

Fakultät Informatik, Institut für Künstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

20. Vorlesung: Resolution (2)

Hannes Straß

Folien: @ Markus Krötzsch, https://iccl.inf.tu-dresden.de/web/TheoLog2017, CC BY 3.0 DE

TU Dresden, 27. Juni 2022

Der Resolutionsalgorithmus

Resolutionsregel:

$$\frac{\{A_1,\ldots,A_n,L_1,\ldots,L_k\}\quad\{\neg A_1',\ldots,\neg A_m',L_1',\ldots,L_\ell'\}}{\{L_1\sigma,\ldots,L_k\sigma,L_1'\sigma,\ldots,L_\ell'\sigma\}}$$

falls σ allgemeinster Unifikator von $\{A_1, \ldots, A_n, A'_1, \ldots, A'_m\}$ ist.

Algorithmus (Skizze):

- (1) Bilde Klauselform.
- (2) Bilde systematisch Resolventen durch Resolution von Varianten bereits abgeleiteter Klauseln.
- (3) Wiederhole (2), bis entweder ⊥ erzeugt wird ("unerfüllbar") oder keine neuen Klauseln mehr entstehen.¹

¹ Dieser Fall ist eher ungewöhnlich: Meist entstehen bei erfüllbaren Theorien immer mehr neue Klauseln, ohne dass das Verfahren terminiert.

Vollständigkeit und Korrektheit

Resolutionssatz: Sei F eine prädikatenlogische Formel und \mathcal{K}_i ($i \geq 0$) die vom Resolutionsalgorithmus ermittelten Klauselmengen. Dann sind die folgenden Aussagen äquivalent:

- F ist unerfüllbar.
- Es gibt ein $\ell \geq 0$ mit $\perp \in \mathcal{K}_{\ell}$.
- Korrektheit hatten wir bereits gezeigt.
- Vollständigkeit steht noch aus.

Jacques Herbrand
12.02.1908 - 27.07.1931

Syntax vs. Semantik

Bei Herbrand-Interpretationen kann man semantische Elemente (wie sie in Zuweisungen vorkommen) durch syntaktische Elemente (wie sie in Substitutionen vorkommen) ausdrücken:

Lemma: Für jede Herbrand-Interpretation I, jede Zuweisung Z für I, jeden Term $t \in \Delta^I$ und jede Formel F gilt:

$$I, \mathcal{Z}\{x \mapsto t\} \models F \qquad \text{gdw.} \qquad I, \mathcal{Z} \models F\{x \mapsto t\}$$
 (\$\darking\$)

(Ohne Beweis; einfach.)

Anmerkung: Man kann ein entsprechendes Resultat auch für Nicht-Herbrand-Interpretationen zeigen. Dann muss man einfach den Term auf der linken Seite durch $t^{\mathcal{I},\mathcal{Z}}$ ersetzen.

Satz: Ein Satz F in Skolemform ist genau dann erfüllbar, wenn F ein Herbrand-Modell hat.

Aufzeichnung startet ...

Prädikatenlogisches Schließen mit Aussagenlogik

Herbrand-Expansionen

Die Herbrand-Expansion HE(F) einer Formel $F = \forall x_1, \dots, x_n.G$ in Skolemform ist die Menge:

$$HE(F) := \{G\{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\} \mid t_1, \dots, t_n \in \Delta_F\}$$

HE(F) ist also die (möglicherweise unendliche) Menge von variablenfreien Sätzen, die in Herbrand-Modellen von F gelten müssten.

Herbrand-Expansionen

Die Herbrand-Expansion HE(F) einer Formel $F = \forall x_1, \dots, x_n.G$ in Skolemform ist die Menge:

$$HE(F) := \{G\{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\} \mid t_1, \dots, t_n \in \Delta_F\}$$

HE(F) ist also die (möglicherweise unendliche) Menge von variablenfreien Sätzen, die in Herbrand-Modellen von F gelten müssten.

Quantorenfreie Sätze als aussagenlogische Formeln betrachtet:

- *HE(F)* enthält Formeln ohne Variablen, d.h. Boolesche Kombinationen geschlossener Atome.
- Geschlossene Atome können unabhängig voneinander wahr oder falsch sein, egal wie ihre genaue Struktur aussieht.
- Wir können sie also als "ungewöhnlich benannte" aussagenlogische Atome auffassen und die gesamte Formel aussagenlogisch interpretieren.
- \rightarrow Wir "lesen" HE(F) als aussagenlogische Theorie.

Satz von Gödel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann erfüllbar, wenn HE(F) aussagenlogisch erfüllbar ist.

Satz von Gödel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann erfüllbar, wenn HE(F) aussagenlogisch erfüllbar ist.

Satz von Gödel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann erfüllbar, wenn HE(F) aussagenlogisch erfüllbar ist.

Beweis: Wir zeigen, dass $F = \forall x_1, \dots, x_n.G$ genau dann ein Herbrand-Modell hat, wenn HE(F) aussagenlogisch erfüllbar ist:

• I ist ein Herbrand-Modell von F

Satz von Gödel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann erfüllbar, wenn HE(F) aussagenlogisch erfüllbar ist.

- I ist ein Herbrand-Modell von F
- gdw. $I, \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\} \models G \text{ für alle } t_1, \dots, t_n \in \Delta_F$

Satz von Gödel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann erfüllbar, wenn HE(F) aussagenlogisch erfüllbar ist.

- I ist ein Herbrand-Modell von F
- gdw. $I, \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\} \models G$ für alle $t_1, \dots, t_n \in \Delta_F$
- gdw. $I \models G\{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ für alle $t_1, \dots, t_n \in \Delta_F$ (Lemma \diamond)

Satz von Gödel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann erfüllbar, wenn HE(F) aussagenlogisch erfüllbar ist.

- I ist ein Herbrand-Modell von F
- gdw. $I, \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\} \models G$ für alle $t_1, \dots, t_n \in \Delta_F$
- gdw. $I \models G\{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ für alle $t_1, \dots, t_n \in \Delta_F$ (Lemma \diamond)
- gdw. für alle $H \in HE(F)$ gilt: $I \models H$

Satz von Gödel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann erfüllbar, wenn HE(F) aussagenlogisch erfüllbar ist.

- I ist ein Herbrand-Modell von F
- gdw. $I, \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\} \models G$ für alle $t_1, \dots, t_n \in \Delta_F$
- gdw. $I \models G\{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ für alle $t_1, \dots, t_n \in \Delta_F$ (Lemma \diamond)
- gdw. für alle $H \in HE(F)$ gilt: $I \models H$
- gdw. I als aussagenlogisches Modell für HE(F) angesehen werden kann.

Satz von Herbrand

Als Korollar der gezeigten Ergebnisse erhalten wir ein wichtiges Resultat:

Satz: Eine Formel F in Skolemform ist genau dann unerfüllbar, wenn eine endliche Teilmenge von HE(F) aussagenlogisch unerfüllbar ist.

¹ Das Ergebnis kann aus der Vollständigkeit der Verallgemeinerung aussagenlogischer Resolution auf unendliche Modelle gefolgert werden (siehe Formale Systeme, WS 2021/2022, Vorlesung 23): Wenn die leere Klausel endlich abgeleitet werden kann, dann nutzt man dazu nur endlich viele Klauseln der Eingabe; wenn die leere Klausel nicht endlich abgeleitet werden kann, dann erhält man aus der unendlichen Menge aller möglichen Ableitungen ein Modell, analog zum endlichen Fall.

Satz von Herbrand

Als Korollar der gezeigten Ergebnisse erhalten wir ein wichtiges Resultat:

Satz: Eine Formel F in Skolemform ist genau dann unerfüllbar, wenn eine endliche Teilmenge von HE(F) aussagenlogisch unerfüllbar ist.

Beweis: Beide Seiten der Äquivalenz im Satz von Gödel, Herbrand & Skolem zu negieren ergibt:

Eine Formel F in Skolemform ist genau dann unerfüllbar, wenn HE(F) aussagenlogisch unerfüllbar ist.

Die Kompaktheit der Aussagenlogik besagt nun: Jede unerfüllbare aussagenlogische Formelmenge hat eine endliche unerfüllbare Teilmenge. (Ohne Beweis.¹)

Daraus folgt direkt die Aussage des Satzes.

П

¹ Das Ergebnis kann aus der Vollständigkeit der Verallgemeinerung aussagenlogischer Resolution auf unendliche Modelle gefolgert werden (siehe Formale Systeme, WS 2021/2022, Vorlesung 23); Wenn die leere Klausel endlich abgeleitet werden kann, dann nutzt man dazu nur endlich viele Klauseln der Eingabe; wenn die leere Klausel nicht endlich abgeleitet werden kann, dann erhält man aus der unendlichen Menge aller möglichen Ableitungen ein Modell, analog zum endlichen Fall.

Prädikatenlogik semi-entscheiden

Das Ergebnis Herbrands ermöglicht bereits einen naiven Algorithmus zur Semi-Entscheidung von Unerfüllbarkeit in der Prädikatenlogik:

Gegeben: Eine Formel F.

- Wandle F in Skolemform F' um.
- Definiere eine Reihenfolge der Formeln in HE(F'): F_1, F_2, F_3, \dots
- Für alle $i \ge 1$:
 - Prüfe ob die endliche Menge $\{F_1, \ldots, F_i\}$ aussagenlogisch unerfüllbar ist.
 - Falls ja, dann gib "unerfüllbar" aus; andernfalls fahre fort.

Offenbar ist das kein praktischer Algorithmus, aber er zeigt Semi-Entscheidbarkeit.

Quiz: Herbrand-Expansion und Resolution

Quiz: Wir betrachten die untenstehende Formel *F* in Skolemform: . . .

Ansatz

Herbrands Satz liefert uns auch eine Strategie zum Beweis der Vollständigkeit des Resolutionsalgorithmus.

Wir wissen bereits:

- Unerfüllbarkeit einer Klauselmenge zeigt sich in der Unerfüllbarkeit ihrer Herbrand-Expansion.
- Die Unerfüllbarkeit der Herbrand-Expansion kann man mit aussagenlogischer Resolution beweisen.
- Prädikatenlogische Resolution verallgemeinert aussagenlogische Resolution indem wir direkt mit Klauseln arbeiten, die noch Variablen enthalten.

Ansatz

Herbrands Satz liefert uns auch eine Strategie zum Beweis der Vollständigkeit des Resolutionsalgorithmus.

Wir wissen bereits:

- Unerfüllbarkeit einer Klauselmenge zeigt sich in der Unerfüllbarkeit ihrer Herbrand-Expansion.
- Die Unerfüllbarkeit der Herbrand-Expansion kann man mit aussagenlogischer Resolution beweisen.
- Prädikatenlogische Resolution verallgemeinert aussagenlogische Resolution indem wir direkt mit Klauseln arbeiten, die noch Variablen enthalten.

Frage: Kann man alle Schlüsse, die man auf expandierten Formeln aussagenlogisch erzeugen kann, auch direkt prädikatenlogisch (mit Variablen) erhalten?

Lifting-Lemma

Wir zeigen: Ja, jeder aussagenlogische Schluss (auf der Expansion) kann auf einen prädikatenlogischen Schluss (auf den Klauseln mit Variablen) "angehoben" werden.

Satz (Lifting-Lemma): Seien K_1 und K_2 prädikatenlogische Klauseln mit Grundinstanzen $K_1' = K_1 \sigma$ und $K_2' = K_2 \sigma$.¹

Wenn R' eine (aussagenlogische) Resolvente von K'_1 und K'_2 ist, dann gibt es eine prädikatenlogische Resolvente R von K_1 und K_2 , welche R' als Grundinstanz hat.

¹ Die Verwendung der selben Substitution für K'_1 und K'_2 ist keine Einschränkung, da wir durch Variantenbildung sicherstellen können, dass K_1 und K_2 keine Variablen gemeinsam haben.

Satz (Lifting-Lemma): Seien K_1 und K_2 prädikatenlogische Klauseln mit Grundinstanzen $K_1' = K_1 \sigma$ und $K_2' = K_2 \sigma$.

Wenn R' eine (aussagenlogische) Resolvente von K'_1 und K'_2 ist, dann gibt es eine prädikatenlogische Resolvente R von K_1 und K_2 , welche R' als Grundinstanz hat.

Beweis:

• Sei $A' \in K'_1$ das (geschlossene) Atom, über das resolviert wurde, d.h. $\neg A' \in K'_2$.

Satz (Lifting-Lemma): Seien K_1 und K_2 prädikatenlogische Klauseln mit Grundinstanzen $K_1' = K_1 \sigma$ und $K_2' = K_2 \sigma$.

Wenn R' eine (aussagenlogische) Resolvente von K'_1 und K'_2 ist, dann gibt es eine prädikatenlogische Resolvente R von K_1 und K_2 , welche R' als Grundinstanz hat.

- Sei $A' \in K'_1$ das (geschlossene) Atom, über das resolviert wurde, d.h. $\neg A' \in K'_2$.
- Wir definieren $\mathcal{A}_1 := \{A \mid A \in K_1, A\sigma = A'\}$ und $\mathcal{A}_2 := \{A \mid \neg A \in K_2, A\sigma = A'\}$.

Satz (Lifting-Lemma): Seien K_1 und K_2 prädikatenlogische Klauseln mit Grundinstanzen $K'_1 = K_1 \sigma$ und $K'_2 = K_2 \sigma$.

Wenn R' eine (aussagenlogische) Resolvente von K'_1 und K'_2 ist, dann gibt es eine prädikatenlogische Resolvente R von K_1 und K_2 , welche R' als Grundinstanz hat.

- Sei $A' \in K'_1$ das (geschlossene) Atom, über das resolviert wurde, d.h. $\neg A' \in K'_2$.
- Wir definieren $\mathcal{A}_1 := \{A \mid A \in K_1, A\sigma = A'\}$ und $\mathcal{A}_2 := \{A \mid \neg A \in K_2, A\sigma = A'\}.$
- Dann ist σ ein Unifikator für $\mathcal{A}_1 \cup \mathcal{A}_2$.

Satz (Lifting-Lemma): Seien K_1 und K_2 prädikatenlogische Klauseln mit Grundinstanzen $K'_1 = K_1 \sigma$ und $K'_2 = K_2 \sigma$.

Wenn R' eine (aussagenlogische) Resolvente von K'_1 und K'_2 ist, dann gibt es eine prädikatenlogische Resolvente R von K_1 und K_2 , welche R' als Grundinstanz hat.

- Sei $A' \in K'_1$ das (geschlossene) Atom, über das resolviert wurde, d.h. $\neg A' \in K'_2$.
- Wir definieren $\mathcal{A}_1 := \{A \mid A \in K_1, A\sigma = A'\}$ und $\mathcal{A}_2 := \{A \mid \neg A \in K_2, A\sigma = A'\}.$
- Dann ist σ ein Unifikator für $\mathcal{A}_1 \cup \mathcal{A}_2$.
- Also hat $\mathcal{A}_1 \cup \mathcal{A}_2$ einen allgemeinsten Unifikator θ .

Satz (Lifting-Lemma): Seien K_1 und K_2 prädikatenlogische Klauseln mit Grundinstanzen $K_1' = K_1 \sigma$ und $K_2' = K_2 \sigma$.

Wenn R' eine (aussagenlogische) Resolvente von K'_1 und K'_2 ist, dann gibt es eine prädikatenlogische Resolvente R von K_1 und K_2 , welche R' als Grundinstanz hat.

- Sei $A' \in K'_1$ das (geschlossene) Atom, über das resolviert wurde, d.h. $\neg A' \in K'_2$.
- Wir definieren $\mathcal{A}_1 := \{A \mid A \in K_1, A\sigma = A'\}$ und $\mathcal{A}_2 := \{A \mid \neg A \in K_2, A\sigma = A'\}$.
- Dann ist σ ein Unifikator für $\mathcal{A}_1 \cup \mathcal{A}_2$.
- Also hat $\mathcal{A}_1 \cup \mathcal{A}_2$ einen allgemeinsten Unifikator θ .
- Sei R die Resolvente von K_1 und K_2 bezüglich θ .

Satz (Lifting-Lemma): Seien K_1 und K_2 prädikatenlogische Klauseln mit Grundinstanzen $K'_1 = K_1 \sigma$ und $K'_2 = K_2 \sigma$.

Wenn R' eine (aussagenlogische) Resolvente von K'_1 und K'_2 ist, dann gibt es eine prädikatenlogische Resolvente R von K_1 und K_2 , welche R' als Grundinstanz hat.

- Sei $A' \in K'_1$ das (geschlossene) Atom, über das resolviert wurde, d.h. $\neg A' \in K'_2$.
- Wir definieren $\mathcal{A}_1 := \{A \mid A \in K_1, A\sigma = A'\}$ und $\mathcal{A}_2 := \{A \mid \neg A \in K_2, A\sigma = A'\}$.
- Dann ist σ ein Unifikator für $\mathcal{A}_1 \cup \mathcal{A}_2$.
- Also hat $\mathcal{A}_1 \cup \mathcal{A}_2$ einen allgemeinsten Unifikator θ .
- Sei R die Resolvente von K_1 und K_2 bezüglich θ .
- Dann enthalten R' und R Instanzen der gleichen Literale, d.h. sie sind von der Form R' = {L₁σ,...,L_nσ} und R = {L₁θ,...,L_nθ}.
 (Aus beiden werden nur Literale über Atome aus A₁ ∪ A₂ entfernt.)

Satz (Lifting-Lemma): Seien K_1 und K_2 prädikatenlogische Klauseln mit Grundinstanzen $K_1' = K_1 \sigma$ und $K_2' = K_2 \sigma$.

Wenn R' eine (aussagenlogische) Resolvente von K'_1 und K'_2 ist, dann gibt es eine prädikatenlogische Resolvente R von K_1 und K_2 , welche R' als Grundinstanz hat.

Beweis:

- Sei $A' \in K'_1$ das (geschlossene) Atom, über das resolviert wurde, d.h. $\neg A' \in K'_2$.
- Wir definieren $\mathcal{A}_1 := \{A \mid A \in K_1, A\sigma = A'\}$ und $\mathcal{A}_2 := \{A \mid \neg A \in K_2, A\sigma = A'\}.$
- Dann ist σ ein Unifikator für $\mathcal{A}_1 \cup \mathcal{A}_2$.
- Also hat $\mathcal{A}_1 \cup \mathcal{A}_2$ einen allgemeinsten Unifikator θ .
- Sei R die Resolvente von K_1 und K_2 bezüglich θ .
- Dann enthalten R' und R Instanzen der gleichen Literale, d.h. sie sind von der Form R' = {L₁σ,...,L_nσ} und R = {L₁θ,...,L_nθ}.
 (Aus beiden werden nur Literale über Atome aus A₁ ∪ A₂ entfernt.)
- Da θ allgemeinster Unifikator ist, gibt es eine Substitution λ mit $\theta \circ \lambda = \sigma$ und es gilt: $R\lambda = \{L_1\theta\lambda, \dots, L_n\theta\lambda\} = \{L_1\sigma, \dots, L_n\sigma\} = R'$.

Resolutionssatz: Sei F eine prädikatenlogische Formel und \mathcal{K}_i ($i \geq 0$) die vom Resolutionsalgorithmus ermittelten Klauselmengen. Dann sind die folgenden Aussagen äquivalent:

- F ist unerfüllbar.
- Es gibt ein $\ell \geq 0$ mit $\perp \in \mathcal{K}_{\ell}$.

Resolutionssatz: Sei F eine prädikatenlogische Formel und \mathcal{K}_i ($i \geq 0$) die vom Resolutionsalgorithmus ermittelten Klauselmengen. Dann sind die folgenden Aussagen äquivalent:

- F ist unerfüllbar.
- Es gibt ein $\ell \geq 0$ mit $\perp \in \mathcal{K}_{\ell}$.

Beweis (Vollständigkeit): Sei F unerfüllbar.

- Dann ist *HE*(*F*) unerfüllbar.
- Dann gibt es eine (endliche) aussagenlogische Resolutionsableitung von \bot aus HE(F).
- Die Ableitung erzeugt eine endliche Folge von Klauseln: $K_1', K_2', \dots, K_{m-1}', K_m' = \bot$.
- Behauptung: Jede Klausel K'_i ist Grundinstanz einer Klausel $K_i \in \mathcal{K}_\ell$ für ein $\ell \geq 0$.
- Für i = m folgt daraus der Satz, denn K'_m = ⊥ kann nur Grundinstanz von ⊥ sein, d.h. ⊥ ∈ K_ℓ für ein ℓ ≥ 0.

Beweis (Vollständigkeit):

Behauptung: Jede Klausel K'_i ist Grundinstanz einer Klausel $K_i \in \mathcal{K}_\ell$ für ein $\ell \geq 0$.

Beweis (Vollständigkeit):

Behauptung: Jede Klausel K'_i ist Grundinstanz einer Klausel $K_i \in \mathcal{K}_\ell$ für ein $\ell \geq 0$.

Die Aussage ist klar für Klauseln $K'_i \in HE(F)$: In diesem Fall ist K'_i Grundinstanz einer Klausel K_i in der Klauselform von F und in \mathcal{K}_0 .

Beweis (Vollständigkeit):

Behauptung: Jede Klausel K'_i ist Grundinstanz einer Klausel $K_i \in \mathcal{K}_\ell$ für ein $\ell \geq 0$.

Die Aussage ist klar für Klauseln $K'_i \in HE(F)$: In diesem Fall ist K'_i Grundinstanz einer Klausel K_i in der Klauselform von F und in \mathcal{K}_0 .

Restlicher Beweis durch Induktion über i:

• Induktionsvoraussetzung (IV): Die Aussage gilt für alle j < i.

Beweis (Vollständigkeit):

Behauptung: Jede Klausel K'_i ist Grundinstanz einer Klausel $K_i \in \mathcal{K}_\ell$ für ein $\ell \geq 0$.

Die Aussage ist klar für Klauseln $K'_i \in HE(F)$: In diesem Fall ist K'_i Grundinstanz einer Klausel K_i in der Klauselform von F und in \mathcal{K}_0 .

- Induktionsvoraussetzung (IV): Die Aussage gilt für alle j < i.
- Sei nun K'_i Resolvente zweier Klauseln K'_a und K'_b mit a, b < i.

Beweis (Vollständigkeit):

Behauptung: Jede Klausel K'_i ist Grundinstanz einer Klausel $K_i \in \mathcal{K}_\ell$ für ein $\ell \geq 0$.

Die Aussage ist klar für Klauseln $K'_i \in HE(F)$: In diesem Fall ist K'_i Grundinstanz einer Klausel K_i in der Klauselform von F und in \mathcal{K}_0 .

- Induktionsvoraussetzung (IV): Die Aussage gilt für alle i < i.
- Sei nun K'_i Resolvente zweier Klauseln K'_a und K'_b mit a, b < i.
- Laut IV sind K'_a und K'_b also Instanzen von Klauseln K_a und K_b in einer Menge \mathcal{K}_{ℓ} .

Beweis (Vollständigkeit):

Behauptung: Jede Klausel K'_i ist Grundinstanz einer Klausel $K_i \in \mathcal{K}_\ell$ für ein $\ell \geq 0$.

Die Aussage ist klar für Klauseln $K'_i \in HE(F)$: In diesem Fall ist K'_i Grundinstanz einer Klausel K_i in der Klauselform von F und in \mathcal{K}_0 .

- Induktionsvoraussetzung (IV): Die Aussage gilt für alle j < i.
- Sei nun K'_i Resolvente zweier Klauseln K'_a und K'_b mit a, b < i.
- Laut IV sind K'_a und K'_b also Instanzen von Klauseln K_a und K_b in einer Menge \mathcal{K}_{ℓ} .
- Laut Lifting-Lemma ist demnach K'_i ebenfalls die Instanz einer Klausel K_i , die durch Resolution aus K_a und K_b entsteht.

Beweis (Vollständigkeit):

Behauptung: Jede Klausel K'_i ist Grundinstanz einer Klausel $K_i \in \mathcal{K}_\ell$ für ein $\ell \geq 0$.

Die Aussage ist klar für Klauseln $K'_i \in HE(F)$: In diesem Fall ist K'_i Grundinstanz einer Klausel K_i in der Klauselform von F und in \mathcal{K}_0 .

- Induktionsvoraussetzung (IV): Die Aussage gilt für alle j < i.
- Sei nun K'_i Resolvente zweier Klauseln K'_a und K'_b mit a, b < i.
- Laut IV sind K'_a und K'_b also Instanzen von Klauseln K_a und K_b in einer Menge \mathcal{K}_{ℓ} .
- Laut Lifting-Lemma ist demnach K'_i ebenfalls die Instanz einer Klausel K_i , die durch Resolution aus K_a und K_b entsteht.
- Für diese Resolvente K_i gibt es also ebenfalls ein $\ell' \geq 0$, sodass $K_i \in \mathcal{K}_{\ell'}$.

Kompaktheit

Die Existenz von vollständigen und korrekten logischen Schließverfahren wie Resolution ist eng verwandt mit einer grundsätzlichen Eigenschaft der Prädikatenlogik:

Satz (Endlichkeitssatz, Kompaktheitssatz):

Falls eine unendliche Menge prädikatenlogischer Sätze \mathcal{T} eine logische Konsequenz F hat, so ist F auch Konsequenz einer endlichen Teilmenge von \mathcal{T} .

Kompaktheit

Die Existenz von vollständigen und korrekten logischen Schließverfahren wie Resolution ist eng verwandt mit einer grundsätzlichen Eigenschaft der Prädikatenlogik:

Satz (Endlichkeitssatz, Kompaktheitssatz):

Falls eine unendliche Menge prädikatenlogischer Sätze \mathcal{T} eine logische Konsequenz F hat, so ist F auch Konsequenz einer endlichen Teilmenge von \mathcal{T} .

Beweis: Die gegebene logische Konsequenz ist gleichbedeutend damit, dass $\mathcal{T} \cup \{\neg F\}$ unerfüllbar ist.

Laut Resolutionssatz (Vollständigkeit) kann die Unerfüllbarkeit von $\mathcal{T} \cup \{\neg F\}$ nach endlich vielen Schritten durch Ableitung der leeren Klausel nachgewiesen werden.

Dabei können nur endlich viele Klauseln aus der Klauselform von $\mathcal{T} \cup \{\neg F\}$ verwendet worden sein. Laut Resolutionssatz (Korrektheit) folgt die Konsequenz also bereits aus einer endlichen Teilmenge von \mathcal{T} .

Die Grenzen der Prädikatenlogik

Kompaktheit zeigt uns auch erste Grenzen der Prädikatenlogik auf.

Eine logische Formel F mit zwei freien Variablen x und y drückt den transitiven Abschluss einer binären Relation r aus, wenn in jeder Interpretation $I = \langle \Delta^I, \cdot^I \rangle$ und für alle $\delta_1, \delta_2 \in \Delta^I$ gilt:

$$I, \{x \mapsto \delta_1, y \mapsto \delta_2\} \models F \quad \text{gdw.} \quad \langle \delta_1, \delta_2 \rangle \in (r^I)^+$$

Die Grenzen der Prädikatenlogik

Kompaktheit zeigt uns auch erste Grenzen der Prädikatenlogik auf.

Eine logische Formel F mit zwei freien Variablen x und y drückt den transitiven Abschluss einer binären Relation r aus, wenn in jeder Interpretation $I = \langle \Delta^I, \cdot^I \rangle$ und für alle $\delta_1, \delta_2 \in \Delta^I$ gilt:

$$I, \{x \mapsto \delta_1, y \mapsto \delta_2\} \models F \quad \text{gdw.} \quad \langle \delta_1, \delta_2 \rangle \in (r^I)^+$$

Satz: Es gibt keine prädikatenlogische Formel, die den transitiven Abschluss einer binären Relation ausdrückt.

Die Grenzen der Prädikatenlogik

Kompaktheit zeigt uns auch erste Grenzen der Prädikatenlogik auf.

Eine logische Formel F mit zwei freien Variablen x und y drückt den transitiven Abschluss einer binären Relation r aus, wenn in jeder Interpretation $I = \langle \Delta^I, \cdot^I \rangle$ und für alle $\delta_1, \delta_2 \in \Delta^I$ gilt:

$$I, \{x \mapsto \delta_1, y \mapsto \delta_2\} \models F \quad \text{gdw.} \quad \langle \delta_1, \delta_2 \rangle \in (r^I)^+$$

Satz: Es gibt keine prädikatenlogische Formel, die den transitiven Abschluss einer binären Relation ausdrückt.

Beweis: Angenommen, es gäbe so eine Formel F.

Dann ist die folgende unendliche Theorie unerfüllbar:

$$\{ F\{x \mapsto a, y \mapsto b\}, \neg r(a, b), \neg \exists x_1. (r(a, x_1) \land r(x_1, b)), \\ \neg \exists x_1, x_2. (r(a, x_1) \land r(x_1, x_2) \land r(x_2, b)), \dots$$

Aber jede endliche Teilmenge der Theorie ist erfüllbar. Die Existenz der Formel F würde also dem Kompaktheitssatz widersprechen.

Zusammenfassung und Ausblick

Die prädikatenlogische Resolution ist ein vollständiges und korrektes Verfahren für die Unerfüllbarkeit logischer Formeln.

In gewissem Sinne ist Prädikatenlogik eine Kurzschreibweise für möglicherweise unendliche aussagenlogische Theorien.

Was erwartet uns als nächstes?

- Endliche Interpretationen und Datenbanken
- Datalog
- Gödel

Bildrechte

Folie 4: Fotografie von Natasha Artin Brunswick, 1931, CC-By 3.0