

Sebastian Rudolph (based on slides by Bernardo Cuenca Grau, Ian Horrocks, Przemysław Wałęga)
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Description Logics - Reasoning with Data

Lecture 6, 2th Nov 2023 // Foundations of Knowledge Representation, WS 2023/24

Recap

- For description logic knowledge bases, there are various relevant reasoning problems.
- All can be reduced to knowledge base (in)consistency.
- The basic description logic ALC can be extended in various ways:

1 0	•
- Inverse Roles	J
 (Qualified) Number Restrictions 	(Q) N
- Nominals	O
 Role Hierarchies 	${\mathcal H}$
 Transitive Roles 	$\mathcal{ALC} \leadsto \mathcal{S}$, $\cdot_{\mathcal{R}^+}$

- Description Logics have close connections with propositional modal logic ...
- ...and with the two-variable fragments of first-order logic (with counting quantifiers)

Reasoning with Data

So far we have focused on terminological reasoning

- TBoxes represent general, conceptual domain knowledge
- Terminological reasoning is key to design error-free TBoxes

New Scenario: Ontology-based data access (OBDA)

- We have built an (error-free) TBox for our domain
- We want to populate ontology with data (add an ABox)
 ABox & TBox should be compatible (no inconsistencies)
- Then, we can query the data
 - TBox provides vocabulary for queries
 - Answers reflect both TBox knowledge and ABox data

Compatibility of Data and Knowledge

The ABox data should be compatible with the TBox knowledge

```
\mathfrak{T} = \{ \mathsf{GradSt} \sqcap \mathsf{UnderGradSt} \sqsubseteq \bot \}
\mathcal{A} = \{ \mathsf{John} : \mathsf{GradSt}, \mathsf{John} : \mathsf{UnderGradSt} \}
```

Nothing wrong with the TBox

Nothing wrong with the ABox

There is an obvious error when putting them together

To detect these situations we use the following problem:

Knowledge Base consistency:

```
Input: knowledge base \mathcal{K} = (\mathcal{T}, \mathcal{A}).
Answer: true iff a model \mathcal{T} \models \mathcal{K} exists.
```

In a FOL setting, $\mathcal K$ is consistent if and only if $\pi(\mathcal K)$ is satisfiable.

Tableau Algorithm for KB Consistency

Tableau-based knowledge base consistency algorithm:

- Input: Knowledge Base $\mathfrak{K} = (\mathfrak{T}, \mathcal{A})$
- Output: true iff $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent
- 1. Start with input ABox A
- 2. Apply expansion rules until completion or clash
- 3. Blocking only involves individuals not occurring in ${\mathcal A}$

Exploit forest-model property: construct forest-shaped extended ABox root (original ABox) individuals can be arbitrarily connected new individuals (introduced by \exists -rule) form trees

(JRA, John): Affects
IRA: JuvArth

(JRA, Mary): Affects

(John, Mary): hasChild

JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$

 $\exists hasChild. \top \sqsubseteq Adult$

Adult ⊑ ¬Child

Arth $\sqsubseteq \exists Damages.$ Joint

 $JuvArth \sqsubseteq Arth \sqcap JuvDis$

(JRA, John): Affects
JRA: JuvArth
(JRA, Mary): Affects

(John, Mary): hasChild

JuvDis $\sqsubseteq \exists Affects$.Child $\sqcap \forall Affects$.Child $\exists hasChild$. $\top \sqsubseteq Adult$ Adult $\sqsubseteq \neg Child$ Arth $\sqsubseteq \exists Damages$.Joint JuvArth $\sqsubseteq Arth \sqcap JuvDis$

(JRA, John): Affects

JRA:JuvArth

(JRA, Mary): Affects

(John, Mary): hasChild

JuvDis $\sqsubseteq \exists Affects$.Child $\sqcap \forall Affects$.Child

 $\exists hasChild. \top \sqsubseteq Adult$

Adult $\sqsubseteq \neg$ Child

Arth $\sqsubseteq \exists Damages.$ Joint

 $JuvArth \sqsubseteq Arth \sqcap JuvDis$


```
(JRA, John): Affects
JRA: JuvArth
```

(JRA, Mary): Affects

(John, Mary): hasChild

```
JuvDis \sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child \exists hasChild. \top \sqsubseteq Adult
```

Adult $\sqsubseteq \neg Child$

Arth $\sqsubseteq \exists Damages.$ Joint

 $JuvArth \sqsubseteq Arth \sqcap JuvDis$


```
(JRA, John): Affects
JRA: JuvArth
(JRA, Mary): Affects
(John, Mary): hasChild
```

```
JuvDis \sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child \exists hasChild.\top \sqsubseteq Adult Adult \sqsubseteq \neg Child Arth \sqsubseteq \exists Damages.Joint JuvArth \sqsubseteq Arth \sqcap JuvDis
```



```
(JRA, John): Affects
JRA: JuvArth
(JRA, Mary): Affects
(John, Mary): hasChild
```

```
JuvDis \sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child \exists hasChild. \top \sqsubseteq Adult Adult \sqsubseteq \neg Child Arth \sqsubseteq \exists Damages.Joint JuvArth \sqsubseteq Arth \sqcap JuvDis
```



```
(JRA, John): AffectsJuvDis \sqsubseteq \exists Affects. Child \sqcap \forall Affects. ChildJRA: JuvArth\exists hasChild. \top \sqsubseteq Adult(JRA, Mary): AffectsAdult \sqsubseteq \neg Child(John, Mary): hasChildArth \sqsubseteq \exists Damages. JointJuvArth \sqsubseteq Arth \sqcap JuvDis
```



```
(JRA, John): Affects
JRA: JuvArth
(JRA, Mary): Affects
(John, Mary): hasChild
```

```
JuvDis \sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child \exists hasChild. \top \sqsubseteq Adult Adult \sqsubseteq \neg Child Arth \sqsubseteq \exists Damages.Joint JuvArth \sqsubseteq Arth \sqcap JuvDis
```



```
(JRA, John): AffectsJuvDis \sqsubseteq \exists Affects. Child \sqcap \forall Affects. ChildJRA: JuvArth\exists hasChild. \top \sqsubseteq Adult(JRA, Mary): AffectsAdult \sqsubseteq \neg Child(John, Mary): hasChildArth \sqsubseteq \exists Damages. JointJuvArth \sqsubseteq Arth \sqcap JuvDis
```


Querying the Data

It does not make sense to query an inconsistent \mathcal{K} (previous example)

- An inconsistent $\mathfrak K$ entails all formulas.
- We (typically) fix inconsistencies before we start asking queries.

Once we have determined that \mathcal{K} is consistent, we want to query the data:

- Which children are affected by a juvenile arthritis?
- Which drugs are used to treat JRA?
- Who is affected by an arthritis and is allergic to steroids?

Similar to the types of queries one would pose to a database.

```
SELECT Child.cname
FROM Child, Affects, JuvArth
WHERE Child.cname = Affects.cname AND
Affects.dname = JuvArth.dname
```


Querying the Data: Simple Queries (1)

The basic data queries ask for all the instances of a concept:

$$q_1(x) = \text{Child}(x)$$
 Set of children?

$$q_2(x) = (\text{Dis} \sqcap \exists Damages.Joint)(x)$$
 Set of diseases affecting a joint?

How to (naively) answer these queries? Try each individual name!

ABox
$$A$$
 TBox T ($X = (T, A)$)

(JRA, John): Affects JuvDis
$$\sqsubseteq \exists Affects$$
. Child $\sqcap \forall Affects$. Child

(JRA, Mary):
$$Affects$$
 Arth $\sqsubseteq \exists Damages$. Joint

$$JuvArth \sqsubseteq Arth \sqcap JuvDis$$

$$\mathcal{K} \models \mathsf{JRA} : \mathsf{Child}?$$
 No. JRA is not an answer to q_1

$$\mathfrak{K} \models John: Child?$$
 Yes! John is an answer to q_1

$$\mathfrak{K} \models \mathsf{Mary} : \mathsf{Child}? \ \mathit{Yes}! \ \mathsf{Mary} \ \mathsf{is} \ \mathsf{an} \ \mathsf{answer} \ \mathsf{to} \ q_1$$

Querying the Data: Simple Queries (2)

So, we are interested in the following decision problem:

Concept Instance Checking:

Input: triple $\langle a, C, \mathcal{K} \rangle$,

with individual name a, concept C and KB \mathfrak{K} .

Answer: true iff $\mathfrak{K} \models a : C$

In ALC (and extensions) this problem is reducible to KB consistency:

$$(\mathfrak{T}, \mathcal{A}) \models \mathsf{a} : \mathsf{C}$$
 iff $(\mathfrak{T}, \mathcal{A} \cup$

ff (T,
$$A \cup$$

Querying the Data: Simple Queries (2)

So, we are interested in the following decision problem:

Concept Instance Checking:

Input: triple $\langle a, C, \mathcal{K} \rangle$,

with individual name a, concept C and KB \mathfrak{K} .

Answer: true iff $\mathfrak{K} \models a : C$

In ALC (and extensions) this problem is reducible to KB consistency:

$$(\mathfrak{T},\mathcal{A})\models a:C$$
 iff $(\mathfrak{T},\mathcal{A}\cup\{a:\neg\mathsf{C}\})$ inconsistent

Note that we can assume, w.l.o.g., that *C* is a concept name:

$$(\mathfrak{I}, \mathcal{A}) \models a: C$$
 iff $(\mathfrak{I} \cup \{X \equiv C\}, \mathcal{A}) \models a: X$

where X is a concept name that does not occur in \mathcal{T} or \mathcal{A} .

Querying the Data: Simple Queries (3)

What about instances of a role:

$$q_2(x,y) = hasChild(x,y)$$
 Set of parent-child tuples?

How to (naively) answer these queries? Try each pair of individuals!

ABox \mathcal{A} TBox \mathcal{T} ($\mathcal{K} = (\mathcal{T}, \mathcal{A})$)

JRA: JuvArth JuvDis $\sqsubseteq \exists Affects$. Child $\sqcap \forall Affects$. Child

(JRA, Mary): Affects Adult $\sqsubseteq \neg$ Child

(John, Mary): hasChild Arth $\sqsubseteq \exists Damages$. Joint

 $JuvArth \sqsubseteq Arth \sqcap JuvDis$

 $\mathcal{K} \models (John, John): hasChild?$ No. (John, John) is not an answer to q_2

 $\mathcal{K} \models (John, Mary): hasChild? Yes! (John, Mary) is an answer to <math>q_2$

 $\mathcal{K} \models (John, JRA): hasChild?$ No. (John, John) is not an answer to q_2

Querying the Data: Simple Queries (4)

So, we are interested in the following decision problem:

Role Instance Checking:

Input: triple $\langle (a, b), R, \mathcal{K} \rangle$,

with a pair of individual names (a, b), role $\it R$ and KB $\it X$.

Answer: true iff $\mathcal{K} \models (a, b): R$

Can this problem be reduced to knowledge base consistency?

$$(\Upsilon, A) \models (a, b): R \text{ iff } (\Upsilon, A \cup$$

) is inconsistent

Querying the Data: Simple Queries (4)

So, we are interested in the following decision problem:

Role Instance Checking:

Input: triple $\langle (a, b), R, \mathcal{K} \rangle$,

with a pair of individual names (a, b), role $\it R$ and KB $\it X$.

Answer: true iff $\mathcal{K} \models (a, b): R$

Can this problem be reduced to knowledge base consistency?

 $(\mathfrak{T}, \mathcal{A}) \models (a, b) : R$ iff $(\mathfrak{T}, \mathcal{A} \cup \{a : \forall R.X, b : \neg X\})$ is inconsistent

where X is a concept name that does not occur in \mathfrak{T} or \mathcal{A} .

Limitations of Concept-based Queries

Some natural queries cannot be expressed using a concept:

$$q(y) = \exists x \exists z (Affects(x, y) \land Affects(x, z) \land hasFriend(y, z))$$

Set of people (*y*) affected by the same disease as a friend?

Query Graph:

We can only represent tree-like queries as concepts

Related to the tree model property of DLs

We need a more expressive query language ...

Conjunctive Queries

The language of conjunctive queries

- Generalises concept-based queries in a natural way arbitrarily-shaped queries vs. tree-like queries
- Widely used as a query language in databases
 Corresponds to Select-Project-Join fragment of relational algebra
 Fragment of relational calculus using only ∃ and ∧
- Implemented in most DBMS

We next study the problem of CQ answering over DL knowledge bases

We will not study the problem of answering FOL queries over DL KBs

- → Corresponds to general relational calculus queries.
- → Leads to an undecidable decision problem.

Conjunctive Queries - Definition

Conjunctive query

Let V be a set of variables. A term t is a variable from V or an individual name from I.

A conjunctive query (CQ) q has the form $\exists x_1 \cdots \exists x_k (\alpha_1 \land \cdots \land \alpha_n)$ where

- $k \ge 0, n \ge 1, x_1, \dots, x_k \in \mathbf{V}$
- each α_i is a concept atom A(t) or a role atom r(t, t') with $A \in \mathbb{C}$, $r \in \mathbb{R}$, and t, t' terms
- x₁,...,x_k are called quantified variables;
 all other variables in q are called answer variables
- the arity of q is the number of answer variables
- q is called Boolean if it has arity zero

To indicate that the answer variables in a CQ q are \vec{x} , we often write $q(\vec{x})$ instead of just q.

Example Conjunctive Queries

1. Return all pairs of individual names (a, b) such that a is a professor who supervises student b:

$$q_1(x_1, x_2) = \text{Professor}(x_1) \land \text{supervises}(x_1, x_2) \land \text{Student}(x_2).$$

2. Return all individual names a such that a is a student supervised by some professor:

$$q_2(x) = \exists y \; (Professor(y) \land supervises(y, \underline{x}) \land Student(\underline{x})).$$

3. Return all pairs of students supervised by the same professor:

$$q_3(x_1, x_2) = \exists y \, (\text{Professor}(y) \land \text{supervises}(y, \underline{x_1}) \land \text{supervises}(y, \underline{x_2}) \land \text{Student}(x_1) \land \text{Student}(x_2)).$$

4. Return all students supervised by professor smith (an individual name):

$$q_4(x) = \text{supervises(smith}, x) \land \text{Student}(x).$$

Answers on an Interpretation

We first define query answers on a given interpretation \mathfrak{I} .

Definition

Let q be a conjunctive query and \mathfrak{I} an interpretation. We use term(q) to denote the terms in q.

A match of q in \mathfrak{I} is a mapping π : term(q) $\to \Delta^{\mathfrak{I}}$ such that

- $\pi(a) = a^{\mathfrak{I}}$ for all $a \in \text{term}(q) \cap \mathbf{I}$,
- $\pi(t) \in A^{\mathfrak{I}}$ for all concept atoms A(t) in q, and
- $(\pi(t_1), \pi(t_2)) \in r^{\Im}$ for all role atoms $r(t_1, t_2)$ in q.

Let $\vec{x} = x_1, \dots, x_k$ be the answer variables in q and $\vec{a} = a_1, \dots, a_k$ be individual names from **I**. We call the match π of q in \mathfrak{I} an \vec{a} -match if $\pi(x_i) = a_i^{\mathfrak{I}}$ for 1 < i < k.

We say that \vec{a} is an answer to q on \mathfrak{I} if there is an \vec{a} -match π of q in \mathfrak{I} .

We use ans (q, \mathcal{I}) to denote the set of all answers to q on \mathcal{I} .

Answers on Interpretation $\mathfrak I$

$$q_2(x) = \exists y (\mathsf{Professor}(y) \land \mathsf{supervises}(y, \underline{x}) \land \mathsf{Student}(\underline{x}))$$

There are 3 answers to $q_2(x)$ on \mathfrak{I} : mark, alex, and lily. Note that a match is a homomorphism from the query to the interpretation (both viewed as a graphs).

Answers on Interpretation $\mathfrak I$

$$q_3(x_1, x_2) = \exists y \, (\text{Professor}(y) \land \text{supervises}(y, \underline{x_1}) \land \text{supervises}(y, \underline{x_2}) \land \text{Student}(x_1) \land \text{Student}(x_2)).$$

There are 7 answers to $q_3(x_1, x_2)$ on \mathfrak{I} , including (mark, alex), (alex, lily), (lily, alex) and (mark, mark). Note that a match need not be injective.

Certain Answers

Usually we are interested in answers on a KB, which may have many models. In this case, so-called certain answers provide a natural semantics.

Definition

Let q be a CQ and $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a KB.

We say that \vec{a} is a certain answer to q on \mathfrak{K} if

- all individual names from \vec{a} occur in A
- $\vec{a} \in ans(q, I)$ for every model I of K

We use $cert(q, \mathcal{K})$ to denote the set of all certain answers to q on \mathcal{K} :

$$\operatorname{cert}(q,\mathfrak{K}) = \bigcap_{\mathfrak{I} \models \mathfrak{K}} \operatorname{ans}(q,\mathfrak{I})$$

Consider the \mathcal{ALCI} KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$: $\mathcal{T} = \{ \text{Student} \sqsubseteq \exists \text{supervises}^-. \text{Professor} \},$ $\mathcal{A} = \{ \text{smith} : \text{Professor}, \text{mark} : \text{Student}, \text{alex} : \text{Student}, \text{lily} : \text{Student},$ $(\text{smith}, \text{mark}) : \text{supervises}, (\text{smith}, \text{alex}) : \text{supervises} \}.$

• $q_4(x) = \text{supervises}(\text{smith}, \underline{x}) \land \text{Student}(\underline{x});$

• $q_2(x) = \exists y (Professor(y) \land supervises(y, \underline{x}) \land Student(\underline{x}));$

• $q_1(x_1, x_2) = \text{Professor}(\underline{x_1}) \land \text{supervises}(\underline{x_1}, \underline{x_2}) \land \text{Student}(\underline{x_2});$

Consider the \mathcal{ALCI} KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$: $\mathcal{T} = \{ \text{Student} \sqsubseteq \exists \text{supervises}^-. \text{Professor} \},$ $\mathcal{A} = \{ \text{smith} : \text{Professor}, \text{mark} : \text{Student}, \text{alex} : \text{Student}, \text{lily} : \text{Student},$ $(\text{smith}, \text{mark}) : \text{supervises}, (\text{smith}, \text{alex}) : \text{supervises} \}.$

- $q_4(x) = \text{supervises}(\text{smith}, \underline{x}) \land \text{Student}(\underline{x}); \text{ cert}(q_4, \mathcal{K}) = \{\text{mark}, \text{alex}\}: \text{ there are models of } \mathcal{K} \text{ in which smith supervises other students, but only mark and alex are supervised by smith in } all \text{ models.}$
- $q_2(x) = \exists y (Professor(y) \land supervises(y, \underline{x}) \land Student(\underline{x}));$

• $q_1(x_1, x_2) = \text{Professor}(\underline{x_1}) \land \text{supervises}(\underline{x_1}, \underline{x_2}) \land \text{Student}(\underline{x_2});$


```
Consider the \mathcal{ALCI} KB \mathcal{K} = (\mathcal{T}, \mathcal{A}):
\mathcal{T} = \{ \text{Student} \sqsubseteq \exists supervises^-. \text{Professor} \},
\mathcal{A} = \{ \text{smith} : \text{Professor}, \text{mark} : \text{Student}, \text{alex} : \text{Student}, \text{lily} : \text{Student},
(\text{smith}, \text{mark}) : supervises, (\text{smith}, \text{alex}) : supervises \}.
```

- $q_4(x) = \text{supervises}(\text{smith}, \underline{x}) \land \text{Student}(\underline{x}); \text{ cert}(q_4, \mathcal{K}) = \{\text{mark}, \text{alex}\}: \text{ there are models of } \mathcal{K} \text{ in which smith supervises other students, but only mark and alex are supervised by smith in$ *all*models.
- q₂(x) = ∃y(Professor(y) ∧ supervises(y, x) ∧ Student(x));
 cert(q₂, X) = {mark, alex, lily}: note that lily is included because she is a student and thus the TBox enforces that in every model of X she has a supervisor who is a professor.
- $q_1(x_1, x_2) = \text{Professor}(x_1) \land \text{supervises}(x_1, x_2) \land \text{Student}(x_2);$


```
Consider the \mathcal{ALCI} KB \mathcal{K} = (\mathcal{T}, \mathcal{A}):
\mathcal{T} = \{ \text{Student} \sqsubseteq \exists supervises^-. \text{Professor} \},
\mathcal{A} = \{ \text{smith} : \text{Professor}, \text{mark} : \text{Student}, \text{alex} : \text{Student}, \text{lily} : \text{Student},
(\text{smith}, \text{mark}) : supervises, (\text{smith}, \text{alex}) : supervises \}.
```

- $q_4(x) = \text{supervises}(\text{smith}, \underline{x}) \land \text{Student}(\underline{x}); \text{ cert}(q_4, \mathcal{K}) = \{\text{mark}, \text{alex}\}: \text{ there are models of } \mathcal{K} \text{ in which smith supervises other students, but only mark and alex are supervised by smith in$ *all*models.
- q₂(x) = ∃y(Professor(y) ∧ supervises(y, x) ∧ Student(x));
 cert(q₂, X) = {mark, alex, lily}: note that lily is included because she is a student and thus the TBox enforces that in every model of X she has a supervisor who is a professor.
- $q_1(x_1, x_2) = \text{Professor}(\underline{x_1}) \land \text{supervises}(\underline{x_1}, \underline{x_2}) \land \text{Student}(\underline{x_2});$ $\text{cert}(q_1, \mathcal{K}) = \{(\text{smith, mark}), (\text{smith, alex})\}: \text{ lily always has a supervisor,}$ but there is no supervisor (known by name) on which all models agree.

Boolean Conjunctive Query Answering

(Arbitrary) CQ answering reduces to Boolean CQ answering:

Given query q of arity n and $\mathcal{K} = (\mathfrak{I}, \mathcal{A})$ in which m individual names occur.

- Iterate through mⁿ tuples of arity n
- For each tuple $\vec{a} = (a_1, \dots, a_n)$ create a Boolean query $q_{\vec{a}}$ by replacing the *i*th answer variable with a_i
- $\vec{a} \in \text{cert}(q, \mathcal{K}) \text{ iff } \mathcal{K} \models q_{\vec{a}}$

Boolean Conjunctive Query Entailment:

Input: a pair $\langle \mathfrak{K}, q \rangle$

with $\mathfrak K$ a KB and q a Boolean CQ.

Answer: true iff $\mathfrak{I} \models q$ for each $\mathfrak{I} \models \mathfrak{K}$.

This problem is not trivially reducible to knowledge base consistency.

It is ExpTime-complete for \mathcal{ALC} , the same as consistency. (proof beyond this course)

Boolean Conjunctive Query Answering

Many types of query can be reduced to KB consistency:

- Concept and role instance queries, e.g., q() = C(a) and q() = r(a, b)
- Fully ground queries, e.g., $q() = C(a) \land D(b) \land r(a,b)$ check each atom independently
- Forest shaped queries, e.g., $q() = \exists x (C(a) \land D(x) \land r(a,x))$ roll up tree parts of query

Reduction may or may not be possible in general (possible for SHIQ; open problem for SHOIQ).

Conjunctive Query Answering (1)

How to interpret the answer to a Boolean Query?

 $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$

ABox A: TBox T:

JRA : JuvArth Adult ⊑ ¬Child

(JRA, Mary) : Affects Arth $\sqsubseteq \exists Damages.$ Joint

JuvArth

Arth

JuvDis

 $q_1 = Affects(JRA, Mary)$

 $q_2 = \text{Child}(Mary)$

 $q_3 = Adult(Mary)$

 $q_4 = \exists y (Damages(JRA, y) \land Organ(y))$

 $A \models q_1$ Yes

How to interpret the answer to a Boolean Query?

 $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$

ABox A: TBox T:

JRA : JuvArth Adult ⊑ ¬Child

(JRA, Mary) : Affects Arth $\sqsubseteq \exists Damages.$ Joint

JuvArth

Arth

JuvDis

 $q_1 = Affects(JRA, Mary)$

 $q_2 = \text{Child}(Mary)$

 $q_3 = Adult(Mary)$

 $q_4 = \exists y (Damages(JRA, y) \land Organ(y))$

$$\mathcal{A} \models q_1$$
 Yes

$$A \not\models q_2, A \not\models \neg q_2$$
 ???

How to interpret the answer to a Boolean Query?

 $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$

ABox A: TBox T:

JRA : JuvArth Adult ⊑ ¬Child

(JRA, Mary) : Affects Arth $\sqsubseteq \exists Damages.$ Joint

JuvArth

Arth

JuvDis

 $q_1 = Affects(JRA, Mary)$

 $q_2 = \text{Child}(Mary)$

 $q_3 = Adult(Mary)$

 $q_4 = \exists y (Damages(JRA, y) \land Organ(y))$

$$A \models q_1$$
 Yes

$$\mathcal{A} \not\models q_2, \mathcal{A} \not\models \neg q_2$$
 ???

$$\mathfrak{K}\models q_2$$
 Yes

How to interpret the answer to a Boolean Query?

 $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$

ABox A: TBox T:

JRA : JuvArth Adult ⊑ ¬Child

(JRA, Mary) : Affects Arth $\sqsubseteq \exists Damages.$ Joint

 $JuvArth \sqsubseteq Arth \sqcap JuvDis$

 $q_1 = Affects(JRA, Mary)$

 $q_2 = \text{Child}(Mary)$

 $q_3 = Adult(Mary)$

 $q_4 = \exists y (Damages(JRA, y) \land Organ(y))$

 $A \models q_1$ Yes

 $\mathcal{A} \not\models q_2, \mathcal{A} \not\models \neg q_2$???

 $\mathfrak{K}\models q_2$ Yes

 $A \not\models q_3, A \not\models \neg q_3$???

How to interpret the answer to a Boolean Query?

 $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$

ABox A: TBox T:

JRA : JuvArth Adult ⊑ ¬Child

(JRA, Mary) : Affects Arth $\sqsubseteq \exists Damages.$ Joint

 $JuvArth \sqsubseteq Arth \sqcap JuvDis$

 $q_1 = Affects(JRA, Mary)$

 $q_2 = \text{Child}(Mary)$

 $q_3 = Adult(Mary)$

 $q_4 = \exists y (Damages(JRA, y) \land Organ(y))$

 $A \models q_1$ Yes

 $\mathcal{A} \not\models q_2, \mathcal{A} \not\models \neg q_2$???

 $\mathfrak{K}\models q_2$ Yes

 $\mathcal{A} \not\models q_3, \mathcal{A} \not\models \neg q_3$????

 $\mathcal{K} \models \neg q_3$ No

How to interpret the answer to a Boolean Query?

 $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$

ABox .A.: TBox T:

(JRA, John): Affects JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$

> IRA: JuvArth Adult □ ¬Child

(IRA, Mary): Affects Arth $\sqsubseteq \exists Damages.$ Joint

IuvArth

Arth

IuvDis

$$q_1 = Affects(JRA, Mary)$$

$$q_2 = \text{Child}(Mary)$$

$$q_3 = Adult(Mary)$$

$$q_4 = \exists y (Damages(JRA, y) \land Organ(y))$$

$$A \models q_1$$
 Yes

$$\mathcal{A} \not\models q_2, \mathcal{A} \not\models \neg q_2$$
 ???

$$\mathcal{K} \models q_2$$
 Yes

$$\mathcal{A} \not\models q_3, \mathcal{A} \not\models \neg q_3$$
 ????

$$\mathcal{K} \models \neg q_3$$
 No

$$\not\models q_4, A \not\models \neg q_4$$
 ???

$$A \not\models q_4, A \not\models \neg q_4$$
 ???

How to interpret the answer to a Boolean Query?

 $(\mathcal{K} = (\mathcal{T}, \mathcal{A}))$

ABox A: TBox T:

JRA : JuvArth Adult ⊑ ¬Child

(JRA, Mary) : Affects Arth $\sqsubseteq \exists Damages.$ Joint

 $JuvArth \sqsubseteq Arth \sqcap JuvDis$

$$q_1 = Affects(JRA, Mary)$$

$$q_2 = \text{Child}(Mary)$$

$$q_3 = Adult(Mary)$$

$$q_4 = \exists y (Damages(JRA, y) \land Organ(y))$$

$$A \models q_1$$
 Yes

$$A \not\models q_2, A \not\models \neg q_2$$
 ???

$$\mathfrak{K} \models q_2$$
 Yes

$$A \not\models q_3, A \not\models \neg q_3$$
 ???

$$\mathcal{K} \models \neg q_3$$
 No

$$A \not\models q_4, A \not\models \neg q_4$$
 ????

$$\mathcal{K} \not\models q_4, \mathcal{K} \not\models \neg q_4$$
 ???

 \mathcal{A} is seen as a FOL knowledge base, but \mathcal{D} is seen as a FOL model:

```
ABox \mathcal{A} Database \mathcal{D}  

(JRA, John): Affects | Affects | JuvArthritis |

JRA: JuvArth | JRA | John | JRA |

(JRA, Mary): Affects | JRA | Mary |
```

```
q_1 = Affects(JRA, Mary)
```

 q_2 = Child(Mary)

 $q_3 = Adult(Mary)$

 $q_4 = \exists y (Damages(JRA, y) \land Organ(y))$

 $A \models q_1$ Yes

 \mathcal{A} is seen as a FOL knowledge base, but \mathcal{D} is seen as a FOL model:

```
ABox \mathcal{A} Database \mathcal{D} (JRA, John): Affects | Affects | JuvArthritis | JRA: JuvArth | JRA | John | JRA | (JRA, Mary): Affects | JRA | Mary |
```

```
q_1 = Affects(JRA, Mary)
```

 q_2 = Child(Mary)

 $q_3 = Adult(Mary)$

 $q_4 = \exists y (Damages(JRA, y) \land Organ(y))$

$$A \models q_1$$
 Yes

$$\mathfrak{D} \models q_1$$
 Yes

$ABox\mathcal{A}$	Database Ɗ	
(JRA, John): <i>Affects</i> JRA: JuvArth (JRA, Mary): <i>Affects</i>	Affects JRA John JRA Mary	JuvArthritis JRA

```
q_1 = Affects(JRA, Mary)
```

$$q_2$$
 = Child(Mary)

$$q_3 = Adult(Mary)$$

$$q_4 = \exists y (Damages(JRA, y) \land Organ(y))$$

$$A \models q_1$$
 Yes

$$\mathfrak{D} \models q_1$$
 Yes

$$A \not\models q_2, A \not\models \neg q_2$$
 ???

$ABox\mathcal{A}$		Database	e D		
(JRA, John): JRA: (JRA, Mary):	JuvArth	Affects JRA JRA	John Mary	JuvArthritis JRA	

```
q_1 = Affects(JRA, Mary)
```

$$q_2$$
 = Child(Mary)

$$q_3 = Adult(Mary)$$

$$q_4 = \exists y (Damages(JRA, y) \land Organ(y))$$

$$A \models q_1$$
 Yes

$$\mathfrak{D} \models q_1$$
 Yes

$$A \not\models q_2, A \not\models \neg q_2$$
 ???

$$\mathfrak{D} \not\models q_2$$
 No

$ABox\mathcal{A}$		Database	e D		
(JRA, John): JRA: (JRA, Mary):	JuvArth	Affects JRA JRA	John Mary	JuvArthritis JRA	

```
q_1 = Affects(JRA, Mary) A 
ot = q_1 Yes p_1 = q_2 Yes p_2 = Child(Mary) p_3 = Adult(Mary) p_4 = g_2 = g_3 Yes g_4 = g_4 = g_4 Yes g_4 = g_4
```



```
ABox \mathcal{A} Database \mathcal{D} (JRA, John): Affects | Affects | JuvArthritis | JRA : JuvArth | JRA | John | JRA (JRA, Mary): Affects | JRA | Mary |
```

```
q_1 = Affects(JRA, Mary) A \models q_1 \quad Yes
q_2 = Child(Mary) A \not\models q_2 \quad Yes
q_3 = Adult(Mary) A \not\models q_2, A \not\models \neg q_2 \quad ???
q_4 = \exists y(Damages(JRA, y) \land Organ(y)) A \not\models q_3, A \not\models \neg q_3 \quad ???
D \not\models q_3 \quad No
```


$ABox\mathcal{A}$		Databas	e D	
(JRA, John) JRA (JRA, Mary)	: JuvArth	Affects JRA JRA	John Mary	JuvArthritis JRA

```
\mathcal{A} \models q_1
                                                                                                                                  Yes
q_1 = Affects(JRA, Mary)
                                                                                                                   \mathfrak{D} \models q_1 Yes
q_2 = Child(Mary)
                                                                                                    \mathcal{A} \not\models q_2, \mathcal{A} \not\models \neg q_2
                                                                                                                                   ???
q_3 = Adult(Mary)
                                                                                                                   \mathfrak{D} \not\models q_2
                                                                                                                                   No
q_4 = \exists y (Damages(JRA, y) \land Organ(y))
                                                                                                    A \not\models q_3, A \not\models \neg q_3
                                                                                                                                   ???
                                                                                                                   \mathfrak{D} \not\models q_3
                                                                                                                                  No
                                                                                                    A \not\models q_4, A \not\models \neg q_4
                                                                                                                                   ???
```


$ABox\mathcal{A}$	Database $\mathcal D$
(JRA, John): <i>Affects</i>	Affects JuvArthritis
JRA: JuvArth	JRA John JRA
(JRA, Mary): <i>Affects</i>	JRA Mary

```
\mathcal{A} \models q_1
                                                                                                                                              Yes
q_1 = Affects(JRA, Mary)
                                                                                                                             \mathfrak{D} \models q_1 Yes
q_2 = Child(Mary)
                                                                                                             \mathcal{A} \not\models q_2, \mathcal{A} \not\models \neg q_2
                                                                                                                                               ???
q_3 = Adult(Mary)
                                                                                                                             \mathfrak{D} \not\models q_2
                                                                                                                                               No
q_4 = \exists y (Damages(JRA, y) \land Organ(y))
                                                                                                             \mathcal{A} \not\models q_3, \mathcal{A} \not\models \neg q_3
                                                                                                                                               ???
                                                                                                                             \mathfrak{D} \not\models q_3
                                                                                                                                               No
                                                                                                             A \not\models q_4, A \not\models \neg q_4
                                                                                                                                               ???
                                                                                                                             \mathfrak{D} \not\models q_{4}
                                                                                                                                               No
```


Ontologies vs. Database Systems

Conceptual DB-Schema:

- Typically formulated as an ER or UML diagram (used in DB design)
- Schema leads to a set of FOL-based constraints.
- Constraints are used to check conformance of the data
- · Constraints are disregarded for query answering
 - → In databases, query answering is a FOL *model checking* problem.

Description Logic TBoxes:

- Formulated in a Description Logic (fragment of FOL)
- TBox axioms are used to check conformance of the data
 The way this is done differs from DBs
- TBox axioms participate in query answering
 - → In description logics, query answering is a FOL *entailment* problem.

KB Consistency: Practicality Issues

- Addition of ABox may greatly exacerbate practicality problems
 - No obvious limit to size of data could be millions or even billions of individuals
 - Tableau algorithm applied to whole ABox
- Optimisations can ameliorate but not eliminate problem
- Can exploit decomposition of an ABox:
 - A can be decomposed into a set of disjoint connected components $\{A_1, \ldots, A_n\}$ such that:

$$A = A_1 \cup \ldots \cup A_n$$

$$\forall_{1 \le i < j \le n} \operatorname{ind}(A_i) \cap \operatorname{ind}(A_j) = \emptyset$$

where ind(A_i) is the set of individuals (constants) occurring in A_i

• An \mathcal{ALC} KB $(\mathcal{T}, \mathcal{A})$ is consistent iff $(\mathcal{T}, \mathcal{A}_i)$ is consistent for each \mathcal{A}_i in a decomposition $\{\mathcal{A}_1, \dots, \mathcal{A}_n\}$ of \mathcal{A}

ABox Decomposition: Example

JRA: JuvArth

(JRA, Mary): Affects

(John, Mary): hasChild

(Paul, Miranda): hasChild

Paul: Adult

JuvDis $\sqsubseteq \exists Affects.Child \sqcap \forall Affects.Child$

 $\exists hasChild. \top \sqsubseteq Adult$

 $\mathsf{Adult} \sqsubseteq \neg \mathsf{Child}$

Arth $\sqsubseteq \exists Damages.$ Joint

JuvArth

Arth

JuvDis

ABox Decomposition: Example

JRA:JuvArth

(JRA, Mary): Affects

(John, Mary): hasChild

(Paul, Miranda): hasChild

Paul: Adult

JuvDis $\sqsubseteq \exists Affects$.Child $\sqcap \forall Affects$.Child

 $\exists hasChild. \top \sqsubseteq Adult$

Adult ⊑ ¬Child

Arth $\sqsubseteq \exists Damages.$ Joint

JuvArth

Arth

JuvDis

Perform separate consistency tests on the disjoint connected components:

Query Answering: Practicality Issues

Recall our example query

$$q(y) = \exists x \exists z (Affects(x, y) \land Affects(x, z) \land hasFriend(y, z))$$

- To answer this query we have to:
 - check for each individual a occurring in \mathcal{A} if $(\mathfrak{T},\mathcal{A})\models q_{[y/a]}$, where $q_{[y/a]}$ is the Boolean CQ

$$q() = \exists x \exists z (Affects(x, a) \land Affects(x, z) \land hasFriend(a, z))$$

- checking $(\mathfrak{I}, \mathcal{A}) \models q_{[y/a]}$ involves performing (possibly many) consistency tests
- each test could be very costly
- And what if we change the query to

$$q(x, y, z) = Affects(x, y) \land Affects(x, z) \land hasFriend(y, z)$$
?

• In general, there are n^m "candidate" answer tuples, where n is the number of individuals occurring in A and m the arity of the query

Optimised Query Answering

Many optimisations are possible, for example:

• Exploit the fact that we can't entail ABox roles in ALC, that is:

$$(\mathfrak{T},\mathcal{A})\models R(a,b) \text{ iff } R(a,b)\in\mathcal{A}$$

- Only check candidate tuples with relevant relational structure
- So for

$$q(y,z) = \exists x (JuvArth(x) \land Affects(x,y) \land hasFriend(y,z))$$

only check tuples (a, b) such that

$$hasFriend(a,b) \in A$$

and for these only need to check Boolean CQ:

$$\exists x \ (JuvArth(x) \land Affects(x, a) \land Affects(x, b))$$

Conflicting Requirements

Ontology-based data access applications require:

- Very expressive ontology languages
 As large fragment of FOL as possible
- Powerful query languagesAs large fragment of SQL as possible
- 3. Efficient query answering algorithms

 Low complexity, easy to optimise

The requirements are in conflict!

→ We need to make compromises.

Conclusion

- DL KB consistency can be decided using tableau algorithms
 Idea: Make implicit inconsistencies explicit/construct model
- Query answering for DL KBs is understood as FOL entailment
- Conjunctive Queries constitute natural query language
- CQs induce answers on a single interpretation, and certain answers on a KB
- Boolean CQ Entailment is not trivially reducible to KB consistency
- In contrast, CQ Entailment in databases is understood as FOL model checking

