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Abstract. We investigate the impact of non-regular path expressions on the decidability
of satisfiability checking and querying in description logics extending ALC. Our primary
objects of interest are ALCreg and ALCvpl, the extensions of ALC with path expressions
employing, respectively, regular and visibly-pushdown languages. The first one, ALCreg, is
a notational variant of the well-known Propositional Dynamic Logic of Fischer and Ladner.
The second one, ALCvpl, was introduced and investigated by Löding and Serre in 2007.
The logic ALCvpl generalises many known decidable non-regular extensions of ALCreg.

We provide a series of undecidability results. First, we show that decidability of the
concept satisfiability problem for ALCvpl is lost upon adding the seemingly innocent Self
operator. Second, we establish undecidability for the concept satisfiability problem for
ALCvpl extended with nominals. Interestingly, our undecidability proof relies only on one
single non-regular (visibly-pushdown) language, namely on r#s# := {rnsn | n ∈ N} for
fixed role names r and s. Finally, in contrast to the classical database setting, we establish
undecidability of query entailment for queries involving non-regular atoms from r#s#,
already in the case of ALC-TBoxes.

1. Introduction

Formal ontologies play a crucial role in artificial intelligence, serving as the backbone of
various applications such as the Semantic Web, ontology-based information integration, and
peer-to-peer data management. In reasoning about graph-structured data, a significant role
is played by description logics (DLs) [BHLS17], a robust family of logical formalisms serving
as the logical foundation of contemporary standardised ontology languages, including OWL 2
by the W3C [GHM+08, HKP+12]. Among many features present in extensions of the basic
description logic ALC, an especially useful one is ·reg, supported by the popular Z-family
of description logics [CEO09]. With ·reg one can specify regular path constraints, allowing
the user to navigate graph-structured data. In recent years, many extensions of ALCreg for
ontology-engineering were proposed [BCOS14, COS16, Ort10], and the complexity landscape
of their reasoning problems is now mostly well-understood [CEO09, BR19, BK22]. In fact,
the logic ALCreg was already studied in 1979 by the formal-verification community [FL79],
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under the name of Propositional Dynamic Logic (PDL). Relationship between (extensions
of) PDL and ALCreg were investigated by De Giacomo and Lenzerini [DL94].

The spectrum of recognizable word languages is relatively wide. Hence the question of
whether regular constraints in path expressions of ALCreg can be lifted to more expressive
classes of languages received a lot of attention from researchers. We call such extensions of
PDL non-regular. After the first undecidability proof of satisfiability of ALCreg by context-
free languages [HPS81b, Cor. 2.2], several decidable cases were identified. For instance,
Koren and Pnueli [KP83, Sec. Decidability] proved that ALCreg extended with the simplest

non-regular language r#s# := {rnsn | n ∈ N} for fixed roles r , s is decidable; while combining
it with s#r# leads to undecidability [HPS81a, Thm. 3.2]. This surprises at first glance, but
as it was shown later [LLS07, Thm. 18], PDL extended with a broad class of input-driven
context-free languages, called visibly pushdown languages [AM09, Sec. 5], remains decidable.
This generalises all previously known decidability results, and partially explains the reason
behind known failures (e.g. the languages r#s# and s#r# cannot be both visibly-pushdown
under the same partition of the alphabet). Three years ago, the decidability boundary was
pushed even further [BL21, Ex. 1], by allowing for mixing modalities in visibly-pushdown
expressions (for instance, allowing the user to specify that “for all positive integers n ∈ N,
all t-successors of rn-reachable elements can sn-reach an element fulfilling φ”).

Our motivation and our contribution. Despite the presence of a plethora of various
results concerning non-regular extensions of PDL [KP83, HP84, HS96, HR93, BL21], to the
best of our knowledge the extensions of non-regular PDL with popular features supported
by W3C ontology languages are yet to be investigated. Such extensions include, among
others, nominals (constants), inverse roles (inverse programs), functionality or counting
(deterministic programs or graded modalities), and the Self operator (self-loops). The
honourable exception is the unpublished undecidability result for ALCreg extended with
the language {rns(r−)n | n ∈ N}, where r− denotes the converse of r , from Göller’s
thesis [Göl08] (answering an open problem of Demri [Dem07, Probléme ouvert 29]). The lack
of results on entailment of non-regular queries over ontologies is also intriguing, taking
into account positive results for conjunctive visibly-pushdown queries in the setting of
relational-databases [LL15, Thm. 2].

In this paper we contribute to the further understanding of the aforementioned questions.
Our results are negative. Section 3 establishes undecidability of the concept satisfiability
of ALCvpl extended with the seemingly innocent Self operator. Section 4 establishes undecid-
ability of the concept satisfiability of ALCvpl extended with nominals. More specifically, the

undecidability arises already if the only non-regular language present in concepts is r#s#.
Finally, Section 5 establishes undecidability of the query entailment problem over ALC-
TBoxes, in which our queries can employ atoms involving the language r#s#. On the positive
side, a combination of existing works shows that the entailment problem of REG-PEQs over
ALCvpl-TBoxes is 2ExpTime-complete. We conclude with an open problem list.

This work is a revised and extended version of our JELIA 2023 paper [Bed23]. In addition
to the inclusion of full proofs and minor corrections, the paper contains improved and new
undecidability results concerning entailment of non-regular queries (Section 5).
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2. Preliminaries

We assume familiarity with basics on the description logic ALC [BHLS17, Sec. 2.1–2.3],
regular and context-free languages, Turing machines and computability [Sip13, Sec. 1–5]. We
employ N to denote the set of non-negative integers and Zn to denote the set {0, 1, . . . , n−1}.

Basics on ALC. We recall ingredients of the well-known description logic ALC [BHLS17,
Sec. 2.1–2.3].1 We fix countably infinite pairwise disjoint sets of individual names NI, concept
names NC, and role names NR and introduce the description logic ALC. Starting from
NC and NR, the set C of ALC-concepts is built using the following concept constructors:
negation (¬C), conjunction (C ⊓D), existential restriction (∃r .C), and the top concept ⊤
with the grammar:

C,D ::= ⊤ | A | ¬C | C ⊓D | ∃r .C,
where C,D ∈ C, A ∈ NC and r ∈ NR. We extend the syntax by notational shortcuts for
disjunction C⊔D := ¬(¬C⊓¬D), universal restrictions ∀r .C := ¬∃r .¬C, the bottom concept
⊥ := ¬⊤, implication C → D := ¬C ⊔D, and equivalence C ↔ D := (C → D) ⊓ (D → C).
Assertions are (possibly negated) expressions of the form C(a) or r(a,b) for a,b ∈ NI, C ∈ C
and r ∈ NR. A general concept inclusion (GCI) has the form C ⊑ D for concepts C,D ∈ C.
A knowledge base (KB) K := (A, T ) is composed of a finite set A (ABox ) of assertions and
a finite set T (TBox ) of GCIs. We call the elements of A ∪ T axioms.

The semantics of ALC is defined via interpretations I := (∆I , ·I) composed of a non-
empty set ∆I , called the domain of I and an interpretation function ·I , mapping individual
names to elements of ∆I , concept names to subsets of ∆I , and role names to subsets of
∆I × ∆I . This mapping is then extended to concepts (see Table 1), and finally used to
define satisfaction of assertions and GCIs. More precisely I |= C ⊑ D if CI ⊆ DI , I |= C(a)
if aI ∈ CI , and I |= r(a,b) if (aI ,bI) ∈ rI . We say that an interpretation I satisfies a
concept C (or I is a model of C, written: I |= C) if CI ≠ ∅. A concept is consistent (or
satisfiable) if it has a model, and inconsistent (or unsatisfiable) otherwise. In the consistency
(or satisfiability) problem we ask, whether an input concept has a model. Similarly, we
say that I satisfies a KB K := (A, T ) (written: I |= K) if I satisfies all axioms of A ∪ T .
The knowledge base satisfiability problem is defined analogously.

Table 1: Concepts and roles in ALC.
Name Syntax Semantics

top concept ⊤ ∆I

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I×∆I

concept negation ¬C ∆I \ CI

concept intersection C ⊓D CI ∩DI

existential restriction ∃r .C {d | ∃e ∈ CI (d, e) ∈ rI}

A path in an interpretation I is a finite word in (∆I)+. Given a path ρ we enumerate its
components with ρ1, . . . , ρn. We use ∥ρ∥ to denote the length of ρ (note that ∥ρ∥ = |ρ|−1).

1To guide people with modal logic background: concept names are propositional letters, interpretations
are Kripke structures, ABoxes (a.k.a. Assertion Boxes) are partial descriptions of Kripke structures, and
TBoxes (a.k.a. Terminological Boxes) are limited forms of the universal modality. Consult Section 2.6.2 of
the DL Book [BHLS17] for a more detailed comparison.
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We say that ρ starts from (resp. ends in) d if ρ1 = d holds (resp. ρ|ρ| = d). If N ⊆ NI is a

set of individual names, we call an element d ∈ ∆I N-named if d = aI holds for some a ∈ N.

ALC with extras. In the next sections we consider several popular description-logics
features: nominals (O), and the Self operator (·Self). Their semantics is recalled in Table 2,
in which r ∈ NR, ℓ ∈ N, a ∈ NI, and C is a concept.

Table 2: Popular description-logics features.

Name Syntax Semantics

nominal {a} {aI}
self-operator ∃r .Self {d | (d,d) ∈ rI}

ALC with path expressions. We treat the set Σall := NR ∪ {C? | C ∈ NC} as an
infinite alphabet. Let ALL and REG be classes of all Turing-recognizable (resp. all regular)
languages of finite words over any finite subset of Σall. Given a language L ∈ ALL and a
path ρ := ρ1ρ2 . . . ρnρn+1 in an interpretation I, we say that ρ is an L-path, if there exists
a word w := w1w2 . . . wn ∈ L such that for all indices i ≤ n we have either (i) wi ∈ NR and
(ρi, ρi+1) ∈ (wi)

I , or (ii) wi is of the form C? for some C ∈ NC, ρi = ρi+1 and ρi ∈ CI .
Intuitively the word w either traverses roles between the elements of ρ or loops at an element
to check the satisfaction of concepts. For convenience, we will also say that e ∈ ∆I is
L-reachable from d ∈ ∆I (or alternatively that d L-reaches e) if there is an L-path ρ that
starts from d and ends in e. The logic ALCall extends ALC with concept constructors of
the form ∃L.C, where L ∈ ALL and C is an ALCall-concept. Their semantics is as follows:
(∃L.C)I is the set of all d ∈ ∆I that can L-reach some e ∈ CI , and ∀L.C stands for ¬∃L.¬C.
The logic ALCreg is a restriction of ALCall to regular languages. It is a notational variant of
Propositional Dynamic Logic [FL79], popular in the community of formal verification.

Visibly-pushdown languages. The class VPL of Visibly-pushdown languages [AM09,
Sec. 5] (VPLs) is a well-behaved family of context-free languages, in which the usage of the
stack in the underlying automaton model is input-driven. For the exposition of VPLs we
follow the work of Löding et al. [LLS07, Sec. 2.2]. A pushdown alphabet Σ is an alphabet
equipped with a partition (Σc,Σi,Σr). The elements of Σc,Σi, and Σr are called, respectively,
call letters, internal letters, and return letters. A visibly-pushdown automaton (VPA) A
over a pushdown alphabet Σ is a tuple (Q, I, F,Γ, T), where Q is a finite set of states, I is a
finite subset of initial states, F is a finite subset of final states, Γ is a finite stack alphabet
that contains a bottom-of-stack symbol �, and T is a transition relation of type

T ⊆ (Q× Σc × Q× (Γ \�)) ∪ (Q× Σr × Γ× Q)) ∪ (Q× Σi × Q) .

A configuration of a VPA A is a pair (q, σ) ∈ Q×(Γ\�)∗� of a state q and a stack content σ.
Given a letter a and a configuration (q, σ) we say that (q′, σ′) is an a-successor of (q, σ) if
one of the following cases hold:

• a ∈ Σc, σ
′ = γσ and there is a transition (q, a, q′, γ) ∈ T.

• a ∈ Σi, σ
′ = σ and there is a transition (q, a, q′) ∈ T.

• a ∈ Σr, either (i) σ = γσ′ and there is a transition (q, a, γ, q′) ∈ T, or (ii) σ = σ′ = �

and (q, a,�, q′) ∈ T.
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We denote this fact by (q, σ) →a (q′, σ′). Given a finite word w := a1 . . . an, a run of A on w

is a sequence (q0,�) →a1 (q1, σ1) →a2 . . . →an (qn, σn) where q0 ∈ I. We call w accepted
by A if there is a run in which the last configuration contains a final state. The language
L(A) of A is composed of all words accepted by A. A language L (i.e. a set of words)
over Σ is visibly-pushdown if there is a VPA A over Σ for which L(A) = L.

Example 2.1. Suppose that r is a call letter and s is a return letter. Then the languages
r#s# := {rnsn | n ∈ N} and r#s># := {rnsn+m+1 | n,m ∈ N} are visibly-pushdown. Under
such a choice of r and s , the language s#r# is not visibly-pushdown. Moreover, every regular
language is visibly-pushdown.

The logic ALCvpl. Throughout the paper, Σall is presented as a pushdown alphabet

Σvpl := ((NR)c, (NR)i ∪ {C? | C ∈ NC}, (NR)r) ,

where the sets (NR)c, (NR)i, (NR)r form a partition of NR. Hence, we define ALCvpl as
the restriction of ALCall to visibly-pushdown languages over finite subsets of Σvpl, in which
languages in existential and universal restrictions are represented by means of nondetermin-
istic VPA. The logic ALCvpl generalises many other logics with non-regular path expressions,
and has a 2ExpTime-complete [LLS07, Thm. 18–19] concept satisfiability problem. As a
special case of ALCvpl, we also consider a, rather minimalistic, extension of ALCreg with the

language r#s# for one fixed call letter r ∈ (NR)c and one fixed return letter s ∈ (NR)r.
We denote it here by ALCr#s#

reg . The concept satisfiability problem for ALCr#s#
reg was shown

to be decidable [KP83, Sec. Decidability] already 40 years ago by Koren and Pnueli, but its
extensions with popular features like nominals or functionality are still unexplored.

The query entailment problem. Given a class C of languages, the class of C-enriched
Positive Existential Queries (abbreviated as C-PEQs) is defined with the following syntax:

q , q ′ ::= ⊥ | A(x ) | r(x , y) | L(x , y) | q ∨ q ′ | q ∧ q ′,

where A ∈ NC, r ∈ NR, L ∈ C, and x , y are variables from a countably-infinite set NV.
Their semantics is defined as expected, e.g. L(x , y) evaluates to true under a variable
assignment η : NV → ∆I if and only if η(x ) can L-reach η(y) in I. ∅-PEQs (or Positive
Existential Queries) are a well-known generalization of unions of conjunctive queries (in
which disjunction is allowed only at the outermost level). REG-PEQs (or Positive Conjunctive
Regular Path Queries) are among the most popular query languages nowadays [FLS98, OS12].
Finally, VPL-PEQs recently received some attention in [LL15]. A C-CQ is a disjunction-free
C-PEQ. We say that an interpretation I satisfies a query q (written I |= q), if there exists
an assignment η of variables from q to ∆I under which q evaluates to true (a match).
A concept C entails a query q (written C |= q) if every model of C satisfies q . In total analogy
we define the notion of entailment and overload the “|=” symbol for the case of TBoxes
and knowledge-bases in place of concepts. For a given description logic DL, the C-PEQ
entailment problem over DL-knowledge-bases asks to decide if an input DL-knowledge-base
entails an input C-PEQ. The problem’s definition for concepts and TBoxes is analogous.
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Tree models. Löding et al. established that ALCvpl possesses a tree-model property. An in-
terpretation I is tree-like if its domain is a prefix-closed subset of N∗, and for all r ∈ NR and
d, e ∈ ∆I the condition ”if (d, e) ∈ rI , then e = dn for some n ∈ N” holds. An interpretation
is single-role if any two domain elements are connected by at most one role. The following
lemma follows immediately from the proof of Proposition 8 by Löding et al. [LLS07].

Corollary 2.2 (Consequence of the proof of Prop. 8 of [LLS07]). Every satisfiable ALCvpl-

TBox T has a single-role tree-like model.2 Moreover, for any query q preserved under
homomorphisms we have that T ̸|= q if and only if there exists a single-role tree-like model
I |= T such that I ̸|= q.

Undecidability results for extensions of ALCvpl that follow from the literature.
Other popular (not yet mentioned) features supported by W3C ontology languages are
inverse roles and role hierarchies. For bibliographical purposes, we would like to use the
extra space given here to briefly discuss how these features result in the undecidability of the
respective extensions of ALCvpl. To define the first feature, we associate with each role name
r ∈ NR a role name r− that is enforced to be interpreted as the inverse of the interpretation
of r . It was shown by Stefan Göller in his PhD thesis [Göl08, Prop. 2.32] that ALCreg

extended with the single visibly-pushdown language {rns(r−)n | n ∈ N} is undecidable.

Corollary 2.3. The concept satisfiability problem for ALCvpl with inverses is undecidable,
even if the only allowed non-regular language is {rns(r−)n | n ∈ N} for fixed r , s ∈ NR.

The second feature allows for specifying containment of roles by means of expressions of
the form for r ⊆ s. The semantics is that I |= r ⊆ s if and only if rI ⊆ sI . Fix r and r ′ to
be call letters, and s and s ′ to be return letters. Suppose that an interpretation I satisfies
all of the statements s ⊆ r ′, r ′ ⊆ s, s ′ ⊆ r , and r ⊆ s ′. Clearly, for all elements d ∈ ∆I

and concepts C we have that d ∈ (∃s#r#.C)I if and only if d ∈ (∃r ′#s ′#.C)I . Thus ALCvpl

with role-hierarchies can express concepts of ALCreg extended with both r#s# and s#r#. By
undecidability of the concept satisfiability [KP83, Sec. Decidability] of the latter we conclude:

Corollary 2.4. The concept satisfiability problem for ALCvpl with role-hierarchies is unde-

cidable, even if the only allowed non-regular languages are r#s# and r ′#s ′# for fixed call
letters r , r ′ and return letters s, s ′.

3. Negative results I: The Seemingly innocent Self operator

We start our series of negative results, by showing (in our opinion) a rather surprising
undecidability result. Henceforth we employ the Self operator, a modelling feature supported
by two profiles of the OWL 2 Web Ontology Language [HKS06, KRH08]. Recall that the
Self operator allows us to specify the situation when an element is related to itself by
a binary relationship, i.e. we interpret the concept ∃r .Self in an interpretation I as the
set of all those elements d for which (d,d) belongs to rI . We provide a reduction from

2The original work considers concepts only. However, all their results transfer immediately to the case of
TBoxes, as TBoxes can be internalised in concepts in the presence of regular expressions [BCM+03, p. 186].
The queries are not mentioned either: the so-called tree model property is established with a suitable notion
of unravelling, which produces interpretations that can be then homomorphically mapped to the original
interpretations (entailing the preservation of the non-satisfaction of query).
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the undecidable problem of non-emptiness of the intersection of deterministic one-counter
automata (DOCA) [Val73, p. 75]. Such an automaton model is similar to pushdown automata,
but its stack alphabet is single-letter only. The Self operator will be especially useful to
introduce “disjunction” to paths.

Let Σ be an alphabet and w := (a1, b1) . . . (an, bn) be a word over Σ× {c, r, i}. We call
the word π1(w) := a1 . . . an from Σ∗ the projection of w. An important property of DOCAs is
that they can be made visibly pushdown in the following sense.

Lemma 3.1. For any deterministic one-counter automaton A over the alphabet Σ, we can
construct a visibly-pushdown automaton Ã over a pushdown alphabet Σ̃ := (Σ× {c}, (Σ×
{i}) ∪ {x},Σ × {r}) with a fresh internal letter x such that all words in L(Ã) are of the
form ã1xã2x . . . xãn for ã1, . . . , ãn ∈ Σ× {c, i, r}, and

L(A) = {π1(w̃) | w̃ := ã1 . . . ãn, ã1x . . . xãn ∈ L(Ã)}.

Proof sketch. Alur and Madhusudan proved [AM09, Thm. 5.2] that for any context-free

language L over Σ there exists a VPL L̂, over the pushdown alphabet (Σ × {c}, (Σ ×
{i}),Σ × {r}), for which L = {π1(w) | w ∈ L̂} holds.3 Suppose now that a one-counter
automaton A is given. By means of the previous construction, we obtain a visibly-pushdown
automaton Â := (Q, I, F,Γ, T) for which L(A) = {π1(w) | w ∈ L(Â)} holds. What remains
to be done is to “insert” the internal letter x after every position of a word accepted by
Â. As reading internal letters by visibly-pushdown automata do not affect the content
of their stacks, we may proceed as in standard constructions from the theory of regular
languages [Sip13, Ex. 1.31]. As the first step, we expand the set of states Q with fresh states
of the form qδ for all δ ∈ T. As the second step, we “split” every transition δ in T into two
“parts”. Suppose that δ leads from q to q′ after reading the letter a. We thus (i) replace δ in T

with the transition that transforms q into qδ after reading a (and has the same effect on the

stack as δ has), and (ii) append the transition (qδ, x, q
′) to T. Call the resulting automaton Ã.

It can now be readily verified that L(Ã) = {â1xâ2x . . . xân | ŵ := â1 . . . ân, ŵ ∈ L(Â)}
holds, and thus, by the relationship between A and Â, the automaton Ã is as desired.

Let us fix a finite alphabet Σ ⊆ NR. We also fix two deterministic one-counter au-
tomata A1 and A2 over Σ, and let C1 and C2 be deterministic one-counter automata
recognizing the complement of the languages of A1 and A2 (they exist as DOCA are closed
under complement [Val73, p. 76]). Finally, we apply Lemma 3.1 to construct their visibly-

pushdown counterparts Ã1, Ã2, C̃1, C̃2 over the same pushdown alphabet Σ̃. We stress
that the letter x, playing the role of a “separator”, is identical for all of the aforementioned
visibly-pushdown automata. Moreover, note that the non-emptiness of L(Ã1) ∩L(Ã2) is

not equivalent to the non-emptiness of L(A1) ∩L(A1), as the projection of a letter a ∈ Σ̃
may be used by A1 and A2 in different contexts (e.g. both as a call or as a return).

We are going to encode words accepted by one-counter automata by means of word-like
interpretations. A pointed interpretation (I, d) is Σ-friendly if for every element e ∈ ∆I that
is x∗-reachable from d in I there exists a unique letter a ∈ Σ so that e carries all ã-self-loops
for all ã ∈ Σ̃ with π1(ã) = a, and no self-loops for all other letters in Σ̃ (also including x).

3The main proof idea here is to take an input DOCA, and decorate the letters on its transitions with c, i,
and r, depending on the counter action of the transition.
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Observe that Σ-friendly interpretations can be axiomatised with an ALCSelf-concept CΣ
fr:

CΣ
fr := ∀x∗.

⊔
a∈Σ

⊔

b ̸=a,b∈Σ,π1(ã)=a,π1(b̃)=b

(
[∃ã.Self] ⊓ ¬[∃b̃.Self] ⊓ ¬[∃x.Self]

)
.

Moreover, every x∗-path ρ in a Σ-friendly (I, d) represents a word in Σ∗ in the following sense:
the i-th letter of such a word is a if and only if the i-th element of the path carries an (a, c)-
self-loop. This is well-defined, by the fact that every x∗-reachable element in Σ-friendly (I, d)
carries a (a, c)-self-loop for a unique letter a ∈ Σ. Consult Figure 1 for a visualization.

dI

(a, c), (a, r)

(a, i)

(b, c), (b, r)

(b, i)

(b, c), (b, r)

(b, i)

(a, c), (a, r)

(a, i)

(c, c), (c, r)

(c, i)

x x x x

Figure 1: An example Σ-friendly (I,d) encoding the word abbac.

As a special class of Σ-friendly interpretations we consider Σ-metawords. We say that
(I,d) is a Σ-metaword if it is a Σ-friendly interpretation of the domain Zn for some
positive n ∈ N, the role name x is interpreted as the set {(i, i+1) | 0 ≤ i ≤ n−2}, and all
other role names are either interpreted as ∅ or are subsets of the diagonal {(i, i) | i ∈ Zn}
(or, put differently, they appear only as self-loops). The example Σ-friendly (I,d) from
Figure 1 is actually a Σ-metaword. Note that for every word w ∈ Σ+ there is a Σ-metaword
representing w. A crucial observation regarding Σ-metawords is as follows.

Observation 3.2. Let ℓ ∈ {1, 2}, Σ-metaword (I, d), and w̃ be in the language of Ãℓ. Then
the element d can {w̃}-reach an element e via a path ρ if and only if for all odd indices i we
have ρi = ρi+1 and for all even indices i we have ρi + 1 = ρi+1.

As the next step of the construction, we are going to decorate Σ-friendly interpretations
with extra information on whether or not words represented by paths are accepted by A1.
This is achieved by means of the following concept

CA1
:= CΣ

fr ⊓ ∀L(Ã1).AccA1 ⊓ ∀L(C̃1).¬AccA1 ,

for a fresh concept name AccA1 . We define the concept CA2 analogously. We have that:

Lemma 3.3. Fix ℓ ∈ {1, 2}. If CAℓ
is satisfied by a pointed interpretation (I, d), then (I, d)

is Σ-friendly and for every element e ∈ ∆I that is x∗-reachable from d via a path ρ we
have e ∈ (AccAℓ

)I if and only if the Σ-word represented by ρ belongs to L(Aℓ). Moreover,
after reinterpreting the concept name AccAℓ

, every Σ-metaword becomes a model of CAℓ
.

Proof. The proof relies on Observation 3.2. Suppose that (I,d) is a pointed interpretation
and d ∈ (CAℓ

)I . We know that (I,d) is Σ-friendly by the satisfaction of CΣ
fr. For the

remainder of the proof, consider any element e ∈ ∆I that is x∗-reachable from d, say, via a
path ρ := ρ1 . . . ρn. Let w be the word represented by ρ. This implies, that for every index i,
the element ρi in I is equipped with a family of self-loops involving (a decorated) letter wi.
We consider two cases:
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• Assume that e ∈ (AccAℓ
)I . We will show that w ∈ L(Aℓ). Ad absurdum, suppose

that w ̸∈ L(Aℓ). Then, by definition of Cℓ, we have that w belongs to L(Cℓ). By the

construction of C̃ℓ there exists a sequence ⋆1, . . . , ⋆n ∈ {c, i, r}, for which the word

u := (w1, ⋆1)x . . . x(wn, ⋆n) is accepted by C̃ℓ. But then the path ρ′ := ρ1ρ1ρ2ρ2 . . . ρnρn
witnesses {u}-reachability (and thusL(C̃ℓ)-reachability) of e from d. Due to the satisfaction

of ∀L(C̃ℓ).¬AccAℓ
by (I, d) we infer e ∈ (¬AccAℓ

)I = ∆I \ (AccAℓ
)I . A contradiction.

• Assume that w ∈ L(Aℓ). We proceed analogously to the previous case. By the con-

struction of Ãℓ there exists a sequence ⋆1, . . . , ⋆n ∈ {c, i, r}, for which the word u :=

(w1, ⋆1)x . . . x(wn, ⋆n) is accepted by Ãℓ. Once again, the path ρ′ := ρ1ρ1ρ2ρ2 . . . ρnρn wit-

nesses {u}-reachability (and thus L(Ãℓ)-reachability) of e from d. Due to the satisfaction

of ∀L(Ãℓ).AccAℓ
by (I, d) we infer e ∈ (AccAℓ

)I , as desired.

For the last statement of the proof, take a Σ-metaword I that represents a word w ∈ Σ∗. We
alter the interpretation of the concept name AccAℓ

in I so that (AccIAℓ
) = {i−1 | w1 . . . wi ∈

L(Aℓ)}. It follows that ∀L(Ãℓ).AccAℓ
⊓ ∀L(C̃ℓ).¬AccAℓ

is indeed satisfied by (I, 0).

Equipped with Lemma 3.3, we are ready to prove correctness of our reduction.

Lemma 3.4. CA1 ⊓ CA2 ⊓ ∃x∗. (AccA1⊓AccA2) is satisfiable iff L(A1) ∩L(A2) ̸= ∅.

Proof. For one direction, take w ∈ L(A1)∩L(A2). Let (I, d) be a Σ-metaword representing w.
By Lemma 3.3 we decorate I with concepts AccA1 and AccA2 so that (I, d) |= CA1⊓CA2 , and
the interpretations of concepts AccAℓ

contain precisely the elements k for which the k-letter
prefix of w belongs to L(Aℓ). In particular, this means that (|w|−1) ∈ (AccA1 ⊓AccA2)

I . As
(|w|−1) is x∗-reachable from 0, we conclude the satisfaction of ∃x∗. (AccA1 ⊓AccA2) by (I, 0).
Hence, the concept from the statement of Lemma 3.4 is indeed satisfiable.

For the other direction, assume that (I, d) is a model of CA1⊓CA2⊓∃x∗. (AccA1 ⊓AccA2).
Then there exists an x∗-path ρ from d to some e ∈ (AccA1⊓AccA2)

I . Hence, by Lemma 3.3, for
all ℓ ∈ {1, 2} the word represented by ρ belongs to L(Aℓ), and thus also L(A1)∩L(A2).

By the undecidability of the non-emptiness problem for intersection of one-counter
languages [Val73, p. 75], we conclude Theorem 3.5.

Theorem 3.5. The concept satisfiability problem for ALCSelf
vpl is undecidable, even if only

visibly-pushdown languages that are encodings of DOCA languages are allowed in concepts.

There is nothing special about deterministic one-counter automata used in the proof.
In fact, any automaton model would satisfy our needs as long as it would (i) have an
undecidable non-emptiness problem for the intersection of languages, (ii) enjoy the analogue
of Lemma 3.1, and (iii) be closed under complement. We leave it is an open problem to see
if there exists a single visibly-pushdown language L that makes the concept satisfiability
of ALCSelf

reg extended with L undecidable. For instance, the decidability status of ALCr#s#
reg

with Self is open.

4. Negative results II: Nominals meet r#s#

We next provide an undecidability proof for the concept satisfiability problem for ALCOr#s#
reg .

To achieve this, we employ a slight variant of the classical domino tiling problem [Wan61].
A domino tiling system is a triple D := (Col,T, ), where Col is a finite set of colours,

T ⊆ Col4 is a set of 4-sided tiles, and ∈ Col is a distinguished colour called white. For
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brevity, we call a tile (cl, cd, cr, cu) ∈ T (i) left-border if cl = , (ii) down-border if cd = , (iii)
right-border if cr = , and (iv) up-border if cu = . We also say that tiles t := (cl, cd, cr, cu)
and t′ := (c′l, c

′
d, c

′
r, c

′
u) from T are (i) H-compatible if cr = c′l, and (ii) V-compatible if cu = c′d.

We say that D covers Zn×Zm (where n and m are positive integers) if there exists a mapping
ξ : Zn × Zm → T such that for all pairs (x, y) ∈ Zn × Zm with ξ(x, y) := (cl, cd, cr, cu) the
following conditions are satisfied:

(TBorders): x = 0 iff cl = ; x = n−1 iff cr = ; y = 0 iff cd = ; y = m−1 iff cu = ;
(THori): If (x+1, y) ∈ Zn × Zm then ξ(x, y) and ξ(x+1, y) are H-compatible.
(TVerti): If (x, y+1) ∈ Zn × Zm then ξ(x, y) and ξ(x, y+1) are V-compatible.

Intuitively, ξ : Zn × Zm can be seen as a white-bordered rectangle of size n×m coloured by
unit 4-sided tiles (with coordinates corresponding to the left, down, right, and upper colour)
from T, where sides of tiles of consecutive squares have matching colours.

Example 4.1. Suppose that Col = { , , , } and T = Col4. Then the map ξ := {(0, 0) 7→
, (1, 0) 7→ , (2, 0) 7→ , (3, 0) 7→ , (0, 1) 7→ , (1, 1) 7→ , (2, 1) 7→ , (3, 1) 7→ , (0, 2) 7→
, (1, 2) 7→ , (2, 2) 7→ , (3, 2) 7→ } covers Z4 × Z3, and can be visualised as follows.

0 1 2 3

0

1

2

r r r

r

r r r

r

r r r

ldI rdI

ruIluI

W.l.o.g. we assume that T does not contain tiles having more than 2 white sides.
A system D is solvable if there exist positive integers n,m ∈ N for which D covers Zn × Zm.
The problem of deciding whether an input domino tiling system is solvable is undecidable,
which can be shown by a minor modification of classical undecidability proofs [PH23,
Lemma 3.9][Boa97]. For a domino tiling system D := (Col,T, ) we employ fresh concept
names from CT

«
:= {Ct | t ∈ T} to encode mappings ξ from some Zn × Zm to T in

interpretations I as certain r+-paths ρ from ldI to ruI passing through rdI and luI (where
the individual names from NT

«
:= {ld,rd,lu,ru} are fresh). Consult the figure in Example 4.1.

Definition 4.2. Consider a domino tiling system D := (Col,T, ). An interpretation I is a
D-snake whenever all seven criteria listed below are fulfilled:

(SPath): There is an r+-path ρ that starts in ldI , then passes through rdI , then passes
through luI and finishes in ruI . More formally, there are indices 1 < i < j < |ρ| such
that ρ1 = ldI , ρi = rdI , ρj = luI and ρ|ρ| = ruI .

(SNoLoop): No NT
«
-named element can r+-reach itself.

(SUniqTil): For every element d that is r∗-reachable from ldI there exists precisely one
tile t ∈ T such that d ∈ CI

t (we say that d is labelled by a tile t or that d carries t).
(SSpecTil): The NT

«
-named elements are unique elements r∗-reachable from ldI that are

labelled by tiles with two white sides. Moreover, we have that (a) ldI carries a tile
that is left-border and down-border, (b) rdI carries a tile that is right-border and
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down-border, (c) luI carries a tile that is left-border and up-border, (d) ruI carries a
tile that is right-border and up-border.

(SHori): For all elements d different from ruI that are r∗-reachable from ldI and labelled
by some tile t := (cl, cd, cr, cu), there exists a tile t′ := (c′l, c

′
d, c

′
r, c

′
u) for which all

r -successors e of d carry the tile t′ and: (i) t, t′ are H-compatible, (ii) if cd = then
(cr ̸= iff c′d = ), and (iii) if cu = then c′u = .

(SLen): There exists a unique positive integer N such that all r+-paths between ldI and
rdI are of length N−1. Moreover, rdI is the only element rN−1-reachable from ldI .

(SVerti): For all elements d that are r∗-reachable from ldI and labelled by some t ∈ T that
is not up-border, we have that (a) there exists a tile t′ ∈ T such that all elements e rN-
reachable (for N guaranteed by (SLen)) from d carry t′, (b) t and t′ are V-compatible,
(c) t is left-border (resp. right-border) if and only if t′ is.

Note that tiles are not “deterministic” in the following sense: it could happen that two
elements carry the same tile but tiles of their (horizontal or vertical) successors do not coincide.

If I satisfies all but the last two conditions, we call it a D-pseudosnake. The key
properties of our encoding are extracted and established in Lemmas 4.3–4.4.

Lemma 4.3. If a domino tiling system D is solvable then there exists a D-snake.

Proof. Suppose that D covers Zn × Zm and let ξ be a mapping witnessing it. Define an
interpretation I as follows:

(i) ∆I := Zn·m,
(ii) ldI := 0, rdI := n−1, luI := (m−1) ·n, ruI := m ·n−1, and aI := 0 for all a ∈ NI \NT

«
.

(iii) CI
t := {(x+ y · n) ∈ ∆I | ξ(x, y) = t} for all t ∈ T, and CI := ∅ for C ∈ NC \ CT

«
,

(iv) rI := {(i, i+1) | i ∈ Zn·m−1}, and (r ′)I := ∅ for all r ′ ∈ NR \ {r}.
Thus I is an n ·m element r+-path, labelled accordingly to ξ. As ξ respects (TBorders),
(THori) and (TVerti), we can readily verify that I is indeed a D-snake. The only case
that requires treatment, is to verify the satisfaction of (SHori) for elements of the form
d := (n−1) + y · n for some y ∈ N. Then, by (TBorders), d carries a right-border tile and its
r -successor d′ := 0+(y+1)·n carries a left-border tile. Hence, their tiles are H-compatible.

Lemma 4.4. If there exists a D-snake for a domino tiling system D, then D is solvable.

Proof. Suppose that I is a D-snake. Let ρ := ρ1 . . . ρ|ρ| be the path guaranteed by (SPath)
and let N be the integer guaranteed by (SLen). We show by induction that |ρ| is divisible by
N. The inductive assumption states that for all integers k ∈ N with k ·N ≤ ∥ρ∥ we have:

(i) ρk·N+1 carries a left-border tile,
(ii) There is no 2 ≤ i < N such that ρk·N+i carries a left-border tile or a right-border tile,
(iii) ρk·N+N carries a right-border tile.

Then by Property (iii) and the fact that ρ|ρ| (equal to ru
I by (SPath)) carries a right-border

tile (by Property (d) of (SSpecTil)), we can conclude that |ρ| is indeed divisible by N.
We heavily rely on the fact that every element of ρ is labelled by precisely one tile, which

is due to (SUniqTil). We start with the case of k = 0. Then ρ0·N+1 = ρ1 is equal to ldI ,
by (SPath). Moreover, ρ1 is labelled with a left-border tile, by Property (a) of (SSpecTil).
What is more, ρ0·N+N = ρN is equal to rdI (by (SLen)), which carries a right-border tile by
Property (b) of (SSpecTil). This resolves Properties (i) and (iii). To establish Property (ii),
assume towards a contradiction that there is i between 2 and N for which ρi carries a
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left-border tile (the proof for a right-border tile is analogous). Take the smallest such i. By
(SHori) we infer that ρ(i−1) carries a right-border tile. In particular, this means that i > 2
because the tile carried by ρ1 is not right-border. By exhaustive application of (SHori)
and the fact that the tile of ρ1 is down-border, we deduce that the tile of ρ(i−1) is also

down-border. Hence, by Property (b) of (SSpecTil) we have that ρ(i−1) is equal to rdI . But

then the path ρ(i−1)ρi . . . ρN witnesses r+-reachability of rdI from itself, which is forbidden
by (SNoLoop). A contradiction. For the inductive step, assume that Properties (i)–(iii)
hold true for some k, and consider the case of k+1. Note that Property (i) follows from
Property (iii) of the inductive assumption by (SHori). We next show that Property (ii)
holds. Assume ad absurdum that there is i for which ρ(k+1)·N+i carries a left-border (resp.
right-border) tile. But then, invoking Item (c) of (SVerti), we infer that ρk·N+i is also left-
border (resp. right-border). This contradicts Property (ii) of the inductive assumption. Hence
Property (ii) holds true. By inductive assumption, we know that ρk·N+N carries a right-
border tile. Then, we apply Property (c) of (SVerti) to infer that ρk·N+N+N = ρ(k+1)·N+N is
right-border, as desired. This establishes Property (iii), and concludes the induction.

Let M := |ρ|/N. By the previous claim, we know that M ∈ N. Consider a function
ξ : ZN × ZM → T that maps all (x, y) to the unique tile carried by ρx+N·y+1. (Note that we
number paths from 1!) This function is well-defined by (SUniqTil) and it satisfies (THori)
and (TVerti) due to the satisfaction of (SHori) and (SVerti). The satisfaction of the first two
statements of (TBorders) by ξ is guaranteed by Properties (i)–(iii) from the induction above.
Finally, the last two statements of (TBorders) are due to straightforward induction that
employs (SSpecTil) and the last statement of (SHori). As we proved that ξ covers ZN × ZM,
we conclude that D is indeed solvable.

While D-snakes do not seem to be directly axiomatizable even in ALCvpl, we at least

see how to express D-pseudosnakes in ALCOr#s#
reg . The next lemma is routine.

Lemma 4.5. For every domino tiling system D := (Col,T, ), there exists an ALCOr#s#
reg -

concept CD , that employs only the role r, individual names from NT
«

and concept names

from CT
«
, such that for all interpretations I we have that I is a D-pseudosnake iff I |= CD .

Proof. We present a rather straightforward axiomatization of the aforementioned properties,
written from the point of view of the interpretation of a nominal ld.

C(SPath) := {ld} ⊓ ∃r+.
(
{rd} ⊓ ∃r+.

(
{lu} ⊓ ∃r+.{ru}

))
.

C(SNoLoop) := ⊔

a∈NT
«

∀r∗.
[
{a} → ∀r+.¬{a}

]
.

C(SUniqTil) := ∀r∗
[ ⊔
C∈CT

«

C ⊓ ⊔

C′∈CT
«
,C′ ̸=C

¬C′

].
C(SSpecTil) := ∀r∗

[( ⊔
t∈T with two white sides

Ct

)
↔

⊔
a∈NT

«

{a}
]
⊓ Cdown

(SSpecTil) ⊓ Cup
(SSpecTil), where
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Cdown
(SSpecTil) :=

{ld} ⊓
⊔

t:=( , ,cr,cu)∈T

Ct

 ⊓ ∃r∗.

{rd} ⊓
⊔

t:=(cl, , ,cu)∈T

Ct

 ,

Cup
(SSpecTil)

:= ∃r∗.

{lu} ⊓
⊔

t:=( ,cd,cr, )∈T

Ct

 ⊓ ∃r∗.

{ru} ⊓
⊔

t:=(cl,cd, , )∈T

Ct

 .

C(SHori) := ⊔

t∈T
∀r∗.

[
(¬{ru} ⊓ Ct) →

(∃r .⊤) ⊓
⊔

t′∈T satisfying cond. (i)–(iii) of (SHori)

∀r .Ct′

].
We can now define CD as the conjunction of all the concept definitions presented above.

It follows immediately from the semantics of ALCOr#s#
reg that the presented concept definition

is consistent if and only there exists an element starting a pseudosnake.

Note that the property that pseudosnakes are missing in order to be proper snakes, is
the ability to measure. We tackle this issue by introducing a gadget called a “yardstick”.

Definition 4.6. Let T be a finite non-empty set, let NT
Ì

:= {st,md,mdt,endt | t ∈ T} be

composed of (pairwise different) individual names. A T-yardstick is any interpretation I
satisfying all the conditions below.

(YNom): NT
Ì
-named elements in I are pairwise different and (r + s)∗-reachable from stI .

(YNoLoop): No NT
Ì
-named element can (r + s)+-reach itself.

(YMid): mdI is the unique element with an s-successor that is r∗-reachable from stI .
(YSuccOfMid): The s-successors of mdI are precisely {mdt | t ∈ T}-named elements.
(YReachMidT): For every t ∈ T we have that mdIt can s∗-reach endIt but it cannot s∗-reach

endIt′ for all t
′ ̸= t.

(YEqDst): The elem. r#s#-reachable from stI are precisely the {endt | t ∈ T}-named ones.
(YNoEqDst): No {endt | t ∈ T}-named element is r#s#-reachable from an element (s+r)+-

reachable from stI .

An example {♡,♠}-yardstick is depicted below. A “minimal” yardstick contains the grey
nodes only.

stI mdI

mdI♡ endI♡

mdI♠ endI♠

r r

r

r

r

r

r

r

r

r

r

r

r

r s

s s s

s

s

s

s

s

s

s

The forthcoming lemma explains the name “yardstick”. Intuitively it says that in any
T-yardstick I, all s∗-paths from mdI to all endIt have equal length.

Lemma 4.7. Let I be a T-yardstick. Then there exists a unique positive integer N such
that: (i) for all t ∈ T we have that endIt is sN-reachable from mdI , and (ii) for all t ∈ T we
have that endIt is sN−1-reachable from mdIt . We will call N the length of I.
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Proof. Fix t⋆ ∈ T. By (YEqDst) we know that stI r#s#-reaches endIt⋆ , and let ρ :=
ρ1 . . . ρ2N+1 be a path witnessing it. We claim that this is the desired length of I. First,
note that N > 0 by (YNom). Second, by the semantics of r#s#, for all i ≤ N we have
(ρi, ρi+1) ∈ rI and (ρN+i, ρN+i+1) ∈ sI . Thus ρN+1 is r∗-reachable from stI and has an
s-successor. These two facts imply (by (YMid)) that ρN+1 is equal to mdI . It remains to show
that all the paths leading from mdI to some endt are of length N. Towards a contradiction,
assume that there is t′ ∈ T and an integer M ̸= N such that mdI sM-reaches endIt′ via a

path ρ′ := ρ′1 . . . ρ
′
M. We stress that ρ′1 = mdI and ρ′M = endIt′ (by design of ρ′), and ρ′2 = mdIt′

(by a conjunction of (YSuccOfMid) and (YReachMidT)). To conclude the proof, it suffices
to resolve the following two cases.

• Suppose that M < N. Then ρN+1−M (rMsM)-reaches (thus also r#s#-reaches) endIt′ ,

as witnessed by the path ρN+1−M . . . ρNρ
′. Moreover ρN+1−M is r+-reachable from stI ,

witnessed by the path ρ1 . . . ρN+1−M (note that its length is positive by the inequality
M < N). This yields a contradiction with (YNoEqDst).

• Suppose that M > N. Consider a path ρ1 . . . ρNρ
′
1 . . . ρ

′
N. By construction, such a path

witnesses the fact that stI (rNsN)-reaches (and thus also r#s#-reaches) ρ′N. By (YEqDst)
we infer that ρ′N is then {endt | t ∈ T}-named. As ρ′2 = mdIt′ s

+-reaches ρ′N, we infer that

ρ′N = endIt′ (otherwise we would have a contradiction with (YReachMidT)). But then endIt′
s+-reaches itself via a path ρ′N . . . ρM, which is of positive length by the fact that M > N.
This yields a contradiction with (YNoLoop).

This establishes Property (i). Property (ii) is now immediate by (YSuccOfMid).

The next lemma proves the existence of arbitrary large yardsticks.

Lemma 4.8. For every finite non-empty set T and a positive integer N, there exists a
T-yardstick of length N.

Proof. Consider the following interpretation I with ∆I := ZN ∪ {N} ∪ (ZN−1 × T):

• stI := 0, mdI := N, (mdt)
I := (0, t), (endt)

I := (N−1, t) for all t ∈ T, and aI := 0 for all
names a ∈ NI \ NT

Ì
.

• rI := {(i, i+1) | i ∈ ZN}, sI := {(N, (0, t)), ((i, t), (i+1, t)) | t ∈ T, i ∈ ZN−1}, and
(r ′)I = ∅ for all role names r ′ ∈ NR \ {r , s}.

An example such I for N = 3 and T = {♡,♠} is depicted above (in restriction to grey nodes
only). It is routine to verify that I satisfies all the properties in Definition 4.6, as well as
conditions (i) and (ii) from the statement of Lemma 4.7. This concludes the proof.

To make use of yardsticks in our proofs, we need to axiomatise them inside ALCOr#s#
reg .

Lemma 4.9. There exists an ALCOr#s#
reg -concept CT

Ì
, that employs only role names r , s

and individual names from NT
Ì
, such that for all interpretations I we have: I is a T-yardstick

if and only if I is a model of CT
Ì
.

Proof. The following concepts are written from the point of view of the interpretation of st.

C(YNom) := ⊔

a∈NT
Ì

∃(r + s)∗
[
{a} ⊓ ⊔

b∈NT
Ì

\{a}

¬{b}
]
.
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C(YNoLoop) := ⊔

a∈NT
Ì

∀(r + s)∗.
[
{a} → ∀(r + s)+.¬{a}

]
.

C(YMid) :=
[
∃r∗. ((∃s.⊤) ⊓ {md})

]
⊓
[
∀r∗. ((∃s.⊤) → {md})

]
.

C(YSuccOfMid) := ∀(r + s)∗.

{md} →
[ ⊔

a∈{mdt|t∈T}

∃s.{a}
]
⊓
[
∀s.

⊔
a∈{mdt|t∈T}

{a}
] .

C(YReachMidT) := ⊔

t∈T
∀(r + s)∗.{mdt} →

[
(∃s∗.{endt}) ⊓ ⊔

t′∈T,t̸=t′

∀s∗.¬{endt′}
]
.

C(YEqDst) :=

(

⊔

t∈T
∃r#s#.{endt}

)
⊓ ∀r#s#.

(⊔
t∈T

{endt}

)
.

C(YNoEqDst) := ∀(r + s)+.∀r#s#.

(

⊔

t∈T
¬{endt}

)
.

We define CT
Ì

as the conjunction of {st} and all the concept definitions presented above. By

semantics of ALCOr#s#
reg we have that CT

Ì
is consistent if and only if (CT

Ì
)I = {stI}.

We next put pseudosnakes and yardsticks together, obtaining metricobras. The intuition
behind their construction is fairly simple: (i) we take a disjoint union of a pseudosnake and
a yardstick, (ii) we then connect (via the role s) every element carrying a tile t with the
interpretation of the corresponding nominal mdt, and finally (iii) we synchronise the length
of the underlying yardstick, say N, with the length of the path between the interpretations
of ld and rd. After such “merging”, retrieving (SVerti) is easy: rather than testing if every
N-reachable element from some d carries a suitable tile t (for an a priori unknown N) we
can check instead whether d can r#s#-reach the interpretation of endt.

A formal definition and a picture come next.

r r r

r

r r r r r r r

ldI rdI

ruIluI

cbraI

r

stI
s

r r rr
mdI

r

mdI

s

s s

endI

s

. . . . . .
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endI
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Figure 2: A fragment of an example D-metricobra representing ξ from Example 4.1. The
upper part corresponds to a D-snake, and the lower part corresponds to a T-
yardstick. The distances between named elements are important.
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Definition 4.10. Let D := (Col,T, ) be a domino tiling system and cbra be an individual
name. An interpretation I is a D-metricobra if all the conditions below are satisfied:

(MInit): I is a D-pseudosnake and a T-yardstick, and cbraI has precisely two successors:
one r -successor, namely ldI , and one s-successor, namely stI .

(MTile): For every tile t ∈ T and every element d ∈ ∆I that is r∗-reachable from ldI we
have that d carries a tile t ∈ T if and only if d has a unique s-successor and such a
successor is equal to mdIt .

(MSync): Let t ∈ T be the tile labelling rdI . Then (a) cbraI r#s#-reaches endIt and cannot
r#s#-reach any of endIt′ for t

′ ̸= t, (b) cbraI cannot r#s#-reach an element that can

s+-reach endIt , (c) no element r∗-reachable from ldI can r#s#-reach endIt .
(MVerti): For all elements d that are r∗-reachable from ldI and are labelled by some t ∈ T

that is not up-border, we have that there exists a tile t′ ∈ T such that (a) t and t′ are
V-compatible, (b) t is left-border (resp. right-border) iff t′ is, and (c) d can r#s#-reach
endt′ but cannot reach r#s#-reach endt′′ for all t

′′ ̸= t′.

We first show that D-metricobras are axiomatizable in ALCOr#s#
reg .

Lemma 4.11. There exists an ALCOr#s#
reg -concept CD such that for all interpretations I

we have that I is a D-metricobra if and only if (CD)I = {cbraI}.

Proof. We present a rather straightforward axiomatization of the aforementioned properties,
written from the point of view of the interpretation of cbra. Note that as the interpretation
of cbra has a unique r -successor, we can simplify concepts of the form ∀r .[{ld} → (∀r∗.C)]
to ∀r+.C, which we frequently do below.

C(MInit) := ∃r .CD ⊓ ∃s.CT
Ì ⊓ ∀r .({ld} ⊓ ¬{st}) ⊓ ∀s.(¬{ld} ⊓ {st}).

C(MTile) := ⊔

t∈T
∀r+. (Ct ↔ [∃s.{mdt} ⊓ ∀s.{mdt}]) .

C(MVerti) := ∀r+.
not up-border⊔

t∈T

Ct →
sat. (a),(b) of (MVerti)⊔

t′∈T

[
(∃r#s#.{endt′}) ⊓ ⊔

t′′ ̸=t′,t′′∈T
∀r#s#.¬{endt′′}

] .

Ct
(MSync) :=(∃r#s#.{endt})⊓ ⊔

t′ ̸=t

(∀r#s#.¬{endt′})⊓(∀r#s#.∀s+.¬{endt})⊓∀r+.∀r#s#.¬{endt}.

We define CD := {cbra}⊓C(MInit)⊓C(MTile)⊓C(MVerti)⊓ ⊔t∈T[(∃r+.({rd} ⊓ Ct)) → Ct
(MSync)].

Its correctness follows from the semantics of ALCOr#s#
reg and Lemmas 4.5 and 4.9.

As the second step, we show that for every D-snake we can construct a D-metricobra.

Lemma 4.12. If I is a D-snake then there exists a D-metricobra J .

Proof. Let I be a D-snake, N be the integer guaranteed by (SLen), and I ′ be any T-yardstick
of length N (existence guaranteed by Lemma 4.8). We construct an interpretation J as a
disjoint union of I, I ′ and an additional domain element that we interpret as cbraJ . We let
J interpret all names from NT

Ì
as in I ′, all names from NT

«
as in I, and all other (unused in

our concept definitions) names as cbraJ . Interpretation of concept names is inherited from I
and J . Finally we interpret role names as in I and I ′ with minor corrections. More precisely:
(i) we alter the interpretation of rJ to include an extra pair (cbraJ ,ldJ ), and (ii) we alter the
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interpretation of sJ to include the pair (cbraJ ,stJ ) and
⋃

t∈TCJ
t ×{mdJt }. Consult Figure 2

to see an example construction of J from I and I ′. The satisfaction of properties (MInit)
and (MTile) follow from the construction of J , while the other two properties are due to,
respectively, (SLen) and (SVerti). Thus J is the desired metricobra.

Finally, we show that every D-metricobra is actually a D-snake.

Lemma 4.13. If I is a D-metricobra then it is also a D-snake.

Proof. As I is a pseudosnake by definition, it suffices to show that it satisfies the missing
conditions of Definition 4.2. Our first goal is to establish I |= (SLen). Note that by (SSpecTil)
we have that rdI is the only element r∗-reachable from ldI that carries a down- and right-
border tile, say t. Furthermore by (MTile) and (YReachMidT) we infer that rdI is the
only element r∗-reachable from ldI that can s∗-reach endIt . Take N to be the length of the
yardstick. By Lemma 4.7 we know that mdIt sN−1-reaches endIt , hence rd

I sN-reaches endIt
(and there is no other integer M ̸= N for which such reachability conditions hold). From
(MSync) we know that cbraI r#s#-reaches endIt , thus by previous observations we deduce
that cbraI rNsN-reaches endIt (whence ldI rN−1-reaches rdI). This establishes the existence
of a path of length N mentioned in (SLen), and we next need to show that all such paths
have equal length. Consider cases:

• There exists M < N such that ldI rM−1-reaches rdI . Then cbraI rMsM-reaches some
element that can s+-reach endIt . This yields a contradiction with condition (b) of (MSync).

• There exists M > N such that ldI rM−1-reaches rdI . Then there is an element r∗-reachable
from ldI that can rNsN-reach endIt . This contradictions condition (c) of (MSync).

Hence N is indeed unique. The fact that rdI is the only element rN−1-reachable from ldI

follows from the uniqueness of the tile assigned to rdI , see (SSpecTil) and Property (a)
of (MSync). It remains now to show that I |= (SVerti). To do so, it suffices to observe that
the following property holds. As all the s∗-paths from an element carrying a tile t to endt are
of length N (by the previous discussion and Lemma 4.7), we can see that r#s#-reachability
of endt is equivalent to rN-reachability of some element carrying t. Then the satisfaction
of (SVerti) follows immediately by (MVerti). Hence, I is indeed a D-snake.

By collecting all previous lemmas we establish the correspondence between solvability
of tiling systems and satisfiability of CD .

Lemma 4.14. A domino tiling system D is solvable if and only if CD has a model.

Proof. If D is solvable, then by Lemma 4.3 there exists a D-snake, which by Lemma 4.12
implies the existence of a D-metricobra, which is a model of CD (see Lemma 4.11). For the

other direction, if CD has a model, then such a model is a D-metricobra (by Lemma 4.11),

as well as a D-snake (by Lemma 4.13). As the existence of a D-snake guarantees that D is
solvable by Lemma 4.4, this finishes the proof.

Hence, we can conclude the main theorem of the paper.

Theorem 4.15. The concept satisfiability problem for ALCOvpl is undecidable, even if the

languages allowable in concepts are restricted to {r , s, r+, s+, r∗, s∗, (r + s)∗, (r + s)+, r#s#}.

The logic ALCOreg is a notational variant of Propositional Dynamic Logic with nomi-
nals [KS14]. Thus the above theorem provides results also in the realm of formal verification.
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5. Negative results III: Entailment of queries with non-regular atoms

We conclude the negative part of the paper by showing that positive results regarding
entailment of conjunctive queries with visibly-pushdown atoms in the database setting [LL15,
Thm. 2] do not generalise even to ALC ontologies. We provide a reduction from the White-
bordered Octant Tiling Problem, which we are going to define next. Roughly speaking, the
ontology used in our reduction will define a “grid” covered with tiles, while the query
counterpart will serve as a tool to detect mismatches in its lower triangle (a.k.a. octant).
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s

s
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s
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. . .

. . .

. . .

Figure 3: Visualization of a fragment of a T-octant interpretation.

We refer to the set O := {(n,m) | n,m ∈ N, 0 ≤ m ≤ n} as the octant. Let D :=
(Col,T, ) be a domino tiling system (defined as in Section 4). For our reduction it is
convenient to impose several restrictions on T, namely that the all-white tile belongs to T,
and that all other tiles from T containing white colour are both left- and up-border but
neither down- nor right-border. We say that D covers O if there exists a mapping ξ : O → T
such that for all pairs (n,m) ∈ O the following conditions are satisfied:

(OInit): ξ(0, 0) = and ξ(1, 0) ̸= .
(OVerti): If (n,m+1) ∈ O then ξ(n,m) and ξ(n,m+1) are V-compatible.
(OHori): The tiles ξ(n,m) and ξ(n+1,m) are H-compatible.

In the White-bordered Octant Tiling Problem we ask if an input domino tiling system D

(with additional conditions on tiles mentioned above) covers the octant O.

Observation 5.1. Let D be a tiling system and let ξ : O → T be covering the octant. Then
for all i ∈ N we have that ξ(i, i) = , and ξ(i+1, i) is left- and up-bordered. Moreover, no
position (i, j) satisfying 0 < j < i−1 carries a white-border tile.

Proof. The first statement follows by routine induction. From (OInit) we have ξ(0, 0) = .
Suppose now that ξ(i, i) = . Then, by (OHori) and our choice of tiles, we have that ξ(i+1, i)
is left- and up-border. Thus, as is the only tile in T that is down-border, we conclude
that (i+1, i+1) carries . For the second statement, suppose that there is a pair (i, j) for
which j < i−1 and ξ(i, j) contains a white-border tile, and take lexicographically smallest
such (i, j). By design of D, the tile ξ(i, j) is left- and up-border. From (OInit) we infer i > 1.
By (OHori), the tile ξ(i−1, j) is also right-border, contradicting the minimality of (i, j).

We first show undecidability of the White-bordered Octant Tiling Problem, which follows
by a straightforward reduction from the Octant Tiling Problem [BDG+10, Sec. 3.1].
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Lemma 5.2. The white-bordered Octant Tiling Problem is undecidable.

Proof. We say that a domino tiling system D almost covers the octant if there is a mapping
ξ : O → T such that all pairs (n,m) ∈ O fulfil (OVerti) and (OHori). It was stated by Bresolin
et al. [BDG+10, Sec. 3.1] (and follows from the classical work of van Emde Boas [Boa97]) that
deciding whether D, that does not contain white-bordered tiles, almost covers the octant is
undecidable. To prove undecidability of the White-bordered Octant Tiling Problem we provide
a reduction from the tiling problem of Bresolin et al. Thus, let D := (Col,T, ) be a domino
tiling system that does not have white-bordered tiles, and considerD′ := (Col,T′, ) to be the
tiling system obtained by putting T′ := { , (cl, cd, cr, cu), ( , cd, cr, ) | (cl, cd, cr, cu) ∈ T}.
We claim that D′ covers the octant if and only if D almost covers the octant. Indeed:

• The “if” direction is relatively straightforward. Let ξ be a map witnessing that D almost
covers the octant. We alter the tiles assigned by ξ to the diagonal to make them left-
and up-border, then we shift ξ right, and fill the remaining places with . Formally,
let ξ′ be defined as: (i) ξ′(i, i) := for all i ∈ N, (ii) ξ′(i, i−1) := ( , cd, cr, ), where
ξ(i, i) = (cl, cd, cr, cu), for all positive i ∈ N, and (iii) ξ′(i, j) = ξ′(i, j−1) for all remaining
i, j ∈ N. It can be readily verified that ξ′ satisfies the required conditions.

• For the “only if” direction, let ξ′ be a map witnessing that D′ covers the octant. It
suffices to take ξ : (i, j) 7→ ξ′(i+2, j). By Observation 5.1) none of the tiles assigned by ξ
is white-bordered. As ξ′ covers the octant, we infer that ξ (almost) covers the octant.

Our undecidability proof relies on concepts from CT
«

and the non-regular language r#s#.

We fix and enumerate a set of tiles T as t1, . . . , tN for N := |T|. As the first building
block, we introduce octant interpretations. An interpretation I is called T-octant if there
exists a function ξ : O → T fulling (OInit) and (OVerti) (but not necessarily (OHori))
that satisfies the following conditions: (i) ∆I = O, (ii) rI = {((n, 0), (n+1, 0)) | n ∈ N},
(iii) sI = {((n,m), (n,m+1)) | n,m ∈ N,m < n}, and (iv) CI

t = {(n,m) | ξ(n,m) = t} for
all tiles t ∈ T. In this case I represents ξ. Due to the fact that ξ is a function, every domain
element carries precisely one tile. Moreover, for every such ξ we can easily find a T-octant
representing ξ (just employ the above definition). For more intuitions consult Figure 3.

To avoid disjunction in the forthcoming query, we need to extend octant interpretations
with yet another way of representing tiles, which will be based on distances. Suppose that
an element (n,m) from an octant interpretation I carries a tile ti, and that the tile assigned
to its horizontal predecessor (n−1,m), if exists, is equal to tj . We equip (n,m) with an
outgoing s+-path ρ of length N, composed of fresh elements (we employ fresh concept
names In and In to make a distinction between elements in octant and the ones present in
“extra paths”). The i-th element of ρ will be the unique element of ρ that belongs to the
interpretation of a concept Cur. Similarly, the j-th element of ρ will be the unique element
of ρ that belongs to the interpretation of a concept Prev. Thus, the distance from (n,m) to
an element labelled by the concept Cur (resp. Prev) uniquely determines the tile of a current
node (resp. its horizontal predecessor). As a mere technicality, needed for query design, we
enrich the element (0, 0) with an incoming r+-path of length N. A formalization comes next.

Definition 5.3. Let I be an interpretation with a domain O×ZN+1∪{(−i−1, 0, 0) | i ∈ ZN},
and let IO be the restriction of I to the set O× {0}. We call I a T-hyperoctant if:

• IO is isomorphic (via a projection (n,m, 0) 7→ (n,m)) to a T-octant interpretation,

• InI = O× {0}, InI = ∆I \ InI , PrevI = ∆I \ PrevI ,
• rI = rIO ∪ {((−i−1, 0, 0), (−i, 0, 0)) | i ∈ ZN},
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• sI = sIO ∪ {((n,m, k), (n,m, k+1)) | (n,m) ∈ O, k ∈ ZN},
• CI

tk
= C

IO
tk

and CurI = {(n,m, k) | (n,m, 0) ∈ CI
tk
, tk ∈ T}, and

• for every (n,m) ∈ O there is precisely one positive k for which (n,m, k) ∈ PrevI holds,
and for such a number k we have that tk and the tile carried by (n,m, 0) are H-compatible.

Note that, in addition to what is present in the definition of T-hyperoctant, we employed fresh
concept names, namely In, Prev, Cur, In, and Prev. The purpose of “overlined” concepts
is to help with a design of a query, as the use of negation is not allowed there. We call I
proper if for all (n,m, k) ∈ CurI we have (n+1,m, k) ∈ PrevI . Note that properness is not
definable in ALC, but we will enforce it with a query. The map ξ : O → T represented by a
hyperoctant I is the map represented by its T-octant substructure IO.
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Figure 4: A fragment of a proper {t1, t2, t3}-hyperoctant for t1 = , t2 = , and t3 = .
Elements in InI are depicted as circles. Elements in PrevI are marked grey,
elements in CurI are marked black, and the lime elements belong to PrevI ∩CurI .

We next relate proper T-hyperoctants and domino tiling systems.

Lemma 5.4. Let D := (Col,T, ) be a domino tilling system. For every proper T-
hyperoctant I, the map ξ : O → T represented by I witnesses that D covers the octant.
If D covers the octant, as witnessed by a map ξ : O → T, then there exists a proper T-
hyperoctant I representing ξ.

Proof. Take a proper T-hyperoctant I, and the map ξ represented by I. By definition of
a T-octant, we have that ξ satisfies (OInit) and (OVerti). To establish (OHori) take any
(n,m) ∈ O, and suppose that ξ(n,m) = ti and ξ(n+1,m) = tj hold for some integers i, j ∈ N.
By definition of a hyperoctant and properness of I, we have that (n+1,m, 0) carries the
tile tj , and (n+1,m, i) ∈ PrevI . Thus, by the 6th item of Definition 5.3 we infer that tiles ti
and tj are H-compatible. The proof of the other statement is routine: take IO to be a T-octant
representing ξ. W.l.o.g. assume that IO interprets all role names and concept names that are
not mentioned in its definitions as empty sets. We next rename the domain of IO to O×{0}
and append fresh elements to make the domain equal to O× ZN+1 ∪ {(−i−1, 0, 0) | i ∈ ZN}.
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Then, we enlarge the interpretations of r , s, In, and Cur in a minimal way according to the
first five items of Definition 5.3. Finally, we interpret Prev as the set composed of all triples
(n+1,m, k) for all (n,m) ∈ O carrying a tile tk, and all triples (n, n, ℓ) for x ∈ N and ℓ
denoting the index of in T. Call the resulting interpretation I. Clearly, I is T-hyperoctant
due to the fact that ξ is a map and respects conditions (OInit), (OVerti), and (OHori).

We employ a VPL-CQ qD▲ (u1, u2, v1, v2,w1,w2, x1, x2, y1, y2, z1, z2) as a tool for detecting
whether a given T-hyperoctant I is proper. Observe that I is not proper if and only if there
is a position (n,m) ∈ O and a number 1 ≤ k ≤ N, for which we have (n,m, k) ∈ CurI and
(n+1,m, k) ̸∈ PrevI . This is precisely the condition that is going to be expressed with qD▲ ,
informally presented at Figure 5. The intuition behind qD▲ is as follows.
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Figure 5: Visualisation of the query qD▲ (u1, u2, v1, v2,w1,w2, x1, x2, y1, y2, z1, z2).

We first ensure that z1, z2 are mapped to some elements representing the coordinates
(n,m) and (n′,m′) of the octant for some integers satisfying n′ = n+1 and m = m′.
The fact that they belong to the octant is handled by means of the In concept. The equality
n′ = n+1 is achieved by introducing variables y1, y2, stating their r -connectedness, and
the s∗-reachability of z1 and z2 from, respectively, y1 and y2. Thus y1, y2 are placed “at
the bottom” of the variables z1 and z2. Next, the equi-hight of z1, z2 is ensured with extra
r -connected variables x1, x2 located to the left of y1, and non-regular atoms r#s#(x1, z1)
and r#s#(x2, z2), enforcing equality of the distance between xi and yi, and the distance
between yi and zi, for all i ∈ {1, 2}. Once we know that the variables z1, z2 are mapped by
a query as desired, we need to express that they violate properness of I. Recall that we
want to establish (n,m, k) ∈ CurI and (n+1,m, k) ̸∈ PrevI for some k. Such elements will
be represented, respectively, by variables v1 and v2. To express the mentioned constraint,
we introduce fresh r -connected variables u1, u2 that are located to the left of x1, x2, and
whose distance to u1, u2 will be precisely the k that we are looking for. We stress that we do
not “hardcode” the value of k in the query. As the variable u1 is free to map whenever it
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wants, this mimics a disjunction over possible values of k. We ensure the variables v1, v2 are
mapped to elements outside the octant by expressing that they are r∗-reachable from the
s-successors w1,w2 of z1, z2, that are labelled with In. Note that just expressing that v1, v2
belong to In does not suffice, as the path leading from some of zi to vi could contain elements
in In (which we implicitly forbid). With non-regular atoms r#s#(u1, v1) and r#s#(u2, v2) we
make sure that the distance between z1 and v1 (respectively z2 and v2) is indeed k.

Despite the high technicality of our construction, we hope that after reading the above
intuition and glancing at Figure 5, the following definition of the query qD▲ should be
now understandable:

qD▲ := r(u1, u2) ∧ r∗(u2, x1) ∧ r(x1, x2) ∧ r∗(x2, y1) ∧ r(y1, y2) ∧ Cur(v1) ∧ Prev(v2)∧
2∧

i=1

[
s∗(yi, zi) ∧ In(zi) ∧ s(zi,wi) ∧ In(wi) ∧ s∗(wi, vi) ∧ r#s#(xi, zi) ∧ r#s#(ui, vi)

]
.

By routine case analysis with a bit of calculations, we can show that:

Lemma 5.5. Let D := (Col,T, ) be a domino tilling system and let I be a T-hyperoctant.
Then we have that I is proper if and only if I ̸|= qD▲ .

Proof. We start from the “only if” direction. Suppose that I is proper, but there is a match η
witnessing I |= qD▲ . We provide a few tedious calculations. As the atoms r(x1, x2), r(y1, y2),
and r(u1, u2) belong to q

D
▲ , there are a, b, n ∈ Z such that η(u1) = (a, 0, 0), η(u2) = (a+1, 0, 0),

η(x1) = (b, 0, 0), η(x2) = (b+1, 0, 0), η(y1) = (n, 0, 0), and η(y2) = (n+1, 0, 0). By the
presence of atoms r∗(u2, x1) and r∗(x2, y1) in the query, we infer that a < b < n. From atoms
s∗(yi, zi), In(zi) present in qD▲ , we can deduce that η(z1) = (n,m, 0), η(z2) = (n+1,m′, 0)
hold for some m,m′ ∈ N. Next, by the satisfaction of the atoms r#s#(x1, z1) and r#s#(x2, z2)
the equations m = n− b and m′ = (n+1)− (b+1) follow. Thus m′ = m. As the next step,
we deal with the variables w1 and w2. From the atoms s(zi,wi) and In(wi) we can deduce
that η(w1) = (n,m, 1), η(w2) = (n+1,m, 1). Together with atoms s∗(w1, v1) and s∗(w1, v1),
this implies that η(v1) = (n,m, k), and η(z2) = (n+1,m, k′) hold for some positive k, k′ ∈ N.
By the satisfaction of the atoms r#s#(u1, v1) and r#s#(u2, v2) the equations m+k = n−a
and m+k′ = (n+1)− (a+1) follow. Hence, k = k′ holds and by collecting all the previous
equations we conclude that η(v1) = (n,m, k) and η(v1) = (n+1,m, k). Finally, the atoms
Cur(v1) and Prev(v2) of qD▲ imply that (n,m, k) ∈ CurI but (n+1,m, k) ̸∈ PrevI . This
contradicts the properness of I.

We show the “if” direction by contraposition. Suppose that I is not proper, and that

the properness of I is violated by (n,m, k) ∈ CurI and (n+1,m, k) ∈ Prev
I
. Then the

map v1 7→ (n,m, k), v2 7→ (n+1,m, k), w1 7→ (n,m, 1), w2 7→ (n+1,m, 1), z1 7→ (n,m, 0),
z2 7→ (n+1,m, 0), y1 7→ (n, 0, 0), y2 7→ (n+1, 0, 0), x1 7→ (n−m, 0, 0), x2 7→ (n−m+1, 0, 0),
u1 7→ (n−m−k, 0, 0), u2 7→ (n−m−k+1, 0, 0) is a match for qD▲ . This finishes the proof.

As a side remark, note that if the value of n−m is sufficiently small, the value of n−m−k
can be negative (but not smaller than −N). This explains at last why we appended an
incoming r∗-path of length N to the element (0, 0, 0) in the construction of hyperoctants.

As the final step of our construction, we define an ALC-TBox T D
▲ whose intended tree-

like models will contain T-hyperoctants. Most of the axioms written below are formalizations
of straightforward properties satisfied by T-hyperoctants and grids. As we are aiming to
design an ALC-TBox, all the properties expressed in T D

▲ are interpreted “globally”. Hence,
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to express existence of a starting point of a T-hyperoctant we employ a fresh role name
aux and say that every element has an aux -successor (with the intended meaning that such
a successors “starts” a T-hyperoctant). For brevity, we say that an element is inner (resp.
outer) if it belongs (resp. does not belong) to the interpretation of In. For a language L we
also say that an element e in I is L-outer-reachable from d if there exists a L-path from d
to e composed solely of outer elements (with a possible exception of d).

(GStart): Every element has an aux -successor. Every such successor has an outgoing
rN-path composed of outer elements that leads to an inner element carrying a tile
that has an inner r -successor carrying a tile different from .

(GCompl): Concept name In (resp. Prev) is interpreted as the complement of the inter-
pretation of concept name In (resp. Prev).

(GTil): Every inner element is labelled with precisely one concept name from CT
«
, and

there are no outer elements labelled with such concept names.
(GSuc): If an element has an inner r -successor then such a successor also has an inner

r -successor. Every inner element has an inner s-successor.4

(GPath): Every inner element has an outgoing sN-path composed solely of outer elements.
(GCur): For every inner element carrying the tile tk we have that: (i) all sk-outer-reachable

elements are labelled with Cur, (ii) there is no sℓ-outer-reachable element, for ℓ ≤ N
and ℓ ̸= k, that is labelled with Cur.

(GPrev): For every inner element there exists a number k ≤ N such that: (i) all sk-outer-
reachable elements are labelled with Prev, (ii) there is no sℓ-outer-reachable element,
for ℓ ≤ N and ℓ ̸= k, that is labelled with Prev.

(GVerti): Every pair of tiles carried by s-successors is V-compatible.
(GHori): For all tiles t ∈ T and all elements carrying t that can sℓ-outer-reach an element

labelled with Prev for some ℓ, we have that tℓ and t are H-compatible.

The definition of T D
▲ is provided in the proof of the following lemma.

Lemma 5.6. There exists an ALC-TBox T D
▲ expressing the above properties.

Proof. Given ALC-concepts C,D and a role name r ∈ NR we employ macros (∀r .C)n.D
and (∃r .C)n.D defined inductively for n ≥ 1 as follows:

(∀r .C)1.D := ∀r .(C → D), (∀r .C)n+1.D := ∀r .(C → [(∀r .C)n.D]),

(∃r .C)1.D := ∃r .(C ⊓D), (∃r .C)n+1.D := ∃r .(C ⊓ [(∃r .C)n.D]).

Our T D
▲ is composed of all the GCIs listed below, describing properties (GStart), (GCompl),

(GTil), (GSuc), (GPath), (GCur), (GPrev), (GVerti), and (GHori) in precisely this order.

⊤ ⊑ (∃aux .⊤) ⊓ ∀aux .
(
(∃r .In)N.[∃r .

(
In ⊓ C ⊓ ∃r .(In ⊓ ¬C )

)
]
)
,

⊤ ⊑ (In ↔ ¬In) ⊓ (Prev ↔ ¬Prev),

⊤ ⊑ [(
⊔
t∈T

Ct) → In] ⊓ [In → (
⊔
t∈T

(Ct ⊓ ⊔

t′∈T\{t}

¬Ct′)],

4This ensures for each i ∈ N the existence of i s-successors for the i-th element in the bottom of the octant.
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⊤ ⊑ (∀r .[In → (∃r .In)]) ⊓ (In → ∃s.In),
⊤ ⊑ In → (∃s.In)N.⊤,

⊤ ⊑ ⊔

1≤k≤N

Ctk →
[
[(∀s.In)k.Cur] ⊓ ⊔

1≤ℓ≤N, ℓ ̸=k

[(∀s.In)ℓ.¬Cur]
] ,

⊤ ⊑
⊔

1≤k≤N

[(∀s.In)k.Prev] ⊓ ⊔

1≤ℓ≤N, ℓ ̸=k

[(∀s.In)ℓ.¬Prev]

 ,

⊤ ⊑
⊔
t∈T

Ct → [ ⊔

t′∈T,(t,t′) are not V-compatible

¬∃s.Ct′ ]

 ,

⊤ ⊑
⊔
t∈T

Ct → [ ⊔

tℓ∈T,(tℓ,t) are not H-compatible

¬(∃s.In)ℓ.Prev]

 .

It should be clear that the above GCIs formalise the required properties.

We first see that T-hyperoctant can be extended to (counter)models of T D
▲ and qD▲ .

Lemma 5.7. Every proper T-hyperoctant can be extended to a model of T D
▲ that violates qD▲ .

Proof. Let I be a proper T-hyperoctant. Consider an interpretation J with the domain
∆J := ∆I ∪ ((N× N) \O)× ZN+1 defined as follows:

• J restricted to ∆I is isomorphic to I,
• sJ := sI∪{((n,m, k), (n,m, k+1)), ((n,m, 0), (n,m+1, 0)) | (n,m) ∈ (N×N)\O, k ∈ ZN},
• rJ := rI ,
• auxJ := ∆J × {(−N, 0, 0)}, and
• For each concept name A, each tuple (n,m, k) with (n,m) ̸∈ O belongs AJ iff (0, 0, k) ∈ AI .

Intuitively, we enlarged I to a grid and filled fresh places with copies of the diagonal of I
(this is needed to fulfil the second conjunct of the axiomatisation of (GSuc)). By construction
of J (and the fact that I is a T-hyperoctant) it follows J is a model of T D

▲ . Call J proper
if for all (n,m, k) ∈ CurJ we have (n+1,m, k) ∈ PrevJ . Note that as I is proper, the above
condition holds for all triples (n,m, k) with (n,m) ∈ O. For other tuples, we simply use the
fact that the interpretation of concepts for (n,m, k) with (n,m) ̸∈ O is inherited from the
elements of the form (0, 0, k). Thus J is indeed proper. Now, without any further changes,
the proof of the “only if” direction of Lemma 5.5 establishes J ̸|= qD▲ .

As a handy lemma used in the forthcoming proof, we need to establish that:

Lemma 5.8. Every single-role tree-like model of T D
▲ contains a substructure that is isomor-

phic to a T-hyperoctant.

Proof. The proof idea is simple but tedious. We take single-role tree-like model I of T D
▲ , and

select elements that will later constitute a hyperoctant branch-by-branch. Let d(−N,0,0) be

any element of I which is an aux -successor of some element of I (it exists as ∆I ̸= ∅ and I
satisfies (GStart)). Thus there exists an r∗-path of elements d(−N,0,0), d(−N+1,0,0), . . . , d(0,0,0),

d(1,0,0) witnessing the satisfaction of (GStart), where only d(0,0,0), d(1,0,0) belong to InJ (by
(GStart) and (GCompl)), d(0,0,0) carries a tile and d(1,0,0) carries a tile that differs from
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. After employing a routine induction, we see that the first conjunct of (GSuc) yields the
existence of an infinite r∗-path d(1,0,0), d(2,0,0), . . . of inner elements. By the second conjunct

of (GSuc) we know that every d(i,0,0) has an outgoing s i-path d(i,1,0), . . . , d(i,i,0) composed of

inner elements. Finally, by (GPath), every element d(i,j,0) has an outgoing sN-path d(i,j,1),. . .,
d(i,j,N) composed of outer elements. Note that by tree-likeness of I we have that all of
selected elements d(i,j,k) are pairwise-different, and any pair of elements is connected by
at most one role. Let J be the restriction of I to the set of selected element, with the
domain renamed with a map d(i,j,k) 7→ (i, j, k). It follows from (GTil) and (GCompl) that J
restricted to InJ is a T-octant. Other properties of T-hyperoctants can be readily verified
with (GCur), (GPrev), (GVerti), (GHori). Thus J is a T-hyperoctant, as desired.

The next lemma summarises our reduction.

Lemma 5.9. D covers the octant if and only if T D
▲ ̸|= qD▲ .

Proof. Suppose that D covers the octant. Then, by Lemma 5.4, there exists a proper T-
hyperoctant I. Hence, from Lemma 5.7 we conclude existence of a model J of T D

▲ such
that J ̸|= qD▲ . Thus T D

▲ ̸|= qD▲ . For the other direction, suppose that there exists an
interpretation I such that I |= T D

▲ but I ̸|= qD▲ . By Corollary 2.2 we can assume that I
is single-role tree-like. From Lemma 5.8 we know that I contains a substructure J that is
a T-hyperoctant. As I ̸|= qD▲ , we know that J ̸|= qD▲ . Thus J is a proper T-hyperoctant.
Hence, by Lemma 5.4 we conclude that D covers the octant.

As the octant tiling problem is undecidable, we conclude the main theorem of this section.

Theorem 5.10. The entailment problem of {r , s, r∗, s∗, r#s#}-conjunctive-queries over
ALC-TBoxes is undecidable.

Interestingly enough5, our proof technique can be adjusted (with little effort) to derive
related results for query languages involving inverses. Before moving to the undecidability
result, let us define the class of Visibly-Pushdown Path Queries [LL15, p. 330] (VPQs) as
the class of single-atom VPL-CQs (i.e. VPL-CQs without conjunction). We stress that the
entailment problem of such queries is decidable. The main idea is that the non-satisfaction
of a VPQ of the form L(x , y) can be expressed with an ALCvpl-GCI ⊤ ⊑ ¬∃L.⊤. Indeed:

Corollary 5.11. The entailment problem of VPQs over ALCvpl-TBoxes is 2ExpTime-
complete (assuming that the VPLs from the query and the TBox are over the same alphabet).

Proof. The lower bound is inherited from the concept satisfiability problem forALCvpl [LLS07,
Thm. 19]. Let T be an ALCvpl-TBox and q be a VPQ of the form L(x , y). The crucial
observation is that by the semantics of queries we have that T ̸|= q if and only if T ′ :=
T ∪ {⊤ ⊑ ¬∃L.⊤} has a model. Hence, by a well-known internalisation of TBoxes as
concepts in the presence of regular expressions [BCM+03, p. 186], we can compute (in time
polynomial w.r.t. |T |) an ALCvpl-concept C that is satisfiable if and only if T ′ is. Now it
suffices to check the satisfiability of C. This in turn can be done in doubly-exponential time
by the result of Löding et al. [LLS07, Thm. 18], finishing the proof.

We next extend the class of VPQs with an inverse operator, obtaining the class of Two-
Way Visibly Pushdown Path Queries (2VPQs). More precisely, such queries are VPQs that
allow for letters of the form r− for all role names r ∈ NR in the underlying visibly-pushdown

5I would like to thank Anni-Yasmin Turhan for asking this question.
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alphabet. When evaluating 2VPQs over interpretations I, the role (r−)I is interpreted as the
set-theoretic inverse of the role rI . In what follows we sketch the proof of the fact that the
entailment of 2VPQs over ALC-TBoxes is undecidable. The key ingredients of our reduction
are the previously-defined ALC-TBox T D

▲ and a fresh 2VPQ qD2VPQ := L↓→↑(x , y), where

L↓→↑ :=
{
Cur? In?

(
s− In?

)k
s (In? s)m (In? r In?) (s In?)ms

(
In? s

)k
In? Prev? |k,m ∈ N

}
.

It is an easy exercise to construct a pushdown automaton for the language L↓→↑. Such an
automaton becomes visibly-pushdown under the requirement that s and s− are, respectively,
return and call symbols, and r is an internal symbol. The forthcoming Lemma 5.12 relates
the queries qD▲ and qD2VPQ. As it can be established analogously to the other lemmas of this
section, we only sketch the proof and leave some minor details to the reader.

Lemma 5.12. Let D := (Col,T, ) be a domino tilling system and let I be a T-hyperoctant.
We have that I |= qD▲ if and only if I |= qD2VPQ. Moreover, by applying the construction from

Lemma 5.7, every proper T-hyperoctant can be extended to a model of T D
▲ that violates qD2VPQ.

Proof sketch. We first sketch the proof of the equivalence I |= qD▲ if and only if I |= qD2VPQ.

First, take any match η witnessing I |= qD▲ . Then it can be readily verified that the mapping
x 7→ η(v1), y 7→ η(v2) is a match for I and qD2VPQ. For the opposite direction, let d, e ∈ ∆I be

domain elements for which the mapping x 7→ d, y 7→ e is a match for I and qD2VPQ. Hence, e

is [In?
(
s− In?

)k
s (In? s)m (In? r In?) (s In?)ms

(
In? s

)k
In?]-reachable from d for some

integers m, k ∈ N. By analysing the shape of T-hyperoctants and the above expression, we
infer the existence of an integer n ∈ N for which d = (n,m, k), and e = (n+1,m, k). Indeed,
the equality of the second and third coordinates is ensured by the presence of m and k in
the above path expression; the fact that the first coordinate of e is the successor value of
the first coordinate of d is guaranteed by the subexpression (In? r In?) in qD2VPQ. Now the

match for qD▲ and I can be defined as: v1 7→ (n,m, k), v2 7→ (n+1,m, k), w1 7→ (n,m, 1),
w2 7→ (n+1,m, 1), z1 7→ (n,m, 0), z2 7→ (n+1,m, 0), y1 7→ (n, 0, 0), y2 7→ (n+1, 0, 0),
x1 7→ (n−m, 0, 0), x2 7→ (n−m+1, 0, 0), u1 7→ (n−m−k, 0, 0), u2 7→ (n−m−k+1, 0, 0).

For the remaining part of the proof, take any proper T-hyperoctant I. We apply the
construction from the proof of Lemma 5.7, and obtain a model J of T D

▲ that violates qD▲ .
It suffices to show that J ̸|= qD2VPQ. Towards a contradiction, suppose the opposite, and

take any match η for J and qD2VPQ. Then, by the construction of J and the shape of qD2VPQ,
we conclude that the image of η belongs to the T-hyperoctant part I of J . By equivalence
between the queries qD2VPQ and qD▲ sketched above, we conclude I |= qD▲ . A contradiction.

The second auxiliary lemma has a proof analogous to the proof Lemma 5.9.

Lemma 5.13. Let D := (Col,T, ) be a domino tilling system and let I be a T-hyperoctant.
We have that T D

▲ ̸|= qD2VPQ if and only if D covers the octant.

Proof. If D covers the octant, by Lemma 5.4 there exists a proper T-hyperoctant I. Applying
the second part of Lemma 5.12, we extend I to a model of T D

▲ violating J ̸|= qD2VPQ. Thus

T D
▲ ̸|= qD2VPQ. For the reverse direction, take any model I of T D

▲ such that I ̸|= qD2VPQ. By
Corollary 2.2 we can assume that I is single-role tree-like. From Lemma 5.8 we know that I
contains a substructure J that is a T-hyperoctant. As I ̸|= qD2VPQ, we know that J ̸|= qD2VPQ,

and thus, by Lemma 5.12, we know that J ̸|= qD▲ . Hence, by Lemma 5.5, J is a proper
T-hyperoctant. Invoking Lemma 5.4 we conclude that D covers the octant.
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Linking Lemma 5.13 with the undecidability of the tiling problem (Lemma 5.2), we get:

Theorem 5.14. The entailment problem of 2VPQs over ALC-TBoxes is undecidable.

Once again, let us point out that by the semantics of the query and the logics observe
that T D

▲ ̸|= qD2VPQ holds if and only if T D
▲ ∪ {⊤ ⊑ ¬∃L↓→↑.⊤} (which is written in ALCvplI,

namely the extension of ALCvpl with the inverse operator) is satisfiable. Such a reduction
yields undecidability of the concept satisfiability problem for ALCvplI, and thus reproves the
previously-established result of Göller [Göl08, Prop. 2.32] (Corollary 2.3 in Preliminaries).

We conclude the section by revisiting known results concerning query entailment in
(extensions of) ALC, and lifting them to the case of ALCvpl. This contrasts with Theorem 5.10.

Corollary 5.15. The query entailment problem for the class of Positive Conjunctive Regular
Path Queries over ALCvpl-TBoxes is 2ExpTime-complete.

Proof sketch. Note that all the results given above transfer immediately to the case of TBoxes,
as they can be internalised in concepts in the presence of regular expressions [BCM+03,
p. 186]. Hence, it suffices to focus on ALCvpl-concepts only. Let C be an input ALCvpl-concept
and q be a REG-PEQ. Löding et al. introduced [LLS07, p. 55] a model of visibly pushdown
tree automata that has the following properties (unfortunately all of them are only implicit
in the paper): (a) generalises nondeterministic tree automata, (b) is closed under intersection
(and an automaton recognizing the intersection of languages can be computed in polynomial
time), and (c) its non-emptiness can be tested in exponential time [LLS07, Thm. 4]. They
also provided [LLS07, Sec. 4.2] an automaton AC that accepts precisely (suitably) single-role
tree-like models of C, and the size of AC is exponential w.r.t. the size of the concept C [LLS07,
Lemma 17]. On the other hand, Gutiérrez-Basulto et al. provide [GIJM23, Lemma 8] a
non-deterministic tree automaton A¬q , of size exponential w.r.t. the sizes of C and q , that
accepts all single-role tree-like structures that do not contain any matches of q .6 It follows
then that the intersection of the languages of AC and A¬q is non-empty if and only if
C ̸|= q . As visibly pushdown tree automata are closed under intersection [LLS07, p. 55], and
their non-emptiness can be solved in exponential time [LLS07, Thm. 4], we infer that the
non-emptiness of AC ∩A¬q can be tested in doubly-exponential time w.r.t. the sizes of C
and q . The matching lower bound is inherited from the concept satisfiability.

6. Conclusions

We investigated the decidability status of extensions of ALCvpl (also known as Propositional
Dynamic Logic with Visibly Pushdown Programs) with popular features supported by W3C
ontology languages. While undecidability of ALCvpl with inverses or role-hierarchies follows
from existing work (see the end of Section 2), we provided undecidability proofs of ALCvpl

extended with the Self operator (Section 3), with nominals (Section 4), or non-regular queries
(Section 5). The first proof relied on the reduction from non-emptiness of the intersection
of deterministic one-counter languages. The other two proofs relied on reduction from
(variants of) the tiling problem. We conclude the paper with a list of open problems.

6In the paper of Gutiérrez-Basulto et al., the query automaton is presented in a more general setting of
tree decomposition as it was designed to also work for the case of knowledge-bases (not just TBoxes). In our
paper we deal with concepts only, so such an automaton works on trees as usual.
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• Our undecidability proof for ALCSelf
vpl relied on the availability of multiple visibly-pushdown

languages that are encodings on deterministic one-counter languages. Can our undecid-
ability proof be sharpened? For instance, is the concept satisfiability of ALCr#s#

reg with
Self already undecidable?

• Positive results for ALCvpl [LLS07, Thm. 18] concern the concept satisfiability problem,
rather than the knowledge-base satisfiability problem. Is the later decidable for ALCvpl?
Classical techniques [DL94, p. 210] for incorporating ABoxes inside concepts do not work,
as the class of visibly-pushdown languages is not compositional (is of “infinite memory”).
Note that this problem already occurs for ALCr#s#

reg .

• Is an extension ofALCvpl (or evenALCr#s#
reg ) with functionality decidable? De Giacomo and

Lenzerini [DL94, p. 211] proposed a satisfiability-preserving translation from ALCreg with
functionality to plain ALCreg. Unfortunately, this reduction does not seem to be applicable
to ALCvpl. The reason is again that visibly-pushdown languages are not compositional.
What is more, functionality violates a crucial condition of “unique diamond-path property”
from the decidability proof of ALCvpl [LLS07, Def. 11].

• Existing positive results on non-regular extensions of ALCreg, especially these of Löding
et al. [LLS07, Thm. 18], rely on the use of (potentially infinite) tree-like models. Is the
finite satisfiability problem for ALCvpl decidable? Already the case of ALCr#s#

reg is open.
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