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Abstract
We consider the satisfiability problem for the two-variable fragment of first-order logic extended with
counting quantifiers, interpreted over finite words with data, denoted here with C2[≤, succ,∼, πbin ].
In our scenario, we allow for using arbitrary many uninterpreted binary predicates from πbin, two
navigational predicates ≤ and succ over word positions as well as a data-equality predicate ∼. We
prove that the obtained logic is undecidable, which contrasts with the decidability of the logic
without counting by Montanari, Pazzaglia and Sala [27]. We supplement our results with decidability
for several sub-fragments of C2[≤, succ,∼, πbin], e.g. without binary predicates, without successor
succ, or under the assumption that the total number of positions carrying the same data value in a
data-word is bounded by an a priori given constant.
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1 Introduction

Finite data-words [8], i.e. finite words, where each position carries letters from a finite
alphabet as well as a data value from some countably-infinite data domain, are ubiquitous in
formal verification. They can be used to describe executions of array-accessing programs [1],
runs of counter machines [18], outputs of timed systems [9] or database transaction logs [28].
However, reasoning about them is not simple: the main obstacle is the unboundedness of the
data domain. We discuss some of the recently proposed approaches to solve the problem.

The first solution is stemming from automata theory. To deal with data-words, the notion
of class automata [5, 3], data automata [4], register automata [22] or session automata [7]
were proposed. Usually, these are automata equipped with a set of registers, used to store the
current data value in the memory. Of course, such registers must be suited to store information
of unknown size and must be properly restrained: one can easily fall into a trap that the
proposed automata model can simulate zero tests, which usually causes undecidability [26].
Unfortunately, proposed automata models lack good algorithmic properties. By way of
example, the emptiness problem for class memory automata is equivalent to reachability
in vector-addition systems and hence, non-elementary [16]. Moreover, the model of class
automata is not closed under complementation, which results in an undecidable equivalence
problem. Some weaker subclasses of class automata were considered e.g. in [15].

Thus, in this paper, we rather focus on declarative models like logics. Being aware of
the plethora of different automata models proposed in the past, it is not hard to conclude
that a similar situation should occur for logics. The most famous frameworks, tailored to
reason about data-words, are temporal logics and fragments of first-order logics. The former
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ones were well-developed in the recent years: e.g. LTL with freeze quantifier, which can be
used as a logical counterpart of a register, was proposed in [19]. Other examples are the
temporal logic of repeating values [18], the PathLog [21] and LTL data quantification [32],
just to mention a few of them. As far as the existential monadic second-order logic [6] and
first-order logic are considered [4], the logics were rather neglected, probably due to their
high complexity or even undecidability. The logics generally allows for quantification over
words’ positions, to compare elements with navigational predicates and to check whether
data values of two elements coincide by means of data-equality predicate. The logics FO
or EMSO are immediately undecidable. The only known decidable fragments are the two-
variable fragments: FO2[succ,∼], FO2[≤,∼] and FO2[≤, succ,∼], where ≤ is a linear order
over words’ positions, succ is its induced successor relation and ∼ is a data-equality predicate.
The first two logics are known to be NExpTime-complete [28, 4], while the last one is known
to be interreducible to the reachability problem in vector addition systems with states. Our
work will focus on extending FO2 to make the logic more expressive yet decidable.

We encourage the reader to check the latest surveys on the topic [17, 13] or PhD
theses [24, 28, 14] to improve his understanding of the state-of-the-art of the problem and to
get a glimpse of the maze of data languages.

1.1 Our motivation
We aim at extending the framework of the two-variable logic FO2 on data-words to the
realm of quantitative properties. Our goal is very modest: we would like to understand the
behaviour of FO2 under the extensions of counting quantifiers. Such quantifiers can be used
to express basic quantitative properties like: “there are at least five data repartitions in the
run of the machine” or “each request has exactly one corresponding grant with the same data
value”. The techniques dealing with counting quantifiers were well-developed in the least 10
years, see e.g. [29, 30, 12, 11], hence there is a hope that they work well also in the context of
data-word reasoning. We hope our work will lay the foundation on an expressive specification
language for data-words involving an interplay between counting capabilities and data values.

1.2 Our contribution
We study satisfiability problems for C2[≤, succ,∼, πbin], i.e. the two-variable logic with
counting quantifiers admitting a linear order predicate ≤, its induced successor relation succ,
a data-equality predicate ∼ and a set of uninterpreted binary symbols πbin. Our results are:

In Section 3 we show that C2[≤, succ,∼, πbin] is undecidable, in sharp contrast to the
logic without counting [27]. The proof reuses ideas from [2] on how to encode runs of
Minsky Machines on data-words. The key property is the existence of C2 formula imposing
that a fresh binary relation is a one-to-one matching of domain elements, whilst being a
refinement of ∼. We also discuss how the undecidability result transfers to similar logics,
e.g. to C2[≤,∼, πbin]. Negative results are supplemented by several decidability results.
In Section 4 we show that both C2[succ,∼, πbin] and C2[≤,∼] logics are NExpTime-
complete. The NExpTime lower-bound is trivially inherited from FO2, but the upper
bounds are less trivial. For the former logic, we provide a reduction to the appropriate
logic on data-trees [11], for which the NExpTime-completeness was recently shown by
the second author and his colleagues. For the latter logic, namely, for C2[≤,∼], we show
that any satisfiable formula has a model with only exponentially many equivalence classes.
Such a property allows us to replace the data-equality tests with equi-satisfiability of
polynomially many unary predicates, which encodes the class number in binary. Finally,
the tight NExpTime upper bound is obtained by employing as a black-box an algorithm
from [12] for deciding finite satisfiability for the logic on words without data values.
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In Section 5 we deal with the finite satisfiability of C2[≤, succ,∼]. We employ a counting-
quantifier elimination technique to get rid of seemingly more expressive concepts from
the logic. The logic C2[≤, succ,∼] turned out to be Vass-complete, i.e. complete for the
class of all problems elementarily reducible to the reachability in Vector Addition Systems
(solvable in Ackermann time [25] with a non-elementary Tower lower bound [16]).
Finally, in the last section, we establish the most technically challenging result of this
paper, namely the Vass-completeness of C2[≤, succ,∼, πbin] under the restriction that
each equivalence class has a uniform bound k on their sizes. Differently phrased, it means
that a single data value can occur in a data-word only, a priori given, constant number of
times. In those logics, we allow for using data-equality predicate with ∼k instead of the
full data-equality ∼. To solve the satisfiability problem, we propose a translation from
C2[≤, succ,∼k, πbin ] to C2[≤, succ, πbin ], that is the logic without ∼k. The main problem
is that transitivity is not expressible with only two variables, and hence we cannot hope
for an “easy” translation. To achieve our goal we take an input formula ϕ and link it
with some formulae imposing a colouring of the structure with some fresh letters smartly
encoding information to which class given elements belong.

2 Preliminaries

Let Σ be a finite alphabet (i.e. a set of unary predicates) and let D be a countably-infinite
data domain. A data word is an element from (2Σ×D)∗. A language is a set of data words. In
our setting, we are interested in fragments of first-order logic describing data-words. We agree
that the formulae have direct access to the alphabet Σ, allowing to use the letters as unary
predicates. To the contrary, the data-values from D are stored implicitly: the only allowed
operation is a comparison of data-values between positions with an equivalence relation ∼
called the data equality predicate. In the paper, we follow the usual notations [4].

2.1 Logics

The two-variable1 logic FO2[≤, succ,∼] interpreted over finite data-words is a fragment of
first-order logic featuring only two variables x, y and equipped with a vocabulary of arbitrary
many unary predicates (aka letters), two navigational predicates over the words’ positions,
namely a linear order ≤ and its induced successor relation succ, and ∼. Whenever x ≤ y

holds, we say that x is to the left of y. Additionally, we extend the logic with an arbitrarily
large set of uninterpreted binary predicates πbin

2, forming the logic FO2[≤, succ,∼, πbin ]. In
this paper, we mostly work with counting extensions of FO2, denoted here with C2. Such
logics extend the previous ones with the so-called counting quantifiers ∃≥k,∃≤k, with their
natural meaning, i.e. ∃≥kx.ϕ is satisfied in a data-word w if at least k positions, when
substituted as x, satisfy ϕ.

We are interested in the finite satisfiability problem phrased as “given a formula ϕ is
there a data word satisfying ϕ?”. The current state-of-the-art of the problem is presented in
the table below. All of the claimed bounds are tight and the appropriate reference is cited
(with [H] we indicate that the result is shown in this paper).3

1 With σ in L[σ] we indicate what kinds of binary relations can be in the logic.
2 They can be used with counting quantifiers e.g. to express Presburger constraints over universes [31].
3 Recall that Vass complexity class is composed of all problems elementarily reducible to VASS-reachability.
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Table 1 The complexity of the satisfiability problem for FO2 and C2 over finite data words. All
stated complexity bounds are tight.

[], [≤, succ] [succ,∼, πbin] [≤,∼] [≤, succ,∼] [≤,∼, πbin] [≤, succ,∼, πbin]
FO2 NExp [20] NExp [28] NExp [4] Vass [4] NExp [27] Vass [27]
C2 NExp [12] NExp [11] NExp [H] Vass [H] Undecidable [H]

2.2 Normal Forms
It is usually very convenient to work with the formulae in tailored normal forms. In the
paper we will present two of them. Reducing a formula into such forms is usually simple and
requires well-known techniques, cf. [23, 29]. Hence, routine proofs are omitted.

We employ two types of Scott-normal forms for C2, the latter being tailored especially
for construction in Section 5. In the remaining sections we employ weak normal forms. Their
main advantage is that they are computable in polynomial time cf. [12].

ϕ = ∀x∀y χ ∧
n∧
i=1
∀x∃./iCiy χi, (1)

with ./i∈ {≤,≥}, quantifier-free χ, χi and with all Ci being natural numbers. A 1-type is a
maximal consistent set of literals over Σ involving only the variable x. Note that the number
of 1-types is over Σ is exponential in the size of Σ. Likewise, a 2-type is a maximal consistent
set of literals over Σ involving only the variables x and y and containing the literal x 6= y. In
Section 5 we use the following normal form.

ϕ = ∀x∀y α ∧
n∧
i=1
∀x
(
πi(x)→ ∃./iCiy βi

)
∧

n′∧
i=1
∀x
(
π′i(x)→ ∃./iC

′
iy γi

)
, (2)

where α is quantifier-free formula, ./i∈ {≤,=,≥}, πi, π′i are 1-types and βi, γi are 2-types
and each βi contains x ∼ y and each γi contains x 6∼ y. Its main feature is the presence of
1-types and 2-types, i.e. since each element has a unique 1-type, the types and location of its
witnesses y are given explicitly in the 2-types βi.

3 Undecidability of the full logic

For a moment we move to a slightly more general framework, namely, we assume that each
position of a data word carries a pair of data (d1, d2) from a product of two countably
infinite sets D1 and D2, rather than just a single datum. In this scenario, we allow to use two
equivalence relations ∼1 and ∼2, responsible, respectively, for the data tests of first and of
the second coordinate. It is known that even the most natural logic for this setting, namely
FO2[≤, succ,∼1,∼2], becomes immediately undecidable [4]. Moreover, the FO2 logic remains
undecidable even when the second datum is treated as a refinement of the first one, i.e. when
a formula ∀x∀y x ∼2 y → x ∼1 y is a tautology [2]. Here we explain how to modify the
undecidability proof from [2, Appendix A.1] to infer undecidability of C2[≤, succ,∼, πbin].

To prove undecidability of FO2[≤, succ,∼1,∼2] (under the proviso that ∼2 is a refine-
ment of ∼1), the authors of [2] provided a reduction from the halting problem for Minsky
Machines [26]. They encoded successful runs of a machine as data words from L, where:

L = s1s2(i1 + i2 + d1 + d2 + e1s1 + e2s2)∗e2e1.

An intuition behind such language is fairly simple: the letters ik and dk correspond to the
incrementation and the decrementation of the k-th counter, while the letters sk and ek
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correspond to zero tests. Then the subwords composed of all positions between each sk
and ek are assumed to have the equal first datum, i.e. are in the same ∼1 equivalence
class. As the next step, the relation ∼2 was employed to match each incrementation ik with
an appropriate dk from the same ∼1-class. Finally, consistency between two neighbouring
configurations was handled with a two-variable formula without any data-equality predicates.

Note that the equivalence relation ∼2 was only used to match occurrences of ik with
occurrences of dk and vice-versa. The same property can be stated with a single one-to-one
binary relation required to be a subset of ∼1. And such a property is easily expressible in C2:

∀x (∀y x ∼2 y → x ∼ y) ∧ ∀x
(
∃≤1y x ∼2 y ∧ ∃≤1y y ∼2 x

)
With such an interpretation of ∼2, the undecidability proof of [2] can be read without

any changes as an undecidability proof for C2[≤, succ,∼, πbin]. Thus we conclude:

I Theorem 1. Satisfiability of C2[≤, succ,∼, πbin ] over finite data-words is undecidable, even
if πbin contains only a single binary relation and the only allowed counting quantifier is ∃≤1.

Note that in the presence of uninterpreted binary symbols in the language, the successor
relation succ can be defined in C2[≤,∼, πbin] cf. [12, Lemma 3.1]. Hence we can also infer
the undecidability of the logic without the successor relation.

I Theorem 2. Satisfiability of C2[≤,∼, πbin] over finite data-words is undecidable.

4 When only one navigational binary relation is allowed

As a first step towards decidability, we consider sublogics of C2[≤, succ,∼, πbin] without
uninterpreted binary symbols πbin and with only a single binary navigational predicate.

For the case when only the succ relation is allowed, we reuse a recent result on C2

interpreted over trees with data. It was shown in [11] that the logic C2[↓,∼, πbin ], namely C2

with two distinguished relations interpreted, respectively, as a parent-child relation in a tree
and as an equivalence relation is NExpTime-complete. Note that a word can be seen as a tree,
where each node has at most one child. Moreover, by employing the formula ∀x∃≤1y x ↓ y we
can enforce that the intended tree models are actually words. Hence from [11] we conclude:

I Theorem 3. The satisfiability for C2[succ,∼] and C2[succ,∼, πbin ] is NExpTime-complete.

To obtain a tight NExpTime upper bound for the next logic, namely for C2[≤,∼], we
closely follow the line of NExpTime-completeness proof for FO2[≤,∼] from [4, Lemma 19].

We first show that any satisfiable C2[≤,∼] formula ϕ has a model with at most exponen-
tially many equivalence classes. This is done by taking an arbitrary model and performing
some surgery on it. More precisely, we first mark an appropriate number of equivalence
classes at the beginning (together with an appropriate number of their elements) as well
as on the end. Then, if any non-marked element needs a witness, it should find one in an
equivalence class of some marked element. Once such a lemma is shown, we can assign
some number to each of the equivalence classes. Since there are only exponentially many of
them, their numbers can be encoded with only polynomially many bits represented with
only polynomially many fresh unary predicates. Thus in that setting, testing whether two
positions carry the same data-value boils down to checking the number of their equivalence
classes and it can be handled easily in FO2. Finally, we rewrite the formula into a ∼-free one
and use a black-box an NExpTime algorithm for solving C2[≤] from [12]. Now we show:

I Lemma 4. Any satisfiable C2[≤,∼]-formula ϕ has a model, in which the total number
of ∼-equivalence classes eq(ϕ) is bounded exponentially in |ϕ|.
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Proof. Assume that ϕ is in the weak normal form (cf. Eq. 1). Let C be the maximal number
appearing in the counting quantifiers and let t be the number of all possible 1-types over the
vocabulary of ϕ. Note that both C and t are exponential in |ϕ|. In the forthcoming proof,
we will show how to construct a model of ϕ with at most t · 2(C+1) different classes.
Let A be a model of ϕ. For each 1-type α we mark the first C+1 positions of A with type α
from mutually different classes [or all of them if there are less than C+1 of them in A].
Analogously we repeat the process for the last C+1 positions of type α. Let B be a subword
of A composed of only those positions of A, which has the same data as some marked element.

We will show that B |= ϕ. Since the described construction preserves 1-types, we conclude
that B satisfies the ∀x∀y χ part of ϕ (because the satisfaction of χ depends only on 1-types
realized in a model). Moreover, the satisfaction of all subformulae of the form ∀∃≤Ci are
preserved too, due to the fact that B is a substructure of A. The tricky part here is show
preservation of satisfaction of ∀x∃≥Ciy χi(x, y) formulae. Take an arbitrary position p from B

and consider what kind of witnesses y it has in A to satisfy χ(x, y). All possible y from the
same class as p are preserved in the construction, so they can still serve as witnesses for p. It
could be also the case that p had k (where k ≤ C) witnesses from a different class, to the
right of p. But since at least k classes were marked during the construction, then p can take
as witnesses some k elements from those marked classes (in the worst case such elements
coincide with the original ones). For witnesses to the left of p we proceed analogously. Thus,
by considering all sub-cases, we infer B |= ϕ. The total number of different classes in B is
bounded by t · 2(C+1), and hence is only exponential in |ϕ|. J

Let p0, p1, . . . , pm be fresh unary predicates, such that 2m+1 ≥ eq(ϕ) > 2m holds for eq(ϕ)
obtained from the above lemma. As we have already mentioned, once the number of equi-
valence classes is bounded, checking whether two elements x and y are related by ∼ boils
down to checking whether they encode the same number on pi predicates. Hence, we can
replace all subformulae of the form x ∼ y in ϕ with a formula ∧mi=0(pi(x) ↔ pi(y)). The
formulae obtained in this way are (purely) C2[≤] formulae and are of polynomial size. Thus
by employing an NExpTime algorithm for deciding fin-sat of C2[≤] from [12] we obtain:

I Theorem 5. Satisfiability for C2[≤,∼] over finite data-words is NExpTime-complete.

5 When uninterpreted relations are disallowed

In this section, we focus on the most expressive variant of data logics without binary
predicates, namely on C2[≤, succ,∼]. It is known that its FO2 version is Vass-complete [4].
Here we show that the Vass-completeness transfers also to its C2 counterpart, which will
be done by a model-preserving translation from C2[≤, succ,∼] to FO2[≤, succ,∼]. Note that
since FO2[≤, succ,∼] is non-elementary, we do not need to care too much about how complex
complexity-wise the reduction will be, as long as its size is bounded by some elementary
function. Before we start, we will assume that the input formula is in the Scott-like normal
form (2) defined in Section 2.2. Our plan is to gradually remove all ∀∃./ conjuncts from
ϕ, replacing them with some equisatisfiable formulae without counting quantifiers. Let
C = 1 + maxni=1{Ci} and let us proceed as follows. Observe that any ∀∃./ψ conjunct requires,
for a fixed x, at most C witnesses for its satisfaction. Hence, once we would know in advance
how many witnesses for ψ the element x has, we would immediately know whether the
∀∃./ψ formula is satisfied or not. Thus, we aim at providing such information. In order to do
that, we introduce fresh unary predicates labelling the elements of the model, both globally
and locally in every equivalence class, numbering occurrences the certain 1-types (from the
start and from the end of the model) up to the threshold C. It will suffice to eliminate the
counting.
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To explain the technique, let us first consider the case of
∧n
i=1 ∀x

(
πi(x)→ ∃./iCiy βi

)
conjuncts, which we prefer to call class conjuncts, since they speak about witnesses y from
the same equivalence class as x. For each 1-type π and i ∈ {1, 2, . . . , C+1} we introduce fresh
unary predicates cl-leftπi and cl-rightπi and we impose their interpretation, e.g. that cl-leftπi (x)
holds iff x is the i-th occurrence (counted from 1 from the beginning of the model) of the
1-type π in the equivalence class of x. Writing the formulae imposing such interpretation is
easy, e.g. to impose that cl-leftπ2 means the second occurrence of the type π, we write:

∀xcl-leftπ2 (x)↔ (π(x) ∧ ∃y.(y < x ∧ y ∼ x ∧ π(y)) ∧ ∀y (y < x ∧ y ∼ x ∧ π(x)→ cl-leftπ1 (y)))

I Fact 6. There is an FO2[≤, succ,∼] formula ϕcl such that for every model A |= ϕcl and
every 1 ≤ i ≤ C we have that cl-leftπi (x) (resp. cl-rightπi (x)) holds iff x is the i-th occurrence
from the beginning of the model (resp. the end) of the 1-type π in the equivalence class of x.

The above fact allows us to eliminate counting quantifiers from the class conjuncts from ϕ. By
way of example, consider the formula π(x) → ∃≤Ciy. (π′(y) ∧ x ∼ y ∧ y < x ∧ ¬succ(x, y)),
which states that each x of the 1-type π should see at most Ci elements of the type π′
(in its equivalence class) strictly to its left. By employing Fact 6 we can rewrite it into:
π(x)→ ¬∃y.(y < x ∧ x ∼ y ∧ ¬succ(x, y) ∧ cl-leftCi+1(x)). Other cases are treated similarly.

I Lemma 7. Any C2[≤, succ,∼] formula ϕ in the normal form can be transformed into
equisatisfiable C2[≤, succ,∼] formula ϕ′ without counting quantifiers in the class conjuncts.

Now we discuss how to eliminate counting quantifiers in the non-class conjuncts. The me-
thod will be similar to the previous one, but the introduced labelling will be more involved. By
way of example, consider the formula π(x) → ∃≥Ciy. (π′(y) ∧ x 6∼ y ∧ x < y ∧ ¬succ(y, x)),
which states that each x of the 1-type π requires at least Ci witnesses, outside the equivalence
class of x, of the 1-type π′ strictly to the right of x. It would be tempting to claim that the
global labelling of the last C elements with the 1-type π′ would be sufficient for our purposes.
Unfortunately, it is not: it could be the case that the last C elements are in the same class.
To omit such difficulties, we label up C2 elements with the type π in total (from the left
and from the right) with the predicates gl-leftπi , gl-rightπi , but we require that no more than
C elements from the same class is marked (i.e. in our numbering we simply skip elements
from the class containing C labelled elements). In means that if an element needs to find
witnesses from outside of its class, it should find them among the marked elements. Once
again, providing such a labelling is an easy exercise in FO2[≤, succ,∼].

I Fact 8. There is an FO2[≤, succ,∼] formula ϕgl such that for every model A |= ϕgl and
every 1 ≤ i ≤ C2 we have that gl-leftπi (x) (resp. gl-rightπi (x)) holds iff x is the i-th occurrence
from the beginning of the model (resp. the end) of the 1-type π, skipping in the enumeration
all the elements already having C elements labelled with some gl-leftπj (x) (resp. gl-rightπj (x))
in their equivalence class.

Now we will discuss how to employ such a labelling to eliminate counting quantifiers in the non-
class conjuncts. Recall the toy formula: π(x)→ ∃≥Ciy. (π′(y) ∧ x 6∼ y ∧ x < y ∧ ¬succ(y, x)).
We need to state that an element x can see at least C elements of the 1-type π′ to its right,
outside its equivalence class. Observe that we already enumerated elements of the 1-type π′
inside the equivalence class of x. Hence if there are j elements of the type π′ to the right
of x, i.e. cl-rightπ

′

j (y) is satisfied for some y > x having the same data-value as x, it suffices
to state that x can see to its right an element labelled with gl-rightπ

′

Ci+j . And this can be
defined with an FO2[≤, succ,∼] formula. By applying analogous reasoning, one can eliminate
counting quantifiers also in the other cases. Hence we conclude the following lemma:

TIME 2020



17:8 A Note on C2 Interpreted over Finite Data-Words

I Lemma 9. Any C2[≤, succ,∼] formula ϕ in the normal form can be transformed into
equisatisfiable C2[≤, succ,∼] formula ϕ′ without counting quantifiers in the non-class con-
juncts. Moreover, ϕ′ does not introduce any counting quantiers in the class conjuncts.

By employing Lemma 7, Lemma 9 and Vass-completeness of FO2[≤, succ,∼] we establish
the main theorem of this section.

I Theorem 10. For any C2[≤, succ,∼] formula ϕ there exists an equisatisfiable FO2[≤
, succ,∼] formula ϕ′ of an elementary size in |ϕ| and hence, C2[≤, succ,∼] is Vass-complete.

6 C2 with full linear order and bounded data-tests

In this section we prove that the decidability of the full logic can be regained, under a
reasonable assumption that no more than k (for a fixed number k) elements in the model
share the same data-value. To express such a restriction in the logical terms, we employ the
relation ∼k, interpreted as an equivalence relation with equivalence classes of size at most k.
We show that the logic C2[≤, succ,∼k, πbin ] is Vass-complete. The proof goes via a reduction
to C2[≤, succ, πbin]. Since the latter logic is Vass-complete [12] we conclude the result.

More precisely, given a C2[≤, succ,∼k, πbin] formula ϕ we will produce an equisatisfiable
C2[≤, succ, πbin] formula ϕtr by adding to ϕ conjuncts that encode some ∼k properties and
enable model transformations that preserve satisfiability of ϕ and the interpretations of ≤ and
succ. The essential part of the reduction will be to use these transformations on an arbitrary
model of ϕtr to produce a model of ϕ in which ∼k is interpreted as a bounded equivalence
relation. By W(≤, succ, πbin) denote the class of all words and by W(≤, succ,∼k, πbin) its
subclass where ∼k is interpreted as described above.

6.1 Plethora of types
We make extensive use of the notions of (atomic) 1- and 2-types. In both cases, we take the
notion of consistency to incorporate the constraint that the distinguished predicate ∼k is
interpreted as a reflexive and a symmetric relation (note that transitivity would require three
variables and thus cannot be enforced in the same way). If τ is a 2-type, we denote by τ−1 the
2-type obtained by exchanging the variables x and y in τ , and call τ−1 the inverse of τ . We
denote by tp1(τ) the 1-type obtained by removing from τ any literals containing y; and we
denote by tp2(τ) the 1-type obtained by first removing from τ any literals containing x, and
then replacing all occurrences of y by x. Evidently, tp2(τ) = tp1(τ−1). We equivocate freely
between finite sets of formulae and their conjunctions; thus, we treat 1-types and 2-types as
formulae, where convenient. Let A be any structure interpreting Σ. If a ∈ A, then there exists
a unique 1-type π such that A |= π[a]; we denote π by tpA[a] and say that a realizes π. If, in
addition, b ∈ A \ {a}, then there exists a unique 2-type τ such that A |= τ [a, b]; we denote
τ by tpA[a, b] and say that the pair a, b realizes τ . Evidently, in that case, τ−1 = tpA[b, a];
tp1(τ) = tpA[a]; and tp2(τ) = tpA[b]. For a fixed C2 formula in normal form (1) a ϕ-ray-type
is a 2-type ρ such that |= ρ→

∨n
h=1 χi. If A |= ρ[a, b] for distinct elements a, b, then we say

that the pair 〈a, b〉 is a ϕ-ray. We call a ϕ-ray-type ρ ϕ-invertible if ρ−1 is also a ϕ-ray-type.
We call a 2-type τ ϕ-silent if neither τ nor τ−1 is a ϕ-ray-type.

We now construct an apparatus for describing the “local environment” of elements in
structures. Let the ϕ-ray-types be listed in some fixed order (depending on Σ) as ρ1, . . . , ρJ . A
ϕ-star-type is an (J+1)-tuple σ = 〈π, v1, . . . , vJ〉, where π is a 1-type over Σ and the vj are non-
negative integers such that vj 6= 0 implies tp1(ρj) = π for all j (1 ≤ j ≤ J). We denote the 1-
type π by tp(σ). To motivate this terminology, suppose A is a structure interpreting Σ. For any
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a ∈ A, we define stA(a) = 〈tpA[a], v1, . . . , vJ〉 ,where vj = |{b ∈ A : b 6= a and tpA[a, b] = ρj}|.
Evidently, stA[a] is a star-type; we call it the ϕ-star-type of a in A, and say that a realizes
stA[a]. Intuitively, the star-type of an element records the number of rays of each type emitted
by that element. It helps to think, informally, of a star-type σ as emitting a collection of rays
of various types, and of nodes as accepting rays. When ϕ is known from a context or arbitrary,
we will simply write ray-, invertible-, silent- or star-type instead of ϕ-ray-, ϕ-invertible-,
ϕ-silent- or ϕ-star-type. We say that a structure A realizes a set of 2-types (resp. star-types)
Φ if every pair of nodes (resp. every node) in A realizes a 2-type (resp. a star-type) from Φ.
Importance of the above notions of 2-, ray- and star-types is summarized in the following.

I Proposition 11. Let A be a structure such that A |= ϕ. If B is a structure interpreting
the same signature, and realizing the same set of 2-types and the same set of star-types as A,
then B |= ϕ.

Thus, the satisfiability of C2 formulae is invariant under arbitrary transformations of
structures that preserve sets of realized 2-types and star-types. Our transformations are more
constrained; for every element of a model they preserve its star-type by only allowing changes
of targets of emitted ray-types. Special care must be taken in order not to emit a ray from
a source node to a node which already emits a ray back to the source node. Therefore we
introduce a restriction allowing to only modify rays that are invertible (rigidity), and another
restriction that a node cannot emit an invertible ray-type and another (invertible- or not)
ray-type to two nodes with the same 1-type (superchromaticity). This way, we may select an
invertible ray-type τ , edges τ(e1, e) τ(e′1, e′) and replace them by edges τ(e′1, e) and τ(e1, e

′)
preserving star-types of all involved nodes and not introducing duplicate rays. Furthermore,
during the entire procedure we employ additional precautions to preserve both linear order
and its successor.

6.2 Towards Vass-completeness of C2[≤, succ,∼k, πbin]
Fix a C2[≤, succ,∼k, πbin] formula ϕ in normal form (1) and its interpretation A. We say
that A is ϕ-rigid if A |= a ∼k b implies that 〈a, b〉 is an invertible ray. We say that ϕ is
rigid if all models of ϕ are ϕ-rigid. Define ωk as ∀x∃≤ky.x ∼k y. Formulae ϕ and ϕ ∧ ωk are
equivalent over W(≤, succ,∼k, πbin). Moreover, the latter formula is rigid. We say that A
is ϕ-semichromatic if no ray is emitted and accepted by nodes of the same 1-type. We say
that A is ϕ-superchromatic if it is ϕ-semichromatic and no element emits two or more rays
at least one of which is invertible, having the same absorption-type as each other. We say
that ϕ is ϕ-semichromatic (resp. ϕ-superchromatic) if all models of ϕ are ϕ-semichromatic
(resp. ϕ-superchromatic). The proof of the following lemma is standard (see [10]).

I Lemma 12. There is a C2 formula χϕ such that ϕ and ϕ ∧ χϕ are equisatisfiable on
W(≤, succ,∼k, πbin) and ϕ∧ χϕ is superchromatic. Moreover, if ϕ is rigid then ϕ∧ χϕ is so.

Now we define formulae that encode ∼k. Fix a set of star-types st. For σ, ρ ∈ st we write
σ ∼k ρ if there exists an invertible ray type τ such that τ ∈ σ, τ−1 ∈ ρ and ∼k (x, y) ∈ τ .

Let A be a rigid W(≤, succ,∼k, πbin)-structure over st. Structure A consists of disjoint
substructures, each generated by an equivalence class of ∼A

k . We call such a substructure
a class in A. For a class C in A we call the set {σ ∈ st | σ is realized in C} the class type
of C and denote it by ct(C). Thus ct(C) is a subset of st. However, not every subset of st
corresponds to a class type in a W(≤, succ,∼k, πbin)-structure. A subset ct of st is called
a class type wrt. st if there is a bijection b from c to the k-clique Kk = (V,E) such that
(b(σ), b(ρ)) ∈ E if and only if σ ∼k ρ. Thus, we may identify ct with a relational structure, a
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clique, being an equivalence class of ∼k. Observe that if C is a class in A then ct(C) is a class
wrt. st. Thus every class wrt. st is potentially a class in some word over st. Since the size
of each class type is bounded by k, the number of class types is bounded by

(|st|
k

)
. For any

e ∈ C we denote with ctA(e) its class type in A, equal to ct(C).
Having the above definitions at hand, we may define a two-variable formula ψst that

specifies necessary conditions for ∼k to interpret a bounded equivalence relation in a structure
that realizes st. Formula ψst expresses that every node has precisely one class type, that two
nodes connected by ∼k relation share the same class type, and that a node with a class type
c realizes some star-type σ ∈ c. The last property together with ϕ-semichromaticity implies
that star-types of elements within every equivalence class are unique. The entire formula
implies that for every node in a structure we may find a set of nodes that together could
form an equivalence class. Indeed, we say ‘could‘ since it is not necessary the immediate case,
and forming equivalence class may require structure transformations.

For ϕ in normal form (1) by st(ϕ) denote the set of star-types compatible with ϕ.

I Lemma 13. Any model of a C2[≤, succ,∼k, πbin] formula ϕ can be expanded to a model
of ψst(ϕ) by interpreting fresh unary predicates.

For a fixed ϕ to be checked for satisfiability, we set ϕtr ::= ϕ∧ωϕ∧χϕ∧ωϕ∧ψst(ϕ∧ωϕ∧χϕ∧ωϕ ).

I Lemma 14. If a C2[≤, succ,∼k, πbin ] formula ϕ is satisfiable in W(≤, succ,∼k, πbin) then
the translation ϕtr is satisfiable in W(≤, succ, πbin).

Proof. Let A be a model of ϕ such that A ∈ W(≤, succ,∼k, πbin). We will expand A by
interpreting some fresh unary predicates to obtain a model of ϕtr. First, observe that A

models ωϕ, as each equivalence class of ∼A
k has at most k elements. Using Lemma 12, after

interpreting some fresh unary predicates, A becomes a model of χϕ∧ωϕ
. Then, using Lemma 13,

again by interpreting some fresh unary predicates, A becomes a model of ψst(ϕ∧ωϕ∧χϕ∧ωϕ ).
The obtained structure remains in classW(≤, succ,∼k, πbin) and thus also inW(≤, succ, πbin)
and satisfies ϕtr. J

We now define structure transformations. First, we define a switch, whose aim is only to
preserve the order of elements. Let us write a�A b iff a ≤A b holds and succA(a, b) does not.

I Definition 15. Let A be a W(≤, succ, πbin) structure and e1, e, e′, be elements of A such
that e1 �A e and e�A e′. Define (e1, e, e

′)–switch of A as the structure B which is identical
to A with the exception that tpB(e1, e) = tpA(e1, e

′) and tpB(e1, e
′) = tpA(e1, e).

Observe that relative order of e1, e and e′ is preserved after the switch and thus both succA
and ≤A are preserved. The transformation we use is a sequence of two switches, as described
by the following lemma.

I Lemma 16 (Switching lemma). Let A be a superchromatic W(≤, succ, πbin) structure, e′1,
e1, e, e′ be elements of A such that e1 �A e, e′1 �A e, e�A e′, and 2-types tpA(e′1, e′) and
tpA(e1, e) are both the same invertible ray type. The structure B obtained by the (e1, e, e

′)–
switch of A followed by the (e′1, e, e′)–switch belongs to W(≤, succ, πbin) and realizes the same
set of star- and 2-types as A.

Proof. Structure A satisfying assumptions of the Lemma is depicted on Fig 1(left). Note
that tpA(e′1, e) and tpA(e1, e

′) are silent, as otherwise A would violate the superchromaticity
condition. E.g. tpA(e′1, e) cannot be a ray type, as tpA(e′1, e′) is invertible and tpA(e′) = tpA(e).
The equality of 1-types hold as a conclusion of tpA(e′1, e) = tpA(e1, e

′). In a similar way
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tpA(e, e′1) cannot be a ray type, thus the tpA(e′1, e) is silent. In a similar way tpA(e1, e
′) can

be proven silent. After switching we obtain the structure on Fig 1(right), whose star types
and 2-types are the same as in A. J

e′1 e1

e
e′

τ

τ

e′1 e1

e
e′

τ

τ

Figure 1 Structure A before switching (left) and after switching (right).

The following lemma is the main lemma of this section. There we transform a model of
ϕtr to another model, where ∼k is interpreted as a bounded equivalence relation, and where
the order is preserved. We decompose the model into substructures generated by elements
connected by succ and sharing the same class type (thus any class type also decomposes
into components). We show that elements within the same component in the model are
necessarily connected by ∼k predicate. Then we employ structure transformations defined
above (i.e. switches) to show that elements of distinct components of the same class type
can be pairwise connected by ∼k to form equivalence classes.

I Lemma 17. If the formula ϕtr is satisfiable in W(≤, succ, πbin) then the formula ϕ is
satisfiable in W(≤, succ,∼k, πbin).

Proof. Let A be a finite model of ϕtr such that A ∈ W(≤, succ, πbin). We will transform A to
a W(≤, succ,∼k, πbin) structure while ensuring that every element of A retains its star-type
and the set of realized 2-types is preserved. Since A |= ϕ, by Proposition 11, the obtained
structure will still be a model of ϕ. Observe that ϕtr ensures reflexivity and symmetry of
∼k. Thus to obtain a W(≤, succ,∼k, πbin) structure we only need to make ∼k transitive.
During the transformation the linear order (that is both succA and ≤A) remains fixed, while
particular 2-types emitted and accepted by structure nodes may change.

Recall that we may identify each class type c with a relational structure (a clique). By
component of c we mean any maximal subgraph d of c such that any node of d emits a
succ edge to some other node of d Thus graph c consists of (at most k) linearly ordered
components, each consisting of at most k elements. Let σ1, . . . σl be all nodes of d listed in
order succ (all these star-types are distinct as all star-types in any class-type are distinct).
Since A |= ψst(ϕ∧ωϕ∧χϕ∧ωϕ ), components of class-types correspond to substructures of A in
the following way. If e1 ∈ A is such that ct(e1) = c and stA(e1) = σ1 then there exists l − 1
nodes e2, . . . el ∈ A such that ct(ei) = c, stA(ei) = σi for i ∈ {1, . . . , l}, and succA(ei, ei+1)
for i ∈ {1, . . . , l − 1}. By definition of d we thus have ei ∼A

k ei+1 for i ∈ {1, . . . , l − 1}. We
call the substructure D of A generated by e1, . . . , el a component of A corresponding to d.
We define co(D) = d (the component-type of D) and ct(D) = c (the class-type of D).

We will transform A so to form equivalence classes of ∼k. These classes will be k-cliques
composed of components. Thus, we need to ensure that two conditions hold:

if two nodes belong to the same component then they are connected by ∼k edge,
for every component Di of A such that all components of ct(Di) listed in order are
d1, . . . di, . . . dl, for some numbers i and l, we have the following. There exist l components
D1, . . .Di, . . .Dl of A such that co(Di) = di and if ei ∈ Di and ej ∈ Dj then ei ∼A

k ej ,
for some numbers i, j.
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First, we will show that every two elements of a given component of A are related by ∼A
k ,

i.e. that every component of A is a clique. We will consider components of A in the order
defined by ≤A, assuming that all components visited so far satisfy the required property.
Let D be a component of A currently under inspection, let c be the class type of D and
let d be the component type of D. Take any a, b ∈ D such that a ≤A b. Let the star-types
of a, b in A be resp. σa and σb. Ad absurdum, assume that a 6∼A

k b holds. Since a and b

belong to the same component D, star-types σa and σb belong to the component d. Since
d is a clique graph, there exists ray-type τ such that x ≤ y ∈ τ , x ∼k y ∈ τ , τ ∈ σa, and
τ−1 ∈ σb. Since the star-type of b is σb, there exists a′ ∈ A′ such that tpA(a′, b) = τ . Since
A |= ψst(ϕ∧ωϕ∧χϕ∧ωϕ ), class-type of a′ is the same as the class-type of b, i.e. ct(a′) = c. Since
1-types within class-types are unique, we have stA(a′) = σa and a′ belongs to a component
D′ of A such that the component type of D′ is d, D′ 6= D and D′ occurs in A earlier (wrt.
≤A) than D. By the inductive assumption all elements of D′ are connected by ∼k. Since the
component type of D′ is d, there exits a b′ ∈ D′ such that stA(b′) = σb. Thus tpA(a′, b′) = τ .
But, simultaneously tpA(a′, b) = τ . Because of superchromaticity this can only be true if
b′ = b, but these nodes belong to disjoint substructures D′ and D of A. Contradiction. Thus
a ∼A

k b holds implying, that any two elements of the same component of A are related by ∼A
k .

Now we must switch edges of A so to ensure that elements of distinct components are
connected by ∼k edges to form equivalence classes of ∼A

k . We traverse components of A in
the order defined by succA restoring ∼k relations between their nodes, when necessary, by
employing Lemma 16. J

Since the finite satisfiability for C2[≤, succ, πbin] is Vass-complete [12], by Lemma 14 and
Lemma 17 we immediately conclude:

I Theorem 18. C2[≤, succ,∼k, πbin] is Vass-complete.

7 Conclusions

We considered counting extensions of the two-variable logic on finite data-words. While our
main logic, namely C2[≤, succ,∼, πbin] turned out to be undecidable, we identified several
decidable sub-logics, with complexities ranging from NExpTime to Vass, depending on the
allowed binary relations in the vocabularies. We hope that the outcome of the paper might
be interesting for the two-variable community and that the established decidability results
can be later generalised to capture even more expressive forms of quantitative properties.
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