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Previously...

General Game Playing is concerned with computers learning to play
previously unknown games without human intervention.

The game description language (GDL) is used to declaratively specify
(deterministic) games (with complete information about game states).

The syntax of GDL game descriptions is that of normal logic programs;
various restrictions apply to obtain a finite, unique interpretation.

The semantics of GDL is given through a state transition system.
GDL-1I allows to represent moves by Nature and information sets.
The semantics of GDL-II can be given through extensive-form games.
Conversely, GDL-II can express any finite extensive-form game.

Written Exam
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Cooperative Games: Motivation

* Inanoncooperative game, players cannot enter binding agreements.
+ (Players can still cooperate if it pays off for them.)
* Ina cooperative game, players form coalitions.

« The coalition gets some (overall) payoff, which is then to be distributed
among the coalition’s members.

+ Players are still assumed to be rationally maximising their individual

payoffs.
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Example: Hospitals and X-Ray Machines

+ Three hospitals (in the same city) are planning to buy x-ray machines.
* However, not every hospital necessarily needs its own machine.

* The smallest machine costs $5m and could cover the needs of any two
hospitals.

+ Alarger machine costs $9m and could cover the needs of all three
hospitals.

* Hospitals forming a coalition C can jointly save the difference to each
individual hospital i € C buying its own $5m machine.

+ Itisin society's interest to save money while covering patients’ needs.

What should the hospitals do?
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Cooperative Games with Transferable Utility
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Cooperative Games with Transferable Utility
Definition

A cooperative game with transferable utility is a pair G = (P, v) where

« P=1{1,2,...,n} is the set of players and

+ v: 2P - Ryq is the characteristic function of G.

* Intuition: Coalition C C P earns v(C) by cooperating.
+ Terminology: We will occasionally omit “with transferable utility”.
Assumption

For any cooperative game G = (P, v), we have:
1. Normalisation: v(@) = 0.
2. Monotonicity: C C D C P implies v(C) < v(D).

Note that a cooperative game with n players requires a representation of a
size that is exponential in n.
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Cooperative Games: Example

Hospitals and X-Ray Machines

Three hospitals are planning to buy x-ray ma-

chines. However, not every hospital necessar- _

. : : . « P={1,2,3},
ily needs its own machine. A small machine

costs $5m and could cover the needs of any * V(P =6,

two hospitals. A larger machine costs $9m  * Vv(C) = 5for |C| = 2,
and could cover the needs of all three hospit- « v({i})=0forieP.
als. Hospitals forming a coalition C can jointly

save the difference to each individual hospital

i € C buying its own $5m machine.



Coalition Structure

Definition

Let G = (P, v) be a cooperative game (with transferable utility).
A coalition structure for G is a partition € = {C;, ..., Cx} of P, that is,

C1,...,Ck§P,
CiU...UC =P, and
GnC=g@gforall1<i+j<k.

The coalition structure € = {P} is called the grand coalition.

v(C) is the collective payoff of a coalition; it remains to be specified how to
distribute the gains to the coalition’s members.

Hospitals and X-Ray Machines

For P = {1, 2,3}, some possible coalition structures are ¢ = {{1,2,3}},

€ = {{1,3},12}},and & = {{1}, {2}, {3}}.
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Outcome of a Cooperative Game

Definition

Let G = (P, v) be a cooperative game (with transferable utility).

An outcome of G = (P,v) is a pair (C, a) where

« Cis a coalition structure and

* a=(aq,...,0p) € R"is a payoff vector such that a; > 0 for each i € P and

Z a; = v(C) for each coalition C € €.
ieC
For each coalition C € €, its payoff v(C) is distributed completely.
Players within coalitions can transfer payoffs freely.
Hospitals and X-Ray Machines

Outcomes are G4 with a; = (2, 2, 2), €, with a, = (2.5, 0, 2.5), and €3 with
as = (0,0,0), but also €, with a; = (3,0, 2). No outcome: C, with (2, 1, 2).
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Superadditive Games (1)

Definition

Let G = (P,v) be a cooperative game (with transferable utility).
G is called superadditive iff for all coalitions C,D C P

CnD=¢ implies v(CuD) > v(C)+v(D).

Intuition: CU D can achieve what C and D can achieve separately;
there might be additional synergistic effects.

Non-Example

+ A group C of emacs-using programmers achieves a part of a task T in 8h.
+ A (disjoint) group D of vi-using programmers achieves the rest of T in 8h.
+ The group CU D, attempting to work together, might not achieve T in 8h.

We will only consider superadditive games unless specified otherwise.
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Superadditive Games (2)

Let G = (P, v) be a superadditive (cooperative) game.
For every coalition structure ¢ = {C;, ..., Gk}, we have

V(P) > v(Cy) + ...+ v(C)

~» In superadditive games, we can expect the grand coalition to form.
However, it does not automatically mean that the grand coalition is “stable”:

+ The “Hospitals and X-Ray Machines” game is superadditive.
* Inoutcome ({{1,2,3}},(2,2,2), e.g. {1,2} have an incentive to deviate:
« in({{1,2},{3}},(2.5,2.5,0)), they would increase their individual payoff.

~- [t remains to analyse how to distribute the grand coalition’s payoff.
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Solution Concept: The Core
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Imputations

Definition

Let G = (P, v) be a cooperative game (with transferable utility).

+ A payoff vectora = (ay,...,ap) € R" is individually rational iff
a; >v({i}) forallieP

+ The imputations for G are the members of the following set:

Z a; = v(P) and a; > v({i}) for all i P}

i=1

Imp(G) := {(01, ...,0n) ER"

Intuition: Imputations are efficient (w.r.t. to {P}) and individually rational.
Observation

1. Imp(G) # B iff v(P) > 3 ;cp v({i}).
2. If G is superadditive, then Imp(G) + @.
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The Core of a Cooperative Game
Definition

Let G = (P, v) be a cooperative game (with transferable utility).
The core of G is the following set:

Core(G) := {(01, ..., 0n) € Imp(G) Za, > v(C) for all coalitions C C P]»
ieC
Intuition: No group C has an incentive to break off the grand coalition.
Example

In “Hospitals and X-Ray Machines”, the core is empty:

* If (a1, 02, 03) € Core(G), then a; +a, + a3 = 6 by being an imputation.

+ Butforanyi,j € {1,2,3} with j # j we also have a; + a; > v({a;, a;}) = 5.

* Leta;<aj<athenai+a; > 5, buta, < 1anda;+a; <2, contradiction.
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Cores of Cooperative Games: Example (1)

Chess Pairings P={1,..n}

A group of n > 3 people want to play q .
chess. Every pair of players appointed v(C) = {|%_1 I ] ds even
to play against each other receives $1.

=5~ otherwise

 Forn > 4 even, the payoff vector a,, := (% o, %) is in the core;
- deviation by an odd group C C P would yield v(C) = @ < % -ICl;
- deviation by an even group C C P would yield v(C) = @ = % -|C].

+ Infact, for n > 4 even, we have Core(G) = {a}:
- Assume a e Core(G), then for any {a;,0;} C P, it follows that a; + a; > v(C) = 1.
- Froma e Imp(G), we geta; +...+a, = 5, and we obtain a; = % forallieP.
* Forn >3 odd, the core is empty: (One player remains without a partner.)
- Forn=3anda € Core(G), we getay +a, +a3 = 1,so e.g. aq > 0.
- Butthenay+a3 =1-0q <1 although v({az, as}) = 1, contradicting a € Core(G).
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Cores of Cooperative Games: Example (2)

Shoe Makers

Of 201 shoe makers, (the first) 100 P={1.2...,201}

have made one left shoe each, (the v(C) =10 -min {|C,|, |Cr|}
remaining) 101 have made one right where
shoe each. A pair of shoes consists of C.:={ce C|c< 100}

one left and one right shoe (ignorin )

sizes), and can be scigld for $1(§.g & Cri={ceC]c>101}

+ The grand coalition makes a total of $1000 from selling all 100 pairs.

* The core of this game contains as only imputation a = (a4, 0y, . .., 0201)
witha; =a, =... =a190 =10and a191 = 0102 = ... = G097 = 0:

« For any imputation b with b; > 0 for some 101 < i < 201, the coalition
P\ {i} would obtain v(P\ {i}) = v(P) > Zjec,j#i b; on their own.

* Intuitively: Left shoes are scarce, right shoes are overabundant.
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Linear Programming (in a Nutshell)
Definition
* Alinear program is of the form
maximise ¢'x
subjectto Ax < b,
x>0,
and x e R

where x is a vector of decision variables, and A, b, c are a matrix and
two vectors of real values; the expression ¢’x is the objective function.

+ If thereis no objective function the program is a feasibility problem.
+ Asolution is a variable-value assignment that satisfies all constraints.

+ Alinear program is a special case of a mixed integer program (Lecture 2).
*+ Linear programming problems can be solved in polynomial time.
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Computing the Core

For a given cooperative game G = (P, v), its core is given by the feasible
region of the following linear program over variables a1, ..., a,:

find ai,...,0n

subject to a >0 forallie P
> a;=v(P)
ieP
Zai > v(C) forallCcc P
ieC

Observe: The problem specification contains 2" + n + 1 constraints.

For a cooperative game G = (P, v) whose characteristic function v is explicitly
represented, its core can be computed in deterministic polynomial time.

TECHNISCHE Cooperative Games (Lecture 10) r'Y .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 19 of 36 E:“;'g‘f"g‘;’"""
DRESDEN Algorithmic Game Theory, SS 2023 [ gic =~ P



The ¢-Core
Definition
Let G = (P, v) be a cooperative game (with transferable utility) and € € R.
1. The set of pre-imputations of G is
Prelmp(G) := {(a1,...,an) € R" | Y_;cpa; = V(P)}
2. The e-core of G is the following set:

e-Core(G) := {(01, ..., 0p) € Prelmp(G) Za, > v(C)-¢eforall C C P}

ieC

* Intuition: Coalitions C C P that leave P have to pay a penalty of at least ¢.
« For e =0, we have 0-Core(G) = Core(G).

« If Core(G) = @, then there is some € € R, € > 0, for which &-Core(G) + 0.

« If Core(G) + 0, then there is some € € R, € < 0, for which &-Core(G) = 0.
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The Least Core

Definition

Let G = (P, v) be a cooperative game (with transferable utility).

The least core of G is the intersection of all non-empty e-cores of G.

Alternatively: The least core of G is &-Core(G) for & € R such that
&-Core(G) + @ and e-Core(G) = @ for all e < &.

The value of the least core can be computed via linear programming;:

minimise £
subject to a;i >0 forallie P
> _ai=v(P)
ieP
Y ai>v(0)-¢ forallCcc P
ieC
EEILI:\;‘ENklgﬁ'FAE EggvppeS?at‘tYoenGa?gegS\c[ Eeféﬁée/? ?—I)armes Strass Slide 21 of 36 @m{? Computational

DRESDEN Algorithmic Game Theory, SS 2023 & Logic ~ Group



The Cost of Stability

Idea: If Core(G) = §, stabilise G by subsidising the grand coalition.

Modelling Assumptions

+ Some external authority has an interest in a stable grand coalition.

+ The supplemental payment y gets distributed among P along with v(P).
Definition

Let G = (P, v) be a cooperative game (with transferable utility).

1. For a supplemental payment y > 0O, the adjusted game G, = (P,v’) has

V/(C) — V(P)+y IfC:P.,
v(C) otherwise.

2. The cost of stability of G is inf {y € R | y > 0 and Core(G,) # #}.
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Computing the Cost of Stability
Bxample; Hospitals and XRey Machines

The cost of stability isy = 1.5: In G, we have v/({1,2,3}) =6+15=75
whence for no C C {1, 2,3} with |C| = 2 it would pay to deviate (as v'(C) = 5).

The cost of stability can be computed by linear programming;:

minimise y
subject to y>0
a; >0 forallieP
Z ai=Vv({P)+y
ieP
> _a;>v(0) forallCC P
ieC
SRR G o Laossus



Least Core vs. Cost of Stability

For any cooperative game G, the following are equivalent:
1. Core(G) = 0.

2. The value € of the least core is strictly positive.

3. The cost y of stability is strictly positive.

What is the relationship between the values € and y?

*+ Least core: Punish undesired behaviour
~ a fine for leaving the grand coalition.

+ Cost of stability: Encourage desired behaviour
~~ a subsidy for staying in the grand coalition.
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Least Core v. Cost of Stability: Examples

Let n > 2 and consider the following two games (i.e. where P = {1,...,n}):

G1 = (P,vq) Gy = (P,v2) G3 = (P, v3)
~n-1 ifcn{1,2} #9, |1 ifc#, 22 ifen{1,2} #0,
V(€)= {0 otherwise. V(€)= {0 otherwise. V() = {0 otherwise.

* In both games G; and Gy, the core is empty.

* The cost of stability in both gamesisy =n-1:
a,=0n-1,n-1,0,...,0) vs. a,=(1,1,1,...,1)

+ The value of the least core in Gy is & = 51, via (”‘1 A O,...,O).

» The value of the least core in G, is &, = !, via (% 1. %)
- For G3, we have g3 = 1 via as = (%%OO) and
Vs = Z”ZV|aa3_(2’}72 212 0, O)
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Solution Concept: Stable Sets
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Stable Sets

Definition [von Neumann and Morgenstern, 1941]

Let G = (P,v) be a cooperative game, and let a and b be imputations for G.
+ adominates b via a coalition C with § C C C P, written a >¢ b, iff
- aj<b;forallie C, and
- ZIGC a; < v(0).
« adominates b, written a > b, iff a dominates b via some coalition C C P.
+ AsetS C Imp(G) of imputations is a stable set of G iff

- Internal stability: For any two a, b € S, we have a # b.
- External stability: For every b € Imp(G)\S, there is some a € S with a > b.

« Ifa;>b;foralli e C, then every member of C is better off in a than in b.

* If ) ;cca;i < v(C), then C can plausibly threaten to leave the grand coalition.
+ Internal stability: No imputations need to be removed from S.

+ External stability: No imputations can be added to S.
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Stable Sets: Example
Recall Hospitals and X-Ray Machines with P = {1, 2,3} and

6 ifC=Pr,
v(Q)=45 if|C]=2,
0 otherwise.

S={(1,x,5-x) | x €[0,5]} is a stable set of G = (P, v):

* Internal stability:
- Consider (1,x,5-x) € Sand (1,y,5-y) € S.
- Ifx>y,then5-x<5-y,thus (1,x,5-x) *23) (LY, 5-y).
+ External stability:
- Consider b = (b1, by, b3) € Imp(G)\S. Then by + by + b3z = 6 and by # 1.
- If by <1, then min {by, b3} < 3 whence (1,4,1) >(12; bor(1,1,4) >13; b.
- If by > 1, then by + b3 <5, whence we can choose a € S such thata >3} b.
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The Core vs. Stable Sets (1)
Proposition

Let G = (P, v) be a cooperative game.
1. Core(G) is contained in every (if any) stable set of G.
2. If Core(G) is a stable set of G, then it is the only stable set of G.

Proof.

1. - Leta e Core(G) and b € Imp(G).
- Assume (for contradiction) that for some C C P, we have b > a.
- Thena;>b;forallie Cand ) ;. b; < v(Q).
- Butthen}) ;ccai <} ;ccbi < v(C).
- Buta e Core(G) means that ) ;- a; > v(C). Contradiction.
- Thus b # a and a is contained in every (if any) stable set of G.

2. - No stable set can be a proper subset of another stable set:
If S¢ € S> and both are stable then b € S, \ S is dominated by some a € S;.

- Butthena € S, and S, does not satisfy internal stability, contradiction. O
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The Core vs. Stable Sets (2)

Proposition

For any superadditive cooperative game G = (P, v), we have
Core(G) = {a € Imp(G) | there is no b € Imp(G) with b > a}.

Proof.

Direction C follows from the previous slide, so it remains to show 2.

Let b € Imp(G)\ Core(G). Then ) ;_pb; = v(P) and b; > v({i}) for all i € P.
Since b ¢ Core(G), thereis a C C P such that v(C) > 3 ;. bi, whence C # 0.
Denote 6 := v(C)- ) ;. bi and define a € Imp(G) with a >¢ b by setting

aj:= b' 'q N e where d; := b; - v({j}) for eachj € P\C.
b; - Z 56 otherwise, J J
je

Note that }_;cp\c d/ =2 jercbi=2jepc VAN 2 6 = v(C) - 3_jcc bj because
v is superadditive: Zje,,\c bj+3 iccbi=v(P) > v(C)+ Zjep\c v({j})- O
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The Core vs. Stable Sets: Example

G’I
P=1{1,23}

1 if1eCand |C|>2,
v(C) = .
0 otherwise.

+ The core of G, Core(G") = {(1,0,0)}, is not a stable set of G:
« We have (1,0,0) * (0,0.5,0.5) since (1,0,0) %43 (0,0.5,0.5).
~» The core does not necessarily satisfy external stability.
+ One stable set of G is S1, = {(x,1-x,0) | x € [0, 1]}:
- If(x,17-x,0),(y,1-y,0) € S1,, thenx >y would imply 1 -x<1-y.
- If(x,y,2) € Imp(G") with z> 0, then (x+ 3,y + £,0) > 23 (X,¥, 2).
+ Likewise, S13 = {(x,0,1-x) | x € [0, 1]} is a stable set of G'.
Exercise: Find additional stable sets, if any.
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Convex Games

Definition

1. Afunction v: 2° — R is supermodular iff for all C,D C P:
v(CUD)+v(CnD)>v(C)+v(D)

2. A cooperative game G = (P,v) is convex iff v is supermodular.

Observation
Function v: 2”7 — R* is supermodular iff for all C € D € Pand all i € P\D:

V(C U {i})-v(C) < v(D U {i}) - v(D) 1)
where v(CU {i}) - v(C) is player i's marginal contribution to coalition C.

« A supermodular function is superadditive (via v(f) = 0),
¢ but not vice versa.
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Cores of Convex Games (1)

Theorem [Shapley, 1971]

Every convex game has a nonempty core.

Proof (1/2).

Given G = (P,v)with P = {1,...,n}, we constructa = (a4, ..., a,) € Core(G).
Define a1 :=v({1}), a2 := v({1,2})-v({1}), ..., an := v(P)-v(P\ {n}).
Payoff vector a is individually rational: For all i € P, inequality (1) yields
ai=v({1,....iH-v({1,...,i-1}) > v({i}) - v(@) = v({i})
ais also efficient:
Y icp @i = V{1 +v({1, 21 -v({1})+... +v(P)-v(P\ {n}) = v(P)
Thus a € Imp(G). It remains to show a € Core(G).
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Cores of Convex Games (2)

Theorem [Shapley, 1971]

Every convex game has a nonempty core.

Proof (2/2).

+ Consider any coalition C = {i,j,...,k} with1 <i<j<...<k<n.

« We have v(C) = v({i})-v(@) +v({i,j}) -v({i}) +... +v(C) - v(C\ {k}).
* Due to v being supermodular, inequality (1) yields

v({ih)-v(@) < v({1,...,i-v({1,...,i-1}) =g
v({i,j}) -v({ih) <v({1, ... D -v({1,....j-1}) = q;
V(C)—V(C\{k}).g v({1,... kD -v({1,..., k=1}) = gy

* Therefore v(C) < a;+a;+...+a, and since C was arbitrary, a € Core(G). O

Every convex game G = (P, v) also has a unique stable set S = Core(G).
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Reprise: Solution Concepts

We have seen the following solution concepts for cooperative games:

« core [Gillies, 1959]
- Aunique set of imputations, but may be empty.

+ ¢-core [Shapley and Shubik, 1966]
- Aunique set of imputations, (non-)empty depending on € € RR.

+ stable sets [von Neumann and Morgenstern, 1941] (called “solutions”)
- There can be zero, one, or more stable sets; every stable set is non-empty.

There are further solution concepts for cooperative games:

+ Shapley value [Shapley, 1953]
- Aunique payoff vector that is efficient, symmetric, and additive.

For superadditive games, it is also individually rational (thus an imputation).

« kernel [Davis and Maschler, 1965]
- Aset of imputations stating that no player has “bargaining power” over another.

* nucleolus [Schmeidler, 1969]
- Aunique payoff vector that is contained in both core and kernel.
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Conclusion

Summary

In cooperative games, players P form explicit coalitions C C P.
Coalitions receive payoffs, which are distributed among its members.

We concentrate on superadditive games, where disjoint coalitions can
never decrease their payoffs by joining together.

Of particular interest is the grand coalition {P} and whether it is stable.
An imputation is an outcome that is efficient and individually rational.
Various solution concepts formalise stability of the grand coalition:

- the core contains all imputations where no coalition has an incentive to leave;
- the e-core disincentivises leaving the grand coalition via a fine of ;

- the cost of stability incentivises staying in the grand coalition;

- stable sets are sets of imputations that do not dominate each other and
dominate every imputation not in the set.

A convex game has a non-empty core that equals its unique stable set.
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