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Previously . . .
• General Game Playing is concerned with computers learning to playpreviously unknown games without human intervention.
• The game description language (GDL) is used to declaratively specify(deterministic) games (with complete information about game states).
• The syntax of GDL game descriptions is that of normal logic programs;various restrictions apply to obtain a finite, unique interpretation.
• The semantics of GDL is given through a state transition system.
• GDL-II allows to represent moves by Nature and information sets.
• The semantics of GDL-II can be given through extensive-form games.
• Conversely, GDL-II can express any finite extensive-form game.
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Cooperative Games: Motivation

• In a noncooperative game, players cannot enter binding agreements.
• (Players can still cooperate if it pays off for them.)
• In a cooperative game, players form coalitions.
• The coalition gets some (overall) payoff, which is then to be distributedamong the coalition’s members.
• Players are still assumed to be rationally maximising their individualpayoffs.
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Example: Hospitals and X-Ray Machines
• Three hospitals (in the same city) are planning to buy x-ray machines.
• However, not every hospital necessarily needs its own machine.
• The smallest machine costs $5m and could cover the needs of any twohospitals.
• A larger machine costs $9m and could cover the needs of all threehospitals.
• Hospitals forming a coalition C can jointly save the difference to eachindividual hospital i ∈ C buying its own $5mmachine.
• It is in society’s interest to save money while covering patients’ needs.

What should the hospitals do?

• Patients’ needs could be covered by one machine with $9m overall cost.
• But then, any two hospitals could break off, each saving another $500k;while this is rational for the two, overall costs would increase to $10m.
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Cooperative Games with Transferable Utility
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Cooperative Games with Transferable Utility
Definition
A cooperative game with transferable utility is a pair G = (P, v) where
• P = {1, 2, . . . ,n} is the set of players and
• v : 2P → R≥0 is the characteristic function of G.
• Intuition: Coalition C ⊆ P earns v(C) by cooperating.• Terminology: We will occasionally omit “with transferable utility”.
Assumption
For any cooperative game G = (P, v), we have:
1. Normalisation: v(∅) = 0.
2. Monotonicity: C ⊆ D ⊆ P implies v(C) ≤ v(D).
Note that a cooperative game with n players requires a representation of asize that is exponential in n.
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Cooperative Games: Example

Hospitals and X-Ray Machines
Three hospitals are planning to buy x-ray ma-chines. However, not every hospital necessar-ily needs its own machine. A small machinecosts $5m and could cover the needs of anytwo hospitals. A larger machine costs $9mand could cover the needs of all three hospit-als. Hospitals forming a coalition C can jointlysave the difference to each individual hospital
i ∈ C buying its own $5mmachine.

• P = {1, 2, 3},
• v(P) = 6,
• v(C) = 5 for |C| = 2,
• v({i}) = 0 for i ∈ P.
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Coalition Structure
Definition
Let G = (P, v) be a cooperative game (with transferable utility).
A coalition structure for G is a partition C = {C1, . . . ,Ck} of P, that is,• C1, . . . ,Ck ⊆ P,
• C1 ∪ . . . ∪ Ck = P, and
• Ci ∩ Cj = ∅ for all 1 ≤ i ̸= j ≤ k.
• The coalition structure C = {P} is called the grand coalition.
• v(C) is the collective payoff of a coalition; it remains to be specified how todistribute the gains to the coalition’s members.
Hospitals and X-Ray Machines
For P = {1, 2, 3}, some possible coalition structures are C1 = {{1, 2, 3}},
C2 = {{1, 3} , {2}}, and C3 = {{1} , {2} , {3}}.
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Outcome of a Cooperative Game
Definition
Let G = (P, v) be a cooperative game (with transferable utility).
An outcome of G = (P, v) is a pair (C,a) where
• C is a coalition structure and
• a = (a1, . . . ,an) ∈ Rn is a payoff vector such that ai ≥ 0 for each i ∈ P and∑

i∈C
ai = v(C) for each coalition C ∈ C.

Efficiency: For each coalition C ∈ C, its payoff v(C) is distributed completely.
Transferable Utility: Players within coalitions can transfer payoffs freely.
Hospitals and X-Ray Machines
Outcomes are C1 with a1 = (2, 2, 2), C2 with a2 = (2.5, 0, 2.5), and C3 with
a3 = (0, 0, 0), but also C2 with a′2 = (3, 0, 2). No outcome: C2 with (2, 1, 2).
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Superadditive Games (1)
Definition
Let G = (P, v) be a cooperative game (with transferable utility).
G is called superadditive iff for all coalitions C,D ⊆ P

C ∩D = ∅ implies v(C ∪D) ≥ v(C) + v(D).
Intuition: C ∪D can achieve what C and D can achieve separately;there might be additional synergistic effects.
Non-Example
• A group C of emacs-using programmers achieves a part of a task T in 8h.
• A (disjoint) group D of vi-using programmers achieves the rest of T in 8h.
• The group C ∪D, attempting to work together, might not achieve T in 8h.
We will only consider superadditive games unless specified otherwise.
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Superadditive Games (2)
Observation
Let G = (P, v) be a superadditive (cooperative) game.
For every coalition structure C = {C1, . . . ,Ck}, we have

v(P) ≥ v(C1) + . . . + v(Ck)
⇝ In superadditive games, we can expect the grand coalition to form.
However, it does not automatically mean that the grand coalition is “stable”:
Example
• The “Hospitals and X-Ray Machines” game is superadditive.
• In outcome ({{1, 2, 3}} , (2, 2, 2)), e.g. {1, 2} have an incentive to deviate:
• in ({{1, 2} , {3}} , (2.5, 2.5, 0)), they would increase their individual payoff.
⇝ It remains to analyse how to distribute the grand coalition’s payoff.
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Solution Concept: The Core
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Imputations
Definition
Let G = (P, v) be a cooperative game (with transferable utility).
• A payoff vector a = (a1, . . . ,an) ∈ Rn is individually rational iff

ai ≥ v({i}) for all i ∈ P

• The imputations for G are the members of the following set:
Imp(G) :=

{
(a1, . . . ,an) ∈ Rn

∣∣∣∣∣ n∑
i=1

ai = v(P) and ai ≥ v({i}) for all i ∈ P

}
Intuition: Imputations are efficient (w.r.t. to {P}) and individually rational.
Observation
1. Imp(G) ̸= ∅ iff v(P) ≥

∑
i∈P v({i}).2. If G is superadditive, then Imp(G) ̸= ∅.
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The Core of a Cooperative Game
Definition
Let G = (P, v) be a cooperative game (with transferable utility).
The core of G is the following set:

Core(G) :=
{
(a1, . . . ,an) ∈ Imp(G)

∣∣∣∣∣ ∑
i∈C

ai ≥ v(C) for all coalitions C ⊆ P

}
Intuition: No group C has an incentive to break off the grand coalition.
Example
In “Hospitals and X-Ray Machines”, the core is empty:
• If (a1,a2,a3) ∈ Core(G), then a1 + a2 + a3 = 6 by being an imputation.
• But for any i, j ∈ {1, 2, 3} with i ̸= j we also have ai + aj ≥ v({ai,aj}) = 5.
• Let ai ≤ aj ≤ ak, then ai + aj ≥ 5, but ak ≤ 1 and ai + aj ≤ 2, contradiction.
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Cores of Cooperative Games: Example (1)

Chess Pairings
A group of n ≥ 3 people want to playchess. Every pair of players appointedto play against each other receives $1.

P = {1, . . . ,n}

v(C) =
{

|C|2 if |C| is even,
|C|–12 otherwise

• For n ≥ 4 even, the payoff vector an := (12 , . . . , 12
) is in the core:

– deviation by an odd group C ⊆ P would yield v(C) = |C|–12 < 12 · |C|;
– deviation by an even group C ⊆ P would yield v(C) = |C|2 = 12 · |C|.• In fact, for n ≥ 4 even, we have Core(G) = {an}:– Assume a ∈ Core(G), then for any {

ai,aj} ⊆ P, it follows that ai + aj ≥ v(C) = 1.
– From a ∈ Imp(G), we get a1 + . . . + an = n2 , and we obtain ai = 12 for all i ∈ P.• For n ≥ 3 odd, the core is empty: (One player remains without a partner.)– For n = 3 and a ∈ Core(G), we get a1 + a2 + a3 = 1, so e.g. a1 > 0.– But then a2 + a3 = 1 – a1 < 1 although v({a2,a3}) = 1, contradicting a ∈ Core(G).
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Cores of Cooperative Games: Example (2)
Shoe Makers
Of 201 shoe makers, (the first) 100have made one left shoe each, (theremaining) 101 have made one rightshoe each. A pair of shoes consists ofone left and one right shoe (ignoringsizes), and can be sold for $10.

P = {1, 2, . . . , 201}
v(C) = 10 ·min {|CL| , |CR|}

where
CL := {c ∈ C | c ≤ 100}
CR := {c ∈ C | c ≥ 101}

• The grand coalition makes a total of $1000 from selling all 100 pairs.
• The core of this game contains as only imputation a = (a1,a2, . . . ,a201)with a1 = a2 = . . . = a100 = 10 and a101 = a102 = . . . = a201 = 0:
• For any imputation b with bi > 0 for some 101 ≤ i ≤ 201, the coalition

P \ {i} would obtain v(P \ {i}) = v(P) > ∑
j∈C,j ̸=i bj on their own.• Intuitively: Left shoes are scarce, right shoes are overabundant.
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Linear Programming (in a Nutshell)
Definition
• A linear program is of the form

maximise cTx
subject to Ax ≤ b,

x ≥ 0,
and x ∈ Rk

where x is a vector of decision variables, and A, b, c are a matrix andtwo vectors of real values; the expression cTx is the objective function.
• If there is no objective function the program is a feasibility problem.
• A solution is a variable-value assignment that satisfies all constraints.
• A linear program is a special case of a mixed integer program (Lecture 2).
• Linear programming problems can be solved in polynomial time.
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Computing the Core
For a given cooperative game G = (P, v), its core is given by the feasibleregion of the following linear program over variables a1, . . . ,an:

find a1, . . . ,an
subject to ai ≥ 0 for all i ∈ P∑

i∈P
ai = v(P)∑

i∈C
ai ≥ v(C) for all C ⊆ P

Observe: The problem specification contains 2n + n + 1 constraints.
Corollary
For a cooperative game G = (P, v) whose characteristic function v is explicitlyrepresented, its core can be computed in deterministic polynomial time.
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The ε-Core
Definition
Let G = (P, v) be a cooperative game (with transferable utility) and ε ∈ R.
1. The set of pre-imputations of G is

PreImp(G) := {(a1, . . . ,an) ∈ Rn
∣∣ ∑

i∈P ai = v(P)}
2. The ε-core of G is the following set:

ε-Core(G) :=
{
(a1, . . . ,an) ∈ PreImp(G)

∣∣∣∣∣ ∑
i∈C

ai ≥ v(C) – ε for all C ⊆ P

}

• Intuition: Coalitions C ⊊ P that leave P have to pay a penalty of at least ε.
• For ε = 0, we have 0-Core(G) = Core(G).
• If Core(G) = ∅, then there is some ε ∈ R, ε > 0, for which ε-Core(G) ̸= ∅.
• If Core(G) ̸= ∅, then there is some ε ∈ R, ε < 0, for which ε-Core(G) = ∅.
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The Least Core
Definition
Let G = (P, v) be a cooperative game (with transferable utility).
The least core of G is the intersection of all non-empty ε-cores of G.
Alternatively: The least core of G is ε̃-Core(G) for ε̃ ∈ R such that
ε̃-Core(G) ̸= ∅ and ε-Core(G) = ∅ for all ε < ε̃.
The value of the least core can be computed via linear programming:

minimise ε

subject to ai ≥ 0 for all i ∈ P∑
i∈P

ai = v(P)∑
i∈C

ai ≥ v(C) – ε for all C ⊆ P
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The Cost of Stability
Idea: If Core(G) = ∅, stabilise G by subsidising the grand coalition.
Modelling Assumptions
• Some external authority has an interest in a stable grand coalition.
• The supplemental payment γ gets distributed among P along with v(P).
Definition
Let G = (P, v) be a cooperative game (with transferable utility).
1. For a supplemental payment γ ≥ 0, the adjusted game Gγ = (P, v ′) has

v ′(C) :=
{
v(P) + γ if C = P,
v(C) otherwise.

2. The cost of stability of G is inf {
γ ∈ R

∣∣ γ ≥ 0 and Core(Gγ) ̸= ∅
}.
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Computing the Cost of Stability
Example: Hospitals and X-Ray Machines
The cost of stability is γ = 1.5: In Gγ , we have v ′({1, 2, 3}) = 6 + 1.5 = 7.5whence for no C ⊆ {1, 2, 3} with |C| = 2 it would pay to deviate (as v ′(C) = 5).
The cost of stability can be computed by linear programming:

minimise γ

subject to γ ≥ 0
ai ≥ 0 for all i ∈ P∑

i∈P
ai = v(P) + γ∑

i∈C
ai ≥ v(C) for all C ⊆ P
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Least Core vs. Cost of Stability

Observation
For any cooperative game G, the following are equivalent:
1. Core(G) = ∅.
2. The value ε of the least core is strictly positive.
3. The cost γ of stability is strictly positive.
What is the relationship between the values ε and γ?
• Least core: Punish undesired behaviour
⇝ a fine for leaving the grand coalition.

• Cost of stability: Encourage desired behaviour
⇝ a subsidy for staying in the grand coalition.
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Least Core v. Cost of Stability: Examples
Let n ≥ 2 and consider the following two games (i.e. where P = {1, . . . ,n}):

G1 = (P, v1)
v1(C) =

{
n – 1 if C ∩ {1, 2} ̸= ∅,
0 otherwise.

G2 = (P, v2)
v2(C) =

{1 if C ̸= ∅,
0 otherwise.

G3 = (P, v3)
v3(C) =

{2n–2
n

if C ∩ {1, 2} ̸= ∅,
0 otherwise.

• In both games G1 and G2, the core is empty.
• The cost of stability in both games is γ = n – 1:

a1 = (n – 1,n – 1, 0, . . . , 0) vs. a2 = (1, 1, 1, . . . , 1)
• The value of the least core in G1 is ε1 = n–12 , via (

n–12 , n–12 , 0, . . . , 0).
• The value of the least core in G2 is ε2 = n–1

n
, via (1

n
, 1
n
, . . . , 1

n

).
• For G3, we have ε3 = n–1

n
via a3 = (

n–1
n
, n–1

n
, 0, . . . , 0) and

γ3 = 2n–2
n

via a′3 =
(2n–2

n
, 2n–2

n
, 0, . . . , 0).
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Solution Concept: Stable Sets
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Stable Sets
Definition [von Neumann and Morgenstern, 1941]
Let G = (P, v) be a cooperative game, and let a and b be imputations for G.
• a dominates b via a coalition C with ∅ ⊊ C ⊆ P, written a ≻C b, iff– ai < bi for all i ∈ C, and– ∑

i∈C ai ≤ v(C).
• a dominates b, written a ≻ b, iff a dominates b via some coalition C ⊆ P.
• A set S ⊆ Imp(G) of imputations is a stable set of G iff

– Internal stability: For any two a,b ∈ S, we have a ̸≻ b.– External stability: For every b ∈ Imp(G) \ S, there is some a ∈ S with a ≻ b.
• If ai > bi for all i ∈ C, then every member of C is better off in a than in b.
• If ∑

i∈C ai ≤ v(C), then C can plausibly threaten to leave the grand coalition.
• Internal stability: No imputations need to be removed from S.
• External stability: No imputations can be added to S.
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Stable Sets: Example
Recall Hospitals and X-Ray Machines with P = {1, 2, 3} and

v(C) =

6 if C = P,
5 if |C| = 2,
0 otherwise.

S = {(1, x, 5 – x) | x ∈ [0, 5]} is a stable set of G = (P, v):
• Internal stability:

– Consider (1, x, 5 – x) ∈ S and (1, y, 5 – y) ∈ S.– If x > y, then 5 – x < 5 – y, thus (1, x, 5 – x) ̸≻{2,3} (1, y, 5 – y).• External stability:
– Consider b = (b1,b2,b3) ∈ Imp(G) \ S. Then b1 + b2 + b3 = 6 and b1 ̸= 1.– If b1 < 1, then min {b2,b3} ≤ 3 whence (1, 4, 1) ≻{1,2} b or (1, 1, 4) ≻{1,3} b.– If b1 > 1, then b2 + b3 < 5, whence we can choose a ∈ S such that a ≻{2,3} b.
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The Core vs. Stable Sets (1)
Proposition
Let G = (P, v) be a cooperative game.
1. Core(G) is contained in every (if any) stable set of G.
2. If Core(G) is a stable set of G, then it is the only stable set of G.
Proof.
1. – Let a ∈ Core(G) and b ∈ Imp(G).– Assume (for contradiction) that for some C ⊆ P, we have b ≻C a.– Then ai > bi for all i ∈ C and ∑

i∈C bi ≤ v(C).– But then ∑
i∈C ai < ∑

i∈C bi ≤ v(C).– But a ∈ Core(G) means that ∑
i∈C ai ≥ v(C). Contradiction.– Thus b ̸≻ a and a is contained in every (if any) stable set of G.

2. – No stable set can be a proper subset of another stable set:– If S1 ⊊ S2 and both are stable then b ∈ S2 \ S1 is dominated by some a ∈ S1.– But then a ∈ S2 and S2 does not satisfy internal stability, contradiction.
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The Core vs. Stable Sets (2)
Proposition
For any superadditive cooperative game G = (P, v), we have
Core(G) = {a ∈ Imp(G) | there is no b ∈ Imp(G) with b ≻ a}.
Proof.
• Direction ⊆ follows from the previous slide, so it remains to show ⊇.
• Let b ∈ Imp(G) \ Core(G). Then ∑

i∈P bi = v(P) and bi ≥ v({i}) for all i ∈ P.
• Since b /∈ Core(G), there is a C ⊆ P such that v(C) > ∑

i∈C bi, whence C ̸= ∅.
• Denote δ := v(C) –∑

i∈C bi and define a ∈ Imp(G) with a ≻C b by setting
ai :=

bi + 1
|C| · δ if i ∈ C,

bi – di∑
j∈P\C dj · δ otherwise, where dj := bj – v({j}) for each j ∈ P \ C.

• Note that ∑
j∈P\C dj =

∑
j∈P\C bj –∑

j∈P\C v({j}) ≥ δ = v(C) –∑
i∈C bi because

v is superadditive: ∑
j∈P\C bj +∑

i∈C bi = v(P) ≥ v(C) +∑
j∈P\C v({j}).
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The Core vs. Stable Sets: Example
G1

P = {1, 2, 3}

v(C) =
{1 if 1 ∈ C and |C| ≥ 2,
0 otherwise.

• The core of G1, Core(G1) = {(1, 0, 0)}, is not a stable set of G:• We have (1, 0, 0) ̸≻ (0, 0.5, 0.5) since (1, 0, 0) ̸≻{1} (0, 0.5, 0.5).
⇝ The core does not necessarily satisfy external stability.
• One stable set of G1 is S1,2 = {(x, 1 – x, 0) | x ∈ [0, 1]}:– If (x, 1 – x, 0), (y, 1 – y, 0) ∈ S1,2, then x > y would imply 1 – x < 1 – y.– If (x, y, z) ∈ Imp(G1) with z > 0, then (

x + z2 , y + z2 , 0)
≻{1,2} (x, y, z).• Likewise, S1,3 = {(x, 0, 1 – x) | x ∈ [0, 1]} is a stable set of G1.

Exercise: Find additional stable sets, if any.
Cooperative Games (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2023 Slide 31 of 36 Computational

Logic ∴ Group



Convex Games
Definition
1. A function v : 2P → R+ is supermodular iff for all C,D ⊆ P:

v(C ∪D) + v(C ∩D) ≥ v(C) + v(D)
2. A cooperative game G = (P, v) is convex iff v is supermodular.
Observation
Function v : 2P → R+ is supermodular iff for all C ⊆ D ⊆ P and all i ∈ P \D:

v(C ∪ {i}) – v(C) ≤ v(D∪ {i}) – v(D) (1)
where v(C ∪ {i}) – v(C) is player i’smarginal contribution to coalition C.
• A supermodular function is superadditive (via v(∅) = 0),
• but not vice versa.
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Cores of Convex Games (1)

Theorem [Shapley, 1971]
Every convex game has a nonempty core.
Proof (1/2).
• Given G = (P, v) with P = {1, . . . ,n}, we construct a = (a1, . . . ,an) ∈ Core(G).
• Define a1 := v({1}), a2 := v({1, 2}) – v({1}), . . . , an := v(P) – v(P \ {n}).
• Payoff vector a is individually rational: For all i ∈ P, inequality (1) yields

ai = v({1, . . . , i}) – v({1, . . . , i – 1}) ≥ v({i}) – v(∅) = v({i})
• a is also efficient:∑

i∈P ai = v({1}) + v({1, 2}) – v({1}) + . . . + v(P) – v(P \ {n}) = v(P)
• Thus a ∈ Imp(G). It remains to show a ∈ Core(G).
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Cores of Convex Games (2)
Theorem [Shapley, 1971]
Every convex game has a nonempty core.
Proof (2/2).
• Consider any coalition C = {i, j, . . . , k} with 1 ≤ i < j < . . . < k ≤ n.
• We have v(C) = v({i}) – v(∅) + v({i, j}) – v({i}) + . . . + v(C) – v(C \ {k}).
• Due to v being supermodular, inequality (1) yields

v({i}) – v(∅) ≤ v({1, . . . , i}) – v({1, . . . , i – 1}) = ai

v({i, j}) – v({i}) ≤ v({1, . . . , j}) – v({1, . . . , j – 1}) = aj...
v(C) – v(C \ {k}) ≤ v({1, . . . , k}) – v({1, . . . , k – 1}) = ak

• Therefore v(C) ≤ ai + aj + . . . + ak and since C was arbitrary, a ∈ Core(G).
Every convex game G = (P, v) also has a unique stable set S = Core(G).

Cooperative Games (Lecture 10)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2023 Slide 34 of 36 Computational
Logic ∴ Group



Reprise: Solution Concepts
We have seen the following solution concepts for cooperative games:
• core [Gillies, 1959]– A unique set of imputations, but may be empty.• ε-core [Shapley and Shubik, 1966]– A unique set of imputations, (non-)empty depending on ε ∈ R.• stable sets [von Neumann and Morgenstern, 1941] (called “solutions”)– There can be zero, one, or more stable sets; every stable set is non-empty.
There are further solution concepts for cooperative games:
• Shapley value [Shapley, 1953]– A unique payoff vector that is efficient, symmetric, and additive.– For superadditive games, it is also individually rational (thus an imputation).• kernel [Davis and Maschler, 1965]– A set of imputations stating that no player has “bargaining power” over another.• nucleolus [Schmeidler, 1969]– A unique payoff vector that is contained in both core and kernel.
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Conclusion
Summary
• In cooperative games, players P form explicit coalitions C ⊆ P.
• Coalitions receive payoffs, which are distributed among its members.
• We concentrate on superadditive games, where disjoint coalitions cannever decrease their payoffs by joining together.
• Of particular interest is the grand coalition {P} and whether it is stable.
• An imputation is an outcome that is efficient and individually rational.
• Various solution concepts formalise stability of the grand coalition:

– the core contains all imputations where no coalition has an incentive to leave;– the ε-core disincentivises leaving the grand coalition via a fine of ε;– the cost of stability incentivises staying in the grand coalition;– stable sets are sets of imputations that do not dominate each other anddominate every imputation not in the set.
• A convex game has a non-empty core that equals its unique stable set.
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