Computing Cores for Existential Rules with the Standard Chase and ASP

Markus Krötzsch Knowledge-Based Systems, TU Dresden

R1: father(x, y) \rightarrow male(y)

R2: person(x) $\rightarrow \exists v. father(x, v) \land male(v)$

R1: father(x, y) \rightarrow male(y)

R2: person(x) $\rightarrow \exists v. father(x, v) \land male(v)$

R1: father $(x, y) \rightarrow male(y)$

R2: person(x) $\rightarrow \exists v. father(x, v) \land male(v)$

R1: father(x, y) \rightarrow male(y)

R2: person(x) $\rightarrow \exists v. father(x, v) \land male(v)$

R1: father $(x, y) \rightarrow male(y)$

R2: person(x) $\rightarrow \exists v. father(x, v) \land male(v)$

R1: father(x, y) \rightarrow male(y)

R2: person(x) $\rightarrow \exists v. father(x, v) \land male(v)$

R1: father $(x, y) \rightarrow male(y)$

R2: person(x) $\rightarrow \exists v. father(x, v) \land male(v)$

The Core

Simplification: We will only talk about finite chases here.

A **core** is a finite structure C where every homomorphism $C \rightarrow C$ is an isomorphism.

The Core

Simplification: We will only talk about finite chases here.

A **core** is a finite structure C where every homomorphism $C \rightarrow C$ is an isomorphism.

Cores in Practice

The core is the "best among all universal solutions"

— Fagin, Kolaitis, and Popa 2005

- Can be computed effectively
- Possible during the chase: "core chase"

Cores in Practice

The core is the "best among all universal solutions"
- Fagin, Kolaitis, and Popa 2005

- Can be computed effectively
- Possible during the chase: "core chase"

And yet: No current system implements the core chase!

Problem: Computing the core takes exponential time in the size of the chase.

Idea: Couldn't we get cores with the standard chase?

Idea: Couldn't we get cores with the standard chase?

Analysis: What went wrong here?

Idea: Couldn't we get cores with the standard chase?

Analysis: What went wrong here?

- We applied rule R2 to a match: person(ada) → father(ada, null) ∧ male(null)
- In the final chase, this instance is satisfied by an alternative match:

 $person(ada) \rightarrow father(ada, george) \land male(george)$

Idea: Couldn't we get cores with the standard chase?

Analysis: What went wrong here?

- We applied rule R2 to a match: person(ada) → father(ada, null) ∧ male(null)
- In the final chase, this instance is satisfied by an alternative match:

 $person(ada) \rightarrow father(ada, george) \land male(george)$

Theorem:

Every chase without alternative matches yields a core.

A Characterisation in ASP

Idea: Characterise alternative-match-free standard chases in ASP.

A Characterisation in ASP

Idea: Characterise alternative-match-free standard chases in ASP.

Encoding:

- Use terms with (skolem) function symbols instead of named nulls
- Augment rules with precondition that they are "not blocked"
- Add rules that derive that a rule is "blocked" when an alternative match is found

A Characterisation in ASP

Idea: Characterise alternative-match-free standard chases in ASP.

Encoding:

- Use terms with (skolem) function symbols instead of named nulls
- Augment rules with precondition that they are "not blocked"
- Add rules that derive that a rule is "blocked" when an alternative match is found

Theorem: Cores from a chase without alternative matches correspond to the stable models of suitable normal logic programs.

Chasing for Cores

Can we guide the standard chase to produce a core?

Core Stratification:

- Define $R1 < ^{\square} R2$ to mean "R1 could produce structures that enable alternative matches for R2"
- Stratify the order of rule applications w.r.t. <

 (together with a more usual positive "dependency" <+)

Chasing for Cores

Can we guide the standard chase to produce a core?

Core Stratification:

- Define R1 <[□] R2 to mean "R1 could produce structures that enable alternative matches for R2"
- Stratify the order of rule applications w.r.t. <□
 (together with a more usual positive "dependency" <+)

Results:

- Core stratification of a rule set can be decided in Σ_2^P .
- If a chase is core stratified, then it has no alternative matches (and therefore yields a core).

Existentials and Negation

A (classically) stratified logic program:

```
R1: father(x, y) \rightarrow male(y)
```

R2: person(x) $\rightarrow \exists v. father(x, v) \land male(v)$

R3: father $(x, y) \rightarrow \text{equals}(y, y)$

*R*4 : father(x, y_1) \wedge father(x, y_2) \wedge

not equals $(y_1, y_2) \rightarrow \text{distinct}(y_1, y_2)$

Existentials and Negation

A (classically) stratified logic program:

R1: father $(x, y) \rightarrow male(y)$

R2: person(x) $\rightarrow \exists v. father(x, v) \land male(v)$

R3: $father(x, y) \rightarrow equals(y, y)$

*R*4 : father(x, y_1) \wedge father(x, y_2) \wedge

not equals $(y_1, y_2) \rightarrow \text{distinct}(y_1, y_2)$

Perfect Core Models

Idea: Combine core stratification & classical stratification.

→ "Full stratification"

Perfect Core Models

Idea: Combine core stratification & classical stratification.

→ "Full stratification"

Theorem: A finite, fully stratified chase yield a unique stable model that is a core, the perfect core model.

Main insight: Cores are in reach for practical uses

- Existing ASP engines can compute them
- Existing chase implementations can compute them
- Cores could be key to mix existentials and non-monotonic negation

Next questions:

- How do practical implementations perform?
- Is core stratification common in practice?
- Can we generalise perfect core models?

