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Abstract

Circumscription is a paradigm of non-monotonic logic meant to formalize the
common sense understanding that among competing theories that represent
phenomena equally well, the one with the fewest assumptions should be se-
lected. Description Logics are knowledge representation formalisms designed
to describe and reason about qualitative properties and aspects of a system.
In this essay we aim to fuse Description Logics, which traditionally are mono-
tonic, with a restricted version of Circumscription, called Grounded Circum-
scription. The work is based on a 2011 publication by K. Sengupta, A.A.
Krisnadhi and P. Hitzler, which throughout this study we will refer to as “the
original paper”. The paper introduces the main idea of grounded circumscrip-
tion along with algorithms for certain decision problems. We have optimized
and modified these ideas. The optimization was our initial aim, in particular
we wanted (and largely achieved) to transfer a big part of the reasoning to
standard Description Logics, for which tools and results already exist. But
in the process we uncovered some insufficiencies in the original paper, hence
we have modified the main definition to one that is more effective and seems
more intuitive.
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Chapter 1

Introduction

Circumscription is a paradigm of non-monotonic logic introduced by John
McCarthy in 1980 [4]. The main idea is to formalize the common sense un-
derstanding that among competing theories that predict equally well, the one
with the fewest assumptions should be selected. This is basically an applica-
tion of the principle known as “Occam’s razor” to logic. It is also similar to
the closed world assumption, where what is not known to be true is taken to
be false. In its original first-order logic formulation, circumscription minimizes
the extension of some predicates, where the extension of a predicate is the set
of tuples of values the predicate is true on.

Description Logics (DLs) are knowledge representation formalisms designed
to describe and reason about qualitative properties and conceptual aspects of
a system [1, 6]. Ontology languages based on DLs have been widely adopted
in a large class of application areas. One of the most prominent applications
of DLs is to provide the underlying logical basis of the web ontology language
OWL 2, which is the current recommendation of the World Wide Web Consor-
tium (W3C) [11, 2]. Therein DLs are used to represent the intended meaning
of Web resources and establish powerful reasoning tools, so as to facilitate
machine understandability of Web pages. From a more scholarly perspective,
DLs are decidable fragments of first order logic.

Description Logics traditionally operate within the monotonic realm, namely
the addition of more assertions to a knowledge base does not negate previ-
ously inferred information. But in many prevalent application domains, such
as common sense reasoning, this property does not hold. Conclusions might
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CHAPTER 1. INTRODUCTION 3

need to be revised in the light of new information. Hence it is quite intriguing
to try to develop a DL framework where reasoning would be non-monotonic.

In this essay we aim to fuse Description Logics, with a restricted version
of Circumscription, called Grounded Circumscription. The work is based on
a 2011 publication by K. Sengupta, A.A. Krisnadhi and P. Hitzler, which
throughout this thesis we will refer to as “the original paper” [9]. In ground
circumscription, some of the predicates in our language (which in DL can only
be unary or binary) are chosen to be grounded and minimized. Grounded
means that their interpretations must include only named individuals, i.e.
elements of the domain that correspond to one of the constants that appear
in our knowledge base. Moreover those predicates are minimized in the sense
that we accept only models which assign as few individuals as possible to
them, so that there cannot be a model whose extensions of these predicates
are subsets of the respective extensions in the minimal model.

In the original paper, the main idea of grounded circumscription is given
along with algorithms for certain decision problems. We have optimized and
modified these ideas. The optimization was our initial aim, in particular
we wanted (and largely achieved) to transfer a big part of the reasoning to
standard DLs, for which there already exist tools and available results. But
in the process we uncovered some insufficiencies in the original paper, to the
discussion of which we devote a special chapter in this study. Hence we have
modified the main definition to one that is more effective and seems more
intuitive.

After introducing the particular DL formalism and terminology that we
work on (Chapter 2), we specify the basic notions (Chapter 3) and proceed to
present an algorithm for satisfiability (Chapter 4) which is predominantly in
the monotonic sphere. The next section (Chapter 5) is introducing important
notions which are put to use in the algorithm for entailment of facts (Chapter
6). Following are supplementary results that further develop the theory of
grounded circumscription in DLs (Chapter 7) and the discussion on the differ-
ences and improvements in comparison with the original paper (Chapter 8).
Finally we give an overview of the contribution of this endeavor and discuss
prospects of further research (Chapter 9).



Notation

In the following, Part(X) symbolizes the set of all partitions of a set X, Z(X)
symbolizes the power set of X, >* symbolizes the set of all finite words built
from an alphabet ¥ and of course we denote {0,1} with Z,, as the quotient
ring of the ring of integers modulo the ideal of even numbers.



Chapter 2

Preliminaries

In this chapter we give a brief introduction to our formalism and the main
terminology and ideas around it.

2.1 The Choice of Language

The choice of DL formalism is ALCQO, since it has been developed to a suf-
ficient extent and where the trade-off between expressivity and complexity
seems optimal. Also with our approach, the ability to embed non-monotonicity
is preserved when expanding the language, hence choosing a rather simple
language is an advantage. In the original paper, decidability of ground cir-
cumscription is proven for rather complex languages which feature concept
products, role hierarchies and role disjunctions. And then independently, al-
gorithms which apply only to ALC are given. In contrast, our work is entirely
based on ALCO but it can trivially be extended to any more complex formal-
ism, provided that it is decidable.

It is important to stress out here the significance of the inclusion of nomi-
nals in our language. Many of the results are largely obtained using nominals.
But this is not a downturn since nominals do not increase the complexity of
ALC, contrary to other concept constructors.
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2.2 ALCO Syntax

Description Logics emerge from the need to have an expressive formalism, in
the style of first-order logic (FOL), but which is decidable, hence allowing for
automated reasoning. As a result most of them are decidable fragments of
FOL, with a more concise notation, meant to represent the expressive power
of the characteristics remaining in the language after its reduction.

Let N¢, N, and N; be mutually disjoint sets of concept-, role- and individ-
ual names, respectively. Concepts C' in ALCQO are built using the grammar
rule:

Co=T|A|{a}|-C|CRC|3IC

where A € Ng, r € N,, and a € N;. The symbols T (“truth”), {a} (“nomi-
nal”), = (“negation”), M (“conjunction”) and 3 (“existential restriction”) are
the logical operators of the Description Logic ALCO.

We employ the usual abbreviations

1L ==T “falsehood”,
CUD==(-Cn-D) “disjunction”,
Vr.C' = —dr.=C “universal restriction”.

An expression of the form C' C D, where C' and D are concepts, is called a
concept inclusion. A finite set of concept inclusions is a TBoz. An expression
of the form C(a), where C is a concept and a € Ny, is called a concept
assertion. For r € Ng and a,b € Ny, an expression of the form r(a, b) is called
a role assertion. A finite set of concept and role assertions is called an ABox.

A pair K = (T,.A) consisting of an TBox 7 and an ABox A is called
a knowledge base (abbreviated frequently as KB). For ease of presentation,
in this study we will usually understand a knowledge base as a single set of
axioms, which would formally be expressed as K =T U.A. We will not refer
to Aboxes and Thoxes individually, rather we wil handle the knowledge base
as a whole.
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2.3 ALCO Semantics

An interpretation is a pair Z = (A, 1), where A is a non-empty domain and
T is a function that maps every a € N; to a® € A, every A € N to AT C A,
and every r € N, to 7 C A x A. The mapping -* is naturally extended to all
concepts by setting

7T = A,
(—O)F = A\,
(CnD)f =C*n D,

{a}* = {a’},
FrC)Y ={z e A|yeA (v,y) ert Ny e CTY.

An interpretation Z satisfies
e a concept C if CT #£ (),
e a concept inclusion C' C D if C* C D,

e a concept assertion C(a) if a* € C* and

e a role assertion r(a, b) if (af,b?) € r.
We say that Z is a model of a TBox T or an ABox A if it satisfies every
concept inclusion in 7 or every assertion in A, respectively. Z is a model of a
knowledge base K = (T,.A) if Z is a model of both T and A.

- If there exists a model of a knowledge base K, then K is a satisfiable KB.
-If every model of K satisfies C'(a), we say that C(a) is entailed by K.

- If there exists a model of a knowledge base K that satisfies C,
then C'is satisfiable with respect to K.
- If every model of K satisfies C' C D,
then C'is subsumed by D with respect to K.
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2.4 Reasoning & Complexity

Description Logics satisfy requirements emerging from a great variety of prac-
tical modeling scenarios. Their basic modeling features concern specifying and
querying knowledge.

The main reasoning tasks in our formalism are, given a knowledge base K,
concepts C, D and an individual a, the following:

e Concept Satisfiability Is C satisfiable with respect to K7
e Concept Subsumption Is C' subsumed by D with respect to K7
e KB Satisfiability Is there a model of K7

e Instance Checking Is C'(a) entailed by K7

We will focus only on the two last, as the two first can be encoded as
subcases of the third. In particular the satisfiability of the knowledge base KU
{T C 3r.C}, where r does not appear in K, is equivalent to the satisfiability
of C' with respect to K. Furthermore, the subsumption of C' from D wrt K
is equivalent to the unsatisfiability of the concept —D M C'.

ALCQO is a rather simple language, expressive enough to be efficient in
several applications, but allowing effective reasoning as it has the finite model
property, i.e. when a knowledge base is satisfiable, it has a finite model [3]. It
features many modeling capabilities usually found in knowledge representation
languages. Complexity of reasoning tasks in ALCO is in the worst cases
EXPTIME-complete [8, 7].

A great deal of valuable tools have been developed for reasoning within
DLs, most of which support ALCO [10, 5].



Chapter 3

Fundamental Notions

In this chapter we formally define the basic notions of ground circumscription.
The definition of minimality is reestablished in solid grounds, which can prove
a useful framework for further development of this theory.

3.1 Ground Extension

A central notion in this study is that of ground extension of a predicate with
respect to a certain interpretation, which is the set of individual names or
pairs of individual names (depending on whether the predicate is a concept or
a role), whose interpretations belong to the interpretation of this predicate.
Given a knowledge base K, the set of indivual names that appear in K are
symbolized Ind(K).

Definition 1 Let K be an ALCO knowledge base and Z an interpretation.
The ground extension wrt Z of a predicate W € Ngo U N,., is the following set:

{a € Ind(K)|at € W1} if W e Ne

I o
Ext*(W) := {{(a,b)elndZ(K)KGI,bI)EWI} if W e N,

where of course Ind*(K) = Ind(K) x Ind(K). .

The key role that ground extension plays, is evident by its frequent presence
throughout the rest of this work. Ext%(-) can be naturally extended to be

9
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applicable to any concept description: if C' is a concept, then Ezt?(C) :=
{a € Ind(K)|a? € C*}. Since nominals are valid concept constructors in our
language, we can ultimately view ExtZ(C) as a concept description, provided
that C'is a concept as well. One more important property of ground extension,

which is easy to verify, is that it is monotonic with respect to set inclusion,
i.e if AT C BT then Ext’(A) C Ext?(B).

3.2 Minimality

The main idea in grounded circumscription is to select some predicates (con-
cept and role names), and demand that for every model their interpretation is
grounded, i.e. it includes only named individuals, and that it is minimized, in
the sense that there cannot be an interpretation that assigns fewer individuals
to those predicates and still is a model of our given knowledge base.

Definition 2 A GC-ALCO-KB is a pair (K, M) where K is an ALCO
knowledge base and M C Ng U N,. For every W € M we say that W is
closed wrt K. If 7 and J are models of K then the “smaller than” relation
is defined in the following way:

I<y J it

i) Extt({a}) = Ext? ({a}) for every a € Ind(K),

ii) Extt(W) C Ext? (W) for every W € M and

iii) there is a W € M such that Ext?(W) C Ext (W), =
Definition 3 A model Z of K is called grounded wrt M if

i) OT C {b*|b € Ind(K)} for every C € M N N¢.

ii) 77 C {(a?,b?)]a,b € Ind(K)} for every r € M N N,. =
The following lemma indicates a property of the “smaller than” relation which

is essential in reaching the satisfiability result of the next chapter in an im-
mediate way and almost without touching non-monotonic territory.
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Lemma 1 The relation <, is well-founded on the class of grounded models
of a knowledge base K wrt to M.

Proof: Let Gmod be the class of all grounded models of K. We define
ground cardinality of a model Z to be the sum of the cardinalities of the
ground extensions of the predicates specified in M. In particular, we have the
function

gc: Gmod — N with ge(Z):= Y. |ExtE(W)).
WeM
M is assumed to be a finite set as of course is Ind(K), hence in a grounded
model the ground extension of every predicate in M is a finite set, thus the
above function is well-defined. Let Z1,Zos € Gmod and Z1 < Z5. Then the
third condition in Definition 2 ensures that gc(Z1) < ge(Zs). Let B € Gmod
with B # (), so B is an arbitrary set of grounded models of K. Let n =
min{gc(J)|TJ€B}. So there is at least one J€B such that ge(J)= n. This
J is a minimal element of B wrt the relation <;;. Hence <, is a well founded
relation on Gmod. L)

Definition 4 An interpretation Z is a GC-model of (K, M) if it is a grounded
model of K wrt M and Z is minimal wrt M, i.e. there is no grounded model
J of K such that J <y Z. (K, M) is satisfiable if it has a GC-model. A

statement ¢ is a logical consequence of (K, M) if every GC-model of (K, M)
satisfies ¢. We then say that (K, M) entails ¢. —|

Note that ¢ in the above definition could be a GCI, a concept assertion or a
role assertion. Henceforth we will frequently substitute the term GC-model,
with minimal grounded model or simply minimal model. Definitions 2, 3 and
4 are taken from the original paper. Although 3 and 4 are actually identical
with the ones given in the original paper, Definition 2 differs substantially. In
particular, the first condition for the minimality relation in the original paper
requires that two interpretations have equal domains in order for them to be
comparable. Firstly, that is counter-intuitive. When we say that a model has
fewer assumptions than another model, this does not imply any similarity of
their domains, it only requires that those predicates which are of importance
to us are somehow smaller. What is more, by this imposition the search space
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for minimal models becomes infinite and then the complexity of some tasks
blows up, even if they remain within decidable waters.

Chapter 8 contains a more thorough discussion about the results presented
in the original paper and the motives behind our decision to reformulate the

definition of minimality.



Chapter 4

Satisfiability of a GC
Knowledge Base

We present now a direct and complexitywise cheap way of determining whether
a GC-ALCO knowledge base is satisfiable. To this end we first enhance the
KB with axioms that ensure grounding of the closed predicates and then we
take advantage of Lemma 1, which effectively says that if a grounded model
exists, then a minimal grounded model must exist as well.

Definition 5 Let (K, M) be a GC-ALCO-K B, where MNNe = {Aq, ..., An}
and M NN, = {ry,...,r}. We define K, as the ALCO—K B which consists
of all the axioms that are included in K as well as the following ones:

o P ={zx|z € Ind(K)} where P is a fresh concept name,
e A; C P forevery i € {1,....,n},

e Jr;. T C P for every j € {1,...,m},

o T CVr;.P forevery j€{l,...,m}.

Ky is then called a grounded ALCO knowledge base. =

We do not give an explicit algorithm for determining satisfiability of a GC
knowledge base. That is because we show that this decision problem is equiv-
alent to the satisfiability checking of a (standard) ALCO knowledge base.

13
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To solve the reasoning tasks of ground circuscription with the use of the al-
ready developed monotonic DL reasoning tools was our aim, and as the next
proposition shows, in this case it is proven to be achieved quite ideally.

Proposition 1 Let (K, M) be a GC-ALCO-KB. (K, M) is satisfiable if and
only if the ALCO knowledge base K, is satisfiable.

Proof: Let M N Ne ={Ay,...., A} and M NN, = {ry,....Tp, }.

(=) Let (K, M) be satisfiable. Therefore it has a GC-model. Let Z be a
GC-model of (K, M), i.e. a minimal grounded model of K with respect to M.
Let 7' be an interpretation such that P = {b*'|b € Ind(K)} and I’ agrees
with Z on all the rest. So then Z’ is GC-model of (K, M) and it satisfies all
the axioms that are common in K and K,;. For the rest of the axioms in K,
we have:

o PT' = {b¥'|b € Ind(K)} therefore P = {z|z € Ind(K)} is satisfied.

e Because 7' is a grounded model, for all i € {1,...,n} it holds that
AT C {V*|b € Ind(K)} and so all axioms of the form A; C P for every
i €{1,...,n} are satisfied.

e Similarly, for all j € {1,...,m} it holds that r]Z/ C {(a*,b")|a,b €
Ind(K)} so then (x,y) € TJZ/ implies z,y € PY thus all axioms of the
form Jr;. T ©E P and T C Vr;.P are satisfied.

(«:) Let Ky be satisfiable. Thus it has a model J. We will show that
there exists a minimal grounded model Z for (K, M). The interpretation J
is a grounded model for (K, M) wrt M. This is because

e for every A; € M N N¢ the axiom A; C P of K, implies AY C {7 |b €
Ind(K)} and

e for every r; € M N N, the axioms Jdr;. T © P and T C Vr;.P imply
that for all x € A7 if there exists y € A7 such that (z,y) € r;, then
z € P7 and if x € A7 then for all y € A7 such that (x,y) € r; holds
that y € P7. So then if (z,y) € r;, it holds that z,y € PY = Ind(K).
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Since the “smaller than” relation is well-founded (as shown in Lemma 1),
the existence of any grounded model of K wrt to M, implies the existence of
a minimal grounded model as well. Hence (K, M) must have a GC-model. &

Corollary 1 Every model of K); is a grounded model of K wrt to M. -

One observation worth mentioning here is that grounding, although defined at
a semantic level, can be internalized in the syntax and expressed as a particular
class of knowledge bases. And through this grounding, a localization of the
non-monotonicity is achieved, such that for the principal task of deciding
satisfiability, we do not even need to expand reasoning beyond the already
known algorithms that exist for standard DLs.



Chapter 5

Towards an Instance
Checking Algorithm

For the task of determining whether or not a concept assertion (also refered to
as ‘fact’) is entailed by a GC-ALCO knowledge base, knowing that a minimal
model exists is not enough. We have to be able to find this model or at least
to negate the possibility of a grounded model being minimal. We tried two
approaches. The first one, which has a similar strategy with the algorithms
presented in the original paper, was to find GC-models by looking for smaller
models of arbitrary grounded models. In this direction are the results pre-
sented in Chapter 7. However what seems to be more efficient is a bottom-up
approach, where the grounded models found first are definitely minimal.

5.1 Specification of the Configuration Space

The idea of defining independently what is essentially the search space of our
algorithm, a space of possible choices of extensions to the closed predicates,
is inspired by the original paper, where a similar set is specified. However,
and this is one more clue which points to the divergence between the intended
meaning of ground circumscription and what was initially defined, in the orig-
inal paper the domain and the possible interpretations of the individuals over
it are not taken into consideration when defining this space. Having improved
the definition, we still need to add a dimension to the search space which will

16
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correspond to the possible interpretations of the individual names.

Given an interpretation Z, the indiwidual allocation of Z is the set
AL(Z) € Part(Ind(K)) such that every X € AL(Z) has the property: for every
a € X and b € Ind(K) holds that o = b” if and only if b € X.

Suppose that I € Part(Ind(K)) and a,b € Ind(K). We call a and b I-
invariant and write a ~; b if there is an X € I such that a,b € X. A set
Z C Ind(K) is called I-complete if a € Z and a ~; b imply b € Z. Similarly
aset V € Ind*(K) is called I-complete if (a,b) € V and a ~; a’ and b ~ b
imply (a,0") € V. For the sake of conciseness in the next definition, we define
the following sets:

Cmp;(K) ={X C Ind(K)|X is I-complete}
Cmp}(K) ={Y C Ind*(K)|Y is I-complete}

We can now employ the above notions to specify the search space of our
algorithm:

Definition 6 Let (K, M) be a GC-ALCO-K B, where MNN¢g = {Ay, ..., An}
and M NN, = {ry,...,7n}. Then the set

Gixar = {(Xl,...,Xn,Yl,...,Ym,])

X; CCmp(K),Y; CCmpi(K), I € Part(]nd(K))}

is called configuration space of (K, M). .

G (k) 1s obviously a finite set. Every grounded model Z of K wrt to M,
corresponds to a point in the configuration space. In particular we will call
the tuple

(ExtI (A), ..., BxtE(A), ExtE(r1), ..., EatE(rp), AL(I))

the assignment of Z.

Let G, Gy € Gy with Gy = (24, ..., Zyym, I) and Go = (V1 ..., Viym, I).
We say that G; is smaller than G, and we write G; < G if it holds that
Z; CV; forall i € {1,...,n +m} and there exists i € {1,...,n +m} such that
Z; C V;. The following result then holds trivially:

Lemma 2 Let Z,J be grounded models of a knowledge base K wrt M
and let G1,G2 € Gk ) be their respective assignments. Then it holds that
I <y J if and OIlly if G1 < Go. —
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5.2 Binary Encoding & Linear Order

Let Gk be the configuration space of a GC-ALCO-KB. Let Ind(K) =
{a1,...,a,}. For the purposes of the algorithm presented in the next section,
we want to order G yr) linearly. We achieve that by using a binary encoding
for every G € Gk ) and the lexicographical order. We first introduce an
encoding s : Part(Ind(K)) — Zj. Every partition of Ind(K) can be specified
by indicating which couples of individual names (that appear in the knowledge
base) belong to the same block of the partition. This is easily percieved with
the following visualization:

ai a9 as a,
aj T S(12) S(1,3) S(L,p)
az | - - 523 S(2,1)
1| - - - T S(p-1Lp)
CLM - - - = -

In accordance with the above table we define

S(I) = $(1.2)5(1,3)--5(1.)S5(23)5(2.4)++5(21) -5 (u—1,p)

where s(; jy = 1 if there exists Z € I with a;,a; € Z, otherwise s(; j) = 0. We
can now proceed to define the complete binary encoding of the points of the
configuration space.

Let o : gZ(Ind(K)) U (Jnd2(K)) U Part([nd(K)) s 75, with

r . 1 if a, € X
2129...2, if X CInd(K) where z, = .
0 if a, ¢ X
og(X) =< 1 if (ag,ay) € X

2129 ...z if X C Ind*(K) where 2,5 =
1<2 1 = ( ) IS {0 f (an,aA)¢X

| s(X) if X € Part(Ind(K))

We can view words over Zs as natural numbers encoded in the binary system.
If wy, we € Z5 are words of the same length, we write w; < ws if this relation
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holds for the respective natural numbers. We can now define a total order ‘<’
on G xm)-

Definition 7 Let Gy = (Z4, ..., Z;) and Gy = (V4, ..., V) be two points in the
configuration space of a GC-ALCO-K B (K, M). Gy precedes G5 and we write
G1 < G if there exists an i < k such that o0(Z;) < o(V;) and for all j < i
holds o(Z;) = (V). =

For efficiency purposes, it is important here that the order defined above
induces the partial order of minimality, so that the algorithm will discover
the minimal model early on and discard searching in large sections of the
configuration space. The following lemma ensures us that this is indeed the
case.

Lemma 3 Let G g ) be the configuration space of a GC-ALCO-KB. For
every G'1, Gy € Gk ) holds that Gy < Gy implies Gy < Gb.

Proof: Let Gy = (Z1,....,Z;) and Gy = (V1,..., V) with G; < Gs. By
definition we have that Z, = V). Because Z; C V;, we get that for every
g€ {l,...,k — 1}, either 0(Z;) = o(V;) or 0(Z;) < o(V;). And because there
is at least one ¢ € {1, ..., k—1} such that Z; C V;, which implies 0(Z;) < o(V}),
by chosing the first one we fulfill the conditions of the above definition, hence

G < Go. s

5.3 Navigation within the Configuration Space

It is critical, given a point in the configuration space, to be able to construct a
grounded model with such an assignment, if one exists. This is accomplished
by adding the axioms specified in the next definition.

Definition 8 Let (K, M) be a GC-ALCO-K B, where MNN¢g = {Ay, ..., An}
and M NN, = {r,....rpn}. Let G = (X1, ..., Xy, Y1, ..., Yy, [) be a point in
the configuration space of (K, M). We define K¢ as the ALCO—K B which
consists of all the axioms that are included in K,; as well as the following
ones:
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o {a} = {b} for all a,b € Ind(K) with a ~; b,
o {a} C —{b} for all a,b € Ind(K) with a %; b,
o A, =X, for every i € {1,...,n},

o R,j) = {c € Ind(K)|(a,c) € Y;} for every a € Ind(K) and j €
{1,...,m},

® Nujy = {c € Ind(K)|(c,a) € Y;} for every a € Ind(K) and j €
{1,....,m},

o {a} CVr;.R; for every a € Ind(K) and j € {1,...,m},
e drj{a} = N, for every a € Ind(K) and j € {1,...,m}.
K¢ is then called a pointwise restriction of (K, M). —|

Lemma 4 Let K be a pointwise restriction of a GC-ALCO knowledge base
(K, M). The following statements hold:

i) If Z is a model of K¢, then G is the assignment of 7.
ii) If there exists a model of K); with assignment G, then K is satisfiable.

Proof: i) From the first two axioms we get that a? = b* if and only if a ~; b,
which entails AL(Z) = I. Then we observe that because for all i € {1,...,n},
X; are I-complete, it holds that Ezt?(X;) = X;. Hence from the third axiom
above, we have that A? = X7 = Ext?(A;) = Ext?(X;) = Extl(4;) = X;.

Let (a,b) € E$tI(TJ) for some j € {1,...,m}. Then (a?,b?) € TJZ and by the
axiom {a} C Vr;j.R,; we get that b* € {c¢ € Ind(K)|(a,c) € Y;}*. So there
exists a ¢ € Ind(K) such that 5% = & and (a,c) € Y;. But Y; is I-complete
and so since b ~; ¢ we conclude that (a,b) € Y;. Now let (a,b) € Y;. Then
a € Ny jy = a* € (Nyj))* and from the last axiom we get that (a, bZ) € T]Z,
so (a,b) € Ext*(r;). As a result we get that Y; = Ext?(r;).

To conclude, we have shown that all X; and Y; are equal with the ground
extensions of the respective predicates and also that I is the individual allo-
cation of Z. Therefore GG is the assignment of Z.

ii) Let Z' be a model of Kj; with assignment G. We construct Z by inter-
preting everything as in 7', with the addition of
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RI = {c € Ind(K)|(a,c) € Y;}* for every a € Ind(K) and j € {1,...,m},
NI = {c € Ind(K)|(c,a) € Y;}* for every a € Ind(K) and j € {1,...,m},

So for every i € {1,...,n} and j € {1,...,m} we have that X; = Ext?(A;) and
Y; = Ext7 (r;). Moreover, we also have that AL(Z) = I so a* = b* if and only
if a ~; b hence the first two axioms hold in Z. Because A; is closed wrt K,
we get that A7 = (Ext?(A;))?, thus T satisfies the third axiom as well. That
the next two axioms hold in Z is an immediate consequence of its definition.
Consequently, because r; is closed wrt K, we get that for every a € Ind(K), all
y € AT with (af,y) € TJI correspond to named individuals, hence they belong
to the set {¢ € Ind(K)|(a*,c*) € r7} = {c € Ind(K)|(a,c) € Ext*(r;)} so

the axiom {a} C Vr;.R(, ; is satisfied. Similarly

J)
(Frj{a})f ={r e AT|Fy € AT : (2,9) € TJZ and y = o’}
but since r; is closed wrt K

(Hrj,{a})z = {cI = [nd(K)|(cI, at) € 7’]1} = N(Im)

so the last axiom holds as well and thus Z is a model of K. &



Chapter 6

Instance Checking for a
GC Knowledge Base

In this chapter we specify an algortihm for deciding whether or not a GC
knowledge base entails an assertion. Furthermore, we give an example and
discuss complexity and possibility of further use and development.

6.1 The Algorithm

Let (K, M) be a GC-ALCO-K B, where M NN¢ = {Ay,..., Ay} and MNN, =
{r1,...,rm}. We want to check if an assertion B(a) is a logical conseqence of
(K, M). Such a reasoning task is commonly refered to as instance checking,
hence the title of this section. If a ¢ Ind(K) the answer is trivial, so for
the rest it assumed that a € Ind(K). We split the decision procedure in two
cases, the first of which will prove to be solvable in a much more simple way,
by only once calling the “oracle” ALCO reasoner. In the following, given a
knowledge base Ky, we use the notation K := Ky U {—=B(a)} to refer to K
augmented with the negation of the assertion we are checking for entailment.

Case 1: B € M
Proposition 2 K7, is unsatisfiable if and only if (K, M) entails B(a).

Proof: We use contraposition for proving both directions of the above
equivalence.

22



CHAPTER 6. INSTANCE CHECKING FOR A GC KNOWLEDGE BASE23

(=:) Let Z be a GC-model of (K, M) such that Z satisfies =B(a). Then
it is obviously also a model of Kj;. And since a ¢ B%, T is also a model of
K3,

(«<:) Let Z be a model of K;;. It is thus also a model of the smaller
KB K);. But Z satisfies =B(a) so if it is minimal wrt M, we have found a
counterexample for entailment of B(a) from (K, M). If Z is not minimal, then
as we have shown in Proposition 1, there exists a GC-model J of (K, M) such
that J <us Z. Since B € M, according to condition ii) of Definition 2 we have
Ext7(B) C Ext’(B), hence a ¢ BT implies a ¢ B7. So J satisfies —B(a),
thus (K, M) does not entail B(a). &

Case 2: B §§ M

We want to determine if every GC-model of (K, M) entails B(a). To
achieve that, we navigate bottom up in the configuration space which is es-
sentially the space of possible individual allocations and ground extensions to
the predicates in M. Let Gk ) = {G1, ..., Gy}, where Gy < Gy < ... < G).

IC Algorithm:

1} Initiate Stack := Gk ur).
2| fori =1 to A

9| return TRUE.

]
]

3] If G; € Stack:

4] Check K¢, for satisfiability.

5] If YES:

6] Check K/, for satisfiability.

7] If YES return FALSE.

8] Else remove all G; > G; from Stack.
]

That the above algorithm terminates is obvious, because there is only one
loop. Moreover the command in line 9, outside of the loop, guarantees that it
will return either TRUE or FALSE.

Proposition 3 The IC algorithm returns TRUE if and only if (K, M) entails
B(a).
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Proof: Once again we prove the contrapositive.

(=) Suppose (K, M) does not entail B(a). So there is at least one GC-
model Z of (K, M) where a ¢ BZ. Let G be the assignment of Z. We first
show by cotradiction that K/, must be one of the knowledge bases checked
for satisfiability. If it was not, G must have been one of the elements removed
from the Stack at line 8 of the algorithm. Then there would exist a G' < G
such that K is satisfiable, say with Z’ being its model. But Z’ is then also a
model of K/, hence a grounded model of K wrt M and 7' <,; Z. But that
can not be, because Z is minimal. Therefore we know that the IC algorithm
will check K[, for satisfiability. But K/, is satisfiable, Z being a model of it,
so the algorithm will return FALSE.

(«:) We assume that the IC algorithm returns FALSE. Hence for some
i€ {1, ..., A} K(J;r is checked for satisfiability and found to have a model Z.
But Z is also a model of K, (because Ky C Kg) Suppose Z is not a GC-
model. Then there exists 7' <,y Z. Let G’ be the assignment of Z'. Then
G' < G; hence from Lemma 3 we get G' < GG;. So since G’ precedes G;, either
K¢ is checked for satisfiability by the algorithm, or it is not because there
exists a G” < G’ such that Kg» is found to be satisfiable and G’ is then deleted
from the Stack. Both cases would result in a model with assignment smaller
than G;. But then G; by the command in Line 8 must have been removed
from the Stack. That is contradictory, hence Z is a GC-model of (K, M).
However T satisfies =B(a), so (K, M) does not entail B(a). &

To demonstrate how this whole procedure works, we give a simple example.

6.2 Example

Let K be the following knowledge base:

B(a), =B(b), r(b,c), p(a,b), pla,c), Ir—AC A
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Il Iz 13 14 Is

Figure 6.1: The configuration space of (K, M).
And let M = {A}. Then Part(Ind(K)) = {1, Is, I3, 14, Is} where

I = {{a}, {b},{c}}
I = {{a,b},{c}}
I3 = {{a,c} {b}}
Iy = {{a},{b,c}}
Is = {{a,b,c}}.

Figure 6.1 is a visualization of our configuration space. Each possible indi-
vidual allocation corresponds to a lattice of possible ground extensions for
the closed predicates, which in our case consists of just A. The restriction of
the search space to I-complete sets of possible extensions, with respect to an
individual allocation I, is portrayed by the groupings of points in green and
orange enclosure. Basically, what occurs there is a reduction to the search
space, as what used to be three or four points contract to only one.

Suppose that we want to check the assertion —=(AMVp.A)(a) for entail-
ment. This basically means that not all individuals can be interpreted as
members of the extension of A. Then the IC algorithm will look bottom-up
for grounded models of K wrt M. If a model is found, then an augmented
knowledge base will be built, consisting of the current pointwise restriction and
the negation of the given assertion, which in our case is just (AMV.pA)(a). In
case this augmented KB is found to be satisfiable, the algorithm will halt, giv-
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L,
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Il IZ

Figure 6.2: The distribution of GC-models of (K, M) in the configuration
space.

ing FALSE as an answer. Otherwise it will remove from the Stack all points
which are above, hence reducing further the remaining exploration. For this
particular instance, (K, M) entails =(AMY.pA)(a), so no minimal model which
satisfies (AMV.pA)(a) can be found, and so the algorithm will return TRUE.

Note that the entailment holds exactly because of the minimality, i.e. there
are grounded models where all individuals belong to A. Figure 6.2 gives an
account of the distribution of grounded models and GC-models of (K, M) over
the configuration space. Points in white are those that do not correspond to
any model of K, points in blue correspond to GC-models and points in grey
to the rest of the grounded models. All the points in grey are exactly those
that will be never “visited”, i.e. at some step they will be removed from the
Stack.

6.3 Discussion about Complexity

By the distributive character of the set G g ) which serves as the initial Stack,
we can see that our algorithm is in EXPSPACE. However it is possible that the
worst case complexity is lower. Considering that at most exponentially many
calls of the ALCO reasoner are needed, each of which requires EXPTIME, we
get that the overall complexity is still EXPTIME.

Moreover, by the removal of points that results from the command in line
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8, we conjecture that the average complexity is considerably reduced. That
is because the algorithm, in accordance with the defined linear order, will try
smaller points of the configuration space first and once a model is found, the
algorithm will stop looking at the rest of the branch. In the prevous section’s
example, this advantage of the algorithm is not highlighted enough. Only 6 of
the 22 points of the configuration space are removed in the process described
in the above paragraph. This is a result of the simplicity of the particular case.
But had it been for a much larger configuration space, models would probably
be found on the lower positions of the lattices of the individual allocations,
hence big parts of those lattices would directly be removed from the search
space.

Of course there is room for optimization of this algorithm. Notably from
the example we can see how two out of the five lattices should have been
rejected from the start, since they represent individual allocations which are
incompatible with the given knowledge base. More thoroughly, one could
remove points which correspond to assignments which are not consistent with
the axioms in the knowledge base. But in order to achieve this, a solid case-
by-case analysis should be made, which would then involve to a greater degree
and depend upon the specific choice of DL formalism.

On the other hand the results we have acquired so far are directly extend-
able to more complex languages. That follows from the fact that in none of
the proofs presented in this study have we invoked the limitations of ALCO.
In effect, we have used the constructive capabilities of our language, in creat-
ing new knowledge bases that represent the notion of grounding and different
points in the configuration space. But we have not appealed to any restric-
tions imposed by the specific syntax of ALCQO, with the exception of course
of the property of decidabilty, which is implicit wherever a decision procedure
is regarded.



Chapter 7

Auxiliary Theory

Minimality Check: A Non-standard Reasoning Task

In this chapter we present one of the more involved results we came up with,
as far as the intricacy of the proof is concerned. It is a solution to the task
of determining whether a specifc grounded model is minimal by calling the
standard DL reasoner just once. It can be of use in devising algorithms for
other reasoning problems in grounded circumscription, but also maybe in some
optimized variant of the IC algorithm presented previously.

Definition 9 Let K); be a grounded KB where M N N¢ = {A4, ..., A,} and
M NN, ={ry,...,rn} and let Z be a model of Kj;. We call down-the-chain
axioms with respect to Z, the following set of GCls:

I. {a} = Extt({a}) for every a € Ind(K),
1. Ext’(={a}) C —{a} for every a € Ind(K),
III. A; C Eatt(A;) for every i € {1,...,n},

IV. B = {c € Ind(K)|(a*,c") € r7} for every a € Ind(K) and j €
{1,...,m},

V. {a} EVr;.B,  for every a € Ind(K) and j € {1,...,m},

28
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VI. T C 3. ( | | (ExtI(Ai) ﬂﬁAi)> ¥ (

i€{1,...,n}

U (L ({a}ﬂ\mﬁ{c})))

je{l 1111 m} CEB(“J)
a€lnd(K)

where r is a fresh role, i.e. it does not appear in K. Kj; augmented with the
down-the-chain axioms with respect to a model is called a confining of Ky
and symbolized K _,%[, where 7 is the respective model. .

Notice that the number of axioms in each of the categories I-IV depends on
M whereas V is one single axiom. The next lemma shows how we can find
a smaller grounded model than a given one, if there exists one. Intuitively
this is like going down in the lattice of possible grounded models, hence the
terminology.

Lemma 5 Let (K, M) be a GC-ALCO-KB and let Z be a model of K.
There exists a model J of K); such that J < Z if and only if Kf[ 1S
satisfiable.

Proof: (=) Let J be a model of K ]%[. J is then obviously also a model of
Ky Let b € Extf({a}) for some a € Ind(K). Then b7 € (Exztf({a}))? and
by axioms in I, we get that b7 € {a}/ = b7 = a7, hence b € Ext? ({a}) and
we have proven that Ext?({a}) C Ext’({a}). Conversely, if b € Ext’ ({a})
then b7 = a7. If we assume that b ¢ Ext?({a}), we get that b # o andso b €
Extt(={a}), thus b7 € (Ext’(—{a}))?. Then, from the axioms in category
II we infer b7 € ={a}’ = b7 ¢ {a7} = b7/ # a7 and we have reached
a contradiction, so it must be that b € Fzt’({a}). Hence Ext’({a}) C
Exzt’({a}) and conclusively Ext?({a}) = Exzt7({a}), which fulfills the first
condition of Definition 2.

Now let A € M N N¢ and suppose that b € Ext7(A). Then b7 € A7,
hence from the axioms of category III we get that b7 € (ExtZ(A))7, but

Ext'(A)= || {a}
(4)

acBExtT

and

(ExtI(A))j: ) {a}’

acExtI(A)
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hence there exists a € Ext?(A) such that b7 € {a}’, so b € Ext? ({a}) and
using the equality proven in the above paragraph we get b € Ext?({a}). But
{a}? C AT therefore due to the monotonicity of ground extension with respect
to set inclusion we have that b € ExtZ(A). Hence Ext? (A) C Extt(A).

Likewise, assume p € MNN, and let (a,b) € Ext? (p), hence (a7, b7) € p7.
But from the axioms IV we conclude that

aJE{yEAJ

Vze A7 : (y,2) Epj:zeBéj)}

hence b7 € BJ ={ce€ Ind( )(a,ct) € pr}7, which means that there ex-
ists ¢ € Ind(K) Wlth v =7 and (at, ) € p*. So Ext? ({b}) = Ext? ({c}),
but as we proved earlier Ext? ({b}) = Ext?({b}) thus Ext?({b}) = Ext?({c})
and b¥ = . Therefore (af,b?) € p? so (a,b) € Extt(p). We have thence
shown that Ext7(p) C Ext!(p).

Conjoining the above results we can say that for every W € M it holds
that Ext? (W) C Ext(W), so the second condition of Definition 2 is also
met.

To prove the satisfaction of the last condition as well, we analyze axiom V.
Role r here is purely auxiliary, invoked only to assure the satisfiability of the
complex concept that follows. So for this concept inclusion to hold, for every
element y of A7 there must exist an r-neighbor x, such that either there is
an i € {1,...,n} with 7 € (Eat?(4;))7 \ A7, or there exist j € {1,...,m},
a € Ind(K) and ¢ € B, such that ¢/ = x and for every rj-neighbor z
of z it holds that z # ¢”. In the first case, from 27 € (Extf(A;))7 \ A7,
because (Extt(4;))7 = UaeEmtI(Ai){a}j, we get that there is an a € EZEtI(AZ)
such that 27 = a7 but a/ ¢ A7, hence a ¢ Ext7(A;), which implies that
Ext(A;) C Eat? (4;). In the second case, from ¢ € By, ;) we get that (a,c) €
Ext*(r;). And (z,2) = (a7,¢7), so (a7, c7) ¢ 7“‘7 hence (a,c) ¢ Ext? (r;),
thus we derive Ext? (r;) C Ext*(r;). Therefore eoncluswely we can say that
there exists a W € M such that Fat? (W) C ExtI(W).

Consequently all the conditions of the definition of the “smaller than”
relation are fulfilled, thus J < Z.

(«:) Let J’ be a model of K, such that J' < Z. Then there must be
a W € M such that Ext? (W) C Ext*(W). Hence there exists b € Ind(K)

7 )



CHAPTER 7. AUXILIARY THEORY 31

such that either for some A € M U Ng, b* € AT and b7 ¢ A7 or for some
p € M UN, there is a d € Ind(K) with (b*,d*) € p* and (b7, d7") ¢ p7".
Let J be the interpretation which agrees with 7’ in everything except for the

predicates B(, ;) and r, where the following hold:

a.j

B(j ) ={ce Ind(K)|(a*, ) € TJZ}J

a,j

7 ={(z,v7)|x € AT}

for all a € Ind(K) and j € {1,...,m}. Of course then [J is also a model of
Ky, smaller than Z. To demonstrate that 7 is a model of K ]ﬁ_ we go through
all the axiom categories:

1) Ext?({a}) = Ext({a}) so it suffices if {a}” = (Ext? ({a}))? which is
equivalent to a” = {c € Ind(K)|a? = ¢7}7 which clearly holds.

I1) We notice that Ext?(={a}) = Ind(K)\ Ext*({a}), hence Ext’(={a}) =
Ext7(={a}). And we have {¢7|c € Ind(K),c” # a7} C {z € AT |z #
a’} so (Ext? (={a}))? C (={a})? and thus the axiom holds.

I1T) Because 4; is closed wrt K, we get that AY = (Ext7(A;))Y, and from
(Ext? (A))Y C (BExt(A;))7 we derive that AY C (Ext? (A)))7.

IV) This holds trivially by the definition of 7.

V) Because r; is closed wrt K, we get that for every a € Ind(K), ally € A7

with (a”,y) € 7’3.7 correspond to named individuals, hence they belong
to the set {c € Ind(K)|(a”,c7) € rjj} But we have that Ext7(r;) C
Ext*(r;) so we have {c € Ind(K)|(a”,c”) € 7’37} C By,)- Therefore

o’ € {x € A for all y € A with (2,y) € r/ holds y € B}

and so the axioms hold.
VI) By our definition of 7, we just need to show that b satisfies the concept

( | | (ExtI(Ai)ﬂﬁAi)>l_l< | | <|_| <{a}|_|Vfr’j.ﬁ{c})>>

ie{l,....,n} je{l,...,m} ~c€DB(,)
aclnd(K)
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We can see that one of the two disjuncts will be fulfilled depending on
how b was chosen. If there is an A € M U N¢ such that b* € AT and

J
v ¢ A7 thent’ € (Ea:tI(A)I_IﬂA> . Otherwise if for some p € MUN,
there is a d € Ind(K) with (b%,d?) € p* and (b7,d7) ¢ p” then we have
J
v e ({b} M Vp.—'{d}) , hence the concept is satisfied in any case.

We have thus shown that 7 is a model of K ]%[. &

For direct practical use, the above lemma is more conveniently expressed
in the following form:

Corollary 2 (Minimality Check) Let (K, M) be a GC-ALCO-K B and let 7
be a model of K. If K7, is unsatisfiable, then Z is a GC-model of (K, M ).



Chapter 8

Ground Circumscription
in the Original Paper

In this chapter, we follow the definitions and algorithms specified in the origi-
nal paper. Our purpose is to discuss the insufficiencies of the approach of the
original paper and to defend and support our choice of modifying the defini-
tion of grounded circumscription. To this end, we also give a counterexample
in order to indicate a flaw in what is presented to be an instance checking
algorithm.

8.1 The Algorithm for Instance Checking

Firstly we see that instance checking at that paper is meant only for checking
assertions C'(a) where C' is a concept name, in contrast to the typical meaning
of the term, in which C' is an arbitrary concept. But even this restricted
version of instance checking is not possible with the algorithms provided.

In the paper, two algorithms are given, the first one, Tableaul, given a
GC-knowledge base, finds a grounded model and the second one, Tableau?,
given a grounded model, finds a smaller model if there exists one. Then
a third algorithm is defined by putting together Tableaul and Tableau?2, in
order to find a GC-model if there exists one. It is called GC-model finder.
This algorithm does not actually produce all different kinds of GC-models, as
is the claim in the publication upon which their instance checking algorithm
is based.

33
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As a counterexample, consider the followiing GC-knowledge base:
(K, M) = <{r(a, b), I T C AUIrA C=-AUVr—-A}, {A})

Given (K, M), the initial graph for the algorithm Tableau! would consist
of two nodes, one for each individual appearing in K. Since Tableau?2 retains
the same domain that is the output of Tableaul, every GC-model produced
by the GC-model finder will have a domain of at least two. By the axioms
in K it is easy to see that in that case, in order to minimize the extension
of A, every GC-model Z will have the property that exactly one of a,b will
be mapped to elements belonging to AZ. Hence C(a) will hold. However, the
following interpretation is also a GC-model:

A7 = {0}
a/ =0
b7 =0
AT = AT
c7 =

r = AT x AT

and J does not satisfy C'(a). Hence although (K, M) does not entail C(a),
the instance checking algorithm will answer positively in this circumstance.

8.2 The Definition of Minimality

Certainly, the problem spotted in the G'C-model finder could be corrected if
in the Tableaul algorithm, in a non-deterministic fashion, we allowed for the
initial graph to consist of any number of nodes smaller than or equal to the
number of individuals in the knowledge base, and then also non deterministi-
cally distributed the individuals over the nodes. Nevertheless, the nature of
this omission is indicative of the imbalance between the intended meaning of
ground circumscription and the definition of GC-model given in the paper.
Our definition of minimality, which subsumes the one in the original paper,
is more intuitive in that it directly involves the assignment of individuals to
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concepts and roles. This is anyway at the heart of the tableau method used by
the authors of the original paper when providing algorithms for the reasoning
tasks in ground circumscription. Apart from more intuitive, this is also the
more realistic approach. Comparison between two models can only be done
on the basis of the mapping of individuals to concepts and roles and requiring
same domains as well is a non necessary specialization.

As supported in the following section, we have improved very much the
reasoning in comparison to the original paper. Keeping the old definition
would have hindered this development. In particular, had we not modified
the definition, in order to devise a notion like the configuration space we
would have needed to employ a model theoretical approach similar to filtration.
That could possibly produce a more language-dependent theory, meaning that
the results would be more conditional to ALCO and harder to generalize.
As argued in Section 6.3, with our approach we have ensured that by just
replacing our language with a more complex, but still decidable one, all the
results maintain their validity.

Hence we believe that our reformulation of the notion of minimality is an
upgrading to the previous work. It is more efficient in producing results by
avoiding to interfere as much with the actual semantics, whilst capturing the
essense of the idea of grounded circumscription in more satisfactory way.

8.3 Reasoning

In the original paper, satisfiability of a GC-knowledge base is proven decidable
given that we work in a fairly complex language. We have shown that this
result holds for a much simpler language and by only once calling a standard
DL reasoner. This particular result can be obtained with the original definition
of minimality as well.

However for the purpose of constructing an effective instance checking algo-
rithm, our modified definition is very convenient. The confining of the search
space of our algorithm, and the ability to define a linear order that induces
the “smaller than” relation are advantages that result from our adoption of
the new definition. Hence we can have a search strategy which we believe
can prove to be very effective on average case (that remains to be seen with
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testing).

In the original paper, the non-deterministic choices which must be made
in order to obtain the set of all GC-models, resemble a brute force search,
suggesting an unnecessary blow up to the complexity. Moreover, all algorithms
are defined for ALC and because of their very specific nature they are not easily
expanded. The fact that our algorithm and general theory are not restricted
by the special features of ALCO is also a result of the flexibility of the new
definition.



Chapter 9

Summary and Conclusions

We believe that we have considerably upgraded the foundational definition of
grounded circumscription and have produced some first results which develop
a strong basis for further research. Starting from a definition that is more
accurate in incorporating the intuition behind grounded circuscription, we
have an improved solution to the satisfiability task which does not require
any very elaborate language. Moreover, we have provided an algorithm for
instance checking, something that was only partially covered in the original
paper (instance checking was defined narrowly and there was a minor mistake
as well).

Apart from the algorithm itself, the theory provided gives a well-rounded
understanding of the general potential of grounded circumscription, as red-
ifined here. The configuration space can prove to be a useful notion for de-
vising other non-standard reasoning algorithms. The down-the-chain axioms
and minimality check as a sub-task could contribute to solving other reasoning
tasks within ground circuscription as well.

As mentioned earlier, an advantage of our approach is that all our results
hold if ALCQO is replaced by a more complex language, as long as it is decid-
able. Certainly there is a lot of space for further development of grounded
circumscription. It remains to be seen whether the IC algorithm can be suffi-
ciently optimized. Additionally a more comprehensive account of the possible
reasoning tasks should take place, perhaps resulting to more algorithms.

One of our main aims was to concentrate as much of the reasoning as
possible to monotonic standard DLs. This is achieved, in our opinion to the
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largest extent possible, as far as ALCO is considered. With this feature, our
theory is implementation-friendly, and one main future objective is to create
a reasoner for ground circumscription, which will of course be working on top
of an efficient standard DL reasoner.
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