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Jan Komenda, Tomáš Masopust, and Jan H. van Schuppen

Abstract— Relative observability was introduced and studied
in the framework of partially observed discrete-event systems
as a condition stronger than observability and weaker than
normality. Unlike observability, relative observability is closed
under language unions, which makes it interesting for practical
applications. In this paper, we investigate this notion in the
framework of coordination control. We prove that conditional
normality is stronger than conditional relative observability,
hence it can be used in coordination control instead of condi-
tional normality. We present a distributive procedure to com-
pute a conditionally controllable and conditionally observable
sublanguage of the specification that contains the supremal
conditionally relative observable sublanguage.

I. INTRODUCTION

Supervisory control theory of discrete-event systems was
developed in [10] as a formal approach to solve the safety is-
sue. Coordination control was proposed for modular discrete-
event systems in [9] as a trade-off between a purely modular
control synthesis, which is in many cases unrealistic, and a
global control synthesis, which is naturally prohibitive for
complexity reasons. The idea is to compute a coordinator
that takes care of the communication between subsystems.
This approach was further developed in [6], [8]. In [6],
a procedure for the distributive computation of the supre-
mal conditionally-controllable sublanguages (the necessary
and sufficient condition for the existence of a solution) of
prefix-closed specifications and controllers with complete
observations was proposed. The approach was later extended
to non-prefix-closed specifications in [8], and for partial
observations in [4].

Relative observability was introduced and studied in [1]
in the framework of partially observed discrete-event sys-
tems as a condition stronger than observability and weaker
than normality. It was shown to be closed under language
unions, which makes it an interesting notion that can replace
normality in practical applications.

In this paper, we study relative observability in the co-
ordination control framework. We introduce and discuss
the concept of conditional relative observability in the co-
ordination control framework and show that it is closed
under language unions. We prove that the previously de-
fined notion of conditional normality [4] implies conditional
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relative observability, which means that conditional relative
observability can be used in coordination control with partial
observations instead of conditional normality. We present
a distributive/parallel procedure to compute a conditionally
controllable and conditionally observable sublanguage of the
specification that contains the supremal conditionally relative
observable sublanguage.

II. PRELIMINARIES

We briefly recall the basic elements of supervisory control
theory. The reader is referred to [2] for more details. Let Σ
be a finite nonempty set of events, and let Σ∗ denote the set
of all finite words over Σ. The empty word is denoted by ε.

A generator is a quadruple G = (Q,Σ, f, q0), where Q
is a finite nonempty set of states, Σ is an event set, f :
Q × Σ → Q is a partial transition function, and q0 ∈ Q is
the initial state. As usual, the transition function is extended
to the domain Q×Σ∗ by induction. The language generated
by G is the set L(G) = {s ∈ Σ∗ | f(q0, s) ∈ Q}.

A language L over an event set Σ is a set L ⊆ Σ∗ such
that there exists a generator G with L(G) = L.

A (natural) projection P : Σ∗ → Σ∗o, for some Σo ⊆ Σ,
is a homomorphism defined so that P (a) = ε, for a ∈ Σ \
Σo, and P (a) = a, for a ∈ Σo. The inverse image of P ,
denoted by P−1 : Σ∗o → 2Σ∗

, is defined as P−1(s) = {w ∈
Σ∗ | P (w) = s}. The definition is naturally extended to
languages. The projection of a generator G is a generator
P (G) whose behavior satisfies L(P (G)) = P (L(G)).

A controlled generator is a structure (G,Σc, P,Γ), where
G is a generator over Σ, Σc ⊆ Σ is the set of controllable
events, Σu = Σ \Σc is the set of uncontrollable events, P :
Σ∗ → Σ∗o is the projection to the set of observable events,
and Γ = {γ ⊆ Σ | Σu ⊆ γ} is the set of control patterns. A
supervisor for the controlled generator (G,Σc, P,Γ) is a map
S : P (L(G)) → Γ. A closed-loop system associated with
the controlled generator (G,Σc, P,Γ) and the supervisor S
is defined as the smallest language L(S/G) ⊆ Σ∗ such that

1) ε ∈ L(S/G) and
2) if s ∈ L(S/G), sa ∈ L(G), and a ∈ S(P (s)), then

also sa ∈ L(S/G).
Let G be a generator over an event set Σ, and let K ⊆

L(G) be a specification (a language). The aim of supervisory
control theory is to find a supervisor S such that L(S/G) =
K. Such a supervisor exists if and only if K is

1) controllable with respect to L(G) and Σu, that is,
KΣu ∩ L(G) ⊆ K and

2) observable with respect to L(G), Σo, and Σc, that is,
for all words s, s′ ∈ Σ∗ such that Q(s) = Q(s′), for a
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projection Q : Σ∗ → Σ∗o, it holds that, for all σ ∈ Σ,
if sσ ∈ K, s′ ∈ K, and s′σ ∈ L(G), then s′σ ∈ K.

Note that it is sufficient to consider σ ∈ Σc in the definition
of observability, since for σ ∈ Σu the condition follows from
controllability, cf. [2].

The parallel composition of two languages L1 ⊆ Σ∗1 and
L2 ⊆ Σ∗2 is defined by

L1 ‖ L2 = P−1
1 (L1) ∩ P−1

2 (L2) ⊆ Σ∗

where Pi : Σ∗ → Σ∗i , for i = 1, 2, are projections to local
event sets. In terms of generators, L(G1 ‖ G2) = L(G1) ‖
L(G2), see [2].

III. COORDINATION CONTROL FRAMEWORK

A language K ⊆ (Σ1 ∪ Σ2)∗ is conditionally decom-
posable with respect to event sets Σ1, Σ2, and Σk, where
Σ1 ∩ Σ2 ⊆ Σk, if

K = P1+k(K) ‖ P2+k(K)

where Pi+k : (Σ1 ∪ Σ2)∗ → (Σi ∪ Σk)∗ is a projection, for
i = 1, 2. Note that Σk can always be extended in polynomial
time [5] so that K becomes conditionally decomposable,
while to find the minimal extension with respect to set
inclusion is NP-hard [8].

Now we recall the coordination control problem that is
discussed in this paper.

Problem 1: Consider generators G1 and G2 over the event
sets Σ1 and Σ2, respectively, and a generator Gk (called a
coordinator) over the event set Σk satisfying the inclusions
Σ1 ∩ Σ2 ⊆ Σk ⊆ Σ1 ∪ Σ2. Let K ⊆ L(G1 ‖ G2 ‖ Gk)
be a specification language. Assume that K is conditionally
decomposable with respect to Σ1, Σ2, and Σk. The aim
of coordination control is to determine supervisors S1, S2,
and Sk such that L(Sk/Gk) ⊆ Pk(K) and L(Si/[Gi ‖
(Sk/Gk)]) ⊆ Pi+k(K) for i = 1, 2, and

L(S1/[G1 ‖ (Sk/Gk)]) ‖ L(S2/[G2 ‖ (Sk/Gk)]) = K .

�
One possible way to construct a coordinator is to set

Gk = Pk(G1) ‖ Pk(G2)

cf. [6], [8] for more details. An advantage of this construction
is that the coordinator does not affect the system, that is,

L(G1 ‖ G2 ‖ Gk) = L(G1 ‖ G2) .

The notion of conditional controllability introduced in [9]
and further studied in [6], [8] plays the central role in
coordination control.

Let G1 and G2 be generators over the event sets Σ1

and Σ2, respectively, and let Gk be a coordinator over the
event set Σk. Let Pk : Σ∗ → Σ∗k and Pi+k : Σ∗ →
(Σi ∪ Σk)∗ be projections. Let Σi,u = Σi ∩ Σu denote the
set of uncontrollable events of the event set Σi. A language
K ⊆ L(G1 ‖ G2 ‖ Gk) is conditionally controllable with
respect to generators G1, G2, Gk and uncontrollable event
sets Σ1,u, Σ2,u, Σk,u if

1) Pk(K) is controllable with respect to L(Gk) and Σk,u

and
2) Pi+k(K) is controllable with respect to L(Gi) ‖

Pk(K) and Σi+k,u, for i = 1, 2, where Σi+k,u =
(Σi ∪ Σk) ∩ Σu.

The supremal conditionally controllable sublanguage al-
ways exists and equals to the union of all conditionally
controllable sublanguages [8].

For coordination control, the notion of conditional ob-
servability is of the same importance as observability for
supervisory control theory.

Let G1 and G2 be generators over the event sets Σ1 and
Σ2, respectively, and let Gk be a coordinator over Σk. A
language K ⊆ L(G1 ‖ G2 ‖ Gk) is conditionally observable
with respect to generators G1, G2, Gk, controllable sets Σ1,c,
Σ2,c, Σk,c, and projections Q1+k, Q2+k, Qk, where Qi :
Σ∗i → Σ∗i,o, for i = 1 + k, 2 + k, k, if

1) Pk(K) is observable with respect to L(Gk), Σk,c, and
Qk, and

2) Pi+k(K) is observable with respect to L(Gi) ‖
Pk(K), Σi+k,c, and Qi+k, for i = 1, 2, where
Σi+k,c = Σc ∩ (Σi ∪ Σk).

Theorem 2 ([4]): Consider the setting of Problem 1. Then
there exist the required supervisors S1, S2, Sk if and only if
the specification K is

1) conditionally controllable with respect to G1, G2, Gk

and Σ1,u, Σ2,u, Σk,u and
2) conditionally observable with respect to G1, G2, Gk,

event sets Σ1,c, Σ2,c, Σk,c, and projections Q1+k,
Q2+k, Qk from Σ∗i to Σ∗i,o, for i = 1 + k, 2 + k, k.

IV. CONDITIONAL RELATIVE OBSERVABILITY

As mentioned above, relative observability (C-observabi-
lity) was introduced and studied in [1] as a weaker condition
than normality, but stronger than observability. It was shown
there that supremal relatively observable sublanguages exist.
In this section, we introduce the notion of conditional C-
observability as a counterpart of relative observability for
coordination control. First, we recall the definition of relative
observability.

Let K ⊆ C ⊆ L(G). The language K is C-observable
with respect to a plant G and a projection Q : Σ∗ → Σ∗o if
for all words s, s′ ∈ Σ∗ such that Q(s) = Q(s′), it holds
that, for all σ ∈ Σ, if sσ ∈ K, s′ ∈ C and s′σ ∈ L(G), then
s′σ ∈ K. For C = K the definition thus coincides with the
definition of observability.

Definition 3: Let G1 and G2 be generators over the event
sets Σ1 and Σ2, respectively, and let Gk be a coordinator
over the event set Σk. Let K ⊆ C ⊆ L(G1 ‖ G2 ‖ Gk).
The language K is conditionally C-observable with respect
to generators G1, G2, Gk and projections Q1+k, Q2+k, Qk,
where Qi : Σ∗i → Σ∗i,o, for i = 1 + k, 2 + k, k, if

1) Pk(K) is Pk(C)-observable with respect to L(Gk) and
Qk, and

2) Pi+k(K) is Pi+k(C)-observable with respect to the
plant L(Gi) ‖ L(Gk) and Qi+k, for i = 1, 2.
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By definition, if K ′ ⊆ K is conditionally C-observable,
then it is also conditionally K-observable.

We now show that the supremal conditionally relative
observable sublanguage always exists.

Theorem 4: For a given C, the supremal conditionally C-
observable sublanguage always exists and equals to the union
of all conditionally C-observable sublanguages.

Proof: Let I be an index set. For i ∈ I , let Ki ⊆ C be
a conditionally C-observable sublanguage of K ⊆ L(G1 ‖
G2 ‖ Gk) with respect to G1, G2, Gk and projections
Q1+k, Q2+k, Qk. To prove that ∪i∈IKi is conditionally C-
observable, note that Pk(∪i∈IKi) is Pk(C)-observable with
respect to L(Gk) and Qk, since if sa ∈ Pk(∪i∈IKi) =
∪i∈IPk(Ki), s′ ∈ Pk(C), s′a ∈ L(Gk), and Qk(s) =
Qk(s′), then sa ∈ Pk(Ki), for some i ∈ I . Then Pk(C)-
observability of Pk(Ki) with respect to L(Gk) and Qk

implies that s′a ∈ Pk(Ki) ⊆ Pk(∪i∈IKi) = Pk(∪i∈IKi).
The case for Pj+k(∪i∈IKi), for j = 1, 2, is analogous.

We now recall the definitions of normality and conditional
normality.

Let G be a generator over the event set Σ, and let Q :
Σ∗ → Σ∗o be a projection. A language K ⊆ L(G) is normal
with respect to L(G) and Q if

K = Q−1Q(K) ∩ L(G) .

It is known that normality implies observability [2].
Let G1 and G2 be generators over the event sets Σ1 and

Σ2, respectively, and let Gk be a coordinator over Σk. A
language K ⊆ L(G1 ‖ G2 ‖ Gk) is conditionally normal
with respect to generators G1, G2, Gk and projections Q1+k,
Q2+k, Qk, where Qi : Σ∗i → Σ∗i,o, for i = 1 + k, 2 + k, k, if

1) Pk(K) is normal with respect to L(Gk) and Qk, and
2) Pi+k(K) is normal with respect to L(Gi) ‖ Pk(K)

and Qi+k, for i = 1, 2.
The following theorem compares the notions. The main

point is to show that we do not need conditional normality
in coordination control, because the weaker condition of
conditional relative observability can be used instead.

Theorem 5: The following holds:
1) Conditional normality implies conditional relative ob-

servability.
2) Conditional relative observability implies conditional

observability.
Proof: Implication (2) follows from [1], where it was

shown that relative observability implies observability. We
now prove (1). Let K ⊆ C ⊆ L(G1 ‖ G2 ‖ Gk) be such that
K is conditionally normal with respect to generators G1, G2,
Gk and projections Q1+k, Q2+k, Qk. Then, the assumption
that Pk(K) is normal with respect to L(Gk) implies that
Pk(K) is Pk(C)-observable with respect to L(Gk) by [1].
Moreover, for i = 1, 2, we have that Pi+k(K) is normal
with respect to L(Gi) ‖ Pk(K). By Lemma 12, L(Gi) ‖
Pk(K) is normal with respect to L(Gi) ‖ L(Gk). Hence,
by the transitivity of normality (Lemma 13), Pi+k(K) is
normal with respect to L(Gi) ‖ L(Gk). Then, by [1], we
obtain that Pi+k(K) is Pi+k(C)-observable with respect to
L(Gi) ‖ L(Gk), which was to be shown.

We have shown that the supremal conditionally con-
trollable and conditionally relative observable sublanguage
exists. We now present conditions under which a condition-
ally controllable and conditionally observable sublanguage
containing the supremal conditionally controllable and con-
ditionally relative observable sublanguage can be computed
in a distributed/parallel way.

Consider the setting of Problem 1 and define the languages

sup CROk = sup CRO(Pk(K), L(Gk)) (1)

sup CROi+k = sup CRO(Pi+k(K), L(Gi) ‖ sup CROk)

for i = 1, 2, where sup CRO(K,L) denotes the supremal
sublanguage of K that is controllable (with respect to L and
the corresponding event set of uncontrollable events) and
(K∩L)-observable (with respect to L and the corresponding
projection to observable events).

The way how to compute the supremal relatively observ-
able sublanguage is discussed in [1]. For K ⊆ L, let

sup cCRO =

sup cCRO(K,L, (Σ1,u,Σ2,u,Σk,u), (Q1+k, Q2+k, Qk))

denote the supremal conditionally controllable and condi-
tionally K-observable sublanguage of K with respect to
L = L(G1 ‖ G2 ‖ Gk), the sets of uncontrollable events
Σ1,u, Σ2,u, Σk,u, and projections Q1+k, Q2+k, Qk, where
Qi : Σ∗i → Σ∗i,o, for i = 1 + k, 2 + k, k.

We now show the following inclusion.
Lemma 6: Consider the notation above. Then

sup cCRO ⊆ sup CRO1+k ‖ sup CRO2+k . (2)

Proof: To prove this, we show that Pi+k(sup cCRO) ⊆
sup CROi+k, for i = 1, 2. By the definition of con-
ditional controllability, Pi+k(sup cCRO) ⊆ Pi+k(K) is
controllable with respect to L(Gi)‖Pk(sup cCRO). Since
the language Pk(sup cCRO) ⊆ Pk(K) is controllable and
Pk(K)-observable with respect to L(Gk), Pk(sup cCRO) ⊆
sup CROk. Thus, Pk(sup cCRO) is controllable with respect
to sup CROk ⊆ L(Gk). Then, by Lemma 9, the language
L(Gi) ‖ Pk(sup cCRO) is controllable with respect to the
plant L(Gi) ‖ sup CROk, and the transitivity of controllabil-
ity (Lemma 10) implies that Pi+k(sup cCRO) is controllable
with respect to L(Gi) ‖ sup CROk.

Furthermore, by the definition of conditional relative ob-
servability, Pi+k(sup cCRO) is Pi+k(K)-observable with
respect to L(Gi) ‖ L(Gk), hence it is also C-observable with
respect to L(Gi) ‖ L(Gk), for every Pi+k(sup cCRO) ⊆
C ⊆ Pi+k(K). As Pi+k(sup cCRO) ⊆ L(Gi) ‖ sup CROk,
we also obtain that Pi+k(sup cCRO) is C ′-observable with
respect to L(Gi) ‖ sup CROk, for every Pi+k(sup cCRO) ⊆
C ′ ⊆ Pi+k(K) ∩ (L(Gi) ‖ sup CROk), which means that
Pi+k(sup cCRO) ⊆ sup CROi+k.
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Note that the language

sup CRO1+k ‖ sup CRO2+k

is controllable and observable, by Lemmas 9 and 11, hence
it is a solution of our problem that always contains the supre-
mal conditionally controllable and conditionally relatively
observable sublanguage sup cCRO. Thus, we have computed
a solution that is in general larger than the supremal condi-
tionally controllable and conditionally relatively observable
sublanguage. We now compare it with the supremal language
sup cCRO.

Reaching supremal languages

If the coordinator part of sup CRO1+k ‖ sup CRO2+k is
conditionally controllable and conditionally observable, then
the computed language coincides with the supremal condi-
tionally controllable and conditionally relatively observable
sublanguage.

Theorem 7: Consider the setting of Problem 1 and the
languages defined in (1). Let

M = sup CRO1+k ‖ sup CRO2+k

and L = L(G1 ‖ G2 ‖ Gk). If Pk(M) is controllable and
Pk(M)-observable with respect to L(Gk), Σk,u, and Qk,
then M is conditionally controllable with respect to G1, G2,
Gk and Σ1,u, Σ2,u, Σk,u, and conditionally observable with
respect to G1, G2, Gk and Q1+k, Q2+k, Qk. Moreover, it
contains the language sup cCRO.

Proof: We have M ⊆ P1+k(K)‖P2+k(K) = K by
conditional decomposability. Moreover, Pk(M) is control-
lable and observable with respect to L(Gk), Σk,u, and Qk

by the assumptions.
Furthermore, P1+k(M) = sup CRO1+k ‖ Pk(M) is con-

trollable with respect to [L(G1) ‖ sup CROk] ‖ Pk(M) =
L(G1) ‖ Pk(M) by Lemma 9. To show that the language
P1+k(M) ⊆ P1+k(K)∩(L(G1) ‖ sup CROk) is observable,
let a ∈ Σ1+k, sa, s′ ∈ P1+k(M), s′a ∈ L(G1) ‖
Pk(M) ⊆ L(G1) ‖ sup CROk, and Q1+k(s) = Q1+k(s′).
By the (P1+k(K) ∩ (L(G1) ‖ sup CROk))-observability of
sup CRO1+k, we have that s′a ∈ sup CRO1+k. We now
have two cases:

(i) If a ∈ Σ1 \ Σk, then we immediately have that
Pk(s′a) = Pk(s′) ∈ Pk(M) ⊆ Pk(sup CRO2+k);

(ii) If a ∈ Σk, then Pk(s)a ∈ Pk(M), Pk(s′) ∈ Pk(M),
and Pk(s′)a ∈ L(Gk) imply (by the Pk(M)-observability of
Pk(M)) that Pk(s′a) ∈ Pk(M) ⊆ Pk(sup CRO2+k).

Thus, in both cases, we have that s′a ∈ sup CRO1+k ‖
Pk(sup CRO2+k) = P1+k(M).

The case of P2+k(M) is analogous, hence M is condi-
tionally controllable with respect to G1, G2, Gk and Σ1,u,
Σ2,u, Σk,u, and conditionally observable with respect to G1,
G2, Gk and Q1+k, Q2+k, Qk.

Finally, sup cCRO ⊆ sup CRO1+k ‖ sup CRO2+k as
shown in Lemma 6.

There is a serious drawback in Theorem 7. Namely, the
controllability and Pk(M)-observability conditions might be
quite restrictive (although controllability was shown weaker

than previously used conditions). A natural approach is then
to impose these conditions by an additional, a posteriori
supervisor. It is well known from basic supervisory control
theory that for any controllable and observable sublanguage
there always exists a supervisor under partial observations
that can impose this language for the controlled system.
It appears that if Pk(M) is not controllable or Pk(M)-
observable with respect to L(Gk), Σk,u, Qk, then we can
synthesize a supervisor under partial observations on the
alphabet Σk, where L(Gk) is the plant and Pk(M) is the
specification. In particular, the supremal controllable and
Pk(M)-observable sublanguage of Pk(M) with respect to
L(Gk) always exists. Implementation issues for supervisors
achieving relative observability are discussed in [1]. How-
ever, to allow for parallel computations, we define the a
posteriori supervisor

CRO′k = sup CRO(Pk(sup CRO1+k), L(Gk))

∩ sup CRO(Pk(sup CRO2+k), L(Gk))

for imposing controllability and observability with respect to
L(Gk). Then we have the following result.

Proposition 8: Consider the notation introduced in and
below (1) and in Theorem 7. Then the language CRO′k ‖
M = sup cCRO is the supremal sublanguage of K that is
conditionally controllable and conditionally observable with
respect to G1, G2, Gk and Q1+k, Q2+k, Qk.

Proof: We show that M ′ = CRO′k ‖M is conditionally
controllable and conditionally observable. To do this, note
that Pk(M ′) = CRO′k ‖ Pk(M) = CRO′k and, by definition
of CRO′k and Lemmas 9 and 11, Pk(M ′) is controllable and
observable with respect to L(Gk). Furthermore, for i = 1, 2,
Pi+k(M ′) = CRO′k ‖ Pi+k(M) = CRO′k ‖ Pk(M) ‖
sup CROi+k = CRO′k ‖ sup CROi+k. By Lemmas 9
and 11, Pi+k(M ′) is controllable and observable with respect
to L(Gk) ‖ [L(Gi) ‖ sup CROk] = L(Gi) ‖ sup CROk.
Since Pk(M ′) = CRO′k ⊆ sup CROk, we have that
the language Pi+k(M ′) is controllable and observable with
respect to L(Gi) ‖ Pk(M ′).

To prove the opposite implication, note that it holds, for
i = 1, 2, that Pi+k(sup cCRO) ⊆ sup CROi+k. Thus, it
remains to show that Pk(sup cCRO) ⊆ CRO′k also holds.
However, Pk(sup cCRO) ⊆ Pk(sup CROi+k) ⊆ Pk(K)
follows from above and, since the language Pk(sup cCRO)
is, by definition, controllable and Pk(K)-observable with
respect to L(Gk), we obtain that Pk(sup cCRO) is a subset
of CRO′k.

The advantage of Proposition 8 is that there are no
restrictive conditions on the computation of a conditionally
controllable and conditionally relatively observable sublan-
guage. Thus, one could directly apply Proposition 8 instead
of verifying the conditions of Theorem 7.

It is worth noticing that the previous result shows that the
supremal conditionally controllable and conditionally relative
observable sublanguages is always conditionally decompos-
able, therefore it can potentially be computed in a distributed
way.
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Fig. 1. Generators for AGV 1 (L1) and AGV 2 (L2)

Finally, let us point out that for systems with too many
components it is not realistic to have only a single (central-
ized) coordinator, because too many events have to be in-
cluded into the coordinator alphabet to make the specification
conditionally decomposable. Therefore, we have recently
proposed a multi-level coordination control architecture with
a hierarchical structure of groups of subsystems, their re-
spective coordinators and supervisors. For more details, the
reader is referred to [7].

A. Example

We have chosen a part of the AGV example of [1] to
illustrate the concept of conditional relative observability.
Namely, we consider the first two of the five AGVs on
Fig. 1 and the corresponding conflict zone 1 specification
on the left of Fig. 2, which aims to avoid collisions between
AGV 1 and AGV 2. Moreover, we consider prefix-closed
(generated) languages of all automata. We have renamed the
events in such a way that events 1i of AGV 1 are called
ai, i = 1, 2, 3, 0, and events 2j of AGV 2 are called bj
with the exception of 18 and 28 that are called b8 and b18,
respectively.

We apply our coordination control framework to impose
the specification (denoted K). Since the specification K is
not conditionally decomposable, we have to include events
a1, a3, b0, b3 into Σk. The corresponding coordinator is then
Lk = Pk(L1) ‖ Pk(L2) as depicted on the right of
Fig. 2. It turns out that Pk(K) is even larger than Lk, i.e.,
no supervisor for the coordinator is needed, meaning that
sup Ck = Lk.

Then we decompose the supervisory control problem for
the global plant into two subproblems: imposing P1+k(K)
for the plant L1 ‖ Lk and imposing P2+k(K) for the plant
L2 ‖ Lk. It appears that P1+k(K) is not included in L1 ‖ Lk.

1 23 1 2

34
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Fig. 2. Generator for the specification K and the coordinator Lk
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Therefore, we now consider P1+k(K) ∩ (L1 ‖ Lk) and
P2+k(K) ∩ (L2 ‖ Lk) as new specifications. It turns that
P1+k(K)∩(L1 ‖ Lk) is not controllable with respect to L1 ‖
Lk. We then compute sup C1+k, which is not normal with
respect to L1 ‖ Lk and Q1+k. However, supremal normal
sublanguage need not be computed, because sup C1+k is ob-
servable, thus relatively observable with respect to L1 ‖ Lk

and Q1+k. Otherwise stated, the supervisor sup CRO1+k =
sup C1+k, see Fig. 3.

Similarly, sup C2+k of Fig. 4 is not normal with respect
to L2 ‖ Lk and Q2+k, but it is relatively observable. This
shows the advantage of using sup CROi+k over the supremal
controllable and normal sublanguage: the former ones are
strictly more permissive. The first supervisor has 6 states
and 8 transitions and the second supervisor has 16 states
and 28 transitions.

Finally, the condition of Theorem 7 is not satisfied, since,
although the language Pk(sup CRO1+k) is controllable and
Pk(sup CRO1+k)-observable with respect to Lk, the lan-
guage Pk(sup CRO2+k) is not controllable with respect to
Lk. Therefore, a new supervisor is needed and Proposition 8
can be applied to compute it.

The local supervisors for Li ‖ Lk, for i = 1, 2, are then
sup CRO1+k and

sup CRO2+k ‖ sup CRO(Pk(sup CRO2+k), L(Gk)) .

V. AUXILIARY RESULTS

This section provides auxiliary results needed in the paper.
Lemma 9 (Proposition 4.6 in [3]): For i = 1, 2, let Ki ⊆

Li over an event set Σi be languages such that Ki is
controllable with respect to Li and Σi,u. Let Σ = Σ1 ∪ Σ2.
Then the parallel composition K1 ‖ K2 is controllable with
respect to L1 ‖ L2 and Σu.

Lemma 10 ([6]): Let K ⊆ L ⊆ M be languages over
Σ such that K is controllable with respect to L and Σu,
and L is controllable with respect to M and Σu. Then K is
controllable with respect to M and Σu.

Lemma 11: For i = 1, 2, let Ki ⊆ Li over an event set Σi

be languages such that Ki is observable with respect to Li

and Qi : Σ∗i → Σ∗i,o. Then the parallel composition K1 ‖ K2

79



[0,0]

9

8

7

16

6

15

5

14

4

13

3

12

2

11

1

10

a3 a1

b0

a3

a3

b18

b0

b1

a1

a3

b3

b8

a3

b1

b8

b6

a1

a3

b4

a1

a1

b3

b2

b2b18

a1

b6

b4

Fig. 4. Generator for supCRO2+k

is observable with respect to L1 ‖ L2 and Q : (Σ1∪Σ2)∗ →
(Σ1,o ∪ Σ2,o)∗.

Proof: Let s, s′ ∈ Σ∗ be such that Q(s) = Q(s′). Let
σ ∈ Σ and assume that sσ, s′ ∈ K1 ‖ K2 and s′σ ∈ L1 ‖ L2.
Let Pi : (Σ1∪Σ2)∗ → Σ∗i , for i = 1, 2, be a projection. Then
Pi(sσ), Pi(s

′) ∈ Ki and Pi(s
′σ) ∈ Li imply that Pi(s

′σ) ∈
Ki, by observability of Ki with respect to Li. Thus, we have
s′σ ∈ K1 ‖ K2.

Lemma 12: For i = 1, 2, let Ki ⊆ Li over an event set
Σi be languages such that Ki is normal with respect to Li

and Qi : Σ∗i → Σ∗i,o. Then the parallel composition K1 ‖ K2

is normal with respect to L1 ‖ L2 and Q : (Σ1 ∪ Σ2)∗ →
(Σ1,o ∪ Σ2,o)∗.

Proof: By definition, we have that Q−1Q(K1 ‖ K2)∩
L1 ‖ L2 ⊆ Q−1

1 Q1(K1) ‖ Q−1
2 Q2(K2) ‖ L1 ‖ L2 = K1 ‖

K2, where the equality is by normality of K1 and K2. As
the other inclusion always holds, the proof is complete.

Lemma 13: Let K ⊆ L ⊆ M be languages such that K
is normal with respect to L and Q, and L is normal with

respect to M and Q. Then K is normal with respect to M
and Q.

Proof: By the assumption, Q−1Q(K) ∩ L = K and
Q−1Q(L) ∩M = L, hence Q−1Q(K) ∩M ⊆ Q−1Q(L) ∩
M = L. Thus, Q−1Q(K) ∩M = Q−1Q(K) ∩M ∩ L =
K ∩M = K.

VI. CONCLUSION

We introduced the notion of conditional relative ob-
servability and studied the coordinated computation of the
supremal conditionally controllable and conditionally relative
observable sublanguage of the specification. Note that there
exist conditions, namely the observer and OCC (LCC) prop-
erties, fulfilled by a modification of the coordinator event set,
that imply the assumptions of Theorem 7 for controllability.
However, to the best of our knowledge, no similar conditions
are known for observability.

Finally, note that the approach presented here can be
generalized to non-prefix-closed languages, provided the
languages are nonconflicting. The verification of this prop-
erty is known to be PSPACE-complete [11] if the number
of components is unlimited, whereas it can be verified in
nondeterministic logarithmic space, that is, in polynomial
time, if the number of components is fixed. The result should
be read so that the polynomial space is still sufficient. Note
that when handling large systems, the space is the critical
complexity issue. In some cases, nonconflictingness can be
even imposed by coordinators on subalphabets, which leads
to savings on complexity, cf. [8].
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