discussed herein: Let I be an interpre-
tation in ΦP(I) = 〈J

⊤, J⊥〉, where

J⊤ = {A | there exists A← body ∈ P with I(body) = ⊤},
J⊥ = {A | there exists A← body ∈ P and

for all A← body ∈ P we find I(body) = ⊥}.

As shown in Hölldobler and Kencana Ramli (2009b) the
least fixed point of ΦP is identical to the least model of
the weak completion of P (lmwcP). Starting with the
empty interpretation I = 〈∅, ∅〉, lmwcP can be com-
puted by iterating ΦP . Furthermore, Hölldobler and Ken-
cana Ramli showed that the model intersection property
holds for weakly completed programs. This guarantees the
existence of a least model for every program.

Well-founded Semantics

Well-founded semantics is a widely accepted approach
in the field of non-monotonic reasoning. It has been
introduced in (Van Gelder et al., 1991). As shown

in (Przymusinski, 1990), the well-founded model coincides
with the least partial stable model. Partial stable model
semantics (Przymusinski, 1990) is an extension of stable
model semantics (Gelfond & Lifschitz, 1988) to three-
valued interpretations. Stable model and partial stable se-
mantics are only defined for normal logic programs P+.

Considering the least model of the weak com-
pletion of P (lmwcP) and the well-founded model
of P+ (wfmP+), we observe that undefined atoms in P
are unknown in lmwcP , whereas in wfmP they are false.
Furthermore, all atoms involved in positive cycles in P are
unknown in lmwcP , whereas in wfmP they are false. How-
ever, when atoms are involved in a negative cycle in P they
stay unknown in both lmwcP and wfmP .

Without loss of generality, we consider only programs
where negative facts are only formulated when p is not the
head of any other clause in P . Under weak completion se-
mantics this does not restrict the expressiveness of programs
as we can only conclude that p is in I⊥ if for all clauses
where p is the head of, the body is in I⊥. Thus, p ← ⊥
would not add any more information when there is another
clause with p in the head for which the body is not in I⊥.

Theorem 1 (Dietz et al. (2013)) For every tight logic pro-
gram P and interpretation I the following two statements
are equivalent:

1 I is the least model of the weak completion of P .

2 I is the well-founded model of Pmod, where

Pmod = P+ ∪ {A← ¬n A, n A← ¬A | A ∈ udP}.

and for each A ∈ udP , n A is a new atom.

The programs we discussed in (Dietz et al., 2012) to model
the suppression task and the programs we will discuss in the
following to model the two cases of the selection task, are
acyclic and thus tight. Therefore, our results apply for both,
programs under weak completion semantics and modified
programs under well-founded semantics.

The Selection Task

In the original selection task (Wason, 1968) participants
were given the conditional

If there is a D on one side of the card,
then there is 3 on the other side

and four cards on a table showing the letters D and F as
well as the numbers 3 and 7. Furthermore, they know that
each card has a letter on one side and a number on the other



Table 2: The results of the abstract case of the selection task.

D F 3 7

89% 16% 62% 25%

Table 3: The results of the social case of the selection task.

beer coke 22yrs 16yrs

95% 0.025% 0.025% 80%

side. Which cards must be turned to prove that the condi-
tional holds? Assume the conditional is represented in clas-
sical propositional logic by the implication

3← D, (2)

where the propositional variable 3 represents the fact that
the number 3 is shown and D represents the fact that the
letter D is shown. Then, in order to verify the implication
one must turn the cards showing D and 7. However, as re-
peated experiments have shown consistently (see Table 2),
participants believe differently. Whereas 89% of the partic-
ipants correctly determine that the card showing D must
be turned (a number other than 3 on the other side would
falsify the implication), 62% of the participants incorrectly
suggests to turn the card showing 3 (no relevant information
can be found which would falsify the implication). Like-
wise, whereas only 25% of the participants correctly believe
that the card showing 7 need to be turned (if the other side
would show a D, then the implication is falsified), 16% in-
correctly believe that the card showing F needs to be turned
(no relevant information can be found which would falsify
the implication). In other words, the overall correctness of
the answers for the abstract selection task if modeled by an
implication in classical two-valued logic is pretty bad.

Griggs and Cox (1982) adapted Wason’s selection task to
a social case. Consider the conditional

If a person is drinking beer,
then the person must be over 19 years of age

and again consider four cards, where on one side there is the
person’s age and on the other side of the card what the per-
son is drinking: drinking beer, drinking coke, 22 years old
and 16 years old. Which drinks and persons must be checked
to prove that the conditional holds? If the conditional is rep-
resented by the implication

o← b, (3)

where o represents a person being older than 19 years and b
represents the person drinking beer. In order to verify the im-
plication one must turn the cards drinking beer and 16 years
old. Participants usually solve the social version of the se-
lection task classical logically correctly. Table 3 shows the
results represented in Griggs and Cox (1982) for the social
case. Why are the results of both cases so different?

Several attempts were made to explain the differences
between both cases. Wason (1968) proposed a defective
truth table to explain how humans reason with condition-
als. When the antecedent of a conditional is false, then nor-
mally people consider the whole conditional as irrelevant
and ignore it for further reasoning. Evans (1972) describes a
phenomenon called the matching bias, where people tend to
consider only the present values in the conditional. For in-
stance, in the abstract case, card D is the easiest one to solve

Table 4: The computational logic approach for the social
case of the selection task.

Griggs

case P lmwcP/wfmPmod & Cox

beer {ab2 ← ⊥, b← ⊤} 〈{b}, {ab2}〉 6|=3L (5) 95%
coke {ab2 ← ⊥, b← ⊥} 〈∅, {b, ab2}〉 |=3L (5) 0.025%
16yrs {ab2 ← ⊥, o← ⊥} 〈∅, {o, ab2}〉 6|=3L (5) 80%
22yrs {ab2 ← ⊥, o← ⊤} 〈{o}, {ab2}〉 |=3L (5) 0.025%

because this rule is only true when both values present in the
rule are on the card. On the other hand, card 7 is the most dif-
ficult one because people have to make a double mismatch,
that is, they have to consider the situation where not 3 is on
the card and therefore not D has to be on the other side. Why
do people not make these mistakes in the social case?

One explanation can be found in Kowalski (2011), namely
that people view the conditional in the abstract case as a be-
lief. For instance, the participants perceive the task to ex-
amine whether the rule is either true or false. On the other
hand, in the social case, the participants perceive the rule
as a social constraint, a conditional that ought to be true.
People intuitively aim at preventing the violation of such a
constraint, which is normally done by observing whether the
state of the world complies with the rule. We adopt this view
and model our formalism accordingly.

Modeling the Abstract and the Social Case

As already mentioned in the introduction, Stenning and van
Lambalgen distinguish between two steps when modeling
human reasoning. We adopt the first step, in particular, the
idea to represent conditionals by licenses for implications.
This can be achieved by adding an abnormality predicate to
the antecedent of the implication.1 Applying this idea to the
Wason selection task we obtain

3← D ∧ ¬ab1 (4)

instead of (2) and

o← b ∧ ¬ab2 (5)

instead of (3), where ¬ab1 and ¬ab2 are used to express that
the corresponding rules hold unless there are some abnor-
malities.

The Social Case

In this case most humans are quite familiar with the con-
ditional as it is a standard law. They are also aware – it is
common sense knowledge – that there are no exceptions or
abnormalities and, hence, ab2 is set to ⊥.

Let us assume that conditional (5) is viewed as a social
constraint which must follow logically from the given facts.
Now consider the four different cases: One should observe
that in the case 16 years old the least model of the weak
completion of P , i.e. 〈∅, {o, ab2}〉, assigns U to b and, con-
sequently, to both, b ∧ ¬ab2 and (5), as well. Overall, in the
cases drinking beer and 16 years old the social constraint (5)

1Abnormality predicates were necessary for modeling the sup-
pression task. Even though they are not required here, we keep
them to be consistent with our previous approach.



is not entailed by the least model of the weak completion of
the program. Hence, we need to check these cases out and,
hopefully, find that the beer drinker is older than 19 and that
the 16 years old is not drinking beer. The results of this case
are shown in Table 4, where the last column shows the ex-
perimental results of Griggs and Cox (1982). The results of
our approach correspond to the results of how the majority
of the participants responded and, therefore, appears to be
adequate.

The Abstract Case

This case is artificial and there is no common sense knowl-
edge about the conditional. Following Kowalski (2011), let
us assume that conditional (4) is viewed as a belief. As there
are no known abnormalities, ab1 is set to ⊥. Furthermore,
let D, F , 3, and 7 be propositional variables denoting that
the corresponding symbol or number is on one side. Alto-
gether, we obtain the program

P = {3← D ∧ ¬ab1, ab1 ← ⊥}.

Its weak completion is

wcP = {3↔ D ∧ ¬ab1, ab1 ↔ ⊥}

and admits the least model

〈∅, {ab1}〉

under weak completion semantics as well as under well-
founded semantics. Unfortunately, this least model does not
explain any symbol on any card. We need to extend the pro-
gram based on which card we observe. In order to explain
an observed card, we apply abduction.

In the next paragraph we will explain abduction in the
context of weak completion semantics. For tight logic pro-
grams, identical results are obtained using well-founded se-
mantics (see Dietz et al. (2013)).

Following Kakas, Kowalski, and Toni (1993) we con-
sider an abductive framework consisting of a program P
as knowledge base, a set A of abducibles consisting of
the (positive and negative) facts for each undefined atom
in P and the logical consequence relation |=lmwc

3L , where

P |=lmwc
3L F if and only if lmwcP(F ) = ⊤ for the for-

mula F . As observations we consider literals.
Let 〈P,A, |=lmwc

3L 〉 be an abductive framework and O an
observation.O is explained by E if and only if E ⊆ A, P∪E
is satisfiable, and P ∪ E |=lmwc

3L O. Usually, minimal ex-
planations are preferred. In case there exist several mini-
mal explanations, then two forms of reasoning can be dis-
tinguished. F follows skeptically from program P and ob-
servation O (P,O |=s F ) if and only if O can be explained
and for all minimal explanations E we find P∪E |=lmwc

3L O,
whereas F follows credulously from P and O (P,O |=c F )
if and only if there exists a minimal explanation E such
that P ∪ E |=lmwc

3L O.
In the case of the abstract case of the Wason selection task,

the set of abducibles is

{D ← ⊤, D ← ⊥, F ← ⊤, F ← ⊥, 7← ⊤, 7← ⊥}.

Now consider the four different cases, where the explana-
tions E are minimal and basic. In the cases where F or 7
were observed, the least model of the weak completion

Table 5: The computational logic approach for the abstract
case of the selection task.

O E lmwc (P ∪ E)/wfm (P ∪ E)mod Wason

D {D ← ⊤} 〈{D, 3}, {ab1}〉 ❀ turn 89%
F {F ← ⊤} 〈{F}, {ab1}〉 ❀ no turn 16%
3 {D ← ⊤} 〈{D, 3}, {ab1}〉 ❀ turn 62%
7 { 7← ⊤} 〈{ 7}, {ab1}〉 ❀ no turn 25%

of P ∪ E does not contain any information that needs to be
verified and simply confirms the observation; no further ac-
tion is needed. In some sense, the belief about the premises
and conclusions of the conditional are irrelevant. The truth
values of them are unknown and under Łukasiewicz logic
this makes the conditional true.

In the case where D was observed, the least model maps
also 3 to ⊤. That means, in order to be sure that this cor-
responds to the real situation, we need to check if 3 is true.
Therefore, the card showing D is turned. Likewise, in the
case where 3 is observed, D is also mapped to ⊤ in the least
model, which can only be confirmed if the card is turned.
The results of this case are shown in Table 5, where the
last column shows the experimental results of Wason (1968).
The results of our approach correspond to the results of how
the majority of the participants responded and, therefore, ap-
pears to be adequate.

Empirical Evaluation

One of the main difference between weak completion and
well-founded semantics is on how they deal with positive
cycles in logic programs. Whereas in a well-founded model
atoms involved in positive cycles are false, they are mapped
to unknown under the weak completion semantics. In order
to determine which semantics is more adequate for human
reasoning, we need to investigate which conclusions are typ-
ically drawn by human reasoners with respect to cyclic con-
ditionals. For this purpose we carried out a psychological
study.

Participants We tested 35 participants on an online web-
site (Amazon Mechanical Turk). They were paid for their
participation.

Material, Procedure, and Design. Participants were pre-
sented with 17 problems consisting of cyclic conditionals of
length 1, 2, and 3. Consider the following cyclic conditional
of length 1:

If they open the window, then they open the window.

Participants were asked about the consequences of this con-
ditional and could choose between one of the following three
offered conclusions: They open the window, They do no open
the window, and It is unknown whether they open the win-
dow. Another example is the following cyclic conditional of
length 3:

If they open the window, then it is cold.
If it is cold, then they wear their jackets.

If they wear their jackets, then they open the window.



Table 6: The lenght of the cycles, the given answers, and
their mean response times.

Length Chosen answer in percentage Mean response
of cycle Positive Negative Unknown times in msec

1 75 0 25 5267
2 60 3 37 11516
3 55 4 41 11680

We investigated three kinds of atoms, viz. whether they open
the window, whether it is cold, and whether they wear their
jacket; each of them under the three conditions positive, neg-
ative, and unknown.

Results and Discussion. The results (cf. Table 6) indicate
two kinds of groups each taking a different interpretation
of the statements: One group consists of participants un-
derstanding the programs as a conditional, which in our ap-
proach is modeled by p← p ∧ ¬ab for cycles of length one
(p ← q ∧ ¬ab1, q ← p ∧ ¬ab2 for cycles of length 2, and
accordingly for cycles of length 3). If we assume that noth-
ing abnormal is known, (i.e., ab← ⊥), then the least model
of the weak completion is 〈∅, {ab}〉. In contrast, the well-
founded semantics always and independently of the truth
value of ab concludes ¬p, a conclusion almost no partici-
pant has drawn. The other interpretation, where participants’
chose to give a positive answer, apparently treats the state-
ment as a fact p ← ⊤. If we consider this as the result of
the first step of the Stenning and van Lambalgen procedure
(reasoning towards an adequate representation) then both,
weak completion and well-founded semantics seem to be
adequate. The findings show that the chosen answers associ-
ated with positive atoms decrease from cycles of length 1
(75% positive answers) to cycles of length 3 (55% posi-
tive answers) with an increase of choosing the truth-value
unknown. The response times indicate a higher degree of
uncertainty in problems involving cycles of length 2 and 3
in contrast to the simpler problems involving a cycle of
length 1. Taken together, the increase of choosing the truth
value unknown and the increase in response time shows an
increasing likelihood of the participants to adopt a weak
completion semantics.

When participants were given conditionals with negative
cycles of the form p ← ¬q ∧ ¬ab1, q ← ¬p ∧ ¬ab2, then
the majority concluded that the given facts were unknown.
This result corresponds to both, weak completion and well-
founded semantics.

Summing up, it seems that, when we consider the two rep-
resentational forms for the conditionals, then weak comple-
tion semantics can better explain and predict participants’
responses than well-founded semantics.

Conclusion

We have presented a computational logic approach for mod-
eling human reasoning in the Wason selection task. It is
based on a previously proposed approach that adequately
models another psychological study, the suppression task.
We extended our approach with an idea from Kowalski’s
task representation: in order to solve the social case cor-

rectly, the conditional is seen as a social constraint, whereas
the abstract case is correctly represented when the condi-
tional is seen as a belief. The second case can be modeled
by extending the formalization to sceptical reasoning within
an abductive framework.

Stenning and van Lambalgen analyzed the Wason selec-
tion task but did not attempt to formalize this task based
on their previous approach for the suppression task. On the
other hand, Kowalski showed how to formalize the abstract
and the social case of the selection task, but did not propose
a solution to the suppression task. In our paper, we present
one approach which seems to adequately model both tasks.

However, there are still aspects we did not consider yet
and which need to be further examined. Our approach does
not deal with the so-called first step of modeling human rea-
soning: reasoning with respect to an adequate representa-
tion. We just assume that in the social case people take the
conditional as a social constraint whereas they take it as a
belief in the abstract case. These differences are modeled
outside of the formal framework.

An interesting observation discussed in Stenning and
Lambalgen (2008) is that similar to the verification bias,
people might transfer the truth of the card to the truth of
the rule. In the social case, this confusion cannot occur, be-
cause it is commonsense that the rule is true, independent
on whether people behave accordingly. This leads to another
phenomenon, namely that participants see a dependency be-
tween the card choices and might prefer to solve the prob-
lem by reactive planning. They would only like to decide
what to do after they saw the outcome of the first card. For
instance, if one turns card D first and there is no 3 on the
other side, no further cards needs to be examined, because
the rule has been falsified. However, if there is a 3 on the
other side, the other options need to be considered again.
This kind of behavior could be described in a framework
with belief change: Each turning of a card is a piece of new
information which needs to be integrated into the current
knowledge base and updates new inferences accordingly.
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