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Syntax of Existential Rules

An existential rule is an expression

VXYY (o(X,Y) > 3Z ¢(X,Z))

=
body head

« X,Yand Z are tuples of variables of V

«  (X,Y) and (X,Z) are (constant-free) conjunctions of atoms

...a.k.a. tuple-generating dependencies, and Datalog* rules
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Syntax of Conjunctive Queries

A conjunctive query (CQ) is an expression

Y (p(X,Y))

« XandY are tuples of variables of V

*  ¢(X)Y) is a conjunction of atoms (possibly with constants)

The most important query language used in practice

Forms the SELECT-FROM-WHERE fragment of SQL
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Ontology-Based Query Answering (OBQA)

database (or ABox)

knowledge base
Y
N

(D.5)
ontology (or TV @
s \i/
T Q
existential rules conjunctive queries
VXYY (o(X,Y) = 3Z (X,Z)) FY (¢(X,Y))
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BCQ-Answering: Our Main Decision Problem

database (aka ABox)

knowledge base

YN

N

ontology (aka V @
s \i/

VXYY (o(X,Y) = 3Z (X,2Z))

decide whether DA 2 E Q
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Universal Models (a.k.a. Canonical Models)

An instance U is a universal model of D A X if the following holds:
1. Uisamodel of D A 2

2.YJ € models(D A %), there exists a homomorphism h, such that h(U) C J
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The Chase Procedure: Formal Definition

Chase rule - the building block of the chase procedure

Arule o = VXYY (o(X,Y) > 3Z (X,2)) is applicable to instance J if:
1. There exists a homomorphism h such that h(¢(X,Y)) C J
2. There is no g D hy such that g((X,Z)) C J

Let J,. = J U {g(¥(X,Z))}, where g © hx and g(Z) are “fresh” nulls not in J

The result of applying o to J is J., denoted J(o,h)J. - single chase step
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The Chase Procedure: Formal Definition

« Afinite chase of D w.r.t. Z is a finite sequence
D(01,h1)J1(02,h2)J2(03,h3)J3 ... (On,hp)J;

where no rule from Z is applicable in J, .

Then, chase(D,2) is defined as the instance J,

all applicable rules will eventually be applied

/.

* An infinite chase of D w.r.t. Z is a fair finite sequence
D<01,h1>J1 <0'2,h2>J2<0'3,h3>J3 <0nahn>Jn---

and chase(D,z) is defined as the instance Uy~ o Jx (with Jy = D)

"

least fixpoint of a monotonic operator - chase step
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Query Answering via the Chase

Theorem: D A 2 E Q iff UE Q, where U is a universal model of D A

+

Theorem: chase(D, %) is a universal model of D A 2

Corollary: DA ZE Q iff chase(D,2)F Q

« We can tame the first dimension of infinity by exploiting the chase procedure

» But, what about the second dimension of infinity? - the chase may be infinite
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Rest of the Lectrure

« Undecidability of BCQ-Answering

» Gaining decidability - terminating chase

 Full Existential Rules

* Acyclic Existential Rules
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Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape
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Deterministic Turing Machine (DTM)

S\{Sacc} X A = S x A x {-1,0,+1}

/ / accepting state

M=S/\|—|680’8CC

/TN N

states tape blank initial state
symbols  symbol

6(81’ G) = (82’ B’ +1)

IF at some time instant 1 the machine is in sate s¢, the cursor

points to cell K, and this cell contains a

THEN at instant 7+1 the machine is in state s,, cell K contains 3,

and the cursor points to cell k+1
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Undecidability of BCQ-Answering

Our Goal: Encode the computation of a DTM M with an empty tape
using a database D, a set 2 of existential rules, and a BCQ Q such that

DA ZEQ iff Maccepts
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Build an Infinite Grid

k-th horizontal line represents the

k-th configuration of the machine

VX (Start(X) — Node(X) A Initial(X))

D = {Start(c)}

fixes the origin of the grid

VX (Node(X) — 3Y (H(X,Y) A Node(Y)))

X Y VX (Node(X) — 3Y (V(X,Y) A Node(Y)))
li:\lv VXVYVZYW (H(X,Y) H(Z,W) V(X,Z) —> V(Y,W))
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Initialization Rules

) 4
®
) 4

Existential Rul

VXYY (Initial(X) A H(X,Y) = Initial(Y))

VX (Start(X) — Cursor{sp](X))

VX (Initial(X) — Symbol[L1](X))
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Transition Rules

6(81 ’G) = (SZ’B’+1 )

VXVYVZ (Cursoris ](X) A Symbol[a](X) A V(X,Y) A H(Y,Z) —

Cursor{s,](Z) A Symbol[B]1(Y) A Mark(X))
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Inertia Rules

BeforeCursor AfterCursor
a B Y 3

" .—)?—I_W—»? [
a B Y 3

VXYY (Mark(X) A H(X,Y) — AfterCursor(Y))

VXYY (AfterCursor(X) A H(X,Y) — AfterCursor(Y))

VXVY (AfterCursor(X) A Symbol[a](X) A V(X,Y) - Symbol[a](Y))

...we have similar rules for the cells before the cursor
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Accepting Rule

Once we reach the accepting state we accept

VX (Cursorsacc](X) — Accept(X))

D A ZFE dX Accept(X) iff the DTM M accepts
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Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

...syntactic restrictions are needed!!!
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Gaining Decidability

By restricting the database
« {Startic)} N2 E Q iff the DTM M accepts

» The problem is undecidable already for singleton databases
* No much to do in this direction

By restricting the query language
« DAZE dX Accept(X) iff the DTM M accepts
« The problem is undecidable already for atomic queries
* No much to do in this direction

By restricting the ontology language
» Achieve a good trade-off between expressive power and complexity
» Field of intense research
* Any ideas?

... force the chase to terminate
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What is the Source of Non-termination?

D—""""+
person(Alice)

VX (Person(X) — 3Y (hasParent(X,Y) A Person(Y)))

chase(D,2) = D U {hasParent(Alice, z,), Person(z,),

hasParent(z4, z,), Person(z,),

hasParent(z,, z3), Person(zs), ...

1. Existential quantification

2. Recursive definitions
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Termination of the Chase

* Drop the existential quantification
o We obtain the class of full existential rules

o Very close to Datalog

» Drop the recursive definitions
o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules
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Full Existential Rules

* A full existential rule is an existential rule of the form

VXYY (9(X,Y) = (X))
« We denote FULL the class of full existential rules
« Alocal property - we can inspect one rule at a time
= given 2, we can decide in linear time whether 2 € FULL

= closed under union - 24 € FULL, 2, € FULL = (2, U ,) € FULL

* Why does the chase terminate?
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Full Existential Rules

Consider a database D and a set > € FULL

chase(D,2) C {P(c4,...,Cp) | {C4,...,Cn) € adom(D)" and P € sch(X)}

active domain - constants occurring in D /

schema - predicates occurring in 2

maximum number of tuples

with terms of adom(D)
A

|Ichase(D,2)| < [sch(Z)] - (ladom(D)|)maxarity maxarity = maXp ¢ sen(x) {arity(P)}
N— _
—~

maximum number of atoms with predicates of
sch(2) and terms of adom(D)
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Complexity Measures for Query Answering

« Data complexity: is calculated by considering only the database as part of the

input, while the ontology and the query are fixed

« Combined complexity: is calculated by considering, apart from the database,

also the ontology and the query as part of the input

« Data complexity vs. Combined complexity

o Data complexity tends to be a more meaningful measure - ontologies and

queries tend to be small; databases tend to be large

o Nevertheless, the combined complexity is a relevant measure - identifies

the real source of complexity
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Some Important Complexity Classes

2EXPTIME

)

NEXPTIME coNEXPTIME

<

EXPTIME

PSPACE

)

NP coNP

PTIME

LOGSPACE

Problems that can be solved by an algorithm
that runs in double-exponential time

We need the power of non-determinism

Problems that can be solved by an algorithm
that runs in exponential time

Problems that can be solved by an algorithm
that uses a polynomial amount of memory

We need the power of non-determinism

Problems that can be solved by an algorithm
that runs in polynomial time

Problems that can be solved by an algorithm
that uses a logarithmic amount of memory
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Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set > € FULL, and a BCQ Q

We apply the naive algorithm:
1. Construct chase(D,2)

2. Check for the existence of a homomorphism h such that h(Q) C chase(D,2)

Step 1: We construct the chase level-by-level

l,=D * FromL,toL,.1:foreach o € 2, find all the
/ L. \ homomorphisms h such that h(body(c)) C L,, and
add to L, the set of atoms h(head(o))
/ = \ « StopwhenL,=L, .4
/ L, \ 12| - (Jadom(D)|)maxvariables(z) . maxbody() - |L|



Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set > € FULL, and a BCQ Q

We apply the naive algorithm:
1. Construct chase(D,2)

2. Check for the existence of a homomorphism h such that h(Q) C chase(D,2)

Step 1: We construct the chase level-by-level in time

(k-1) - |Z| - (J]adom(D)|)maxvariables(z) . maxbody(Z) - |L|

where k, |L| < |chase(D,2)| < |sch(Z)| - (Jadom(D)|)maxarity
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Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set > € FULL, and a BCQ Q

We apply the naive algorithm:
1. Construct chase(D,2)

2. Check for the existence of a homomorphism h such that h(Q) C chase(D,2)

Step 2: By applying similar analysis, we can show that the existence of h can be

checked in time

(ladom(D)|)#varieblest@) . |Q] - |chase(D,Z )|

where |[chase(D,Z)| < |sch(Z)| - (Jadom(D)|)maxarity
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Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set > € FULL, and a BCQ Q

We apply the naive algorithm:
1. Construct chase(D,2)

2. Check for the existence of a homomorphism h such that h(Q) C chase(D,2)

Consequently, in the worst case, the naive algorithm runs in time

(Isch(Z)| - (ladom(D)])m*a)? - 2| - (Jadom(D)[)maxvarievles(z). maxbody(Z)

+

(J]adom(D)|)#variables(Q) . | Q] - [sch(Z)| - (Jadom(D)|)maxarity
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Data Complexity of FULL

We cannot do better than the naive algorithm

Theorem: BCQ-Answering under FULL is PTIME-hard w.r.t. the data complexity

Proof : By a LOGSPACE reduction from Monotone Circuit Value problem
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Data Complexity of FULL

J6

94

Does the circuit evaluate to true?

Os

encoding of the circuit as a database D

T(g1) T(9s)

AND(94,91,92) OR(95,92,93) OR(96,94,95)

evaluation of the circuit via a fixed set 2

YXYYVZ (T(X) A OR(Z,X,Y) — T(Z))
YXYYVZ (T(Y) A OR(Z,X,Y) — T(Z))
YXYYVZ (T(X) A T(Y) A AND(Z,X,Y) = T(Z))

O3

Circuit evaluates to frue iff D A Z E T(Qe)
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Combined Complexity of FULL

Theorem: BCQ-Answering under FULL is in EXPTIME w.r.t. the combined complexity

Proof: Consider a database D, a set > € FULL, and a BCQ Q

We apply the naive algorithm:
1. Construct chase(D,2)

2. Check for the existence of a homomorphism h such that h(Q) C chase(D,2)

By our previous analysis, in the worst case, the naive algorithm runs in time

(Isch(Z)] - (ladom(D)])mexe)? - [2] - (Jadom(D)[)maxvariavlesz). maxbody(2)

+

(ladom(D)|)#variables(Q) . |Q| - |sch(Z)| - (Jadom(D)|)maxarity
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Combined Complexity of FULL

We cannot do better than the naive algorithm

Theorem: BCQ-Answering under FULL is EXPTIME-hard w.r.t. the combined
complexity

Proof : By simulating a deterministic exponential time Turing machine
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EXPTIME-hardness of FULL

Our Goal: Encode the exponential time computation of a DTM M on input
string / using a database D, a set 2 € FULL, and a BCQ Q such that

DA ZEQ iff Maccepts /in at most N =27 steps, where m =|/|¥
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Slide 35



The Schema

0 1 2 j N-1
0
1
2
I a
N-1

Symbol[a](i,j) - at time instant J, cell j contains a

7'
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The Schema

0 1 2 j N-1
0
1
2
I a
N-1

Cursor(i,j) - at time instant /, cursor points to cell j
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The Schema

0 1 2 j N-1
0
1
2
I a S
N-1

State[s](/) - at time instant /, the machine is in state s
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The Schema

0 1 2 j N-1
0
1
2
i a Accept
N-1

Accepf(i) - at time instant i/, the machine accepts

7'
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The Schema

First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)
will be defined later
< - transitive closure of Succ

7'
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Initialization Rules

Assume that / = 0y...0,,1

VT (First(T) - Symbol[aj](T,i) A Cursor(T,T) N State[sy](T))

VTVC (First(T) A <(n-1,C) — Symbol[L](T,C))

7Y
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Transition Rules

5(s1,0) = (Sp,B,+1) Al I
i+1 X B y Sy

VTVTVCVYC, (State[s](T) A Cursor(T,C) A Symbol[a](T,C) A Succ(T,T4) A Suce(C,Cq) —>

Symbol[B](T,,C) A Cursor(T4,C4) A State[s,](T4))

7'
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Inertia Rules

Cells that are not changed during the transition keep their old values

A L %

i+1 X B y S2

VTVTVCVC, (Symbol[a](T,C) A Cursor(T,C4) A <(C,C4) A Succ(T,T4) »> Symbol[a](T4,C))

VTVTVCVC, (Symbol[a](T,C) A Cursor(T,C4) A <(C4,C) A Succ(T,T4) »> Symbol[a](T4,C))
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Accepting Rule

Once we reach the accepting state we accept

i Sacc

VT (State[saccJ(T) — Accept(T))
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Defining First, Succ and <

» First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)
 Infact, 0,...,N-1 are in binary form - assume the N = 2™, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),..., Succ(1,1,0,1,1,1)

* Inductive definition of First; and Succ;

D = {First,(0), Last,(1), Succ4(0,1)}

Firsty(0,0), Lasty(1,1), Succ,(0,0,0,1), Succ,(0,1,1,0), Suce(1,0,1,1)

VX (Firsty(X) A First;(X) — Firsty(X,X))

VX (Last(X), Last;(X) — Lasty(X,X))

7'
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Defining First, Succ and <

» First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)
 Infact, 0,...,N-1 are in binary form - assume the N = 2™, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),..., Succ(1,1,0,1,1,1)

* Inductive definition of First; and Succ;

D = {First,(0), Last,(1), Succ4(0,1)}

Firsty(0,0), Lasty(1,1), Succ,(0,0,0,1), Succ,(0,1,1,0), Suce(1,0,1,1)

VXYYVZ (First,(X),Succy(Y,Z) — Succy(X,Y,X,Z))

VXVYVZ (Last(X),Succq(Y,Z) - Succy(X,Y,X,Z2))
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Defining First, Succ and <

» First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)
 Infact, 0,...,N-1 are in binary form - assume the N = 2™, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),..., Succ(1,1,0,1,1,1)

* Inductive definition of First; and Succ;

D = {First,(0), Last,(1), Succ4(0,1)}

Firsty(0,0), Lasty(1,1), Succ,(0,0,0,1), Succ,(0,1,1,0), Suce(1,0,1,1)

VYXVYVZYW (First,(X), Last;(Y),Succ(Z,W) — Succ,(Z,X,W,Y))

7'
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Defining First, Succ and <

D = {First,(0), Last,(1), Succ4(0,1)}

Inductive definition of Firsti.4 and Succi,1:

VXYY (Succ(X,)Y) —
VXVYYVZYW (Succq(Z,W) A Last(X) A First(Y) —
VXVZ (Firsti(Z) A First(X) —

VXVZ (Last{(Z) A Last(X) —

Definition of <,

VXVY (Succ,,(X)Y) —

YXYYVZ (Succ(X,Z) <m(Z,Y) —s

7Y
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SUCCi+1(Z’XaW1Y))

First;.1(Z,X))

Last;1(Z,X))

<m(X,Y))

<m(X,Y))
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Concluding EXPTIME-hardness of FULL

« Several rules but polynomially many =- feasible in polynomial time

« DA ZEdJX Accept(X) iff M accepts I in at most N steps

« Can be formally shown by induction on the time steps

Corollary: BCQ-Answering under FULL is EXPTIME-complete w.r.t. the

combined complexity
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Termination of the Chase

* Drop the existential quantification
o We obtain the class of full existential rules

o Very close to Datalog
v

» Drop the recursive definitions
o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules
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