Runtime Characterization of Triple Stores

Long Cheng*T, Spyros Kotoulas', Tomas Ward* and Georgios TheodoropoulosJr
*Department of Electronic Engineering, National University of Ireland, Maynooth
Maynooth, Co. Kildare, Ireland
Email: {Icheng, tward} @eeng.nuim.ie
tiBM Research, Ireland
Mulhuddart, Dublin 15, Ireland
Email: {spyros.kotoulas, geortheo}@ie.ibm.com

Abstract—As the Semantic Web becomes mainstream, the
performance of triple stores becomes increasingly important.
Up until now, there have been various benchmarks and exper-
iments that have attempted to evaluate the response time and
query throughput of individual stores to show the weaknesses
and strengths of triple store implementation. However, these
evaluations have primarily focused on the application level and
have not sufficiently investigated system-level aspects to dis-
cover performance inhibitors and bottlenecks. In this paper, we
are proposing metrics based on a systematic study of the impact
of triple store implementation on the underlying platform. We
choose some popular triple stores as use cases, and perform
our experiments on a standard (128GB RAM, 12 cores) and an
enterprise platform (768GB RAM, 40cores). Through detailed
time cost and system consumption measures of queries derived
from the Berlin SPARQL Benchmark (BSBM), we describe
the dynamics and behaviors of query execution across these
systems. The collected data provides insight into different
triple store implementation as well as an understanding of
performance differences between the two platforms. The results
obtained help in the identification of performance bottlenecks
in existing triple stores implementations which may be useful
in future design efforts for Linked Data processing.

Keywords-runtime characterization; triple store;

I. INTRODUCTION

The Semantic Web is becoming mainstream. It is in-
creasingly prevalent particularly among governments and
enterprises that see RDF as a more flexible way to represent
their data. The availability of several datasets from multiple
domains as Linked Data, such as general knowledge (DB-
pedia [1]), bioinformatics (Uniprot [2]), GIS (geonames [3],
linkedgeodata [4]), and web-page annotations (schema.org
[5], RDFa [6], microformats [7]), has taken Semantic Web
corpora from a lab setting to a terabyte-scale. In tandem with
the increasing availability of such data, and corresponding
technologies, an increasing number of software platforms
now use RDF (e.g. the BBC website [8]).

RDF stores are the backbone of this Web of Data, allowing
storage and retrieval of semi-structured information. The
engineering of RDF Stores is an active area, represented
by roughly four types of approaches [9]: native stores,
which have a database engine optimized for RDF processing
(Jena-TDB [10], Sesame [11], RDF-3X [12], YARS2 [13],

OWLIM [14]), DBMS-backed stores (Virtuoso [15], Alle-
grograph [16]), representing the RDF Model in relational
schema backed by a relational DBMS and hybrid stores,
which support both architectures. A fourth approach is to
tap on existing platforms for general-purposed distributed
processing [17], [18], [19].

Along with the growth in new RDF Store implementa-
tions, there has been a corresponding increase in interest for
relevant performance evaluations. Liu et al. [20] evaluated 7
RDF stores by comparing data loading and query response
time over different size datasets generated using the Lehigh
University Benchmark (LUBM). Rohloff et al. [21] imple-
mented the queries and datasets from LUBM to compare the
performance of triple stores with different storage backends
(such as MySQL etc.) by applying metrics like load time,
query response time, query completeness and soundness,
and disk-space requirements. Schmidt et al. [22] compared
the performance of a single triple store and the vertically
partitioned scheme for storing RDF data in DBMS using
the SP2Bench SPARQL benchmark. Bizer et al. [23] worked
out the Berlin SPARQL Benchmark (BSBM), on the basis
of which they performed an evaluation comparing loading
time, overall run time and average run time per query.
Furthermore, Brocheler et al. [24] presented an experimental
assessment of their DOGMA system by comparing the
performance with other RDF database systems in many
cases, like query time and index size. And recently, Morsey
et al. [25] compared four popular triple stores through
measuring QpS (Queries per Second) and QMpH (Query
Mixes per Hour) over different size datasets with their
DBpedia SPARQL Benchmark (DBPSB). All these reports
have provided valuable insight on the performance of RDF
stores. However, all these evaluation experiments stay only
on an application level but have not gone into the system-
level to discover performance inhibitors and bottlenecks.

In this paper, we focus on a more detailed analysis of
four of the most popular and mature triple stores, available as
open-source software: Jena and Sesame, both written in Java,
RDF-3X, a state-of-the-art store for scalable SPARQL pro-
cessing and, Virtuoso, a commercial RDBMS-based store.
We construct suitable metrics and implement our experi-

ments on the basis of BSBM [23] over a standard (128GB
RAM, 12cores, standard HDD) and an enterprise platform
(768GB RAM, 40 cores, enterprise SAN). The analysis and
results allow the dynamics and behaviors of query execution
for these particular stores to be better understood and could
help in the design of efficient distributed stores, optimized
for parallel RDF processing.

Rather than a benchmarking effort, this paper should
be read as an analysis of the runtime characteristics of
queries for a representative set of RDF stores. We only
consider loading times with regard to the feasibility of our
experiments and we do not focus on the compliance to the
SPARQL specification or the feature-set of each store. In
this light, our measurements and analysis aim at guiding
development of RDF stores, rather than evaluating existing
ones.

Our main findings are that: (1) SPARQL query optimiza-
tion pays off but introduces risk of performance failures,
(2) Current RDF stores do not exploit the parallel nature of
modern architectures for single queries, and (3) RDF stores
are susceptible to serious performance failures.

The rest of this paper is structured as follows: In Section
2, we provide a short technical background for RDF query
processing and detail the metrics used in this paper. The
detailed methods we use to collect the data for our proposed
metrics are shown in section 3. In Section 4, we describe
the experimental environments. We present the test results
and discussion in Section 5 and conclude in Section 6.

II. RDF STORE QUERYING

The general query process for most RDF stores is il-
lustrated in Figure 1. It comprises parsing, planning and
execution phases. The execution phase comprises processes
(joins, data accesses) that are critical to system performance.
We examine these phases in turn.

A. Query Processing

Jena, Sesame, RDF-3X and Virtuoso are similar to tra-
ditional database systems in terms of system architecture.
The main components include a query engine, a storage
subsystem and a database. The query engine is used to
parse the query from a user or an application program and
produce an execution plan, represented as a tree of relational
operations [26]. The storage subsystem includes a buffer
or even its own file cache manager, which, as the name
suggests, manages the buffering of data and reduces the
number of disk accesses. Unlike performance evaluations
done previously, which have only focused on the time cost
of entire query process, here, we divide the data retrieval
process into three phases - parsing, planning and execution.
We will measure the time cost of each phase to track
performance more precisely.

uery
L’ Parsing » Plannmg ——
L> Join > Data Access|
Execution :
B/B+ Tree Buffer/Cache
l’ugc-~
f—> Triple 1
\ Triple i+1
Figure 1. Genral Query Process.

B. Query Planning

Query planning is critical for performance [27]. SPARQL
queries typically generate deep query plans, and the query
optimizer can only collect limited statistics. In particular,

RDF lacks information about access patterns available in
relational databases (e.g. foreign keys). This makes query
planning, and in particular join order optimization, challeng-
ing and resource-consuming. Some systems (for example,
Virtuoso), cache query plans for later use.

C. Join Execution

The execution time of SPARQL queries is dominated by
join operations. There are three main join types widely used
in triple stores: nested-loop joins, merge joins and hash joins.
Jena and Sesame use nested-loop joins, Virtuoso uses all
three types of joins and RDF-3X uses merge joins and hash
joins.

D. Data Access

If a join operation organizes the general operation of all
the triple patterns in a query, then the data access process can
be considered as the detailed implementation of retrieving
bindings for single triple patterns. This process is always
costly and an efficient indexing structure enables fast data
retrieval. Jena, Sesame and RDF-3X use B/B+ Tree indexes,
suitable for range queries, and the index scheme of Virtuoso
contains primary key and bitmp index. In the meantime, Jena
provides three triple indexes on spo, pos and osp to fit for
different triple patterns, while Sesame offers two indexes
spoc and posc by defaut, and RDF-3X maintains 12 indexes
(6 indexes and 6 aggregated indices) for covering all the
possible join patterns. The redundancy is offset by index
compression methods. Virtuoso provides two full indexes
posg and pogs and three partial indexes sp, op and gs as
default. All systems use a dictionary, mapping values to
numeric identifiers. The triple indexes, and most operations,
operate on these numeric identifiers.

E. Data Caches

Practically all RDF stores (and all databases) employ
caching mechanisms for triple indexes and dictionaries. Data
caches are implementation-specific. For example, Sesame
employs a caching and buffering approach using the Java
heap. During data retrieval, it will access the buffer or cache
to check whether the required data is there and start an
index scan. If there is no matched data, the needed B-
tree node will be read into the buffer first before seeking
to the exact data position. Depending on the location of
the requested data, some B-tree nodes will be processed
directly, some will be read from the disk cache and some
will be read directly from disk. Caches influence data access
operations like index scans, page reads and triple lookups.
To obtain a more precise description of the performance of
such operations, we record the number of index scans and
their timing, the number of the pages read and the number
of the triple lookups for a single query. All these data is
useful for describing the dynamics of data searching, which
is directly associated with query performance.

Our exercise aims to measure the processing cost of
different phases of query execution, and we propose parsing
time, planning time, execution time, scan time, number of
scan, number of lookups and page read as metrics for this
part. In addition, from the operating system level, we aim
to measure the CPU usage to evaluate the computation
efficiency during the query. In the next section, we go into
more detail with regard to the metrics used.

[II. METHODOLOGY

The previous section gave insight to the workings of RDF
stores in general. In this section, we describe in detail the
methodology and the metrics used in our experiments. We
have instrumented Jena, Sesame and RDF-3X by modifying
their source code. Virtuoso already provides some metrics'
itself, which we retrieve using the Virtuoso JDBC driver.

We measure the time cost for the parsing phase starting
from the time we get a query string (in-process), to the time
we get the query tree. At this point, the planning phase starts.
We consider that the planning phase is finished when we get
an execution plan. Note that for the purposes of this paper,
any runtime decisions (for example, sideways information
passing techniques used in RDF-3X) are counted as part of
the execution phase and not as part of the planning. The
execution phase is finished when the last result has been
received.

For Virtuoso, we retrieve other relevant metrics using
the corresponding SQL statements after each query. For the
other three systems, all other metrics are collected through
inserting counters in the program code.

Four counters are assigned for a scan as pseudo codes
below demonstrates. We define the start of an index scan

Uhttp://docs.openlinksw.com/virtuoso/ptune.html

Index and Search Range [a,b] have been confirmed.
Counterl: scan_start time;
start
read (tree.root())
#binary search to get child node
repeat
read (child.node())
Counter2: page read 1++;
until triple_id=a;
release(tree.root())
end.
Counter3: scan_number++;
Connter4: scan_end_time,

Figure 2. Pseudo codes of four counters in a scan implementation.
Table 1
METRICS LIST
Metrics General Detailed
Loading Time v
Disk Consumption v
QMpH v
Parsing Time v
Planning Time v
Execution Time v
Number of Index Scans v
Scan Time v
Number of Lookups v
Read in Pages v

with the reading of the root node of the index and the end
with release of the root node. A separate counter for the
number of pages accessed is used in this process (Counter 2
in the code), here it indicates only part of pages read, while
there would be no scan when stores read the consequent
pages. We also insert counters for that.

A triple is located in a slot of data page and an extra ID
is used to indicate the slot. Our lookup counters increment
every time when system lookup this id to check whether it
meet the searching range. Lookup happens during the scan
for RDF-3X and accompany with results retrieve process for
Jena and Sesame.

Lastly, we monitor the CPU usage during all the tests
with SYSTEMTAP [28] , a tool for gathering information
about system utilization in the Linux operating system. The
CPU was sampled every second. For the purposes of this
paper, we consider 100% CPU usage when a single logical
processing unit is fully utilized (i.e. a dual-core machine
with two threads per core can have up to 400% CPU usage).

We will present results for some metrics across all queries
and for some others, we will focus on specific queries. The
metrics used in this paper are summarized in Table I.

IV. EXPERIMENTAL SETTINGS
A. Benchmark

For our experiments, we have used the Berlin SPARQL
Benchmark (BSBM) [23]. BSBM generated synthetic
datasets of arbitrary size, representing an e-commerce use-
case in which a set of products is provided by various
vendors and consumers post reviews around those products.
We created a series of datasets, the largest of which is
composed of 5 billion triples, occupying around 1.2 TB in
N-Triples format.

We have concentrated on the explored use-case of BSBM.
Although the corresponding query set is suitable for use with
Jena, Sesame and Virtuoso, several query features such as
DESCRIBE and OPTIONAL are not supported by RDF-3X.
Consequently, we rewrote the queries” to cater to RDF-3X.

B. Platform

All the experiments were conducted on two platforms, a
Standard Platform (SP) and Enterprise Platform (EP). Their
configurations are shown in Table II.

The standard platform we have used is an iDataPlex node
with 2 Intel Xeon X5679 processors, 128GB RAM with a
single 1'TB SATA HDD. The enterprise platform consisted of
a high-memory server IBM x3850 X5, an enterprise-grade
IBM XIV SAN and two IBM System Storage SAN48B-
5 fiber channel switches. The server was equipped with
4 Intel Xeon E7-8850 processors, 768GB RAM and two
Emulex 8Gb FC Single-port HBAs, each connected to one
switch. The XIV SAN used 156 HDDs and was connected
to each switch on six fiber channel ports. Both platforms
use hardware multithreading (namely, each core can run two
separate threads).

C. Setup

We have experimented on Jena v2.6.4, Sesame v2.6.5,
RDF-3X v0.3.7 and Virtuoso Open Source v6.1.5. We set
the Java heap size for Jena and Sesame to 40GB on SP
and 240GB on EP. For Virtuoso, the NumberOfBuffers
and MaxDirtyBuffers were set to 5242880 and 3932160
on SP and 31457280 and 23592960 on EP. For Jena, we
have configured the optimizer with the statistic optimization
strategy. For Sesame we have set the index configuration
to spoc, posc and opsc. The rest of the parameters were
left to the default values. We chose 150 query mixes for
our experiments, of which 50 query mixes were used in the
warm-up phase and the other 100 were in the hot-run. To
minimize the caching effects of previous queries, we empty
the file system cache before running the query mixes of
each test. The rest of the parameters were left to the default
values.

We chose 150 query mixes for our experiments, of which
50 query mixes were used in the warm-up phase and the

Zhttp://code.google.com/p/para-computing-long/downloads/list

Table II
THE CONFIGURATIONS OF TEST PLATFORMS

Machine Standard Platform Enterprise Platform
CPU 2%6 Cores, 2.93GHz 4*10 Cores, 2.00GHz
RAM 128GB 768GB
Disk 1TB XIV SAN
Linux Kernel rhel-2.6.32-220 rhel-2.6.18-308
Java Version 1.6.0_25 1.6.0_25
120
100 —r
§ 80
< I / =@==Jena
g 60 A
.E I / / == Sesame
E 40 RDF3X
20 @=Hé=\/irtuoso
0 =
0 500 1000 1500 2000

Millions of Triples Loaded

Figure 3. Load time on Standard Platform.

other 100 were in the hot-run. To minimize the caching
effects of previous queries, we empty the file system cache
before each test. The rest of the parameters were left to the
default values.

Our experiments have been limited by the following
conditions: (1) hard disk space, (2) loading time (with a
cut-off at 100 hours) and (3) query execution time (with a
cut-off at 24 hours).

V. RESULTS AND DISCUSSION

In this section we analyze the results derived from the
metrics described previously and provide insight on the
runtime characteristics of the aforementioned RDF stores
for the platforms used.

A. Loading

The loading times for SP and disk consumptions are
shown in Figure 3 and Figure 4. Sesame performs poorest
in terms of loading capability - 250M triples take more
than 100 hours. A possible explanation for this lies in the
relatively small page size used by Sesame, which is only
2KB, that leads to very frequent index updates. On EP the
situation is improved as 500M is loaded in about 34 hours.
For Jena, 500M was loaded in 80 hours for SP while the
performance on EP was dramatically superior - 5B loaded
in 70 hours. In comparison, RDF-3X took 75hours. Virtuoso
and RDF-3X achieved much faster loading speeds than Jena
and Sesame on SP, but their loading time on EP is at the
same levels as in SP, indicating that they did not exploit the
hardware.

For disk space requirement, we observe that the index
compression methods of RDF-3X pay off, resulting in the

1000

800 //
600

o
°)
g =9==Jena
m©
Q.
2 400 == Sesame
w
a RDF3X
B W =)= Virtuoso
0
0 1000 2000 3000 4000 5000

Millions of Triples Loaded

Figure 4. Disk space required for various datasets.

Table III
SPECIAL QUERIES FOR RDF STORES WITH 250M TRIPLES ON
STANDARD PLATFORM

RDF Store Best Queries Worst Queries
Jena Q2, Q9, Q12 Q3, Q4, Q5
Sesame Q2, Q9, Q12 Q5, Q10, Q11
RDF-3X Q2, Q11,Q12 Q5, Q7, Q8
Virtuoso Q2, Q9, Q12 Q3, Q5, Q8

smallest index size. Virtuoso (also using index compression)
uses nearly 10% more space. Jena and Sesame generate
much larger indexes about 2 times larger than those of RDF-
3X.

B. OMpH

There are 25 queries in a Query Mix, which is the same
as the BSBM configuration, and Figure 5 shows the QMpH
result on the basis of our rewritten queries. As expected,
performance decreases with an increasing dataset size for
all stores in both platforms. This change is essentially linear
as demonstrated in the figure. We also note that RDF-
3X performed the worst of all stores, which comes in
contradiction with [12]. We will explain this further in the
following part C.

Comparing the two platforms, EP appears to have worse
QMpH than SP, which is surprising. In terms of hardware
configuration, SP has only one advantage, namely CPU
clock speed. We draw the conservative conclusion that
computation is CPU-bound and explain this further in part
G of this section.

With the results mentioned above, regarding to our test
strategy, the maximum number of triples for each store in
our experiments is also expressed in Figure 5 according to
the terminal points of different curves. We measured the QpS
of 250M triples on SP for all stores, which we believe that
it could indicate a general performance for our test. Based
on that, we also listed three queries with the best QpS and
three with the worst for each store as shown in Table III.
Since that Q5, Q8 and Q12 appears frequency in that list,
with the interest in outstanding queries, we chose these three

1.0E+04
===)ena SP
1.0E+03 == Sesame SP
=== RDF3X SP
T)
§. 1.0E402 @=)¢= \/irtuoso SP
o === Jena EP
=== Sesame EP
1.0E+01
RDF3X EP
Virtuoso EP
1.0E+00
10 100 1000

Millions of Triples Loaded

Figure 5. QMpH for various datasets.

queries as main analysis objects for our proposed metrics in
the following.

C. Cost Breakdown

Figure 6 shows the cost breakdown between query pars-
ing, planning and execution, across all stores and queries
for 250M triples. For most stores, the runtime is dominated
by execution time. Query parsing represents a small fraction
of the cost, so we will exclude it from further discussion.
Planning cost differs significantly per store, with Virtuoso
spending significantly more time than the other stores. And
for Q5, Q7 and Q8 we see that the execution time of RDF-
3X is nearly 100%. And especially for Q7, which appears
four times in the query mix, and its QpS for RDF-3X is only
0.03, which is extreme low while other stores is in the order
of ten, that leads RDF-3X a worse QMpH as mentioned
above.

D. Planning and Execution

Queryl2 is chosen as being representative for further
analyzing planning costs. Our results in Figure 7 show that:
(1) Planning costs for Virtuoso and Jena are fairly constant
and are not significantly influenced by dataset size. We
attribute this to the plan caching and the statistical approach
taken in these systems respectively. (2) Sesame and RDF-
3X clearly demonstrate an increase in planning costs as the
dataset size increases.

The Virtuoso query planner dominates runtime, especially
for Q5 (not shown). In this case, taking 808.3ms for an
average query runtime of 808.4ms. This illustrates that
performance failures in the query plans can be lethal in
RDF stores. On the other hand, the significant effort for
optimization pays off, as shown in the execution times in
Figure 6, where Virtuoso significantly outperforms other
stores. We should nevertheless note that this optimization
cost is not amortized over the (lower) execution time, as we
describe next.

Query 5 is a bad query for all four stores, as evident in the
execution times presented in Figure 8. We can see that the
execution time is basically linear with the data size for Jena,

100% 1

80% -

60% -

40% -

20% -

0% -

W Execution

M Planning

Figure 6. Breakdown of different Queries for 250M Triples on Standard Platform.

1.0E+05
==@==JenaSP
= 1.0E+04
El efll=Sesame SP
[
£ ==lr=RDF3X SP
= 1.0E+03
£ 3 ==¢=\/irtuoso SP
c
H P9 == Jena EP
o 1.0E+02
«=@==Sesame EP
e=f==RDF3X EP
1.0E+01
10 100 1000 @ \/irtuoso EP

Millions of Triples Loaded

Figure 7. Planning Time of Query 12.

Sesame and RDF-3X, with the latter performing better. The
time cost of Virtuoso is practically constant with the dataset
size, indicating that a large portion of the computation for
this query is done during the planning phase.

E. Number of Scans and Scan Time

In terms of number of scans and scan time, the Virtuoso
provided metric Locks is always O for all the queries in our
experiments, which indicates no index is locked during the
query implementation, we assume the reason is that perhaps
the results are stored in the store cache and there is no
need to search the triples through an index scan. And it
is also possible that the lock refers to the number of locks
needed for synchronization, and the implementation contains
only read operations. We report then Number of Scans and
Scan Time only for Jena, Sesame and RDF-3X, since the
instrumentation in Virtuoso does not support these metrics.
In Figure 9, we show results for Query 8. The curves do not
change after 250M triples. The number of scans for RDF-3X
is smaller than Jena and Sesame. We attribute this to the fact
that RDF-3X maintains indexes for all term permutations.
On the right part of Figure 9, we also see that the time spent
scanning is significantly higher for RDF-3X (again, this is
due to its architecture). In the same Figure, Sesame spent
much less time scanning, since it is using its proprietary
cache, compared the file cache used by Jena.

M Parsing
1.0E+09
1.0E+08
@=@==Jena SP
@ 1.0E+07
2 == Sesame SP
@ 1.0E+06
E ==e=RDF3X SP
= 1.0E+05)
2 «=H¢=\/irtuoso SP
‘é 1.0E+04
o edié=Jena EP
X 1.0E+03
1.0E+02 «=@==Sesame EP
OE+
e=j==RDF3X EP
1.0E+01

10 100 1000 em=\firtuoso EP

Millions of Triples Loaded

Figure 8. Execution Time of Query 5.

FE. Number of Lookups and Read in Pages

Figure 10 shows the number of triples retrieved (triple
lookups) and pages read for Query 5. These both grow
linearly with dataset size. Given the fact that it heavily relies
on sequential data access, RDF-3X retrieves much more data
(on both metrics). The difference in page reads between
Sesame and Jena is attributed to the proprietary cache of
the former. Comparing these two results with Figure 7, we
see that even though RDF-3X accesses more data, it strongly
outperforms Sesame and Jena.

G. CPU Usage

For all systems, we observed very low CPU usage and
although Jena, Sesame and Virtuoso support concurrent
evaluation of multiple queries, no system parallelizes the
execution of single queries. The CPU usage of Jena and
Sesame was almost identical (70% ~ 80%) on both plat-
forms. RDF-3X and Virtuoso reached 100% CPU on the
standard platform, and Virtuoso reached 200% on the enter-
prise platform. Given that SP and EP have 24 and 80 logical
processing units respectively, none of the systems exploit the
parallel nature of modern architecture for the evaluation of
single queries.

VI. CONCLUSIONS AND FUTURE WORK

We have conducted a comparative analysis of the runtime
characteristics of a representative set of RDF stores, namely,

1.0E+07
1.0E+06 —
7 1.0E+05 ==@==Jena SP
E 1.0E+04 == Sesame SP
= 1.0E+03 = RDF3X SP
5 1.0E+02 / «)é=Jena EP
1.0E401 e i = Sesame EP
10E+00 | — R =@=RDF3X EP
0 50 100 150 200 250

Millions of Triples Loaded

Figure 9. Number of Scans and Scan Time of Query 8. The curves follow the same pattern for datasets larger than 250M triples.

16
14
12
§ =@==Jena SP
@ 10 .|
5 H =fll=Sesame SP
~ 8
3 === RDF3X SP
€ 6
3 @)= Jena EP
4
) = Sesame EP
0 =@==RDF3X EP
0 50 100 150 200 250
Millions of Triples Loaded
2.5E+06
a 2.0E+06
E) / =&=JenaSP
[=]
3 1.5E+06 / == Sesame SP
=
(=]
g 1.0E+06 === RDF3X SP
E == Jena EP
z
5.0E+05 == Sesame EP
«@==RDF3X EP
0.0E+00

0 50 100 150 200 250
Millions of Triples Loaded

3.5E+06
3.0E+06 /
T
|1 A
& 2.5E+06 // =#=JenaSP
[
S 2.06+06 == Sesame SP
-
g Lo / == RDF3X SP
2
E 1.0E+06 =)é=Jena EP
2
5.0E+05 == Sesame EP
== RDF3X EP
0.0E+00
0 50 100 150 200 250

Millions of Triples Loaded

Figure 10. Number of LookUps and PageRead of Query 5. The curves follow the same pattern for datasets larger than 250M triples.

Jena, Sesame, RDF-3X and Virtuoso. We have described the
dynamics and behaviors of the query execution on the basis
of experimental data and queries derived from the BSBM
benchmark. For the first time in the literature, we report on
the performance and characteristics of triple stores on an
enterprise platform.

Our main findings were the following: (1) Investing in
query optimization pays off in general, but, in SPARQL, it is
easy to arrive at a situation in which the runtime performance
is dominated by optimization with a deleterious effect on the
runtime. (2) Planning failures are potentially catastrophic. In
our experiments, although RDF-3X was the fastest system in
most queries, failure in a single query resulted in it having
the worst overall performance. (3) None of the RDF stores
examined can exploit modern parallel architectures for single
queries. This is expected to have a very negative effect on
analytical workloads. (4) Using very fast storage, in most
cases, did not have the expected impact on performance.
This indicates that either the datasets used were completely
served by data in memory and caching techniques performed
adequately, or that query processing in RDF stores is actually
CPU-bound.

We are currently planning experiments using Solid State
Storage (SSD) attached directly to the PCIe bus. The band-
width of this setup would be comparable to the one obtained
by an enterprise SAN and the SSD would be superior
in terms of response times. Our long-term goal is the

development of highly parallel and distributed architectures
that cater specifically to processing of RDF data.

ACKNOWLEDGMENT

This work is supported by Irish Research Council and
IBM Research, Ireland.

REFERENCES

[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. Ives, “Dbpedia: a nucleus for a web of open data,” in
Proceedings of the 6th international The semantic web and
2nd Asian conference on Asian semantic web conference, ser.
ISWC’07/ASWC’07. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 722-735.

[2] R. Apweiler, A. Bairoch, C. H. Wu, W. C. Barker, B. Boeck-
mann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Ma-
grane, M. J. Martin, D. A. Natale, C. Oonovan, N. Redaschi,
and L. L. Yeh, “Uniprot: the universal protein knowledge-
base,” Nucleic Acids Research, vol. 32, no. suppl 1, pp. D115-
D119, 2004.

[3] Geonames.org, http://www.geonames.org.

[4] C. Stadler, J. Lehmann, K. Hoffner, and S. Auer, “Linked-
geodata: A core for a web of spatial open data,” Semantic
Web Journal, 2011.

[5] Schema.org, http://schema.org.

(6]

(71

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

B. Adida and M. Birbeck, “Rdfa primer. bridging the human
and data webs. w3c working group note 14,” http://www.w3.
org/TR/xhtml-rdfa-primer/, October 2008.

J. Allsopp, Microformats: Empowering Your Markup for Web
2.0. Berkeley, CA: Friends of Ed, 2007.

Y. Raimond, T. Scott, P. Sinclair, L. Miller, S. Betts, and
F. McNamara. (2012) Case study: Use of semantic web
technologies on the bbc web sites. [Online]. Available:
http://www.w3.0rg/2001/sw/sweo/public/UseCases/BBC/

B. Haslhofer, E. M. Roochi, B. Schandl, and S. Zander,
“Europeana rdf store report,” University of Vienna, Vienna,
Technical Report, March 2011.

A. Owens, A. Seaborne, N. Gibbins, and mc schraefel,
“Clustered tdb: A clustered triple store for jena,” November
2008.

J. Broekstra, A. Kampman, and F. van Harmelen, “Sesame:
A generic architecture for storing and querying rdf and rdf
schema,” in Proceedings of the First Internation Semantic
Web Conference, ser. Lecture Notes in Computer Science,
I. Horrocks and J. Hendler, Eds., no. 2342. Springer Verlag,
July 2002, pp. 54-68.

T. Neumann and G. Weikum, “Rdf-3x: a risc-style engine for
rdf,” Proc. VLDB Endow., vol. 1, no. 1, pp. 647-659, Aug.
2008.

A. Harth, J. Umbrich, A. Hogan, and S. Decker, “Yars2: a
federated repository for querying graph structured data from
the web,” in Proceedings of the 6th international The seman-
tic web and 2nd Asian conference on Asian semantic web
conference, ser. ISWC’07/ASWC’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 211-224.

B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev,
and R. Velkov, “Owlim: A family of scalable semantic
repositories,” Semant. web, vol. 2, no. 1, pp. 33-42, Jan. 2011.

O. Erling and I. Mikhailov, “RDF Support in the Virtuoso
DBMS,” in Proceedings of the Ist Conference on Social
Semantic Web CSSW, vol. 221. Springer, 2007.

W3C, “Allegrograph rdfstore web 3.0’s database,” Online
http://www.franz.com/agraph/allegrograph/, September 2009.

“Rapid: Enabling scalable ad-hoc analytics on the seman-
tic web,” in 8th International Semantic Web Conference
(ISWC2009), October 2009.

Z. Kaoudi, K. Kyzirakos, and M. Koubarakis, “Sparql query
optimization on top of dhts,” in Proceedings of the 9th
international semantic web conference on The semantic web
- Volume Part I, ser. ISWC’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 418-435.

M. Karnstedt, K.-U. Sattler, and M. Hauswirth, “Scalable
distributed indexing and query processing over linked data,”
Web Semant., vol. 10, pp. 3-32, Jan. 2012.

B. Liu and B. Hu, “An evaluation of rdf storage systems for
large data applications.” in SKG. IEEE Computer Society,
2005, p. 59.

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

K. Rohloff, M. Dean, I. Emmons, D. Ryder, and J. Sumner,
“An evaluation of triple-store technologies for large data
stores,” in Proceedings of the 2007 OTM Confederated inter-
national conference on On the move to meaningful internet
systems - Volume Part II, ser. OTM’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 1105-1114.

M. Schmidt, T. Hornung, N. Kiichlin, G. Lausen, and
C. Pinkel, “An experimental comparison of rdf data man-
agement approaches in a sparql benchmark scenario,” in
Proceedings of the 7th International Conference on The
Semantic Web, ser. ISWC ’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 82-97.

C. Bizer and A. Schultz, “The berlin sparql benchmark,” Int.
J. Semantic Web Inf. Syst, vol. 5, no. 2, pp. 1-24, 2009.

M. Brocheler, A. Pugliese, and V. S. Subrahmanian, “Dogma:
A disk-oriented graph matching algorithm for rdf databases,”
in Proceedings of the 8th International Semantic Web Con-
ference, ser. ISWC *09. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 97-113.

M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo,
“Dbpedia sparql benchmark: performance assessment with
real queries on real data,” in Proceedings of the 10th inter-
national conference on The semantic web - Volume Part I,
ser. ISWC’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp- 454-469.

M. S. J. Hammer, Data Structures for Databases, 2001,
vol. 60.

T. Neumann and G. Weikum, “Scalable join processing on
very large rdf graphs,” in Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data,
ser. SIGMOD ’09. New York, NY, USA: ACM, 2009, pp.
627-640.

Systemtap, http://sourceware.org/systemtap/.

