
Operational Semantics for a Fuzzy Logic Programming System with Defaults and
Constructive Answers

Hannes Strass Susana Munoz-Hernandez Victor Pablos Ceruelo

Technical University of Madrid (Spain) ∗

E-mail: hannes.strass@alumnos.upm.es, {susana, vpablos}@fi.upm.es

Abstract— In this paper we present the operational semantics
of RFuzzy, a fuzzy Logic Programming framework that represents
thruth values using real numbers from the unit interval. RFuzzy pro-
vides some useful extensions: default values to represent missing in-
formation, and typed terms to intuitively restrict predicate domains.
Together, they allow the system to give constructive answers in addi-
tion to truth values. RFuzzy does not confine to a particular Fuzzy
Logic, but aims at being as general as possible by using the notion of
aggregation operators.

Keywords— Operational Semantics, Logic Programming Appli-
cation

1 Introduction
For many real-world problems, crisp knowledge representa-
tion is not perfectly adequate. Information that we handle
might be imprecise, uncertain, or even both. Classical two-
valued logic cannot easily represent these qualitative aspects
of information. To address this issue, multiple frameworks for
incorporating uncertainty in logic have been developed over
the years: fuzzy set theory, probability theory, multi-valued
logic, or possibilistic logic; to mention only some.

From the point of view of practical tools to support this rea-
soning the field is not so rich. Logic programming is however
a perfect candidate for the implementation of these tools be-
cause it is traditionally used for problem solving and knowl-
edge representation.

1.1 Fuzzy Logic approaches

The result of introducing Fuzzy Logic into Logic Program-
ming has been the development of several fuzzy systems over
Prolog. These systems replace the inference mechanism,
SLD-resolution, of Prolog with a fuzzy variant that is able to
handle partial truth [1]. Most of these systems implement the
fuzzy resolution introduced by Lee in [2], examples being the
Prolog-Elf system [3], the Fril Prolog system [4] and the F-
Prolog language [5]. However, there is no common method
for fuzzifying Prolog as has been noted in [6].

1.2 Fuzzy Prolog

One of the most promising fuzzy tools for Prolog was the
“Fuzzy Prolog” system [7, 8]. This approach is more general
than others in some respects:

1. A truth value is a finite union of sub-intervals on [0, 1].
∗This work is partially supported by the project DESAFIOS -

TIN 2006-15660-C02-02 from the Spanish Ministry of Education
and Science, by the Spanish Ministry of Science and Innovation Re-
search Staff Training Program - BES-2008-008320 and by the project
PROMESAS - S-0505/TIC/0407 from the Madrid Regional Govern-
ment.

2. A truth value is propagated through the rules by means of
an aggregation operator. The definition of aggregation
operator is general.

3. Crisp and fuzzy reasoning are consistently combined in
a Prolog compiler [9].

Fuzzy Prolog adds fuzziness to a Prolog compiler using
CLP(R) instead of implementing a new fuzzy resolution as
other former fuzzy Prologs do. So, it uses Prolog’s built-in
inference mechanism, and the constraints and their operations
provided by CLP(R) to handle the concept of partial truth. It
represents intervals as constraints over real numbers and ag-
gregation operators as operations with these constraints.

There are other proposals, e.g. in [10], that provide an in-
terpretation of truth values as intervals, but Fuzzy Prolog pro-
posed to generalise this concept to unions of intervals for the
first time.

1.3 Multi-adjoint logic

Over the last few years several papers have been published
by Medina et al. [11, 12, 13] about multi-adjoint program-
ming. The theoretical model described in these works led
to the development of FLOPER [14], another Fuzzy Logic
Programming system. It has a Logic-Programming-inspired
syntax and provides free choice of aggregation operators and
credibility of rules just as RFuzzy does. There are however
some things that FLOPER cannot do: (1) deal with missing
information (which RFuzzy does by default truth value dec-
larations), (2) type atoms and predicates to give constructive
answers, and (3) provide syntactic sugar to express truth value
functions.

1.4 Motivation

The generality of the approach pursued in [7, 8] turned out to
make many users feel uncomfortable: Fuzzy Prolog is rather
expressive, so it is not always clear how knowledge should be
represented. Furthermore, interpreting the output that comes
as a sequence of constraints maybe possible for a human but
is very hard to do for a computer program – especially basing
a decision upon it may not be straightforward.

To address these issues, we propose the RFuzzy framework.
It is considerably simpler to use than the above-mentioned
Fuzzy Prolog, but still contains many of its nice features. In
RFuzzy, truth values will be represented by real numbers from
the unit interval [0, 1]. This simplifies making modelling deci-
sions and interpreting the output of the system. We still use the
general concept of aggregation operators to be able to model
different Fuzzy Logics. The rules of RFuzzy programs will
have attached a credibility value to them: it allows the author

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1827

of the rule to express how much they confide in the relation
expressed by the rule. In addition, RFuzzy offers features that
are very useful for knowledge representation, namely default
values and types.

The rest of the paper is organised as follows: Section 2
introduces the abstract syntax of RFuzzy. In Section 3 we
present an operational semantics for RFuzzy and illustrate it
with an example. The last but one section shortly sketches the
key points of the implementation and Section 5 concludes.

2 RFuzzy Syntax

We will use a signature Σ of function symbols and a set of
variables V to “build” the term universe TUΣ,V (whose el-
ements are the terms). It is the minimal set such that each
variable is a term and terms are closed under Σ-operations. In
particular, constant symbols are terms.

Similarly, with use a signature Π of predicate symbols to
define the term base TBΠ,Σ,V (whose elements are called
atoms). Atoms are predicates whose arguments are elements
of TUΣ,V . Atoms and terms are called ground if they do not
contain variables. As usual, the Herbrand universe H is the
set of all ground terms, and the Herbrand base B is the set of
all atoms with arguments from the Herbrand universe.

To combine truth values in the set of real truth values
[0, 1], we will make use of aggregation operators. A func-
tion F̂ : [0, 1]n → [0, 1] is called an aggregation opera-
tor if it verifies F̂ (0, . . . , 0) = 0 and F̂ (1, . . . , 1) = 1.
We will use the signature Ω to denote the set of used op-
erator symbols F and Ω̂ to denote the set of their associ-
ated aggregation operators F̂ . An n-ary aggregation oper-
ator is called monotonic in the i-th argument, if addition-
ally x ≤ x′ implies F̂ (x1, . . . , xi−1, x, xi+1, . . . , xn) ≤
F̂ (x1, . . . , xi−1, x

′, xi+1, . . . , xn). An aggregation operator
is called monotonic if it is monotonic in all arguments.

Immediate examples for aggregation operators that come to
mind are typical examples of t-norms and t-conorms: mini-
mum min(a, b), maximum max(a, b), product a · b, and prob-
abilistic sum a + b− a · b.

The above general definition of aggregation operators sub-
sumes however all kinds of minimum, maximum or mean op-
erators.

Definition. Let Ω be an aggregation operator signature, Π a
predicate signature, Σ a term signature, and V a set of vari-
ables.

A fuzzy clause is written as

A
c,Fc←−F B1, . . . , Bn

where A ∈ TBΠ,Σ,V is called the head, B1, . . . , Bn ∈
TBΠ,Σ,V is called the body, c ∈ [0, 1] is the credibility value,
and Fc ∈ Ω(2) and F ∈ Ω(n) are aggregation operator sym-
bols (for the credibility value and the body resp.)

A fuzzy fact is a special case of a clause where n = 0,
c = 1, Fc is the usual multiplication of real numbers “·” and
F = v ∈ [0, 1]. It is written as A← v.

A fuzzy query is a pair 〈A, v〉, where A ∈ TBΠ,Σ,V and v
is either a “new” variable that represents the initially unknown
truth value of A or it is a concrete value v ∈ [0, 1] that is asked
to be the truth value of A. �

Intuitively, a clause can be read as a special case of an im-
plication: we combine the truth values of the body atoms with
the aggregation operator associated to the clause to yield the
truth value for the head atom. For this truth value calculation
we are completely free in the choice of an operator.

Example. Consider the following clause, that models to
what extent cities can be deemed good travel destinations –
the quality of the destination depends on the weather and the
availability of sights:

good-destination(X)1.0,·←−·nice-weather(X), many-sights(X).

The credibility value of the rule is 1.0, which means that we
have no doubt about this relationship. The aggregation oper-
ator used here in both cases is the product “·”. We enrich the
knowledge base with facts about some cities and their conti-
nents:

nice-weather(madrid)← 0.8,

nice-weather(istanbul)← 0.7,

nice-weather(moscow)← 0.2,

many-sights(madrid)← 0.6,

many-sights(istanbul)← 0.7,

many-sights(sydney)← 0.6,

city-continent(madrid, europe)← 1.0,

city-continent(moscow, europe)← 1.0,

city-continent(sydney, australia)← 1.0,

city-continent(istanbul, europe)← 0.5,

city-continent(istanbul, asia)← 0.5.

Some queries to this program could ask if Madrid is a good
destination,
〈good-destination(madrid), v〉. Another query could ask if
Istanbul is the perfect des-
tination, 〈good-destination(istanbul), 1.0〉.The result of the
first query will be the real value 0.48 and the second one will
fail. It can be seen that no information about the weather in
Sydney or sights in Moscow is available although these cities
are “mentioned”. (

In the above example, the knowledge that we represented
using fuzzy clauses and facts was not only vague but moreover
incomplete. As this is rather the norm than the exception, we
would like to have a mechanism that can handle non-present
information.

In standard logic programming, the closed-world assump-
tion is employed, i.e. the knowledge base is not only assumed
to be sound but moreover to be complete. Everything that
can not be derived from the knowledge is assumed to be false.
This could be easily modelled in this framework by assuming
the truth value 0 as “default” truth value, so to speak. Yet we
want to pursue a slightly more general approach: arbitrary de-
fault truth values will be explicitly stated for each predicate.
We even allow the definition of different default truth values
for different arguments of a predicate. This is formalised as
follows.

Definition. A default value declaration for a predicate
p ∈ Π(n) is written as default(p(X1, . . . , Xn)) =

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1828

[δ1 if ϕ1, . . . , δm if ϕm] where δi ∈ [0, 1] for all i. The ϕi are
first-order formulas restricted to terms from TUΣ,{X1,...,Xn},
the predicates = and �=, the symbol true, and the junctors ∧
and ∨ in their usual meaning. �

Example (continued). Let us add the following default
value declarations to the knowledge base and thus close the
mentioned gaps.

default(nice-weather(X)) = 0.5,

default(many-sights(X)) = 0.2,

default(good-destination(X)) = 0.3

They could be interpreted as: when visiting an arbitrary city
of which nothing further is known, it is likely that you have
nice weather but you will less likely find many sights. Irre-
spective of this, it will only to a small extent be a good travel
destination.

To model the fact that a city is not on a continent unless
stated otherwise, we add another default value declaration for
city-continent: default(city-continent(X, Y)) = 0.0. No-
tice that in this example m = 1 and ϕ1 = true for all the
default value declarations. (

The default values allow our knowledge base to answer ar-
bitrary questions about predicates that occur in it. But will the
answers always make sense? To stay in the above example,
if we ask a question like “What is the truth value of nice-
weather(australia)?” we will get the answer “0.5” which
does not make too much sense since Australia is not a city,
but a continent.

To address this issue, we introduce types into the language.
Types can be viewed as inherent properties of terms – each
term can have zero or more types. We use them to restrict the
domains of predicates.

Definition. A term type declaration assigns a type τ ∈ T
to a term t ∈ H and is written as t : τ . A predicate type
declaration assigns a type (τ1, . . . , τn) ∈ T n to a predicate
p ∈ Πn and is written as p : (τ1, . . . , τn), where τi is the type
of p’s i-th argument. �

Example (continued). Using the set of types T =
{City, Continent}, we add some term type declarations to our
knowledge base:

madrid : City, istanbul : City,

sydney : City, moscow : City;
africa : Continent, america : Continent,

antarctica : Continent,
asia : Continent, europe : Continent.

We also type the predicates in the obvious way:

nice-weather : (City),
many-sights : (City),

good-destination : (City),
city-continent : (City, Continent).

(
For a ground atom A = p(t1, . . . , tn) ∈ B we say that it is

well-typed with respect to T iff p : (τ1, . . . , τn) ∈ T implies
τi ∈ tT (ti) for all i.

For a ground clause A
c,Fc←−F B1, . . . , Bn we say that it is

well-typed w.r.t. T iff all Bi are well-typed for 1 ≤ i ≤ n
implies that A is well-typed (i.e. if the clause preserves well-
typing). We say that a non-ground clause is well-typed iff all
its ground instances are well-typed.

Example (continued). With respect to the given type dec-
larations, city-continent(moscow, antarctica) is well-typed
whileas city-continent(asia, europe) is not. (

A fuzzy logic program P is a triple P = (R,D, T) where
R is a set of fuzzy clauses, D is a set of default value declara-
tions, and T is a set of type declarations.

From now on, when speaking about programs, we will im-
plicitly assume the signature Σ to consist of all function sym-
bols occurring in P , the signature Π to consist of all the pred-
icate symbols occurring in the program, the set T to consist
of all types occurring in type declarations in T , and the signa-
ture Ω of all the aggregation operator symbols. For Ω we will
furthermore require that all operators from Ω̂ be monotonic.

Lastly, we introduce the important notion of a “well-
defined” program.

Definition. A fuzzy logic program P = (R,D, T) is called
well-defined iff

• for each predicate symbol p/n occurring in R, there ex-
ist both a predicate type declaration and a default value
declaration;

• all clauses in R are well-typed;

• for each
default value declaration default(p(X1, . . . , Xn)) =
[δ1 if ϕ1, . . . , δm if ϕm], the formulas ϕi are pairwise
contradictory and ϕ1 ∨ · · · ∨ ϕm is a tautology, i.e. ex-
actly one default truth value applies to each element of
p/n’s domain.

�

3 Operational Semantics
The possibility to define default truth values for predicates of-
fers us a great deal of flexibility and expressivity. But it also
has its drawbacks: reasoning with defaults is inherently non-
monotonic – we might have to withdraw some conclusions
that have been made in an earlier stage of execution. To cap-
ture this formally, we attach to each truth value an attribute
that indicates how this value has been concluded. There are 3
different cases of how a truth value can be determined:

• exclusively by application of program facts and clauses,
represented by the symbol � denoting the attribute value
safe,

• by indirect use of default values, represented by the sym-
bol � denoting the attribute value unsafe (mixed), or

• directly via a default value declaration, represented by
the symbol � denoting the attribute value unsafe (pure).

We need to be able to compare the attributes (in order to
be able to prefer one conclusion over another) and to com-
bine them to keep track of default value usage in the course of

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1829

computation. This is formalised by setting the ordering <a on
truth value attributes such that � <a � <a �.

The operator ◦ : {�, �, �} × {�, �, �} → {�, �, �} is
then defined as:

x ◦ y :=




� if x = y = �
� if x = y = �
� otherwise

The operator ◦ is designed to keep track of attributes during
computation: only when two “safe” truth values are combined,
the result is known to be “safe”, in all other cases it is “un-
safe”. It should be noted that “◦” is monotonic.

The truth values that we use in the description of the se-
mantics will be real values v ∈ [0, 1] with an attribute (i.e.
a z ∈ {�, �, �}) attached to it. We will write them as zv.
The ordering � on the truth values will be the lexicographic
product of <a, the ordering on the attributes, and the standard
ordering < of the real numbers. The set of truth values is thus
totally ordered as follows:

⊥ ≺ �0 ≺ · · · ≺ �1 ≺ �0 ≺ · · · ≺ �1 ≺ �0 ≺ · · · ≺ �1.

A valuation σ : V → B is an assignment of ground terms
to variables. Each valuation σ uniquely constitutes a mapping
σ̂ : TUΣ,V → B that is defined in the obvious way.

A fuzzy Herbrand interpretation (or short, interpretation)
of a fuzzy logic program is a mapping I : B → T that assigns
truth values to ground atoms.

The domain of an interpretation is the set of all atoms
to which a “proper” truth value is assigned: Dom(I) :=
{A | A ∈ B, I(A) * ⊥}.

For two interpretations I and J , we say I is less than
or equal to J , written I + J , if I + J iff I(A) �
J(A) for all A ∈ B.

Accordingly, the infimum (or intersection) and supremum
(or union) of interpretations are, for all A ∈ B, defined
as (I , J)(A) := min(I(A), J(A)) and (I - J)(A) :=
max(I(A), J(A)).

The pair (IP ,+) of the set of all interpretations of a given
program with the interpretation ordering forms a complete lat-
tice. This follows readily from the fact that the underlying
truth value set T forms a complete lattice with the truth value
ordering �.

Definition. [Model] Let P = (R,D, T) be a fuzzy logic
program.

For a clause r ∈ R we say that I is a model of the clause r
and write

I � A
c,Fc←−F B1, . . . , Bn

iff for all valuations σ, we have: if I(σ(Bi)) = zivi * ⊥
for all i, then I(σ(A)) � z′v′ where z′ = z1 ◦ · · · ◦ zn and
v′ = F̂c(c, F̂ (v1, . . . , vn))).

For a default value declaration d ∈ D we say that I is a
model of the default value declaration d and write

I � default(p(X1, . . . , Xn)) = [δ1 if ϕ1, . . . , δm if ϕm]

iff for all valuations σ, we have: if σ(p(X1, . . . , Xn)) is well-
typed (w.r.t. T), then there exists an 1 ≤ j ≤ m such that
σ(ϕj) holds and I(σ(p(X1, . . . , Xn))) � �δj .

We write I � R if I � r for all r ∈ R and similarly I � D
if I � d for all d ∈ D.

Finally, we say that I is a model of the program P and write
I � P iff I � R and I � D. �

The operational semantics will be formalized by a transition
relation that operates on (possibly only partially instantiated)
computation trees. Here, we will not need to keep track of
default value attributes {�, �, �} explicitly, it will be encoded
into the computations.

Definition. Let Ω be a signature of aggregation operator
symbols and W a set of variables with W ∩ V = ∅.

A computation node is a pair 〈A, e〉, where A ∈ TBΠ,Σ,V

and e is a term over [0, 1] and W with function symbols from
Ω. We say that a computation node is ground if e does not
contain variables. A computation node is called final if e ∈
[0, 1]. A final computation node will be indicated as 〈A, e〉.

We distinguish two different types of computation nodes:
C-nodes, that correspond to applications of program clauses,
and D-nodes, that correspond to applications of default value
declarations.

A computation tree is a directed acyclic graph whose nodes
are computation nodes and where any pair of nodes has a
unique (undirected) path connecting them. We call a com-
putation tree ground or final if all its nodes are ground or final
respectively.

For a given computation tree t we define the tree attribute

zt =




� if t contains no D-node
� if t contains both C- and D-nodes
� if t contains only D-nodes

�
Computation nodes are essentially generalizations of

queries that keep track of aggregation operator usage.
Computation trees as defined here should not be confused

with the usual notion of SLD-trees. While SLD-trees describe
the whole search space for a given query and thus give rise to
different derivations and different answers, computation trees
describe just a state in a single computation.

The computation steps that we perform on computation
trees will be modelled by a relation between computation
trees.

Definition. [Transition relation] For a given fuzzy logic pro-
gram P = (R,D, T), the transition relation � is character-
ized by the following transition rules:

Clause: t/
[
〈A′, v〉

]
�

t/



〈A′, v〉 /

C〈A′, Fc(c, F (v1, . . . , vn))〉

〈B1, v1〉 · · · 〈Bn, vn〉




µ

If there is a (variable disjoint instance of a) program

clause A
c,Fc←−F B1, . . . , Bn ∈ R and µ = mgu(A′, A).

(Take a non-final leaf node and add child nodes accord-
ing to a program clause; apply the most general unifier of

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1830

the node atom and the clause head to all the atoms in the
tree.)

Note that we immediately finalize a node when applying
this rule for a fuzzy fact.

Default: t [〈A, x〉] �

t
[
〈A, x〉/D〈A, δj〉

]
µ

If A does not match with any
program clause head, there is a default value declaration
default(p(X1, . . . , Xn)) = [δ1 if ϕ1, . . . , δm if ϕm] ∈
D, µ is a substitution such that p(X1, . . . , Xn)µ = Aµ is
a well-typed ground atom, and there exists a 1 ≤ j ≤ m
such that ϕjµ holds. (Apply a default value declaration
to a non-final leaf node thus finalizing it.)

Finalize:

C〈A, Fc(c, F (v1, . . . , vn))〉

〈B1, v1〉 · · · 〈Bn, vn〉

�

C〈A, F̂c(c, F̂ (v1, . . . , vn))〉

〈B1, v1〉 · · · 〈Bn, vn〉

(Take a non-final node whose children are all final and
replace its truth expression by the corresponding truth
value.)

�
Here, the notation t[A] means “the tree t that contains the

node A somewhere”. Likewise, t[A/B] is to be read as “the
tree t where the node A has been replaced by the node B”.

Asking the query 〈A, v〉 corresponds to applying the transi-
tion rules to the initial computation tree 〈A, v〉. The compu-
tation ends successfully if a final computation tree is created,
the truth value of the instantiated query can then be read off
the root node. We will illustrate this with an example compu-
tation.

Example (continued). We start with the tree

〈good-destination(Y), v〉 .

Applying the Clause-transition to the
initial tree with the program clause
good-destination(X)1.0,·←−·nice-weather(X), many-sights(X)
yields

C〈good-destination(Y), 1.0 · v1 · v2〉

〈nice-weather(Y), v1〉 〈many-sights(Y), v2〉

Now we apply Clause to the left child with
nice-weather(moscow)← 0.2:

C〈good-destination(moscow), 1.0 · 0.2 · v2〉

C〈nice-weather(moscow), 0.2〉 〈many-sights(moscow), v2〉

Since there exists no clause whose head matches many-
sights(moscow), we apply the Default-rule for many-sights
to the right child.

C〈good-destination(moscow), 1.0 · 0.2 · 0.2〉

C〈nice-weather(moscow), 0.2〉 D〈many-sights(moscow), 0.2〉

In the last step, we finalise the root node.

C〈good-destination(moscow), 0.04〉

C〈nice-weather(moscow), 0.2〉 D〈many-sights(moscow), 0.2〉

The calculated truth value for good-destination(moscow) is
thus 0.04. (

The actual operational semantics is now given by the truth
values that can be derived in the defined transition system.
This “canonical model” can be seen as a generalisation of the
success set of a program.

Definition. Let P be a well-defined fuzzy logic program.
The canonical model of P for A ∈ B is defined as follows:

cm(P) :=




A �→ ztv

∣∣∣∣∣∣∣

there exists a computation starting
with 〈A, w〉 and ending with a fi-
nal computation tree t with root node
〈A, v〉




�
It can be verified that the canonical model cm(P) is indeed

a model of P .

4 Implementation
RFuzzy is implemented as a package of the Ciao Prolog Sys-
tem [15]. It consists essentially of a set of rules that translate
the RFuzzy Syntax to ANSI Prolog using the expansion of
code of the packages in Ciao Prolog. The predicates of the
program that have been declared as fuzzy get an additional
argument that makes the truth value explicit. The resulting
program can then be interpreted and executed “as usual”.

Example (continued). We have no space to describe the im-
plementation syntax used at RFuzzy, but it can be easily de-
duced from the implementation of our running example (not
all the clauses are shown here).

nice_weather(madrid) value 0.8.
nice_weather(moscow) value 0.2.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1831

many_sights(madrid) value 0.6.
many_sights(sydney) value 0.6.

good_destination(X) cred (prod,1.0):˜ prod
nice_weather(X),
many_sights(X).

The default value declarations are also very similar to the ab-
stract syntax.

:- default(nice_weather/1, 0.5).
:- default(many_sights/1, 0.2).
:- default(good_destination/1, 0.3).

We use crisp predicates to represent types.

city(madrid).
city(moscow).
city(sydney).

:- set_prop(nice_weather/1) => city/1.
:- set_prop(many_sights/1) => city/1.
:- set_prop(good_destination/1) => city/1.

To ask queries to the system, we add a variable that is going
to be instantiated with the truth value.

?- good_destination(moscow, V).

V = 0.04 ?
yes

But we cannot only ask for truth values of fully instantiated
atoms. The real power of RFuzzy lies in the ability to pro-
vide constructive answers. For example, if we want to know
“What is the best travel destination according to the knowl-
edge base?” we just ask the following query. It looks for a
destination D with a truth value V for which no destination
with a higher truth value V1 exists.

?- good_destination(D, V),
\+ (good_destination(_, V1),

V1 > V).

D = madrid,
V = 0.48 ?

yes

As we see, the system returns “Madrid” as best destination
and thus answers a question with an object rather than a truth
value. (

5 Conclusions and Future Work
We presented the operational semantics of the RFuzzy frame-
work for Fuzzy Logic Programming and showed some fea-
tures of the implementation 1 via an example. We finally re-
mark that a least model semantics and a least fixpoint seman-
tics for RFuzzy also have been defined and proven equivalent
to the operational semantics shown here.

1A complete release of the implementation is available at
http://babel.ls.fi.upm.es/software/rfuzzy

References

[1] P. Vojtas. Fuzzy logic programming. Fuzzy Sets and Systems,
124(1):361–370, 2001.

[2] R. C. T. Lee. Fuzzy Logic and the resolution principle. Journal
of the Association for Computing Machinery, 19(1):119–129,
1972.

[3] M. Ishizuka and N. Kanai. Prolog-ELF incorporating fuzzy
Logic. In IJCAI, pages 701–703, 1985.

[4] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril: Fuzzy
and Evidential Reasoning in Artificial Intelligence. John Wiley
& Sons, 1995.

[5] D. Li and D. Liu. A Fuzzy Prolog Database System. John Wiley
& Sons, New York, 1990.

[6] Z. Shen, L. Ding, and M. Mukaidono. Fuzzy resolution prin-
ciple. In Proc. of 18th International Symposium on Multiple-
valued Logic, volume 5, 1989.

[7] C. Vaucheret, S. Guadarrama, and S. Munoz-Hernandez. Fuzzy
prolog: A simple general implementation using clp(r). In
P.J. Stuckey, editor, Int. Conf. in Logic Programming, ICLP
2002, number 2401 in LNCS, page 469, Copenhagen, Den-
mark, July/August 2002. Springer-Verlag.

[8] S. Guadarrama, S. Munoz-Hernandez, and C. Vaucheret. Fuzzy
Prolog: A new approach using soft constraints propagation.
Fuzzy Sets and Systems, FSS, 144(1):127–150, 2004. ISSN
0165-0114.

[9] S. Munoz-Hernandez, C. Vaucheret, and S. Guadarrama. Com-
bining crisp and fuzzy Logic in a prolog compiler. In J. J.
Moreno-Navarro and J. Mariño, editors, Joint Conf. on Declar-
ative Programming: APPIA-GULP-PRODE 2002, pages 23–
38, Madrid, Spain, September 2002.

[10] H. T. Nguyen and E. A. Walker. A first Course in Fuzzy Logic.
Chapman & Hall/Crc, 2000.

[11] J. Medina, M. Ojeda-Aciego, and P. Votjas. Multi-adjoint Logic
Programming with continuous semantics. In LPNMR, volume
2173 of LNCS, pages 351–364, Boston, MA (USA), 2001.
Springer-Verlag.

[12] J. Medina, M. Ojeda-Aciego, and P. Votjas. A procedural se-
mantics for multi-adjoint Logic Programming. In EPIA, vol-
ume 2258 of LNCS, pages 290–297, Boston, MA (USA), 2001.
Springer-Verlag.

[13] J. Medina, M. Ojeda-Aciego, and P. Votjas. A completeness
theorem for multi-adjoint Logic Programming. In International
Fuzzy Systems Conference, pages 1031–1034. IEEE, 2001.

[14] P.J. Morcillo and G. Moreno. Floper, a fuzzy logic program-
ming environment for research. In Proceedings of the Span-
ish Conference on Programming and Computer Languages,
PROLE 2008, Gijn, Spain, 2008.

[15] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garcı́a
de la Banda, P. López-Garcı́a, and G. Puebla. The CIAO Multi-
Dialect Compiler and System: An Experimentation Workbench
for Future (C)LP Systems. In Parallelism and Implementa-
tion of Logic and Constraint Logic Programming, pages 65–85.
Nova Science, Commack, NY, USA, April 1999.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1832

