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Abstract. Knowledge based artificial networks networks have been ap-
plied quite successfully to propositional knowledge representation and
reasoning tasks. However, as soon as these tasks are extended to struc-
tured objects and structure-sensitive processes it is not obvious at all
how neural symbolic systems should look like such that they are truly
connectionist and allow for a declarative reading at the same time. The
core method aims at such an integration. It is a method for connection-
ist model generation using recurrent networks with feed-forward core.
After an introduction to the core method, this paper will focus on pos-
sible connectionist representations of structured objects and their use in
structure-sensitive reasoning tasks.

1 Introduction

From the very beginning artificial neural networks have been related to propo-
sitional logic. McCulloch-Pitts networks are finite automata and vice versa [22].
Finding a global minima of the energy function modelling a symmetric network
corresponds to finding a model of a propositional logic formula and vice versa
[23]. These are just two examples that illustrate what McCarthy has called a
propositional fixation of connectionist systems in [21].

On the other hand, there have been numeruous attempts to model first-order
fragments in connectionist systems. In [3] energy minimization was used to model
inference processes involving unary relations. In [19] and [27] multi-place predi-
cates and rules over such predicates are modelled. In [16] a connectionist infer-
ence system for a limited class of logic programs was developed. But a deeper
analysis of these and other systems reveals that the systems are in fact proposi-
tional. Recursive auto-associative memories based on ideas first presented in [25],
holographic reduced representations [24] or the networks used in [9] have consid-
erable problems with deeply nested structures. We are unaware of any connec-
tionist system that fully incorporates structured objects and structure-sensitive
processes and, thus, naturally incorporates the power of symbolic computation
as argued for in e.g. [28].
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Fig. 1. The Neural-Symbolic Cycle

In this paper we are mainly interested in knowledge based artificial neural
networks, i.e., networks which are initialized by available background knowl-
edge before training methods are applied. In [29] it has been shown that such
networks perform better than purely empirical and hand-built classifiers. [29]
used background knowledge in the form of propositional rules and encodes these
rules in multi-layer feed-forward networks. Independently, we have developed a
connectionist system for computing the least model of propositional logic pro-
grams if such a model exists [14]. This system has been further developed to
the so-called core method : background knowledge represented as logic programs
is encoded in a feed-forward network, recurrent connections allow for a compu-
tation or approximation of the least model of the logic program (if it exists),
training methods can be applied to the feed-forward kernel in order to improve
the performance of the network, and, finally, an improved program can be ex-
tracted from the trained kernel closing the neural-symbolic cycle as depicted in
Fig. 1.

In this paper we will present the core method in Section 3. In particular, we
will discuss its propositional version including its relation to [29] and its exten-
sions. The main focus of this paper will be on extending the core method to deal
with structured objects and structure-sensitive processes in Section 4. In partic-
ular, we will give a feasability result, present a first practical implementation,
and discuss preliminary experimental data. These main sections are framed by
introducing basic notions and notations in Section 2 and an outlook in Section 5.

2 Preliminaries

We assume the reader to be familiar with basic notions from artificial neural
networks and logic programs and refer to e.g. [4] and [20], resp. Nevertheless, we
repeat some basic notions.

A logic program is a finite set of rules H ← L1 ∧· · ·∧Ln, where H is an atom
and each Li is a literal. H and L1∧· · ·∧Ln are called the post- and precondition of
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P1 = { p, % p is always true.

r ← p ∧ ¬q, % r is true if p is true and q is false.

r ← ¬p ∧ q } % r is true if p is false and q is true.

Fig. 2. A simple propositional logic program. The intended meaning of the rules is
given on the right.

the rule, resp. Fig. 2 and 4 show a propositional and a first-order logic program,
resp. These programs will serve as running examples. The knowledge represented
by a logic program P can essentially be captured by the meaning function TP ,
which is defined as a mapping on the space of interpretations where for any
interpretation I we have that TP(I) is the set of all H for which there exists a
ground instance H ← A1 ∧ · · · ∧ Am ∧ ¬B1 ∧ · · · ∧ ¬Bn of a rule in P such that
for all i we have Ai ∈ I and for all j we have Bj �∈ I, where each Ai and each
Bj is an atom. Fixed points of TP are called (supported) models of P , which can
be understood to represent the declarative semantics of P .

Artificial neural networks consist of simple computational units (neurons),
which receive real numbers as inputs via weighted connections and perform sim-
ple operations: the weighted inputs are added and simple functions (like thresh-
old, sigmoidal) are applied to the sum. We will consider networks, where the
units are organized in layers. Neurons which do not receive input from other
neurons are called input neurons, and those without outgoing connections to
other neurons are called output neurons. Such so-called feed-forward networks
compute functions from IRn to IRm, where n and m are the number of input and
output units, resp. Fig. 3 on the right shows a simple feed-forward network. In
this paper we will construct recurrent networks by connecting the output units
of a feed-forward network N to the input units of N . Fig. 3 on the left shows a
blueprint of such a recurrent network.

3 The Core Method

In a nutshell, the idea behind the core method is to use feed-forward connection-
ist networks – called core – to compute or approximate the meaning function of
logic programs. If the output layer of a core is connected to its input layer then
these recurrent connections allow for an iteration of the meaning function leading
to a stable state, corresponding to the least model of the logic program provided
that such a least model exists (see Fig. 3 on the left). Moreover, the core can
be trained using standard methods from connectionist systems. In other words,
we are considering connectionst model generation using recurrent networks with
feedforward core.

The ideas behind the core method were first presented in [14] for propositional
logic programs (see also [13]). Consider the logic program shown in Fig. 2. A
translation algorithm turns such a program into a core of logical threshold units.
Because the program contains the predicate letters p, q and r only, it suffices
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Fig. 3. The blueprint of a recurrent network used by the core method on the left. The
core corresponding to P1 = {p, r ← p ∧ ¬q, r ← ¬p ∧ q} is shown on the right. Solid
connections have weight 1.0, dashed connections weight −1.0. The numbers within the
units denote the thresholds.

to consider interpretations of these three letters. Such interpretations can be
represented by triples of logical threshold units. The input and the output layer
of the core consist exactly of such triples. For each rule of the program a logical
threshold unit is added to the hidden layer such that the unit becomes active
iff the preconditions of the rule are met by the current activation pattern of the
input layer; moreover this unit activates the output layer unit corresponding to
the postcondition of the rule. Fig. 3 on the right shows the network obtained by
the translation algorithm if applied to P1.

In [14] we proved – among other results – that for each propositional logic
program P there exists a core computing its meaning function TP and that for
each acyclic logic program P there exists a core with recurrent connections such
that the computation with an arbitray intitial input converges and yields the
unique fixed point of TP .

The use of logical threshold units in [14] made it easy to prove these results.
However, it prevented the application of standard training methods like back-
propagation to the kernel. This problem was solved in [8] by showing that the
same results can be achieved if bipolar sigmoidal units are used instead (see also
[5]). [8] also overcomes a restriction of the KBANN method originally presented
in [29]: rules may now have arbitrarily many preconditions and programs may
have arbitrarily many rules with the same postcondition.

In the meantime the propositional core method has been extended in many
directions. In [18] three-valued logic programs are discussed; This approach has
been extended in [26] to finitely determined sets of truth values. Modal logic
programs have been considered in [6]. Answer set programming and metalevel
priorities are discussed in [5]. The core method has been applied to intuitionistic
logic programs in [7].

To summarize, the propositional core method allows for model generation with
respect to a variety of logics in a connectionist setting. Given logic programs are
translated into recurrent connectionist networks with feed-forward cores, such
that the cores compute the meaning functions associated with the programs.
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The cores can be trained using standard learning methods leading to improved
logic programs. These improved programs must be extracted from the trained
cores in order to complete the neural-symbolic cycle. The extraction process
is outside the scope of this paper and interested readers are refered to e.g. [1]
or [5].

4 The Core Method and Structured Objects

If structured objects and structure-sensitive processes are to be modelled, then
usually higher-order logics are considered. In particular, first-order logic plays a
prominent role because any computable function can be expressed by first-order
logic programs. The extension of the core method to first-order logic poses a
considerable problem because first-order interpretations usually do not map a
finite but a countably infinite set of ground atoms to the set the truth values.
Hence, they cannot be represented by a finite vector of units, each of which
represents the value assigned to a particular ground atom.

In this section we will first show that an extension of the core method to
first-order logic programs in feasible. However, the result will be purely theoret-
ical and thus the question remains how cores can be constructed for first-order
programs. In Subsection 4.2 a practical solution is discussed, which approxi-
mates the meaning functions of logic programs by means of piecewise constant
functions. Some preliminary experimental data are presented in Subsection 4.3.

4.1 Feasibility

It is well known that multilayer feed-forward networks are universal approxi-
mators [17,12] of functions IRn → IRm. Hence, if we find a way to represent
interpretations of first-order logic programs by finite vector of real numbers,
then feed-forward networks can be used to approximate the meaning function of
such programs.

Consider a countably infinite set of ground atoms and assume that there is a
bijection l uniquely assigning a natural number to each ground atom and vice
versa; l is called level mapping and l(A) level of the ground atom A. Further-
more, consider an interpretation I assigning to each ground atom A either 0
(representing falsehood) or 1 (representing truth) and let b be a natural number
greater than 2. Then,

ι(I) =
∞∑

j=1

I(l−1(j)) · b−j ,

is a real number encoding the interpretation I. With

D = {r ∈ IR | r =
∞∑

j=1

ajb
−j , aj ∈ {0, 1}}

we find that ι is a bijection between the set of all interpretions and D. Hence,
we have a sound and complete encoding of interpretations.
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Let P be a logic program and TP its associated meaning operator. We define
a sound and complete encoding fP : D → D of TP as follows:

fP(r) = ι(TP(ι−1(r))).

In [15] we proved – among other results – that for each logic program P which
is acylic wrt. a bijective level mapping the function fP is contractive, hence
continuous. This has various implications: (i) We can apply Funahashi’s result,
viz. that every continuous function on (a compact subset of) the reals can be
uniformly approximated by feed-forward networks with sigmoidal units in the
hidden layer [12]. This shows that the meaning function of a logic program (of
the kind discussed before) can be approximated by a core. (ii) Considering an
appropriate metric, which will be discussed in a moment, we can apply Ba-
nach’s contraction mapping theorem (see e.g. [30]) to conclude that the meaning
function has a unique fixed point, which is obtained from an arbitrary initial in-
terpretation by iterating the application of the meaning function. Using (i) and
(ii) we were able to prove in [15] that the least model of logic programs which
are acyclic wrt. a bijective level mapping can be approximated arbitrarily well
by recurrent networks with feed-forward core.

But what exactly is the approximation of an interpretion or a model in this
context? Let P be a logic program and l a level mapping. We can define a metric
d on interpretations as follows:

d(I, J) =

{
0 if I = J,

2−n if n is the smallest level on which I and J disagree.

As shown in [10] the set of all interpretations together with d is a complete metric
space. Moreover, an interpretation I approximates an interpretation J to degree
n ∈ IN iff d(I, J) ≤ 2−n. In other words, if a recurrent network approximates
the least model I of an acylic logic program to a degree n ∈ IN and outputs
r ∈ D then for all ground atoms A whose level is equal or less than n we find
that I(A) = ι−1(r)(A).

4.2 A First Approach

In this section, we will show how to construct a core network approximating
the meaning operator of a given logic program. As above, we will consider logic
programs P which are acyclic wrt. an bijective level mapping. We will construct
sigmoidal networks and RBF networks with a raised cosine activation function.
All ideas presented here can be found in detail in [2]. To illustrate the ideas, we
will use the program P2 shown in Fig. 4 as a running example. The construction
consists of five steps:

1. Construct fP .
2. Approximate fP using a piecewise constant functions f̄P .
3. Implement f̄P using (a) step and (b) triangular functions.
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P2 = { even(0). % 0 is an even number.

even(succ(X)) ← odd(X). % The successor of an odd X is even.

odd(X) ← ¬even(X). } % If X is not even then it is odd.

Fig. 4. The first-order logic program P2 describing even and odd numbers. The in-
tended meaning of the rules is given on the right.
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Fig. 5. On the left is the plot of fP2 . On the right a piecewise constant approximation
f̄P2 (for level n = 2) of fP2 is shown. The base b = 4 was used for the embedding.

4. Replace those by (a) sigmoidal and (b) raised cosine functions.
5. Construct the core network approximating fP .

In the sequel we will describe the ideas underlying the construction. A rigorous
development including all proofs can be found in [2,31]. One should observe that
fP is a function on D and not on IR. Although the functions constructed below
will be defined on intervals of IR, we are concerned with accuracy on D only.

1. Construct fP : fP is defined as before, i.e., fP(r) = ι(TP(ι−1(r))). Fig. 5 on
the left shows the plot of fP2 .

2. Constructing a Piecewise Constant Function f̄P : Because P is acyclic, we con-
clude that all variables occurring in the precondition of a rule are also contained
in its postcondition. Hence, for each level n we find that whenever d(I, J) ≤ 2−n

then d(TP(I), TP(J)) ≤ 2−n, where I and J are interpretations. Therefore, we
can approximate TP to degree n by some function T̄P which considers ground
atoms with a level less or equal n only. As a consequence, we can approximate fP
by a piecewise constant function f̄P where each piece has a length of λ = 1

(b−1)bn ,
with b being the base used for the embedding. Fig. 5 shows fP2 and f̄P2 for n = 2.

3. Implementation of f̄P using Linear Functions: As a next step, we will show
how to implement f̄P using (a) step and (b) triangular functions. Those func-
tions are the linear counterparts of the functions actually used in the networks
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Fig. 6. Two linear approximation of f̄P2 . On the left, three step functions were used;
On the right, eight triangular functions (depicted in gray) add up to the approximation,
which is shown using thick lines.

constructed below. If f̄P consists of k intervals, then we can implement it us-
ing k − 1 step functions which are placed such that the steps are between two
neighbouring intervals. This is depicted in Fig. 6 on the left.

Each constant piece of length λ could also be implemented using two trian-
gular functions with width λ and centered at the endpoints. Those two triangles
add up to the constant piece. For base b = 4, we find that the gaps between two
intervals have a length of at least 2λ. Therefore, the triangular functions of two
different intervals will never interfere. The triangular implementation is depicted
in Fig. 6 on the right.

4. Implementation of f̄P using Nonlinear Functions: To obtain a sigmoidal ap-
proximation, we replace each step function with a sigmoidal function. Unfortu-
nately, those add some further approximation error, which can be dealt with
by increasing the accuracy in the constructions above. By dividing the desired
accuracy by two, we can use one half as accuracy for the constructions so far
and the other half as a margin to approximate the constant pieces by sigmoidal
functions. This is possible because we are concerned with the approximation on
D only.

The triangular functions described above can simply be replaced by raised
cosine activation functions, as those add up exactly as the triangles do and do
not interfere with other intervals either.

5. Construction of the Network: A standard sigmoidal core approximating the
TP-operator of a given program P consists of:

– An input layer containing one input unit whose activation will represent an
interpretation I.

– A hidden layer containing a unit with sigmoidal activation function for each
sigmoidal function constructed above.

– An output layer containing one unit whose activation will represent the ap-
proximation of TP(I).
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Fig. 7. Two non-linear approximation of f̄P2 . On the left, sigmoidal functions were
used and on the right, raised cosines.

The weights from input to hidden layer together with the bias of the hidden units
define the positions of the sigmoidals. The weights from hidden to output layer
represent the heights of the single functions. An RBF network can be constructed
analogously, but will contain more hidden layer units, one for each raised cosine
functions. Detailed constructions can be found in [2].

4.3 Evaluation and Experiments

In the previous section, we showed how to construct a core network for a given
program and some desired level of accuracy. We used a one-dimensional embed-
ding to obtain a unique real number ι(I) for a given interpretation I. Unfortu-
nately, the precision of a real computer is limited, which implies, that using e.g.
a 32-bit computer we could embed the first 16 atoms only. This limitation can
be overcome by distributing an interpretation over more than one real number.
In our running example P2, we could embed all even-atoms into one real num-
ber and all odd-atoms into another one, thereby obtaining a two-dimensional
vector for each interpretation, hence doubling the accuracy. For various reasons,
spelled out in [32], the sigmoidal approach described above does not work for
more than one dimension. Nevertheless, an RBF network approach, similar to
the one described above, does work. By embedding interpretations into higher-
dimensional vectors, we can approximate meaning functions of logic programs
arbitrarily well.

Together with some theoretical results, Andreas Witzel developed a prototype
system in [32]. By adapting ideas from [11], he designed appropriate learning
techniques utilizing the knowledge about a given domain, viz. the space of em-
bedded interpretations. In the sequel, we will briefly present some of the results.

To adapt the networks behaviour during learning, the algorithm changes the
weights, thereby changing the position and height of the constant pieces de-
scribed above. Furthermore, new units are added if required, i.e., if a certain
unit produces a large error, new units are added to support it. If a unit be-
comes inutile it will be removed from the network. These ideas are adaptations
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Fig. 8. Two different setups of the system during learning. Note that the error is shown
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of concepts originally developed in the so called growing neural gas approach
[11]. Fig. 8 shows a comparison of two different setups called FineBlend 1 and
2. FineBlend 1 is configured to keep the error below 1, whereas FineBlend 2 is
configured to reduce the number of units resulting in a slightly higher error.

As mentioned above, a recurrent network is obtained by connecting output
and input layer of the core. This is done to iterate the application of the meaning
function. Therefore, we would assume a network set up and trained to represent
the meaning function of an acyclic logic program to converge to a state repre-
senting the least model. As shown in Fig. 9, the network shows this behaviour.
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Fig. 10. The effect of unit failure. After 5000 examples, one third of the units were
removed.

Shown are the two dimensions corresponding to the embedding of the even and
odd predicates, resp. Also depicted is the ε-neighborhood of the least fixed point
as a small square. Five random inputs were presented to the network and the
output fed back via the recurrent connections. This process was repeated until
the network reached a stable state, always being within the ε-neighbourhood of
the fixed point.

Another advantage of connectionist systems is their robustness and their ca-
pability of repairing damage by further training. Fig. 10 shows the effect of unit
failure. After presenting 5000 training samples to the network, one third of the
hidden layer units were removed. As shown in the error plot, the system was
able to recover quickly, thereby demonstrating its robustness. Further experi-
ments and a more detailed analysis of the system can be found in [32,2].

5 Conclusion

We are currently implementing the first-order core method in order to further
evaluate and test it using real world examples. Concerning a complete neural-
symbolic cycle we note that whereas the extraction of propositional rules from
trained networks is well understood, the extraction of first-order rules is an open
question.
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