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Complex Event Processing (CEP) deals with the analysis of streams of continuously arriving events with the goal of identifying instances of predefined
meaningful patterns (complex events). Complex events are detected in order to trigger time-critical actions in many areas including sensors networks, finan-
cial services, transaction management, business intelligence, etc. In existing approaches to CEP, a complex event is represented as a composition of more
simple events satisfying certain temporal relationships. In this article, we advocate a knowledge-rich CEP, which apart from events, also processes additional
(contextual) knowledge (e.g., in order to prove semantic relations among matched events or to define more complex situations). In particular, we present a
novel approach for realizing knowledge-rich CEP, including detection of semantic relations among events and reasoning. We present a rule-based language
for pattern matching over event streams with a precise syntax and the declarative semantics. We devise an execution model for the proposed formalism, and
provide a prototype implementation. Extensive experiments have been conducted to demonstrate the efficiency and effectiveness of our approach.

1 Introduction

Recently, there has been a significant paradigm shift toward real-time information processing in research as well as
in industry. Most businesses today collect large volumes of data continuously, and it is absolutely essential for them
to process this data in real time so that they can take time-critical actions Luckham (2002). Real-time computing has
raised significant interest due to its wide applicability in areas such as sensor networks (for on-the-fly interpretation
of sensor data), financial services (for dynamic tracking of stock fluctuations as well as surveillance for frauds and
money laundering), ad-hoc business process management (to detect situations that demand process changes in a
timely fashion), network traffic monitoring (to detect and predict potential traffic problems), location based services
(for real-time tracking and service operation), Web click analysis (for real-time analysis of users interaction with a
web site and adaptive content delivery) and so forth.

Classical database systems and data warehouses are concerned with what happened in the past. In contrast thereto,
Complex Event Processing (CEP) is about processing events upon their occurrence, with the goal to detect what
has just happened or what is about to happen. An event represents something that occurs, happens or changes the
current state of affairs. For example, an event may represent a sensor reading, a stock price change, a complied
transaction, a new piece of information, a content update made available by a Web service and so forth. In all these
situations, it is reasonable to compose simple (atomic) events into complex events, in order to structure the course
of affairs and describe more complex dynamic situations. CEP deals with real-time recognition of such complex
events, i.e., it processes continuously arriving events with the aim of identifying occurrences of meaningful event
patterns (complex events).

High throughput and timeliness represent two main requirements to today’s CEP systems Agrawal et al. (2008);
Mei & Madden (2009); Barga et al. (2007); Arasu et al. (2006); Krämer & Seeger (2009); Chandrasekaran et al.
(2003). Facing high-frequency event occurrences and the necessity of real-time responses, the matching of event
patterns against unbound event streams constitutes indeed a challenge in its own right. Yet, the question remains
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whether sole pattern matching functionality is enough to ensure appropriate responses and meets the sophisticated
requirements of event-driven applications. In many applications, real-time actions need to be triggered not only by
events, but also upon evaluation of additional background knowledge. This knowledge captures the domain of in-
terest, or context related to critical actions and decisions. Its purpose is to be evaluated during detection of complex
events in order to on the fly enrich events with relevant background information; to detect more complex situa-
tions; to propose certain intelligent recommendations in real-time; or to accomplish complex event classification,
clustering, filtering and so forth.

There exists already a lot of knowledge available online that can be used in conjunction with event processing.
For example, the Linked Open Data (LOD) initiative1 has made available on the Web hundreds of datasets and
ontologies such as live-linked open sensor data2, UK governmental data3, the New York Times dataset4, finan-
cial ontologies5, encyclopedic data (e.g., DBpedia), linked geo-data6. This knowledge is commonly represented
as structured data (using RDF Schema Brickley et al. (10 February 2004)). Structured data allows us to define
meanings, structures and semantics of information that is understandable for humans and intelligently processable
by machines. Moreover, structured data enables reasoning over explicit knowledge in order to infer new (implicit)
information. Current CEP systems Agrawal et al. (2008); Mei & Madden (2009); Barga et al. (2007); Arasu et al.
(2006); Krämer & Seeger (2009); Chandrasekaran et al. (2003) however cannot utilize this structured knowledge
and cannot reason about it. In this work, we address this issue, and provide a framework for event recognition and
reasoning over event streams and domain knowledge.

Our approach is based on declarative (logic) rules. It has been shown Artikis et al. (2010); Kowalski & Sergot
(1986); Miller & Shanahan (1999); Lausen et al. (1998); Alferes et al. (2006); Bry & Eckert (2007); Haley (1987);
Paschke et al. (2010) that logic-based approaches for event processing have various advantages. First, they are
expressive enough and convenient to represent diverse complex event patterns and come with a clear formal declar-
ative semantics; as such, they are free of operational side-effects. Second, integration of query processing with event
processing is easy and natural (including, e.g., the processing of recursive queries). Third, our experience with the
deployment of logic rules is very positive and encouraging in terms of implementation effort for the main constructs
in CEP as well as in providing extensibility of a CEP system (e.g., the number of code lines is significantly smaller
than in procedural programming). Ultimately, a logic-based event model allows for reasoning over events, their
relationships, entire states, and possible contextual knowledge available for a particular domain. Simultaneously
reasoning about temporal knowledge (concerning events) and static or evolving knowledge (such as facts, rules and
ontologies) is a capability beyond the state of the art in CEP Agrawal et al. (2008); Mei & Madden (2009); Barga
et al. (2007); Arasu et al. (2006); Krämer & Seeger (2009); Chandrasekaran et al. (2003). In this paper we present
a framework, capable of complex event processing and reasoning over temporal and static knowledge.

1.1 Contributions

The main contributions of this paper are as follows:

• Formalism for real-time event recognition and reasoning. We define an expressive complex event description
language, called ETALIS Language for Events with a rule-based syntax and a clear declarative formal seman-
tics. We extend the language, as defined in our previous work Anicic et al. (2010), to accommodate static rules.
While event rules are used to capture patterns of complex events, the static rules account for (static) background
knowledge about the considered domain. In comparison to Anicic et al. (2010), we further extend the language
to express complex iterative patterns over unbound event streams, and apply certain aggregation functions over
sliding windows. The language is founded on a new execution model that compiles complex event patterns into
logic rules and enables timely, event-driven detection of complex events. The proposed formalism is expressive
enough to capture the set of all possible thirteen temporal relations on time intervals, defined in Allen’s Interval
Algebra Allen (1983). Since the language with its extensions is based on declarative semantics, it is suitable for

1see http://linkeddata.org/
2Live linked open sensor data: http://sensormasher.deri.org/
3OpenPSI project: http://www.openpsi.org/
4Linked Open Data from the New York Times: http://data.nytimes.com/
5Financial ontology: http://www.fadyart.com/
6LinkedGeoData: http://linkedgeodata.org
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deductive reasoning over event streams and the domain knowledge. The language is also general enough to sup-
port extensions with respect to other operators and features required in event processing (e.g., event consumption
policies).

• Efficient execution model. We develop an efficient, event-driven, execution model for patterns written in ETALIS
Language for Events. We extend the operational semantics from Anicic et al. (2009, 2010) to accommodate static
rules, as well as, iterative and aggregative patterns. The model has inferencing capabilities and yet good run-time
characteristics. It provides a flexible transformation of complex event patterns into intermediate patterns, so called
goals. The status of achieved goals (at the current state) shows the progress toward matching event patterns. Goals
are automatically asserted (satisfied) as relevant events occur. They can persist over a period of time “waiting”
in order to support detection of a more complex goal or a complete pattern. Important characteristics of these
goals are that they are asserted only if they may be needed later on (to support a more complex goal or an event
pattern), goals are all unique, and goals persist as long as they remain relevant (after the relevant period they are
deleted). Goals are asserted by Prolog-style rules, which are executed in the backward chaining mode. Finally,
expired goals are also deleted by such rules to free up the memory.

• Implementation and evaluation. We have implemented the proposed ETALIS Language for Events in a Prolog-
based prototype. The implementation is open source1. Further on, we have developed a set of experiments to
evaluate the overall approach. Our experiments are related to a sensor network, dedicated to measurements of en-
vironmental phenomena (e.g., weather observations such as wind, temperature, humidity, precipitation, visibility
etc.). The evaluation has been conducted on real sensor data, and results are presented here.

The paper is organized as follows. In Section 2, we introduce ETALIS Language for Events. We define the syntax,
and the declarative semantics of the language. Further on, iterative and aggregative complex event patterns are dis-
cussed; and theoretical properties of the presented formalism are given. Section 3 describes in details an execution
model of our language. It also explains how complex event patterns are incrementally computed in (near) real time.
Event consumption policies and memory management techniques are also presented. In Section 5, we discuss how
deductive reasoning can be used to extend Complex Event Processing. On few examples, we demonstrate use of
logic rules for event classification, filtering, and reasoning over events and background knowledge. We discuss im-
plementation details of our formalism, and give evaluation results of conducted experiments in Section 6. Section 7
reviews existing work in this area, and compares it to ours. Finally, Section 8 summarizes the paper, and gives an
outline of the future work.

2 Expressive Logic Rule-based Formalism for Complex Event Processing

We now define syntax and semantics of the ETALIS formalism, featuring (i) static rules accounting for static
background information about the considered domain and (ii) event rules that are used to capture the dynamic
information by defining patterns of complex events. Both parts may be intertwined through the use of common
variables. Based on a combined (static and dynamic) specification, we will define the notion of entailment of
complex events by a given event stream.

2.1 Syntax

We start by defining the notational primitives of the ETALIS formalism. An ETALIS rule base is based on:

• a set V of variables (denoted by capitals X , Y , ...)
• a set C of constant symbols including true and false
• for n ∈ N, sets Fn of function symbols of arity n
• for n ∈ N, sets Ps

n of static predicates of arity n
• for n ∈ N, sets Pe

n of event predicates of arity n, disjoint from Ps
n

1ETALIS source code: http://code.google.com/p/etalis/



October 14, 2011 15:42 Applied Artificial Intelligence ETALIS

4 Real-Time Complex Event Recognition and Reasoning – A Logic Programming Approach

Based on those, we define terms by:

t ::= v | c | psn(t1, . . . , tn) | fn(t1, . . . , tn)

We define the set of (static / event) atoms as the set of all expressions pn(t1, . . . , tn) where p is a (static / event)
predicate and t1, . . . tn are terms.

An ETALIS rule base R is composed of a static Rs and an event part Re. Thereby, Rs is a set of Horn clauses
using the static predicates Pe

n. Formally, a static rule is defined as a : −a1, . . . , an with a, a1, . . . , an static atoms.
Thereby, every term that a contains must be either a variable or a constant. Moreover, all variables occurring in any
of the atoms have to occur at least once in the rule body outside any function application.

The event part Re allows for the definition of patterns based on time and events. Time instants and durations are
represented as nonnegative rational numbers q ∈ Q+. Events can be atomic or complex. An atomic event refers to
an instantaneous occurrence of interest. Atomic events are expressed as ground event atoms (i.e., event predicates
the arguments of which do not contain any variables). Intuitively, the arguments of a ground atom representing an
atomic event denote information items (i.e. event data) that provide additional information about that event.

Atomic events are combined to complex events by event patterns describing temporal arrangements of events and
absolute time points. The language P of event patterns is defined by

P ::= pe(t1, . . . , tn) | P WHERE t | q | (P ).q
| P BIN P | NOT(P ).[P, P ]

Thereby, pe is an n-ary event predicate, ti denote terms, t is a term of type boolean, q is a nonnegative rational
number, and BIN is one of the binary operators SEQ, AND, PAR, OR, EQUALS, MEETS, EQUALS, STARTS, or
FINISHES.1 As a side condition, in every expression p WHERE t, all variables occurring in t must also occur in the
pattern p.

Finally, an event rule is defined as a formula of the shape

pe(t1, . . . , tn)← p

where p is an event pattern containing all variables occurring in pe(t1, . . . , tn).

Figure 1 demonstrates the various ways of constructing complex event descriptions from simpler ones in ETALIS
Language for Events. Moreover, the figure informally introduces the semantics of the language, which will further
be defined in Section 2.2.

Let us assume that instances of three complex events, P1, P2, P3, are occurring in time intervals as shown in
Figure 1. Vertical dashed lines depict different time units, while the horizontal bars represent detected complex
events for the given patterns. In the following, we give the intuitive meaning for all patterns from the figure:

• (P1).3 detects an occurrence of P1 if it happens within an interval of length 3, i.e., 3 represents the (maximum)
time window.

• P1 SEQ P3 represents a sequence of two events, i.e., an occurrence of P1 is followed by an occurrence of P3;
here P1 must end before P3 starts.

• P2 AND P3 is a pattern that is detected when instances of both P2 and P3 occur no matter in which order.
• P1 PAR P2 occurs when instances of both P1 and P2 happen, provided that their intervals have a non-zero overlap.
• P2 OR P3 is triggered for every instance of P2 or P3.
• P1 DURING (0 SEQ 6) happens when an instance of P1 occurs during an interval; in this case, the interval is built

using a sequence of two atomic time-point events (one with q = 0 and another with q = 6, see the syntax above).
• P3 STARTS P1 is detected when an instance of P3 starts at the same time as an instance of P1 but ends earlier.
• P1 EQUALS P3 is triggered when the two events occur exactly at the same time interval.

1Hence, the defined pattern language captures all possible 13 relations on two temporal intervals as defined in Allen (1983).
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Figure 1. Language for Event Processing - Composition Operators

• NOT(P3).[P1, P1] represents a negated pattern. It is defined by a sequence of events (delimiting events) in the
square brackets where there is no occurrence of P3 in the interval. In order to invalidate an occurrence of the
pattern, an instance of P3 must happen in the interval formed by the end time of the first delimiting event and
the start time of the second delimiting event. In this example delimiting events are just two instances of the same
event, i.e., P1. Different treatments of negation are also possible, however we use one from Adaikkalavan &
Chakravarthy (2006) that is well adopted in CEP.

• P3 FINISHES P2 is detected when an instance of P3 ends at the same time as an instance of P1 but starts later.
• P2 MEETS P3 happens when the interval of an occurrence of P2 ends exactly when the interval of an occurrence

of P3 starts.

It is worth noting that the defined pattern language captures the set of all possible 13 relations on two temporal
intervals as defined in Allen (1983). The set can also be used for rich temporal reasoning.

In this example, event patterns are considered under the unrestricted policy. In event processing, consumption
policies deal with an issue of selecting particular events occurrences when there are more than one event instance
applicable and consuming events after they have been used in patterns. We will discuss different consumption
policies and their implementation in ETALIS Language for Events in Section 4.

It is worthwhile to briefly consider the modeling capabilities of the presented pattern language. To do so, let us
show few examples related to real-time observations and measurements of environmental phenomena (e.g., weather
observations of temperature, relative humidity, wind speed and direction, precipitation etc.). For instance, one might
be interested in defining an event that detects increase in wind speed at certain location Loc. Even more elaborate
constraints can be put on the applicability of a pattern by endowing it with a boolean type term as filter1. Thus, we
can detect a wind speed increase of at least 10%:

WindSpeedIncrease(Loc,WSpd2)←
Wind(Loc,WSpd1) SEQ Wind(Loc,WSpd2) WHERE WSpd2 > WSpd1 · 1.1.

(1)

Let us now define an event denoting duration of a fire at certain location:

ActiveFire(Loc)←
NOT(FireLocalized(Loc))[FireReported(Loc),FireLocalized(Loc)].

(2)

1Note that also comparison operators like =,< and > can be seen as boolean-typed binary functions and, hence, fit well into the framework.
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We can also combine WindSpeedIncrease event from (1) to form a new complex event, FireAlarm:

FireAlarm(Loc)←
NOT(FireLocalized(Loc,WSpd)).[FireReported(Loc),WindSpeedIncrease(Loc,WSpd))].

(3)
Similarly, we might be interested in detecting the heat index, i.e., an index that combines air temperature and relative
humidity in an attempt to determine the human-perceived equivalent temperature (how hot it feels):

HeatIndex(Loc, Index(Tmp,Hum))←(
Temperature(Loc, Tmp) AND Humidity(Loc,Hum)

)
.30min

(4)

For the definition of the function Index, see Wikipedia.1 Note that we have also defined a time frame of 30 minutes
in which temperature and humidity readings are expected from respective sensors. This event rule also shows,
how event information (about an index or other data) can be “passed” on to the defined complex events by using
variables. In general, variables may be employed to conditionally group events or their attributes into complex ones
if they refer to the same entity.

We will gradually introduce more complex patterns later on in this section, as well as, in Sections 3 and 5 (as we
introduce other aspects of the language).

2.2 Declarative Semantics

We define the declarative formal semantics of our formalism in a model-theoretic way. Note that we assume a
fixed interpretation of the occurring function symbols, i.e. for every function symbol f of arity n, we presume a
predefined function f∗ : Conn → Con. That is, in our setting, functions are treated as built-in utilities.

As usual, a variable assignment is a mapping µ : V ar → Con assigning a value to every variable. We let µ∗

denote the canonical extension of µ to terms:

µ∗ :


v 7→ µ(v) if v ∈ V ar,
c 7→ c if c ∈ Con,

f(t1, . . . , tn) 7→ f∗(µ∗(t1), . . . , µ
∗(tn)) for f ∈ Fn,

p(t1, . . . , tn) 7→
{
true ifRs |= p(µ∗(t1), . . . , µ

∗(tn)),
false otherwise.

Thereby,Rs |= p(µ∗(t1), . . . , µ
∗(tn)) is defined by the standard least Herbrand model semantics.

In addition to R, we fix an event stream, which is a mapping ε : Grounde → 2Q
+

from event ground predicates
into sets of nonnegative rational numbers. It indicates what elementary events occur at which time instants.

Moreover, we define an interpretation I : Grounde → 2Q
+×Q+

as a mapping from the event ground atoms to sets
of pairs of nonnegative rationals, such that q1 ≤ q2 for every 〈q1, q2〉 ∈ I(g) for all g ∈ Grounde. Given an event
stream ε, an interpretation I is called a model for a rule setR – written as I |=ε R – if the following conditions are
satisfied:

(i) 〈q, q〉 ∈ I(g) for every q ∈ Q+ and g ∈ Grounde with q ∈ ε(g)
(ii) for every rule atom← pattern and every variable assignment µ we have Iµ(atom) ⊆ Iµ(pattern) where Iµ

is inductively defined as displayed in Fig. 2.

For an interpretation I and some q ∈ Q+, we let I|q denote the interpretation defined by I|q(g) = I(g) ∩
{〈q1, q2〉 | q2 − q1 ≤ q}. Given interpretations I and J , we say that I is preferred to J if I|q ⊂ J |q for some
q ∈ Q+. A model I is called minimal if there is no other model preferred to I.

THEOREM 2.1 For every event stream ε and rule baseR there is a unique minimal model Iε,R.

1The heat index: http://en.wikipedia.org/wiki/Heat_index
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pattern Iµ(pattern)
pe(t1, . . . , tn) I(pe(µ∗(t1), . . . , µ

∗(tn)))

P WHERE t Iµ(P ) if µ∗(t) = true
∅ otherwise.

q {〈q, q〉} for all q∈Q+

(P ).q Iµ(P ) ∩ {〈q1, q2〉 | q2 − q1 ≤ q}
P1 SEQ P2 {〈q1, q4〉 | 〈q1, q2〉∈Iµ(P1) and 〈q3, q4〉∈Iµ(P2) and q2<q3}
P1 AND P2 {〈min(q1, q3),max(q2, q4)〉 | 〈q1, q2〉∈Iµ(P1) and 〈q3, q4〉∈Iµ(P2)}
P1 PAR P2 {〈min(q1, q3),max(q2, q4)〉 | 〈q1, q2〉∈Iµ(P1)

and 〈q3, q4〉∈Iµ(P2) and max(q1, q3)<min(q2, q4)}
P1 OR P2 Iµ(P1) ∪ Iµ(P2)
P1 EQUALS P2 Iµ(P1) ∩ Iµ(P2)
P1 MEETS P2 {〈q1, q3〉 | 〈q1, q2〉∈Iµ(P1) and 〈q2, q3〉∈Iµ(P2)}
P1 DURING P2 {〈q3, q4〉 | 〈q1, q2〉∈Iµ(P1) and 〈q3, q4〉∈Iµ(P2) and q3<q1<q2<q4}
P1 STARTS P2 {〈q1, q3〉 | 〈q1, q2〉∈Iµ(P1) and 〈q1, q3〉∈Iµ(P2) and q2<q3}
P1 FINISHES P2 {〈q1, q3〉 | 〈q2, q3〉∈Iµ(P1) and 〈q1, q3〉∈Iµ(P2) and q1<q2}
NOT(P1).[P2, P3] Iµ(P2 SEQ P3) \ Iµ(P2 SEQ P1 SEQ P3)

Figure 2. Definition of extensional interpretation of event patterns. We use P (x) for patterns, q(x) for rational numbers, t(x) for
terms and PR for event predicates.

Proof For every rational number q with q ∈ Qε =
⋃
g∈Grounde ε(g), we define an interpretation Iq by bottom-up

saturation of εq where εq(g) = ε(g) ∩ {〈q1, q2〉 | q2 ≤ q} under the rules of R where the NOT subexpressions are
evaluated against

⋃
q′∈Qε,q′<q Iq′ . The minimal model can then be defined by Iε,R :=

⋃
q∈Qε Iq. Minimality is a

straightforward consequence of the fact that derived intervals always contain the intervals associated to the premise
atoms due to the definition of the semantics of patterns (cf. Fig. 2). �

Finally, given an atom a and two rational numbers q1, q2, we say that the event a[q1,q2] is a consequence of the
event stream ε and the rule baseR (written ε,R |= a[q1,q2]), if 〈q1, q2〉 ∈ Iε,Rµ (a) for some variable assignment µ.

It can be easily verified that the behavior of the event stream ε beyond the time point q2 is irrelevant for determin-
ing whether ε,R |= a[q1,q2] is the case.1 This justifies to take the perspective of ε being only partially known (and
continuously unveiled along a time line) while the task is to detect event-consequences as soon as possible.

2.3 Complexity Properties

The theoretical properties of the presented formalism heavily depend on the conditions put on the formalism’s
signature. On the negative side, without further restrictions, the formalism turns out to be ExpTime-complete as a
straightforward consequence from according results in Dantsin et al. (2001).

On the other side, the formalism turns not only decidable but even tractable if both C and the arity of functions
and predicates is bounded:

THEOREM 2.2 Given natural numbers k,m, the problem of detecting complex events in an event stream ε with
an ETALIS rule base R which satisfies |C| ≤ k and where the number of variables per rule is bounded by m is
PTIME-complete w.r.t. |R|+ |ε|.

Proof PTIME-hardness directly follows from the fact that the formalism subsumes function-free Horn logic which
is known to be hard for PTIME, see e.g. Dantsin et al. (2001).

For containment in PTIME, recall that in our formalism, function symbols have a fixed interpretation. Hence,
given an ETALIS rule base R with finite C, we can transform it into an equivalent function-free rule base R′: we
eliminate every n-ary function symbol f by introducing an auxiliary n+1-ary predicate pf and “materializing” the

1More formally, for any two event streams ε1 and ε2 with ε1(g) ∩ {〈q, q′〉 | q′ ≤ q2} = ε2(g) ∩ {〈q, q′〉 | q′ ≤ q2} we have that ε1,R |= a[q1,q2]

exactly if ε2,R |= a[q1,q2].
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function by adding ground atoms pf(c1, . . . , cn,f∗(c1, . . . , cn)). This can be done in polynomial time, given the
above mentioned variable bound. Naturally, also the size ofR′ is polynomial compared to the size ofR.

Next, observe that under the above circumstances, the least Herbrand model ofRs′ (which is then arity-bounded
and function-free) can be computed in polynomial time (as there are only polynomially many ground atoms).
Finally, note that the number of time points occurring in an event stream ε is linearly bounded by |ε|, whence there
are only polynomially many relevant “interval-endowed ground predicates” a[q1,q2] possibly entailed by ε and Re′.
Finally these entailments can be checked in polynomial time in a forward-chaining manner against the respective
(polynomial) grounding ofRe′. This concludes the proof. �

2.4 Iterations and Aggregate Functions

In this section, we show how unbound iterations of events, possibly in combination with aggregate functions can
be expressed within our defined formalism.

Many of the formalisms concerned with Complex Event Processing feature operators indicating that an event
may be iterated arbitrarily often. Mostly, the notation of these operators is borrowed from regular expressions in
automata theory: the Kleene star (·∗) matches zero or more occurrences whereas the Kleene plus (·+) indicates one
or more occurrences.

For example, the pattern expression a SEQ b+ SEQ cwould match any of the event sequences abc, abbc, abbbc etc.
It is easy to see that – given our semantics – this pattern expression is equivalent to the pattern a SEQ b SEQ c (as
essentially, it allows for “skipping” occurring events).1 Likewise, all patterns in which this kind of Kleene iteration
occurs can be transformed into non-iterative ones.

However, frequently iterative patterns are used in combination with aggregate functions, i.e. a value is accu-
mulated over a sequence of events. Mostly, CEP formalisms define new language primitives to accommodate this
feature. Within the ETALIS formalism, this situation can be handled via recursive event rules.

As an example, assume TempIncrease event should be triggered whenever the temperature rises over a previ-
ous maximum, and further TempAlarm event is triggered if the maximum gets over 100 degrees Fahrenheit. For
this, we have to iterate whenever there is a new maximum temperature indicated by the atomic Temp events. This
can be realized by the below set of rules.

TempIncrease(T )← Temp(T ).
TempIncrease(T2)← TempIncrease(T1) SEQ Temp(T2) WHERE T2 > T1.

TempAlarm(T )← TempIncrease(T ) WHERE T > 100.
(5)

In the same vein, every aggregative pattern can be expressed by sets of recursive rules, where we introduce
auxiliary events that carry the intermediate results of the aggregation as arguments.

As a further remark, note that for a given natural number N , the N -fold sequential execution of an event A (a
pattern usually written as AN ) can be recognized by Iteration(A,N) defined as follows:

Iteration(A, 1)← A.
Iteration(A,K + 1)← A SEQ Iteration(A,K).

This allows us to express patterns where events are repeated many times in a compact way.
A common scenario in event processing is to detect patterns on moving length-based windows. Such a pattern is

detected when certain events are repeated as many times as the window length is. A sliding window moves on each
new event to detect a new complex event (defined by the length of a window). The following rules implement such
a pattern in ETALIS for the length equal to N (N is typically predefined):

1Note that due to the chosen semantics, this encoding would also match sequences like acbbc or abbacbc. However, if wanted, these can be excluded by
using the slightly more complex pattern (a SEQ b SEQ c) EQUALS NOT(a OR c).[a, c].
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Iteration(A, 1)← A.
Iteration(A,K + 1)← NOT(A).[A,Iteration(A,K)].

E← Iteration(A, N).

For instance, for N=5, E will be triggered every time when the system encounters five occurrences of A.

3 Operational Semantics

In Section 2, we have defined complex event patterns formally. This section describes how complex events, de-
scribed in ETALIS Language for Events, can be detected at run-time (following the semantics of the language). Our
approach is established on goal-directed, event-driven rules and decomposition of complex event patterns into two-
input intermediate events (i.e., goals). Goals are automatically asserted by rules as relevant events occur. They can
persist over a period of time “waiting” to support detection of a more complex goal. This process of asserting more
and more complex goals shows the progress towards detection of a complex event. In the following subsections, we
give more details about a goal-directed, event-driven mechanism with respect to event pattern operators (formally
defined in Section 2.2).

3.1 Sequence of Events

Let us consider a sequence of events represented by rule (6), i.e., E is detected when an event A1. is followed by
B, and followed by C. We can always represent the above pattern as E← ((A SEQ B) SEQ C). In general, rules (7)
represent two equivalent rules.2

E← A SEQ B SEQ C. (6)

E← P BIN R BIN S... BIN T.
E← (((P BIN R) BIN S)... BIN T).

(7)

We refer to this kind of “events coupling” as binarization of events. Effectively, in binarization we introduce two-
input intermediate events (IE). For example, now we can rewrite rule (6) as IE ← A SEQ B, and the E ← IE
SEQ C. Every monitored event (either atomic or complex), including intermediate events, will be assigned with

one or more logic rules, fired whenever that event occurs. Using the binarization, it is more convenient to construct
event-driven rules for three reasons. First, it is easier to implement an event operator when events are considered on
a “two by two” basis. Second, the binarization increases the possibility for sharing among events and intermediate
events, when the granularity of intermediate patterns is reduced. Third, the binarization eases the management of
rules. As we will see later in this section, each new use of an event (in a pattern) amounts to appending one or more
rules to the existing rule set. However it is important that for the management of rules, we do not need to modify
existing rules when adding new ones3.

In the following, we give more details about assigning rules to each monitored event. We also provide an algo-
rithm (using Prolog syntax) for detecting a sequence of events.

Algorithm 3.1 accepts as input a rule referring to a binary sequence IE← A SEQ B, and produces event-driven
backward chaining rules (EDBCR), i.e., executable rules for the sequence pattern. The binarization step must
precede the rule transformation. Rules, produced by Algorithm 3.1, belong to one of two different classes of rules.

1More precisely, by “an event A” is meant an instance of the event A.
2If no parentheses are given, we assume all operators to be left-associative. While in some cases, like SEQ sequences, this is irrelevant, other operators

such as PAR are not associative, whence the precedence matters.
3This holds even if patterns with negated events are added.
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We refer to the first class as goal inserting rules. The second class corresponds to checking rules. For example, rule
(8) belongs to the first class as it inserts goal(B( , ),A(T1, T2),IE( , )). The rule will fire when A occurs, and the
meaning of the goal it inserts is as follows: “an event A has occurred at [T1, T2],4 and we are waiting for B to happen
in order to detect IE”. The goal does not carry information about times for B and IE, as we do not know when they
will occur. In general, the second event in a goal always denotes the event that has just occurred. The role of the
first event is to specify what we are waiting for to detect an event that is on the third position.

Algorithm 3.1 Sequence.
Input: event binary goal IE← A SEQ B.
Output: event-driven backward chaining rules for SEQ operator.
Each event binary goal IE← A SEQ B is converted into: {
A(T1, T2) : − for each(A, 1, [T1, T2]).

A(1, T1, T2) : − assert(goal(B( , ),A(T1, T2),IE( , ))).
B(T3, T4) : − for each(B, 1, [T3, T4]).

B(1, T3, T4) : − goal(B(T3, T4),A(T1, T2),IE), T2 < T3,
retract(goal(B(T3, T4),A(T1, T2),IE( , ))),IE(T1, T4).

}

Rule (9) belongs to the second class being a checking rule. It checks whether certain prerequisite goals already
exist in the database, in which case it triggers the more complex event. For example, rule (9) will fire whenever B
occurs. The rule checks whether goal(B(T3, T4),A(T1, T2),IE) already exists (i.e., A has previously happened), in
which case the rule triggers IE by calling IE(T1, T4). The time occurrence of IE (i.e., T1, T4) is defined based on
the occurrence of constituting events (i.e., A(T1, T2), and B(T3, T4), see Section 2.2). Calling IE(T1, T4), this event
is effectively propagated either upward (if it is an intermediate event) or triggered as a finished complex event.

We see that our backward chaining rules compute goals in a forward chaining manner. The goals are crucial
for computation of complex events. They show the current state of progress toward matching an event pattern.
Moreover, they allow for determining the “completion state” of any complex event, at any time. For instance, we
can query the current state and get information how much of a certain pattern is currently fulfilled (e.g., what is the
current status of certain pattern, or notify me if the pattern is 90% completed). Further, goals can enable reasoning
over events (e.g., answering which event occurred before some other event, although we do not know a priori what
are explicit relationships between these two; correlating complex events to each other; establishing more complex
constraints between them and so forth, see Section 5). Goals can persist over a period of time. It is worth noting
that checking rules can also delete goals. Once a goal is “consumed”, it is removed from the database1. In this way,
goals are kept persistent as long as (but not longer than) needed. In Section 4, we will return to different policies
for removing goals from the database.

A(1, T1, T2) : − assert(goal(B( , ), A(T1, T2), IE( , ))). (8)

B(1, T3, T4) : − goal(B(T3, T4),A(T1, T2),IE), T2 < T3,
retract(goal(B(T3, T4),A(T1, T2),IE( , ))),IE(T1, T4).

(9)

for each(Pred,N,L) : − ((FullPred = ..[Pred,N,L]),event trigger(FullPred),
(N1 isN + 1),for each(Pred,N1, L)) ∨ true.

(10)

Finally, in Algorithm 3.1 there exist more rules than the two mentioned types (i.e., rules inserting goals and
checking rules). We see that for each different event type (i.e., A and B in our case) we have one rule with a

4Apart from the timestamp, an event may carry other data parameters. They are omitted here for the sake of readability.
1Removal of “consumed” goals is typically needed for space reasons but might be omitted if events are required in a log for further processing or analyzing.
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for each predicate. It is defined by rule (10). Effectively, it implements a loop, which for any occurrence of
an event goes through each rule specified for that event (predicate) and fires it. For example, when A occurs,
the first rule in the set of rules from Algorithm 3.1 will fire. This first rule will then loop, invoking all other
rules specified for A (those having A in the rule head). In our case, there is only one such a rule, namely
rule (8). However, in general, there may be as many of these rules as usages of a particular event in an event
program. Let us observe a situation in which we want to extend our event pattern set with an additional pattern
that contains the event A (i.e., additional usage of A). In this case, the rule set representing a set of event
patterns needs to be updated with new rules. This can be done even at runtime. Let us assume the additional
pattern to be monitored is IEj ← K SEQ A. Then the only change we need to make is to add one rule to insert
a goal and one checking rule (in the existing rule set). The change is sketched as an update of Algorithm 3.1 below2.

Updating rules from Algorithm 3.1 to accommodate an additional usage of the event A.
A(2, T1, T2) : − assert(goal(B( , ),A(T1, T2),IE( , ))).
A(3, T1, T2) : − goal(A( , ),K(T3, T4),IEj( , ]), T4 < T1,

retract(goal(A( , ),K(T3, T4),IEj( , ))),IEj(T3, T2).

So far, we have described in detail a mechanism for event processing with data or event-driven backward chaining
rules (EDBCR). We have also described the transformation of event pattern rules into rules for real-time events
detection using the sequence operator. In general, for a given set of rules (defining complex patterns) there will
be as many transformed rules as there are usages of distinct atomic events. Some rules however may be shared
among different patterns. As said, the binarization breaks up patterns into binary sub-patterns (intermediate events).
If two or more patterns share the same sub-patterns, they will also share the same set of EDBCR. That is, during the
transformation, only one set of EDBCR will be produced for a distinct event binary goal (no matter how many times
the goal is used in the whole event program). In large programs (e.g., where event patterns are built incrementally,
i.e., one pattern upon another one) such a sharing may improve the overall system performance as the execution of
redundant rules is avoided.

The set of transformed rules is further accompanied by rules to implement loops (as many as there are distinct
atomic events). The same procedure is repeated for intermediate events (for example, IE1, IE2). The complete
transformation is proportional to the number and length of user defined event pattern rules, hence such a transfor-
mation is linear, and moreover is performed at design time.

Conceptually, our backward chaining rules for the sequence operator look very similar to rules for other operators.
In the remaining part of this section we show the algorithms for other event operators, and briefly describe them.

3.2 Conjunction of Events

Conjunction is another typical operator in event processing. An event pattern based on conjunction occurs when
all events which comprise that conjunction occur. Unlike the sequence operator, here the constitutive events can
happen at times with no particular order between them. For example, IE← A AND B defines defines IE event as
conjunction of events A and B.

Algorithm 3.2 shows the output of a transformation of conjunction event patterns into EDBCR (for conjunction).
The procedure for dividing complex event rules into binary event goals is the same as in Algorithm 3.1. However,
rules for inserting and checking goals are different. Both classes of rules are specific to conjunction. We have a pair
of these rules created for both an event A as well as for B. Whenever A occurs (denoted as some interval (T1, T2))
the algorithm checks whether an instance of B has already happened (see rule (11) from Algorithm 3.2). An instance
of B has already happened if the current database state contains goal(A( , ),B(T1, T2),IE( , )). In this case the
event IE(T5, T6) is triggered (i.e., a call for IE(T5, T6) is issued). Otherwise, a goal which states that an instance
of A has occurred, is inserted (i.e., assert(goal(B( , ),A(T1, T2),IE( , ))) is executed by rule (12)). Now if an

2Note that an id of rules is incremented for each next rule being added (i.e., 2,3...)
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Algorithm 3.2 Conjunction.
Input: event binary goal IE← A AND B.
Output: event-driven backward chaining rules for AND operator.
Each event binary goal IE← A AND B is converted into: {
A(T1, T2) : − for each(A, 1, [T1, T2]).

A(1, T3, T4) : − goal(A( , ),B(T1, T2),IE( , )),
retract(goal(A( , ),B(T1, T2),IE( , ))),
T5 = min{T1, T3}, T6 = max{T2, T4},IE(T5, T6).

A(2, T3, T4) : − ¬(goal(A( , ),B(T1, T2),IE( , ))),
assert(goal(B( , ),A(T3, T4),IE( , ))).

B(T1, T2) : − for each(B, 1, [T1, T2]).
B(1, T3, T4) : − goal(B( , ),A(T1, T2),IE( , )),

retract(goal(B( , ),A(T1, T2),IE( , ))),
T5 = min{T1, T3}, T6 = max{T2, T4}, IE(T5, T6).

B(2, T3, T4) : − ¬(goal(B( , ),A(T1, T2),IE( , ))),
assert(goal(A( , ),B(T3, T4),IE( , ))).

}

instance of B happens later (at some (T3, T4)), rule (13) will succeed (if A has previously happened). Otherwise rule
(14) will insert goal(A( , ),B(T1, T2),IE( , )).

A(1, T3, T4) : − goal(A( , ),B(T1, T2),IE( , )),
retract(goal(A( , ),B(T1, T2),IE( , ))),
T5 = min{T1, T3}, T6 = max{T2, T4},IE(T5, T6).

(11)

A(2, T3, T4) : − ¬(goal(A( , ),B(T1, T2),IE( , ))),
assert(goal(B( , ),A(T3, T4),IE( , ))).

(12)

B(1, T3, T4) : − goal(B( , ),A(T1, T2),IE( , )),
retract(goal(B( , ),A(T1, T2),IE( , ))),
T5 = min{T1, T3}, T6 = max{T2, T4},IE(T5, T6).

(13)

B(2, T3, T4) : − ¬(goal(B( , ),A(T1, T2),IE( , ))),
assert(goal(A( , ),B(T3, T4),IE( , ))).

(14)

In Section 2.2 we have presented a declarative semantics of ETALIS Language for Events. We provide an im-
plementation of the language in Prolog, and since Prolog is not purely declarative, we need to take care when
using non-declarative features of Prolog1. Hence in the following we discuss whether the operational semantics -
as presented so far in this section – corresponds to the declarative semantics of the language.

C← A op1 B.
D← B op2 C.

(15)

Consider an example program defined by rules (15) and its corresponding graphical representation shown in
Figure 3. Note that event B is used twice in rules (15), hence we have two edges in Figure 3. For each edge of B

1This remark applies, in general, when a declarative formalism is to be implemented with other non-declarative languages (e.g., procedural languages such
as Java, C, C++, etc.)
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Figure 3. Example program

we will have one EDBC rule (e.g., if opi is SEQ where i can be either 1 or 2) or two EDBC rules (e.g., if opi is
AND ), see Algorithm 3.1 and Algorithm 3.2, respectively. To ensure the declarative property of the language, the

order in which rules of these two edges are executed needs to be irrelevant. That is, if ETALIS system evaluates
rule(s) from the first edge followed by evaluation of rule(s) from the second edge, we need to obtain the same results
as if the order was the opposite. If this holds for every binary pair of events connected by any event operator in a
program, then we can be sure that the operational semantics preserve the declarative property of the language.

Let us assume that both op1 and op2 in rules (15) is replaced by SEQ operator, and that event A happened
followed by event B. In this situation we expect to derive event C only. Event D will not be triggered as event C did
not strictly happened after event B. That is, T2 of event B is not strictly smaller than T1 of event C (essentially they
are equal), see Algorithm 3.1. Consequentially, event D will not be detected regardless of the order in which rules
for two B edges are evaluated.

Let us assume that op2 in rules (15) is replaced by AND operator, and again, event A happened followed by
event B. In this situation we expect to derive both event C and event D. When event B occurs, the system can first
evaluate rule for the SEQ edge ( op1 ), and then rules for the AND edge ( op2 ), or vice versa. For both cases we
expect event D to be triggered.

Suppose the SEQ edge of event B is evaluated first. The system will detect event C. This event will be used to
start detection of the conjunction (defined by the second rule in rules (15)). Effectively, event B will trigger rule
(13) and rule (14) in Algorithm 3.21. Rule (13) will fail, and rule (14) will succeed by inserting goal ( B ( , ),
C (T3, T4), D ( , )). Next, when rules of the AND edge of event B are evaluated, rule (11) and rule (12) will fire2.
Finally, rule (11) will succeed by triggering event D. We see that successful evaluation of rule (14), followed by
successful evaluation of rule (11), leads to detection of event D.

Now suppose that the AND edge of event B is evaluated first. In this situation, rule (12) will be successfully
evaluated followed by evaluation of rule (13). As a result, the detection will take place in the reverse order but it
will be still possible to detect event D.

While Algorithm 3.1 enables detection of events in one direction, Algorithm 3.2 enables the detection in both
directions. Therefore we use a modification of Algorithm 3.2 to handle other operators too (e.g., PAR , MEETS ,
FINISHES etc.), i.e., whenever binary events may come in both orders.

3.3 Concurrency

A concurrent or parallel composition of two events (IE← A PAR B) is detected when events A and B both occur,
and their intervals overlap (i.e., we also say they happen synchronously).

Algorithm 3.3 shows what is an output of automated transformation of a concurrent event pattern into rules
which serve a data-driven backward chaining event computation. The procedure for dividing complex event rules
into binary event goals is the same (as already described), and takes place prior to the transformation. Rules for
inserting and checking goals are similar to those in Algorithm 3.2. The only change in Algorithm 3.2 is a sufficient
condition, ensuring the interval overlap (i.e., T3 < T2).

1Note that in the rule heads we now have event C.
2Note that in the rule heads we now have event B.
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Algorithm 3.3 Concurrency.
Input: event binary goal IE← A PAR B.
Output: event-driven backward chaining rules for PAR operator.
Each event binary goal IE← A PAR B is converted into: {
A(T1, T2) : − for each(A, 1, [T1, T2]).

A(1, T3, T4) : − goal(A( , ),B(T1, T2),IE( , )), T3 < T2,
retract(goal(A( , ),B(T1, T2),IE( , ))),
T5 = min{T1, T3}, T6 = max{T2, T4},IE(T5, T6).

A(2, T3, T4) : − ¬(goal(A( , ),B(T1, T2),IE( , ))), T3 < T2,
assert(goal(B( , ),A(T3, T4),IE( , ))).

B(T1, T2) : − for each(B, 1, [T1, T2]).
B(1, T3, T4) : − goal(B( , ),A(T1, T2),IE( , )), T3 < T2,

retract(goal(B( , ),A(T1, T2),IE( , ))),
T5 = min{T1, T3}, T6 = max{T2, T4},IE(T5, T6).

B(2, T3, T4) : − ¬(goal(B( , ),A(T1, T2),IE( , ))), T3 < T2,
assert(goal(A( , ),B(T3, T4),IE( , ))).

}

3.4 Disjunction

An algorithm for detecting disjunction (i.e., OR) of events is trivial. The disjunction operator divides rules into
separate disjuncts, where each disjunct triggers the parent (complex) event. Therefore we omit presentation of the
algorithm here.

3.5 Negation

Negation in event processing is typically understood as absence of an event that is negated. In order to create a time
interval in which we are interested to detect absence of an event, we define a negated event in the scope of other
complex events. Algorithm 3.5 describes how to handle negation in the scope of a sequence. It is also possible to
detect negation in an arbitrarily defined time interval.

Algorithm 3.5 Negation.
Input: event pattern IE← NOT(C).[A,B].
Output: event-driven backward chaining rules for negation.
Each event binary goal IE← NOT(C).[A,B] is converted into: {
A(T1, T2) : − for each(A, 1, [T1, T2]).

A(1, T1, T2) : − assert(goal(B( , ),A(T1, T2),IE( , ))).
B(T1, T2) : − for each(B, 1, [T1, T2]).

B(1, T5, T6) : − goal(B( , ),A(T1, T2),IE( , )),
¬(goal( ,C(T3, T4), )), T2 < T5, T2 < T3, T4 < T5,
retract(goal(B( , ),A(T1, T2),IE( , ))),IE(T1, T6))).

C(T1, T2) : − for each(C, 1, [T1, T2]).
C(1, T1, T2) : − assert(goal( ,C(T1, T2), )).}
}

Rules for detection of negation are similar to rules from Algorithm 3.1. We need to detect a sequence (i.e., A
SEQ B), and additionally to check whether an occurrence of C happened in-between the event A and B. That is why

a rule B(1, T5, T6) needs to check whether ¬(goal( , C(T3, T4), )) (with certain time condition) is true. If yes,
this means that an C has not happened during a detected sequence (i.e., A(T1, T2) SEQ B(T5, T6)), and IE(T1, T6)
will be triggered. It is worth noting that a non-occurrence of C is monitored from the time when A has been detected
until the beginning of an interval which the event B is detected on.
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3.6 Interval-based Operations

In the following part of this section we provide brief descriptions for the remaining relations between two intervals.
Each relation is easily checkable with one rule.
Duration. An event happens during (i.e., DURING) another event if the interval of the first is contained in the
interval of the second. Rule (16) takes two intervals as parameters1. First, it checks whether all parameters are
actually defined as intervals (see rule (17)). Then it compares whether the start of the second interval (TI2 S) is
less than the start of the first interval (TI1 S). Additionally it checks whether the end of the first interval (TI1 E)
is less than the end of the second interval (TI2 E).

duration(TI1, T I2) : − TI1 = [TI1 S, TI1 E],validTimeInterval(TI1),
T I2 = [TI2 S, TI2 E],validTimeInterval(TI2),
T I2 S@ < TI1 S, TI1 E@ < TI2 E.

(16)

validTimeInterval(TI) : − TI = [TI S, TI E], T I S@ < TI E. (17)

Note that, to implement the operator DURING , we still need EDBC rules, similar to those, e.g., for SEQ operator
(see Algorithm 3.1), PAR operator (see Algorithm 3.3)etc. EDBC rules for DURING operator are similar to those
of PAR operator with the following difference. Instead of the condition T3 < T2, which ensures that two time
intervals overlap, we now have a condition that one interval needs to be contained in another one. Hence T3 < T2
in Algorithm 3.3 is simply replaced by duration predicate defined as rule (16). The same remark applies to
other interval-based operations presented below. Therefore, for space reasons, we omit presentation of complete
sets of EDBC rules for each interval-based operator. Instead, we give only a rule that implements the condition for
a corresponding time interval operation.
Start Relation. We say that an event starts another if an instance of the first event starts at the same time as an
instance of the second event, but ends earlier. Therefore rule (18) checks whether the start of both intervals are
equal and whether the end of the first event is smaller than the end of the second one.

starts(TI1, T I2) : − TI1 = [TI1 S, TI1 E],validTimeInterval(TI1),
T I2 = [TI2 S, TI2 E],validTimeInterval(TI2),
T I1 S = TI2 S, TI1 E@ < TI2 E.

(18)

Equal Relation. Two events are equal if they happen right at the same time. Rule (19) implements this relation.

equals(TI1, T I2) : − TI1 = [TI1 S, TI1 E],validTimeInterval(TI1),
T I2 = [TI2 S, TI2 E],validTimeInterval(TI2),
T I1 S = TI2 S, TI1 E = TI2 E.

(19)

Finish Relation. One event finishes another one if an occurrence of the first ends at the same time as an occurrence
of the second event, but starts later. Rule (20) check this condition.

finishes(TI1, T I2) : − TI1 = [TI1 S, TI1 E],validTimeInterval(TI1),
T I2 = [TI2 S, TI2 E],validTimeInterval(TI2),
T I2 S@ < TI1 S, TI1 E = TI2 E.

(20)

1Symbol ’@’ is used in Prolog built-in predicates (>,<,≥ etc.) to compare terms alphabetically or numerically. When this symbol is omitted, terms are
compared arithmetically.
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Meet Relation. Two events meet each other when the interval of the first ends exactly when the interval of the
second event starts. Hence, the condition TI1 E = TI2 S in rule (21) is sufficient to detect this relation.

meets(TI1, T I2) : − TI1 = [TI1 S, TI1 E],validTimeInterval(TI1),
T I2 = [TI2 S, TI2 E],validTimeInterval(TI2),
T I1 E = TI2 S.

(21)

3.7 Iterative and Aggregation Patterns

In ETALIS Language for Events, aggregate functions are handled by utilizing iterative rules. The language offers
a common set of aggregates1: sum(V ar) (sums the values of V ar for all selected events), count (counts the
number of solutions for all selected events from an unbound stream), avg (computes average, and is implemented
as combination of sum and count), max(V ar) (computes the maximum value of V ar for all selected events from
an unbound stream), and min(V ar) (computes the minimum value of V ar for all selected events).

The aggregate functions are computed incrementally, by starting with an initial value for the increment, and iter-
ating the aggregate function over events. For any aggregate function we implement the following iterative pattern.

Iteration(StartCntr = 0, StartV al)←
Start event(StartV al).

Iteration(OldCntr + 1, NewV al)←
Iteration(OldCntr,OldV al) SEQ A(AggArg)
WHERE {assert(AggArg),

window(WndwSize,OldCntr,OldV al, AggArg,NewV al)}.

(22)

The first rule starts the iteration process (when start event) occurs with its initial value and possible con-
dition on that value (see the first rule in (22)). The second rule defines the iteration itself, i.e., whenever an event
participating in the iteration occurs (event A), it will trigger the rule and generate a new Iteration event.

In each iteration it is possible to calculate certain operation (an aggregate function). To achieve this, the iterative
rule contains the static part ( WHERE clause) for two reasons: to save data from the seen events as history relevant
w.r.t the aggregation function (see assert(AggArg) in Pattern (22)), and to compute the sliding window incre-
mentally (i.e., to delete events that expired from the sliding window and calculate the aggregate function on the
rest).

The functionality of assert predicate is simply to add data on which aggregation is applied (i.e., an aggregation
argumentAggArg) to database. Sliding window functionality is also simple, and it is defined by the following rule
(written in Prolog syntax).

window(WndwSize,OldCntr,OldV al, AggArg,NewV al) : −
OldCntr + 1 >=WindowSize− >
retract(LastItem),
spec aggregate(OldV alue,AggArg,NewV alue);
spec aggregate(OldV alue,AggArg,NewV alue).

(23)

We check whether the current counter value exceeds the window size (i.e., the incremented old counter,
OldCntr+1 >=WindowSize) in which case we retract the last item from the window (i.e., retract(LastItem))
and compute a specific aggregate function (spec aggregate). If the current counter value does not exceed the
window size, spec aggregate function is computed without retraction. Recall that new data element (AggArg)
was previously added by the second iterative rule (22).

1Custom aggregate functions, using different built-in operators, can also be implemented with no further restrictions.
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Based on these iterative pattern and sliding window rules we can implement other various aggregation functions.
For example, to give a reader feeling how the sum aggregate function can be implemented over a stream of events
data, see pattern (24).

Sum(StartCntr = 0, StartV al)← Start event(StartV al).
Sum(OldCntr + 1, NewSum)←

Sum(OldCntr + 1, OldSum) SEQ A(AggArg)
WHERE {assert(AggArg),
window(WndwSize,OldCntr,OldSum+AggArg,AggArg,NewSum)}.

window(WndwSize,OldCntr, CurrSum,NewSum) : −
OldCntr + 1 >=WindowSize− >
retract(LastItem),
NewSum = CurrSum− LastItem;
NewSum = CurrSum− LastItem.

(24)

As already explained, the iteration begins when Start event occurs and sets the StartV al. The iteration is
further continued whenever event A happens. Note that events Start event and A can be of the same type or two
different events. We can additionally have WHERE clause to set filter conditions for both StartV al and AggArg
(which we omit here to keep the pattern readable). However, it is clear that neither every Start event must start
the iteration, nor that every A must be accepted in an ongoing iteration. Finally, the assert predicate adds new
data (AggArg) to the current window, and the window rule deducts the expired (last) value from the window (in
order to produce NewSum).

Note that the same rules can be used to compute the moving average (avg). To do that, we can simply add
AvgV al = NewSum/(OldCntr + 1) in the WHERE clause of the second rule (as we have the current sum and
the counter value).

In general, the iterative rules give us possibility to realize essentially any aggregate functions on event streams, no
matter whether events are atomic or complex (note that there is no assumption whether event A is an atomic event).
We can also have multiple aggregations, computed on a single iterative pattern (and calculated over the same event
stream). For instance, the same iterative rules can be used to compute the average and the standard deviation. This
feature can potentially save computation resources and increase the overall performance. Finally, it is worth noting
that we are not constrained to compute the Kleene plus closure only over sequences of events (as it is common in
other approaches Agrawal et al. (2008); Mei & Madden (2009); Gehani et al. (1992)). With no restriction, we can
also use any other event operator, e.g., AND or PAR , instead of SEQ (in pattern (24)).

3.8 Memory Management

We have developed two ways to deal with outdated events (i.e., expired events with respect to a user specified
time windows). The first technique modifies the binarization step by pushing the time constraints (set by pattern’s
time window information). The technique ensures that time window constraints are checked at each step during the
incremental event detection. Therefore unnecessary intermediary sub-complex events will not be generated if the
time constraints are violated.

Our second solution for garbage collection is to prune expired events (goals), by using periodic events generated
by the system (EGS). Essentially, it enables events to be purged, depending on the time window constraints and the
system clock. Similarly to the first technique, rules are defined with time window constraints and the binarization
pushes the constraints to sub-components. This technique however does not check the constraints at each step
during the incremental event detection, but periodically as EGS are scheduled to happen1.

Our prototype implementation (see Section 6) also permits a general garbage collector removing events after

1The more memory is available in a running system, the rarer EGS are triggered.
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absolute time (if one writes patterns without the time window constraints), as well as, dynamic time window con-
straints to be inserted/deleted on the fly.

4 Event Consumption Policies

When detecting a complex event, there may be several event occurrences (of the same type), that could be used
to form that complex event. Consumption policies (or event contexts) deal with the issue of selecting particular
occurrence(s), which will be used in the detection of a complex event. For example, let us consider rule (6) from
Section 3.1, and a sequence of atomic events that happened in the following order: A(1), A(2), A(3), B(4), B(5), C(6)
(where an event attribute denotes a time point when an event instance has occurred). We expect that, when an event
of type B occurs, an intermediate event IE must be triggered. However, the question is, which occurrence of A will
be selected to build that event, A(1), A(2) or A(3) (the same question applies for B)? Different consumption policies
define different strategies. Here, we illustrate three widely used consumption policies: recent, chronological, and
unrestricted policy Chakravarthy & Mishra (1994); Yoneki & Bacon (2005), and show how they can be naturally
implemented by rules in our framework.

Note however that consumption policies in CEP is a subject that is not in-line with declarative principles. A
consumption policy typically selects one, out of several events occurrences, and defines how multiple occurrences
of the same event are consumed. This, however, has a direct impact on event pattern rules. For instance, if an event
occurrence is consumed by rule r1, it may not be available to rule r2, and vice versa. As a consequence the order
in which rules r1 and r2 are evaluated matters (what is against the principle of declarative programming).

On the other hand, consumption policies are widely used in CEP. Therefore in the remaining part of this section
we show how different consumption policies can be implemented in our formalism. However it should be noted that
the declarative property of the formalism does not hold any more, when a certain consumption policy (apart from
the unrestricted policy) is used. This remark holds, in general, for the other declarative formalisms which enable
the use of consumption policies.

4.1 Consumption Policies Defined on Time Points

In the above example, we assumed that the stream of events A(1), A(2), A(3), B(4), B(5), C(6) contains only atomic
events.
Recent Policy. With this policy, the most recent event of its type is considered to construct complex events. In our
example, when B(4) occurs, A(3) will be selected to compose IE(3,4). After a more recent occurrence B(5) occurs,
older (which are less recent) occurrences of B are deleted (i.e., they are no longer eligible for further compositions).
The next pair, A(3),B(5), is selected to form IE(3,5). It replaces the less recent occurrence IE. Finally, when C(6)
occurs, it will trigger E(3,6) (using IE(3,5) as the more recent occurrence of IE in comparison to IE(3,4)).

The recent policy can be easily implemented in our framework. Let us consider Algorithm 3.1 particularly the
rule which inserts a goal (in our example, goal(B,A,IE)). Whenever an instance of A occurs, there will be a new
goal inserted with a corresponding timestamp. For instance, for A(1), the goal(B( ),A(1),IE( , )) is added; for
A(2), the goal(B( ),A(2),IE( , )) will be asserted, and so forth). If we insert these goals into the database using
LIFO (Last In First Out) structure, we obtain the recent policy. In our prototype implementation, this is done with
a rule of the following form:

assert(goal(X)) : −assertA(goal(X)). (25)

asserta is a standard Prolog built-in that adds a term to the beginning of the database. Whenever a goal is inserted
to the database, it is put on the top of a relation. Hence whenever we read a goal, the one inserted last will be
returned.
Chronological Policy. This policy “consumes” the events in chronological order. In our example, this means that
A(1) and B(4) will form IE(1,4), and further A(2) followed by B(5) will trigger IE(2,5). When C(6) happens, it will
trigger E(1,6).
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It is straightforward to implement the chronological policy too. Now, the goals in Algorithm 3.1 are inserted in a
FIFO (First In First Out) mode. Equivalently, we use the following rule to realize the chronological policy:

assert(goal(X)) : −assertz(goal(X)). (26)

assertz is a standard Prolog built-in that adds a term to the end of the database. Whenever a goal is inserted to the
database, it is put at the end of a relation. Consequently, whenever we read a goal, the first inserted goal will be
returned first.
Unrestricted Policy. In this policy, all occurrences are valid. Consequently, no event is consumed (and no event is
deleted), which makes this policy not suitable for practical use. Going back to our example, this implies that we
detect the following instances of IE: IE(1,4), IE(2,4), IE(3,4), IE(1,5), IE(2,5), IE(3,5). The event E will be
triggered just as many times, that is: E(1,6), E(2,6), E(3,6)...

We obtain the unrestricted policy simply by not using the construct for deleting goals (i.e., retract) from the
database. If we replace the rule for B(1) in Algorithm 3.1 with rule (27), even consumed goals will not be deleted
from the database1. Hence they will be available for future compositions.

B(1) : −goal(B,A,IE) SEQ IE. (27)

Consumption policies are an important part of an event processing framework. We notice that different policies
change the semantics of event operators. For example, with the same operator we have detected different complex
events (the recent policy detects E(2,6), while the chronological policy detects E(1,6)).

4.2 Consumption Policies Defined on Time Intervals

We have so far discussed consumption policies assuming that we consider atomic events (in an input stream). As
atomic events happen in time points, it is possible to establish a total order of their occurrences. Consequently it
is easy to answer which event instance, out of two, happened more recently. When we deal with complex events
(T1 6= T2), a total order is not always possible. This subsection provides possible options in defining consumption
policies in such a case.
Recent Policy. Let us consider the following sequence of input events: A(1,30), A(15,30), B(35,50). In our example
rule (6) (from Section 3.1), the question now is which instance of A is more recent, A(1,30) or A(15,30)? In our
opinion, this question depends on a particular application domain. There are three possible options. First, an event
detected on a longer event duration is selected to be the recent one (i.e., A(1,30)). This option is suitable when
aggregation functions (for example, sum, average and so forth) are applied along time windows. Hence, events
detected on longer durations possibly reflect more accurate results. The second option is to choose an event with
a shorter duration (i.e., A(15,30)). This preference is suitable when indeed more recent events are desired. For
example, we are interested in data (carried by events) that are as up to date as possible. Finally, the third possibility
is to pick up an event instance based on data value selection i.e., non-temporal properties. For instance, events
ending at the same time, A(1, 30, X, V ol = 1000) and A(15, 30, X, V ol = 10000), are selected based on an
attribute value (e.g., greater volume V ol).

We implement these three cases with rules (28)-(30). When an A occurs, there is a policy check performed. In
rule (28), for two events with the same ending (i.e., A(T1, T3) and A(T2, T3)) we make sure that one with a longer
path (T1 > T2) is selected. In rule (29), we replace goals if the time condition is opposite (T1 < T2). Finally, in data
value (or attribute value) selection, we distinguish based on a chosen attribute (e.g., V ol1 > V ol2).

1Note that goals can still be deleted if their time window expires.
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event trigger(A(T1, T3, V ol1)) : − goal( ,A(T2, T3, , ), ), T1 > T2,
assert(goal( ,A(T3, T4, , ), )),
assert(goal( ,A(T1, T3, V ol1), )).

(28)

event trigger(A(T1, T3, V ol1)) : − goal( ,A(T2, T3, , ), ), T1 < T2,
retract(goal( ,A(T3, T4, , ), )),
assert(goal( ,A(T1, T3, V ol1), )).

(29)

event trigger(A(T1, T3, V ol1)) : − goal( ,A(T2, T3, V ol2, ), ), V ol1 > V ol2,
retract(goal( ,A(T3, T4, V ol2), )),
assert(goal( ,A(T1, T3, V ol1), )).

(30)

Policy rules (28)-(30) are fired before inserting a new goal. It is worth noting that such an update of a goal is
performed incrementally. We pay an additional price for forcing a particular consumption policy. However, the
policy rules (28)-(30) are rather simple rules. In return, they ensure that no more than one goal with the same
timestamp (with respect to a certain policy) is kept in memory during the processing. Therefore the policy rules
enable a better memory management in our framework.
Chronological Policy. The main principle in the implementation of this policy is the same as in the recent policy.
The only difference is that now we consider the same start and the different ending in multiple event occurrences
(A(T1, T2),A(T1, T3)). To implement this policy, rule (28) will now contain the time condition from rule (29), and
vice versa. Rule (30) remains unchanged, as well as unrestricted policy (which is the same as for the case with
atomic events, see Subsection 4.1).

5 Deductive Reasoning in Complex Event Processing

So far, we have described a general framework for event recognition with rules. In this section, we explore an
additional feature, namely reasoning capability. This feature is enabled by the logic nature of our approach.

Current CEP systems Agrawal et al. (2008); Mei & Madden (2009); Barga et al. (2007); Arasu et al. (2006);
Krämer & Seeger (2009); Chandrasekaran et al. (2003) provide on-the-fly analysis of data streams, but cannot
combine streams with evolving knowledge, and they cannot perform reasoning tasks. On-the-fly stream analysis
enables real-time decisions and actions. Often, however, data streams are not sufficient to provide such an analysis.
How likely is that critical real-time decisions are taken merely on fact that few events happened with certain
temporal constellation if we know nothing about the semantic relations and the context of these events. Background
knowledge is necessary to provide the context in which streaming data are to be interpreted. For example, two
events that happened within the last ten seconds may constitute a complex event only if there exist certain semantic
relation between them. The quality of an analytical service that processes on-line data and events greatly depends
on a local knowledge base – usually containing the facts of a particular domain, expert knowledge etc. – which can
be employed for a more intelligent processing of information than if it is merely based on the temporal relationship
between occurring events.

Our framework addresses this issue and offers the possibility to express domain knowledge as a set of facts and
rules. Further on, the fretwork is capable to perform deductive reasoning over that knowledge combined with the
streaming data, i.e., to perform stream reasoning.

5.1 Complex Events and Transitive Closure Rules

To give the reader a feeling how deductive rules can be used in combination with the rest of the ETALIS framework,
we present a set of illustrative examples.
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Let us observe a common situation in aviation, related to detection of clear air turbulence (CAT) on jet streams.
Jet streams are important for aviation, as flight time can be dramatically affected by either flying with the flow or
against the flow of a jet stream. Clear air turbulence, a potential hazard to aircraft passenger safety, often is found in
a jet stream’s vicinity. In the following example, we define JetStreamWarning event as a dangerous situation
whenever a clear air turbulence (denoted as CAT event) is followed by the Airplane position event.

JetStreamWarning(Loc1, Loc2)←
(
CAT(Loc1) AND Airplane(Loc2)

)
.5hours

WHERE jetLink(Loc2, Loc1).
(31)

jetLink(X,Y ) : − linked(X,Y ).
jetLink(X,Z) : − linked(X,Y ),jetLink(Y, Z).

(32)

linked(1,2).
linked(2,3).
linked(3,4).

....

(33)

To make sure that the CAT affects the observed jet stream, we deploy transitive closure rules (32). The rules span
over a set of facts (33), defining the jet stream as a set of connected points. Since both, the CAT and the Airplane,
change their positions, the rules check whether they belong to the same jet stream. Note that the check is successful
if position of the CAT is in front of the current position of the Airplane.

Transitive closure rules (32) are deductive rules1, and together with the linked relation (33), they enable us to
perform on-the-fly reasoning (i.e., to examine whether a new clear air turbulence is dangerous with respect to an
observed jet stream or not).

According to US National Business Aviation Association2 (NBAA) air routes are dynamic. This means that they
can be modified as needed in order to take advantage of favorable winds, which change on a daily basis. Hence a
solution based only on querying of jet stream static points would not be optimal. Concluding this example, we note
that since facts (33) are dynamic, an occurrence of a new CAT is not known in advance, and the airplane position is
changing too, our approach to combine CEP with deductive reasoning is an appropriate approach for on-the-fly jet
stream monitoring.

5.2 Rule-based Event Classification and Filtering

As a next example we will demonstrate the use of background rules for event classification and filtering. Let us
extend the HeatIndex event pattern (see pattern (4) from Section 2.1) to automatically generate shade values of
the HeatIndex. Whenever there is a new sensor reading HeatIndex, we want the system to generate a human
readable note (e.g., caution, danger etc.). Additionally, the system needs to generate an area for which the note
applies.

HeatIndexEffect(Note,Area)← HeatIndex(Loc, Index)
WHERE {shadeValuesRule(Index,Note),

areaRule(Loc,Area)}.
(34)

The following rules (written in Prolog syntax) serve to filter out the heat Index values smaller than 80, and
classify the ones remaining into four categories: ’Caution’ (between 80 and 90); ’ExtremeCaution’ (between 90

1The example could be extended to deal with CAT areas (instead of points). Also, by introducing an ID to a jet stream, we could monitor more than one
jet stream at the same time.

2NBAA: http://www.nbaa.org/ops/airspace/issues/wind-routes/
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Table 1. Namespace abbreviations.

Prefix URI Description

wt http://knoesis.wright.edu/ssw/page/ont/weather.owl# Weather ontology
xsd http://www.w3.org/2001/XMLSchema# XML Schema Vocabulary
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# RDF Vocabulary
rdfs http://www.w3.org/2000/01/rdf-schema# RDF Schema Vocabulary

and 105); ’Danger’ (between 105 and 130); and ’ExtremeDanger’ for values greater than or equal to 130.

shadeValuesRule(Index,′Caution′) : − 80 =< Index, Index < 90, !.
shadeValuesRule(Index,′ExtremeCaution′) : − 90 =< Index, Index < 105, !.

shadeValuesRule(Index,′Danger′) : − 105 =< Index, Index < 130, !.
shadeValuesRule(Index,′ExtremeDanger′) : − 130 =< Index, !.

(35)

Further on, background knowledge specified by rules (36) can be used to focus on certain monitoring areas, and
to transform GPS coordinates into those areas.

areaRule(loc(′N ′, X,′W ′, Y ),′Area′1) : − 4042 < X,X < 4049, 7358 < Y, Y < 7370, !.
....

areaRule(loc(′N ′, X,′W ′, Y ),′Area′n) : − 4034 < X,X < 4040, 7368 < Y, Y < 7399, !.
(36)

5.3 Deductive Reasoning and Complex Event Processing

In the following, we show how deductive reasoning can be combined with event processing. Assume we need to
detect a complex event EnhancedFire, which arises when in the area of an active fire, there is an additional
WeatherObservation. Some weather observations have significant influence on actions taken with respect to
an ongoing wildfire. For example, strong wind may be particularly dangerous for an active fire area. The following
pattern specifies such a situation.

EnhancedFire(Loc)←
(
ActiveFire(Loc) AND
WeatherObservation(Loc,Observ)

)
.3hours

WHERE(
rdfs:subClassOf(Observ,′ wt:WindObservation′).

(37)

Let us now define background knowledge about weather observations. We use the Resource Description Frame-
work (RDF) Klyne & Carroll (10 February 2004) as a common format for expressing graph-structured data. RDF
Schema (RDFS) Brickley et al. (10 February 2004) adds additional expressivity in order to support the design of
simple vocabularies also encoded in RDF. The following namespace definitions are used for brevity.

We can define WindObservation as a subclass of WeatherObservation1, and further to define Diablo and
Sundowner as two kinds of WindObservation.

wt:WindObservation rdfs:subClassOf wt:WeatherObservation .
wt:Diablo rdfs:subClassOf wt:WindObservation .
wt:Sundowner rdfs:subClassOf wt:WindObservation .

We assume that there exist various types of weather observations defined in the background knowledgebase. For
example, Observ 1 is a specific type of wt:Diablo, and in general there exist more than one instance for each
type.

1According to Weather Ontology from Patni et al. (2010), WeatherObservation is a subclass of Observation, and there exist various types of
WeatherObservation such as PressureObservation, TemperatureObservation, RadiationObservation, and WindObservation.
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Observ_1
rdf:type wt:Diablo ;
wt:speed "60"ˆˆxsd:int ;
wt:temperature "30"ˆˆxsd:int ;
wt:region "California"ˆˆxsd:string .

Observ_2
rdf:type wt:Sundowner ;
wt:speed "40"ˆˆxsd:int ;
wt:temperature "100"ˆˆxsd:int ;
wt:region "California"ˆˆxsd:string .

Finally, let us use a subclass relation rule, stating that A is an instance of Y if X is subclass of Y and A is an
instance of X (see rule (38)).

rdf:type(A, Y ) : − rdfs:subClassOf(X,Y ),rdf:type(A, X). (38)

Now, if events ActiveFire and WeatherObservation both occur within 3 hours, the sys-
tem needs to check the type of WeatherObservation. EnhancedFire pattern will be matched if
WeatherObservation is of type wind. Let us assume that WeatherObservation carries Observ 1 as
a type. Retrieving the RDF description for Observ 1, the system has information that Observ 1 is of type
wt:Diablo. Then by using rule (38), the system will deduce that wt:Diablo is a WindObservation and it
will finally trigger EnhancedFire pattern.

Moreover, the pattern will be also detected if WeatherObservation was detected having Observ 2 as a type
(since Observ 2 is of type wt:Sundowner, and the latest is a WindObservation).

In this example we have arguably demonstrated the power of our formalism which combines event processing
and deductive reasoning. In order to detect complex situations, events need to satisfy temporal constellations (e.g.,
both events need to happen within three hours), as well as, semantic relations (e.g., data carried by events need to
satisfy , for example, class/subclass or other domain specific relations).

6 Evaluation Results

As a proof of concept, we have provided an open-source implementation of the ETALIS Language for Events.
The system, called ETALIS1, is based on the execution model of the language described in Section 3, i.e., it is
established on goal-directed EDBCR and decomposition of complex event patterns into intermediate events, i.e.,
goals). ETALIS automatically compiles the user-defined complex event descriptions into EDBC (Prolog) rules.
A user may additionally specify deductive rules as a background knowledge (see Section 5). These rules can be
directly written in Prolog, or alternatively, a user may specify background knowledge in form of RDFS ontologies.

In this section we present experimental results, obtained with the ETALIS system. All tests were carried out on a
workstation with Intel Core Quad CPU Q9400 2,66GHz, 8GB of RAM, running Windows Vista x64. ETALIS was
run on SWI Prolog2 engine.

To demonstrate the usefulness of our framework in practice, we have developed an application using real sensor
data. The application is connected to a sensor network called MesoWest3, which provides measurements of envi-
ronmental phenomena (e.g., weather observations such as wind, temperature, humidity, precipitation, visibility and
so forth). The goal of our application is to demonstrate how simple sensor readings can be analyzed on the fly, and
hence used to detect more complex weather observations (e.g., blizzards, hurricanes etc.). Further on, we demon-
strate how sensor data can be integrated over time and geographical space. For instance, observations of a blizzard,
detected by few nearby sensors within a certain time frame identify an affected blizzard area. A blizzard warning
may be issued as soon as the application detects such a situation. Moreover, the application utilizes GeoNames

1ETALIS: http://code.google.com/p/etalis/
2SWI Prolog: http://www.swi-prolog.org/
3MesoWest: http://mesowest.utah.edu/
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semantic information4 to identify all important geographic locations (e.g., schools, hospitals, motorways, airports,
tunnels, railroads etc.) affected by that weather observation, so that further (security) actions can be taken in case
of an emergency.

Figure 4. Sensor Location Map

MesoWest is a cooperative project between researchers at the University of Utah, forecasters at the Salt Lake City
National Weather Service Office, the NWS Western Region Headquarters, and many other participating agencies,
universities, and commercial firms. The network includes around 20,000 weather stations in the United States. For
this experiment we have selected 15 sensors from California (as density of available sensors in California is high).
Locations of the selected sensors are indicated by red markers in Figure 4 (enumerated with hexadecimal numbers:
1,2,3,...,F). Experiments are conducted on sensor data starting from 2007-12-31 until 2010-20-11. In our running
example, the goal was to detect a blizzard from MesoWest streaming data. According to National Oceanic and
Atmospheric Administration1 (NOAA), a blizzard occurs when the following conditions prevail over a period of 3
hours or longer: high wind speed (35 miles an hour or greater); considerable falling snow; and low visibility (less
than 1/4 mile). The following event pattern (39) is used to detect a blizzard settling situation.

BlizzardSettling(T1, T1, ID, 1)←
sensor(T1, ID, Temp,Wind,WtherCond, V isib)
WHERE (Wind > 35,WtherCond ==′ snow′, V isib < 0.25).

BlizzardSettling(T1, T3, ID,C + 1)←
BlizzardSettling(T1, T2, ID,C) SEQ
sensor(T3, ID, Temp,Wind,WtherCond, V isib)
WHERE (Wind > 35,WtherCond ==′ snow′, V isib < 0.25).

(39)

The first rule operates on sensor reading events that carry a timestamp T 2, as well as, a number of other param-
eters: a weather station ID, the current temperature Temp, wind speed Wind, weather condition WtherCond,
and visibility measure V isib. The rule detects a sensor reading which satisfies the blizzard condition, and triggers
a BlizzardSettling event. This event will start the second, iterative rule in (39). Every new sensor reading

4GeoNames Ontolgy: http://www.geonames.org/ontology
1NOAA: http://www.noaa.gov/
2Since sensor is an atomic event, it is defined on the time point (not an interval [T1, T2])
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Table 2. Complex Events from Live Sensor Data.

Sensor ID No. of Events Pattern (39) Pattern (40)

KAVX 38156 2995 161
KBLU 1998 2327 157
KCQT 1164 0 0
KFUL 29341 28 0
KHHR 30118 31 0
KMER 28999 281 16
KMHS 1364 0 0
KMMH 36783 161 2
KRNM 1307 148 8
KSDB 1464 1167 89
KSFO 1277 241 12
KSNS 31958 794 32
KUKI 1267 52 2
KWVI 34132 420 28

(matching the same ID, and passing the filter condition) will trigger a new BlizzardSettling event and in-
crease a counter C. The counter is used to implement situation in which the blizzard conditions prevail over a period
of time. This means that, in order to detect a blizzard, not every sensor reading needs to satisfy the conditions.
Instead, it is enough to detect sufficiently many of satisfying readings. Since in average MesoWest sensor updates
its readings every 30 min, 4 events would be sufficient to satisfy this condition (as 6 events in total happen within
3 hours). Note that with each next iteration BlizzardSettling event will have a longer time interval (T1, T3)
which the event is defined on. Finally, if the interval gets at least three hours long (with at least 4 iterations passed),
rule (40) will detect a BlizzardWarning event. To ensure the upper interval limit (e.g., between 3 and 6 hours)
in settling a BlizzardWarning, we can set a garbage collection (see Section 3.8).

BlizzardWarning(T1, T2, ID)←
BlizzardSettling(T1, T2, ID,C) WHERE (C ≥ 4, T2 − T1 ≥ 3hours).

(40)

Table 2 presents evaluation results that we have obtained from MesWest sensor data. The first two columns show
the sensor ID and the number of events produced by the corresponding sensor (in the period from 2007-12-31 until
2010-20-11). The third and fourth columns show the number of complex events, produced by evaluating pattern
(40) and pattern (42), respectively. To increase the number of complex detections we have weakened the blizzard
definition. In particular, we have removed the requirement for the considerable falling snow, and have decreased
the wind speed condition to 15mph or greater (instead of 35mph).

A BlizzardWarning event is detected from data provided by a single sensor. Very often to monitor de-
velopment of a blizzard (or other phenomena) in an area, it is necessary to integrate different observations from
multiple sensors in that area. To analyze the observations over a certain geographical space, the system will require
awareness of sensor locations in that space. Real-time integration of sensor observations from different geographic
locations is not the only challenge. The heterogeneity of data provided by various sensors pose a big challenge too.
For example, not all sensors provide the same measurements (e.g., some weather stations measure the wind speed,
and other do not); measurements from various sensors are not provided in the same format, metric unit, or precision.

To overcome these and similar challenges, we utilize a domain specific ontology as a single view over the whole
sensors network. Such an ontology for the MesoWest sensor network is available from Patni et al. (2010). This
sensor ontology, for example, defines concepts such as Observation (specified as an act of observing a property
or phenomenon, with the goal of producing an estimate of the value of the property), and Feature (defined as an
abstraction of real world phenomenon). Further on, it defines major properties of an observation such as a feature
of interest (featureOfInterest), observed property (observedProperty), sampling time (samplingT ime) and
so forth.

The work in Patni et al. (2010) also provides an RDF dataset containing expressive descriptions of about 20000
weather stations across the United States. On average, there are five sensors per weather station measuring phenom-
ena such as temperature, visibility, precipitation, pressure, wind speed, humidity, see Section 9.2 in Appendix for
description of one such a weather station. The description also contains the sensor location (altitude, latitude, and
longitude). In our application we utilize this information in order to eventually detect a blizzard area (once a station
detects a blizzard).

The first rule in the complex event pattern (41) is triggered whenever a BlizzardWarning event occurs. To
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Table 3. Computation for pattern (42) from live sensor data.

Area Start [date/time] End [date/time] Iterations

KSDB, KRNM 2008-01-14 02:00 2008-01-15 12:30 1
KAUN, KBLU 2008-02-01 10:35 2008-02-01 13:30 1
KBLU, KWVI 2008-02-23 09:53 2008-02-24 03:00 5
KWVI, KBLU 2008-02-24 07:47 2008-02-24 13:07 1
KBLU, KWVI 2008-02-24 07:54 2008-02-25 02:22 5
KSDB, KAVX 2010-01-03 02:52 2010-01-03 07:02 7
KAVX, KSDB 2010-01-03 09:52 2010-01-04 07:02 1
KSDB, KAVX 2010-01-05 03:22 2010-01-05 09:02 3
KAVX, KSDB 2010-01-05 11:42 2010-01-06 08:02 1
KBLU, KSFO 2010-02-02 04:21 2010-02-02 12:58 1
KWVI, KSFO 2010-11-07 08:06 2010-11-07 08:22 1

evaluate the WHERE clause of the rule, ETALIS will access the background knowledge (i.e., the weather station
RDF descriptions) and retrieve the sensor location. The first rule will also start an iteration, which is then continued
by the second rule. This rule will fire an AreaSettling event every time there is a new BlizzardWarning
in an area close to the initial BlizzardWarning. The distance is calculated by the getDistance predicated,
and its implementation is provided as a background rule (see Section 9.1 in Appendix). In our example pattern we
want to make sure that the distance is less than 300km or 186miles.

AreaSettling(ID, ID,Lat, Lng)←
BlizzardWarning(T1, T2, ID)
WHERE getLatLong(ID,Lat, Lng).

AreaSettling(ID1, ID2, Lat1, Lng1)←
AreaSettling(ID1, Lat1, Lng1) SEQ
BlizzardWarning(T1, T2, ID2)
WHERE

(
getLatLong(ID2, Lat2, Lng2)
getDistance(Lat1, Lng1, Lat2, Lng2, Dist),
0 < Dist < 300

)
.

(41)

Finally, BlizzardArea event is detected when AreaSettling event occurs within the next 9 hours.

BlizzardArea(T1, T2, ID)←(
AreaSettling(ID1, ID2, Lat1, Lng1)

)
.9hours.

(42)

Table 3 shows results for the complex event pattern (42). ETALIS has detected different areas (with weather
conditions as defined above) eleven times. The table presents which weather stations contributed to a particular
area; a starting and ending date/time of an observation; and how many iterations were involved in creating that
observation.

Figure 5 shows marked wind areas as calculated from patterns (39)-(42). Weather stations that have detected
one or more blizzards (during the observed period) are marked yellow, and those that have not are small and blue.
Finally, the wind areas are marked red.

In addition to location attributes (latitude, longitude, and elevation), the RDF dataset contains also links to lo-
cations in GeoNames1 near a weather station, see Section in Appendix. The distance from a GeoNames location
to a weather station is also provided. We use GeoNames as a worldwide geographical knowledge base. If a sensor
detects a blizzard, GeoNames can provide all important geographic locations (e.g., schools, hospitals, motorways,
airports etc.) within a certain radius from the sensor location, so that our application can issue an early warnings. Ta-
ble 4, for example, shows GeoNames locations2 for the KSFO weather station (i.e., the San Francisco International
Airport).

1GeoNames: http://www.geonames.org/
2For space reasons we have listed only 7 locations. The complete list for this weather station contains 51 items.
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Figure 5. Sensor location map with marked wind areas

Table 4. GeoNames locations nearby KSFO weather station (SFO Air-
port).

GeoName ID Location name Latitude Longitude

5394116 Seaplane Harbor 37.63216 -122.38164
7229706 San Mateo School 37.61196 -122.42842
7256223 Exit 5B 37.62861 -122.43167
7256211 Exit 41 37.59639 -122.41917
7256225 Exit 6A 37.63361 -122.40528
7256243 Exit 421 37.6025 -122.38028
7256245 Exit 423A 37.63111 -122.40278

... ... ... ...

Performance results for patterns (39)-(42) are presented in Figure 6. The throughput is obtained so that time
between sensor readings is ignored. Different sensors produce data with different frequency. The goal of our perfor-
mance test was to take into account ETALIS processing time, and to show the throughput accordingly. When only
event processing time is considered (e.g., network latencies are ignored etc.), the throughput for patterns (39)-(42)
are 24696, 37437, and 3900 events per second, respectively (see Figure 6 (a)).

We see also that the throughput for patterns (39) and (40) is significantly higher than for pattern (42). This pattern
is however the most complex one, as for every BlizzardWarning event the system needs on-the-fly: to find
the location from the RDF dataset; to compute the distance; and further to find out whether two sensors are close
to each other. Taking into account that in average MesoWest sensors update information every half an hour, the
throughput of 3900 events per second (or 7020000 events per 30 minutes) arguably demonstrates the use of our
framework for real-time event recognition and reasoning, as this means that the same number of sensors can be
handled by a single instance of our running system. Note that the complexity of the overall processing is high, i.e.,
additional knowledge bases are accessed and evaluated in the real-time during the detection of complex events,
hence the achieved throughput is indeed promising.

Figure 6 (b) shows the memory consumption for patterns (39)-(42). We have calculated the overall memory
consumption (i.e., not only memory picks). Pattern (42) has the lowest consumption (despite its complexity) and
pattern (39) has the highest one. This comes as a consequence of the number of produced complex events. For
example, from the KAVAX sensor stream, pattern (39) has been detected 2995 times and pattern (40) only 161
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times, see Table 2. This stream has contributed to pattern (42) only four times. Hence although ETALIS needed to
keep certain ontology data in memory (i.e., not only events), it still had a low memory consumption.
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Figure 6. (a) Complex event throughput (b) Memory consumption

We have set up an on-line demo for the presented application1 to continuously monitor live data provided by the
MesoWest sensor network and detect weather observations in real-time.

7 Related Work

The work related to ours mainly fits into three areas: Streaming Database systems Agrawal et al. (2008); Mei &
Madden (2009); Chandrasekaran et al. (2003); Cherniack et al. (2003), temporal RDF models Gutierrez et al.
(2007); Perry et al. (2011); Tappolet & Bernstein (2009), and Stream Reasoning approaches Barbieri et al.
(2010b,a); Walavalkar et al. (2008); Bolles et al. (2008).

7.1 Streaming Databases

Database approaches Agrawal et al. (2008); Mei & Madden (2009); Barga et al. (2007); Arasu et al. (2006); Krämer
& Seeger (2009); Chandrasekaran et al. (2003); Cherniack et al. (2003) are based on languages with SQL-like syn-
taxes, and database execution models adapted to process streaming data. These approaches are dominant today due
to their capability to handle large volumes of streaming data with low latency. As such database approaches are
widely used in automated stock trading, logistic services, transaction management, business intelligence etc. How-
ever, they are not well suited for applications including structured data, ontologies, and other forms of knowledge
bases where support for semantic-based event processing and reasoning is required.

7.2 Rule-based CEP

A lot of work Motakis & Zaniolo (1995); Artikis et al. (2010); Lausen et al. (1998); Paschke et al. (2010); Bry
& Eckert (2007) in the area of rule-based CEP has been carried out, proposing various kinds of logic rule-based
approaches to process complex events. As pointed out in Bry & Eckert (2007), rules can be effectively used for
describing so-called “virtual” event patterns. There exist a number of other reasons to use rules: Rules serve as an
abstraction mechanism and offer a higher-level event description. Also, rules allow for an easy extraction of different
views of the same reactive system. Rules are suitable to mediate between the same events differently represented
in various interacting reactive systems. Finally, rules can be used for reasoning about causal relationships between
events.

One significance of rule based CEP systems Motakis & Zaniolo (1995); Lausen et al. (1998); Paschke et al.
(2010) is the type of interaction they use. Namely, these systems interact based on a request-response paradigm.
That is, given (and triggered by) a request, an inference engine will search for and respond with an answer. This

1available at: http:\\etalis.fzi.de
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means that, for a given event pattern, an event inference engine needs to check if this pattern has been satisfied or
not. The check is performed at the time when such a request is posed. If satisfied by the time when the request is
processed, a complex event will be reported. If not, the pattern is not detected until the next time the same request
is processed (though it can become satisfied in between the two checks, being undetected for the time being).

To overcome this issue, an expressive language XChangeEQ was proposed in Bry & Eckert (2007); Eckert
(2008). The language features deductive and reactive rules for events, as well as event queries, event composition
capabilities, event accumulation, possibilities to express temporal (and other) relationships between events and so
forth. The language is accompanied with an incremental evaluation that avoids recomputing certain intermediate
results every time a new event arrives. The authors use techniques from relational algebra based on incremental
maintenance of materialized views Gupta & Mumick (1999) and finite differencing Eckert (2008).

The evaluation of XChangeEQ patterns is performed in set at time mode, i.e., events are processed in sets (re-
lations). In contrast to that, our approach adheres to event at time processing mode, i.e., events are processed
individually (similarly as in non-deterministic finite automata (NFA) approaches Gehani et al. (1992); Agrawal
et al. (2008) or tree-based approaches Mei & Madden (2009)).

In summary, our approach is also based on deductive rules, and hence it benefits from the afore mentioned ar-
guments. However our approach also differs from related work Motakis & Zaniolo (1995); Artikis et al. (2010);
Lausen et al. (1998); Paschke et al. (2010); Bry & Eckert (2007). The main difference lays in the execution model
(based on EDBCR). We have proposed an execution model, which is efficient with respect to real-time computa-
tion; event-driven computation; and also it is capable to handle different classes of expressive event patterns (e.g.,
supports temporal reasoning in complete Allen’s Interval Algebra, iterative event patterns, various consumption
policies etc.).

7.3 Streaming over RDF data

The Resource Description Framework (RDF) Klyne & Carroll (10 February 2004) has been widely used for express-
ing graph-structured data. The work in Gutierrez et al. (2007) introduced time as a new dimension in RDF graphs.
The authors provided a semantics for temporal RDF graphs and a temporal query language for RDF, following
concepts of temporal databases. Following this, various approaches have emerged, providing query languages for
streaming RDF data. Some of them are surveyed in the following.

SPARQL-ST Perry et al. (2011) is an extension of SPARQL language1 for complex spatial and temporal queries.
The language and a corresponding implementation deal with temporal data (and possible reasoning about that data).
However SPARQL-ST queries need to be triggered rather than being continuously active (they are not event-driven).
The same argumentation also applies to other SPARQL approaches like Temporal SPARQL Tappolet & Bernstein
(2009), stSPARQL Koubarakis & Kyzirakos (2010), and T-SPARQL Grandi (2010).

Continuous SPARQL (C-SPARQL) Barbieri et al. (2010a) is a language for continuous query processing with
reasoning capabilities. It extends the SPARQL language by adding support for window and aggregation operations.
C-SPARQL, however, does not provide event processing capabilities: after determining the set of currently valid
RDF statements, classical reasoning on that RDF set is performed as if it were static. In particular, C-SPARQL offers
no way of detecting occurrences of RDF triples in a specific temporal order. We strongly believe that additionally
temporal relatedness between events (e.g., an event happened before another event) as defined in streaming database
systems Agrawal et al. (2008); Chandrasekaran et al. (2003); Cherniack et al. (2003) is required to capture more
complex patterns over RDF streaming data. Additionally, in C-SPARQL queries are divided into static and dynamic
parts. The static part is evaluated by a RDF triple storage, while a stream processing engine evaluates the dynamic
part of the query. In such settings, these two parts act as “black boxes” and C-SPARQL cannot take advantage of a
query pre-processing and optimizations over the unified (static and dynamic) data space. We propose an approach
based on logic rules where the both parts are handled in a uniform framework.

Finally, the work in Bolles et al. (2008) introduces Streaming SPARQL. The approach is built on temporal
relational algebra, and the authors provide an algorithm to transform SPARQL queries to that algebra. Similarly as
in Barbieri et al. (2010a), the approach is lacking event processing capabilities, i.e. detecting RDF triple sequences
occurring in a specific order.

1SPARQL: www.w3.org/TR/rdf-sparql-query/
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8 Conclusion

While in existing CEP approaches, complex events consist merely of simple (temporally situated) events, we argued
that in knowledge-rich applications such complex events are not expressive enough to assess complex situations in
real-time. We proposed a logic-based event processing, advocating a richer formalism for CEP. The formalism
is capable not only to match patterns based on temporal relations among events, but also to evaluate contextual
knowledge, and reason about their non-temporal semantic relations. Further, our contribution includes an execu-
tion model which detects complex events in a data-driven fashion (based on goal-directed event-driven rules). We
have also provided an open-source implementation of our formalism, which allows for specification of complex
events and their detection at occurrence time. The approach goes beyond existing event-driven systems by pro-
viding declarative semantics and an efficient logic-programming-based execution model that enables event-driven
deductive reasoning, enabling a new generation of event-driven applications in Artificial Intelligence. We have de-
veloped a sensor network application in the weather observation domain and conducted a set of experiments to
demonstrate efficiency and usefulness of our approach in a real-life scenario.

As the next steps, we will continue to investigate and exploit the advantages of our framework over non-logic-
based CEP. In particular, we plan to investigate how a rule representation of complex events (in large pattern bases)
may help in verification of event patterns (e.g., discovering patterns that can never be detected according to in-
consistency problems). We also plan to utilize machine learning techniques to automatically generate both event
patterns and the domain knowledge required for knowledge-based CEP (see Artikis et al. (2010), and XHAIL sys-
tem Ray (2009)). Further, event revision is another area where logic reasoning will help in managing consequences
when certain events are retracted. Likewise, out-of-order events can also be handled in a logic CEP framework.
Event retraction and out-of-order events can be seen as facts being retracted or added late to an event processing
knowledge base, respectively. Hence an inference system can be deployed to reason about logical consequences
of retracted or events added late on the whole pattern detection process. Dynamic event pattern management (i.e.,
patterns are created or discarded on the fly when certain situations are detected) is another interesting topic where
the logic approach may help to control event-driven computation.
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Krämer, J. & Seeger, B. (2009). Semantics and implementation of continuous sliding window queries over data
streams. ACM Transactions on Database Systems, 34(1), 1–49.
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Appendix

9.1 Distance Calculation

Distance between two points, defined by their latitude and longitude (Lat1, Long1, Lat2, Long2, respectively) is
calculated with Formula (43). The Earth Radius (ER) is constant, equals to 6378,137.

getDistance =

{
2 · arcsin

{√[
sin

rad(Lat1)−rad(Lat2)
2

]2
+ cos [rad(Lat1)] · cos [rad(Lat2)] ·

[
sin

rad(Long1)−rad(Long2)
2

]2}}
· ER (43)

The following rule (written in Prolog syntax) implements Formula (43). The rule was evaluated in the
WHERE clause of the second rule in complex pattern (41), every time when BlizzardWarning event occurred

(see experiments from Section 6).
getDistance(Lat1,Long1,Lat2,Long2,Distance) :-

ER is 6378.137,
getRad(Lat1,RadLat1),
getRad(Long1,RadLong1),
getRad(Lat2,RadLat2),
getRad(Long2,RadLong2),
A is RadLat1 - RadLat2,
B is RadLong1 - RadLong2,
TempA1 is A / 2,
TempB1 is B / 2,
SinA is sin(TempA1),
SinB is sin(TempB1),
TempA2 is SinA ** 2,
TempB2 is SinB ** 2,
CosA is cos(RadLat1),
CosB is cos(RadLat2),
Temp1 is CosA * CosB,
Temp2 is Temp1 * TempB2,
Temp3 is TempA2 + Temp2,
Sqrt is sqrt(Temp3),
Asin is asin(Sqrt),
S is Asin * 2,
Distance is S * ER.

getRad(Deg,Rad) :-
Temp1 is Deg * pi,
Rad is Temp1 / 180.

9.2 Linked Sensor Data for Weather Stations

An RDF dataset that describes sensors of KFSO weather station is shown below (see Patni et al. (2010)). In par-
ticular, the station measures phenomena such as temperature, dew point, humidity, visibility, wind direction, wind
gust, and wind speed. The description also contains geo-location of the station, as well as, a GeoNames link with
all known nearby locations.
<rdf:RDF xmlns="http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#"

xmlns:log="http://www.w3.org/2000/10/swap/log#"
xmlns:om-owl="http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:sens-obs="http://knoesis.wright.edu/ssw/"
xmlns:weather="http://knoesis.wright.edu/ssw/ont/weather.owl#"
xmlns:wgs84="http://www.w3.org/2003/01/geo/wgs84_pos#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<LocatedNearRel rdf:about="http://knoesis.wright.edu/ssw/LocatedNearRelKSFO">
<distance rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.9813</distance>
<hasLocation rdf:resource="http://sws.geonames.org/5391989/"/>
<uom rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#miles"/>

</LocatedNearRel>

<System rdf:about="http://knoesis.wright.edu/ssw/System_KSFO">
<ID>KSFO</ID>
<hasLocatedNearRel rdf:resource="http://knoesis.wright.edu/ssw/LocatedNearRelKSFO"/>
<hasSourceURI rdf:resource="http://mesowest.utah.edu/cgi-bin/droman/meso_base.cgi?stn=KSFO"/>
<parameter rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#_AirTemperature"/>
<parameter rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#_DewPoint"/>
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<parameter rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#_RelativeHumidity"/>
<parameter rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#_Visibility"/>
<parameter rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#_WindDirection"/>
<parameter rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#_WindGust"/>
<parameter rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#_WindSpeed"/>
<processLocation rdf:resource="http://knoesis.wright.edu/ssw/point_KSFO"/>

</System>

<wgs84:Point rdf:about="http://knoesis.wright.edu/ssw/point_KSFO">
<wgs84:alt rdf:datatype="http://www.w3.org/2001/XMLSchema#float">10</wgs84:alt>
<wgs84:lat rdf:datatype="http://www.w3.org/2001/XMLSchema#float">37.61972</wgs84:lat>
<wgs84:long rdf:datatype="http://www.w3.org/2001/XMLSchema#float">-122.36472</wgs84:long>

</wgs84:Point>
</rdf:RDF>


