Pushing Doors for Modeling Contexts with OWL DL —a Case Study
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Abstract

In this paper we present an integrated view for model-
ing and reasoning for context applications using OWL DL.
In our case study, we describe a task driven approach to
model typical situations as context concepts in an OWL DL
ontology. At run-time OWL individuals form situation de-
scriptions and by use of realization we recognise a certain
context. We demonstrate the feasibility of our approach by
performance measurements of available highly optimised
Description Logics (DL) reasoners for OWL DL.

1 Introduction and M otivation

Within the last years, context-awareness has evolved
from a vision into a key technology for pervasive and ubig-
uitous computing. By enabling applications to be aware
of their current situation, they are able to adapt their be-
haviour to the changing environment to simplify user inter-
actions and to improve system behaviour to operate more
personalized, autonomous and flexible. One of the main
tasks in context applications is to recognise the situation
and to invoke appropriate actions. This paper proposes an
ontology based representation of context information and,
more importantly, employs well-defined reasoning services
for recognising application relevant situations by employing
highly optimised DL reasoners.

Context information is often not explicitly available, but
has to be gathered from highly distributed and heteroge-
neous sources, such as sensor systems, data bases frame-
works or other applications were it is available at different
levels of abstraction. While a sensor system provides low-
level information sensed from the environment, data bases
and applications usually provide higher level information.
In order to be useful in applications, higher level context
often has to be obtained by aggregating, deriving and inter-
preting the output of context sources in a stepwise fashion.
Caused by the way context is gathered and processed, it has
special characteristics influencing models and processing of
context. It reflects the state of a highly dynamic environ-
ment which changes over time and has a history. Since con-
text information is sensed, extracted or derived, it has a cer-
tain quality and may produce incorrect information. A set

of context values can be inconsistent and might be incom-
plete simply due to the (temporal) lack of context sources.
A context application should be able to handle these diffi-
culties in a graceful way. As we will see, DL-based systems
can offer means to detect inconsistencies and to reason with
incomplete knowledge.

Recent research efforts concentrate on generic solutions
for introducing different levels of abstraction for process-
ing (see [1, 2]). The approach described in [1] uses logic
rules to determine the current situation of an application.
While the approach to use a logical formalism is somewhat
similar to our approach, no DL based reasoning was used.
More recent projects (e.g. [3] and [4]) covered the creation
of comprehensive and generic models of context with the
goal to integrate context information characteristics. Fur-
thermore, ontology based modeling and reasoning in OWL
for context applications is addressed in, e.g., [5], [6]. How-
ever, the authors of these papers do not use formally defined
reasoning methods, but rather employ ad-hoc methods that
are capable of detecting some of the implicit knowledge,
but that are not complete. To the best of our knowledge this
paper is the first that studies DL reasoning methods for the
context domain based on OWL DL ontologies.

Figure 1 shows the main components in the architecture
of our context application. An event triggers the context ap-
plication to request a context profile which groups a set of
context data necessary to recognise the current situation of
the application. The context application sends the profile
to the context service were it is filled by making a “snap-
shot” of the currently available information. The context
application adds the information from the filled profile to
the knowledge base of the DL-system (in OWL DL for-
mat). The DL reasoner infers the category of context the
current situation belongs to and the context application de-
cides what actions have to be be invoked for the recognised
situation.

In our approach characteristics of context information
are handled at different stages of processing. The context
service processes low level context information to obtain
higher level information. Alternative context sources have
to be maintained by the context service and can be exploited
to handle incorrectness or quality variations, e.g. by choos-
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Figure 1. Main components of our context framework.

ing the context value from the context source with the best
quality. Furthermore, the context service can compare al-
ternative values to detect incorrect values. Incompleteness
of context information can be detected by the context ser-
vice based on the context profile. However, our approach
can handle incompleteness in later processing steps in the
DL-System, since DL systems can reason with incomplete
information.

1.1 Application: context-aware door lock

Our case study is based on a scenario taken from the
smart home domain. An automatic door lock should pick
the next action to be taken depending on the person ringing
at the door. We assume that the door system is equipped
with a video camera and a microphone and provides infor-
mation about the ringing person. Based on this information
the door lock has to determine one of the following actions:
1) Open the door, if the person is authorised.

2) Ask a resident in case the person is unknown.

3) No reaction/leave message, if no resident is available.

In a first step the person ringing is identified (e.g. as a resi-
dent of the house or a neighbour) or classified as a member
of a group of persons (e.g. fire fighter). The door opens for
authorised persons only (e.g. a resident or family member).
If the person at the door cannot be unambiguously classi-
fied, the decision whether to open is forwarded to a resi-
dent. The door tries to contact a resident taking her current
situation into account (e.g. her activity and currently used
devices). If a resident is watching TV, the image captured
by the camera can be redirected to the used TV set. If no
resident is at home, the system tries to contact a resident
via a cellular phone or another mobile device currently in
use. If no resident can be reached within a short while, the
door system informs the person at the door, offers to leave
a message and leaves the door closed.

Example: For the holiday season a neighbour is asked
to water the flowers while the residents are on vacation.
The door lock system identifies the person ringing as the
neighbour. Furthermore, the door system checks whether
the ringing neighbour is authorised by a resident to enter the
house. If in addition all residents are on vacation, the neigh-
bour can be recognised as an authorised person and the door

opens. We decided to use this fairly simple scenario for our
first case study to ensure that it is easy to model. Neverthe-
less, as the scenario description already shows, if modeled
in detail, it becomes sufficiently complex to illustrate pit-
falls of context modeling and the use of reasoning services.

1.2 Contributions

There is a common agreement that context-aware sys-
tems can benefit from ontology based approaches to context
modeling and reasoning. However, many approaches focus
on modeling and knowledge sharing, instead of what to in-
fer from the ontology and what reasoning services to use.
Studies on what the implications are on context models are
rare. To fill this gap to some extend we present an integrated
approach to model and to recognise contexts based on DL
reasoning services.

For our case study, we describe the modeling of situa-
tions typically appearing in the application as context con-
cepts in an OWL DL ontology. We characterised situations
using a task driven approach, analysing the application sce-
nario according to what tasks the application must fulfill and
in what kind of contexts. Situations are represented as OWL
individuals which are generated from context information.
We use the reasoning service realization to determine into
which context concepts a specific situation individual falls.

OWL DL is equipped with formal semantics that facili-
tates well-defined reasoning services. Moreover, in our case
the reasoning services are proven to be sound and complete
and terminating, which means all implicit relationships can
be detected — not only some of them as it might be the
case with ad-hoc reasoning procedures. In addition to this,
highly optimised DL reasoners for OWL DL are available
and can be used off the shelf. We present performance mea-
surements comparing several reasoners and to assess the
feasibility of our approach in practice.

2 Componentsof aframework for context

OWL DL is a W3C standard for an ontology language
founded on DLs [7]. Our approach to model and to recog-
nise contexts uses DL reasoning services.



Table 1. OWL syntax, DL syntax and semantics of concept descriptions.

| constructor name | OWLsyntax [ DL syntax | semantics |
conjunction intersectionOf cnbD c'nD’
existential restriction | someValuesFrom ar.C {x € A|3y: (z,y) erf AyeCT}
value restriction allValuesFrom Vr.C {reA|Vy: (z,y)er’ —yec T}
negation complementOf -C AN\ CT
disjunction unionOf cub cTuD’

2.1 Description Logic Systems

DLs [8] are a class of knowledge representation for-
malisms, which can be used to represent the knowledge of
an application domain in a structured and formally well-
understood way. DLs are equipped with formal semantics,
which can, e.g., be given by a translation into first-order
predicate logic.

Typically, a DL system consists of a knowledge base
(KB) together with certain reasoning services. The knowl-
edge base comprises two components, TBox and ABox. In-
tuitively, the TBox forms the ontology and defines the vo-
cabulary by which a concrete world is described in the
ABox. Both are defined by means of concepts. Concepts
are built from concept names and role names using concept
operators, whose syntax is introduced in Table 1 for a subset
of OWL DL operators. For conciseness and readability we
use the DL syntax throughout the paper. The semantics of a
concept is defined in terms of an interpretation Z = (A, -1).
The domain A of 7 is a non-empty set and the interpreta-
tion function -’ maps each concept name Atoaset AT C A
and each role name r to a binary relation on A. The ex-
tension of -/ to arbitrary concepts is defined inductively, as
shown in Table 1. TBoxes assign names to complex con-
cepts. ABoxes relate individuals to concepts and to other
individuals via roles, see [8].

Example 1 To illustrate the use of the constructors, we de-
fine some main concepts from our application example:
VacationResident = Resident M FhasActivity.Vacation
AuthorisedPerson = Resident Ll JAuthorisedBy.Resident
AuthorisedNeighbour = Neighbour M

(JAuthorisedBy.VacationResident)
A resident on vacation is defined as a resident who has the
activity vacation. An authorised person is defined as either
a resident or someone authorised by a resident. An autho-
rised neighbour in turn is a neighbour, who is authorised by
a resident on vacation.

DL systems provide users with various reasoning ser-
vices that deduce implicit knowledge from the explicitly
represented knowledge. Among these inference services
subsumption and realization are used in our context appli-
cation. Subsumption determines subconcept-superconcept

relationships of concept names occurring in a TBox, and
hence to compute the concept hierarchy: C' is subsumed by
D iff all instances of C' are also instances of D in every in-
terpretation. The computation of all subsumption relations
in a TBox is called classification. Realization computes to
which concepts a given individual necessarily belongs, i.e.,
whether this instance relationship logically follows from the
descriptions of the concept and of the individual.

These reasoning services are investigated for a great
range of DLs (see [9]) and sound and complete algorithms
are devised for them. The latter is a big benefit for our ap-
plication since all implicit subsumption or instance relation-
ships can be detected, which is not necessarily the case for
ad-hoc reasoning methods, which might fail to detect some
implicit relationships.

2.2 Framework for the context application

The framework and general procedure of processing con-
texts is outlined in Figure 1. The main idea is to use ABox
realization as a means to recognise a context from a given
situation description. To this end we model the contexts that
typically appear in the application as concepts in the TBox
and individual situation descriptions as ABox individuals.

Recall our task-based notion of contexts: a context com-
prises all the information necessary to solve a task. The
context TBox contains a concept for each of these contexts
— called task contexts in the following. Each task context
is refined by a hierarchy of sub-concepts, that further spec-
ify and refine aspects of this kind of context. In our door
lock scenario, the first task is to make a choice between:
“open door”, “ask resident” or “leave door closed”. Only if
necessary, the task how to contact the resident is solved sub-
sequently, thus we obtain the task contexts “door context”
and “contact resident context” for our scenario. Figure 1
shows the interaction of the components to solve one task.
The context application sends a request with a context pro-
file to the context server. The context server retrieves the
requested information about the current situation by the in-
formation sources at hand, maps them to the context profile
by processing them further and sends it to the context ap-
plication. Once this situation description is obtained, it is
converted to OWL DL and added to the ABox of the DL
system. This situation individual is then realised by the DL



DoorContext =
Context M JhasContextAgent.(Person M JisRinging.Home)
M JhasContextResident.Resident

AuthorisedPersonRingingContext =

DoorContext M JhasContextAgent.AuthorisedPerson
AuthorisedNeighbourRingingContext =

DoorContext M JhasContextAgent.AuthorisedNeighbour
ResidentOutOfHomeContext =

DoorContext M JhasContextResident.ResidentOutOfHome

Figure 2. Concept definitions of door context.

system and the most specific contexts instantiated by the
situation individual are returned to the context application.
The application looks-up and carries out the action associ-
ated with the returned set of contexts. Note, that the context
profiles are set up before run-time and that the TBox is set
up and classified before run-time as well.

Our framework relies on assumptions regarding the con-
text service, e.g., the situation description being consistent.
Furthermore, a method for the mapping of data available
from context sources to the context profile by the context
service remains future work. However, the approach to use
DL reasoning for the recognition of contexts offers a grace-
ful way of handling incomplete data. In such a case realiza-
tion returned contexts that simply might be a little too gen-
eral, but still a context is recognised and an action associ-
ated with it will be performed. Furthermore, the separation
of context recognition and choice of action allows to adapt
this association at run-time according to user preferences.

3 Modeingthedoor lock context in OWL DL

In contrast to other modeling approaches ([3, 4]) we con-
centrate on modeling the application domain, instead of de-
vising a top-level ontology for context in general, as in [6].
We model the context concepts specifically useful for cer-
tain application tasks and reasoning about the situation the
application is in.

The Door OWL DL ontology captures the main notions
of our application domain in a descriptive way. The context
concepts are described by other roles and concepts defined
in the TBox. The door context is refined by different sub-
concept hierarchies each modeling a certain aspect of the
door context, e.g. the location of the resident or the person at
the door. While the former is related to the door context via
the role hasContextResident, the later is related via the role
hasContextAgent. In Figure 2 this part of the door TBox
is shown. The concepts AuthorisedPersonRingingContext
and AuthorisedNeighbourRingingContext refine the aspect
of the person ringing, while ResidentOutOfHomeContext
specialises the door context according (the location of)

the resident. Taking into account the concept definitions
given in Example 1, the DL reasoner detects the implicit
subsumption relation between AuthorisedPersonRinging-
Context and AuthorisedNeighbourRingingContext during
classification. The description of the current situation is ob-
tained from the filled in context profile from the context ser-
vice, converted to OWL and added to the ABox.

In Figure 3 we
see an ABox frag-
ment describing a
situation where the
resident Alice is on
vacation and the
neighbour Bob is
authorised by Alice
and rings at the door.
It is easy to see
that Alice is an in-

Figure 3. An ABox fragment. Stance of the concept

VacationResident
defined in Example 1. Thus Bob is an instance of the
concept AuthorisedNeighbour. In our ontology the concept
VacationResident is a sub-concept of ResidentOutOf-
HomeContext. Consequently, Alice is also an instance
of ResidentOutOfHomeContext. The DL system derives
these relationships and that Situation is an instance of
ResidentOutOfHomeContext and AuthorisedNeighbour-
RingingContext. Now, these concept names are returned to
the context application, which triggers the action associated
with this set of concepts. However, each ABox in our
approach describes only one situation. The situation
descriptions are not kept after realization, thus the size
of the ABox does not vary much over time. The door
ontology consists so far of 172 concepts, 28 roles and
about 98 individuals in all ABoxes. Though this is a rather
small ontology, it is interesting to see whether reasoning
can be performed sufficiently fast in this setting. The door
ontology uses the DL SHZF. This DL lays between the
fragment shown in Table 1 and OWL DL.

Situation: DoorContext
°

hasContextResy wontexmgent
isAuthorisedBy .
bttt B

Alice: °
Resident Bob:

HasActivity Neighbour

® BusinessTrip: Vacation

4 Performance of Realization

The complexity of ABox reasoning for the DL employed
here is NExpTime complete in the worst case, see [10].
However, there exist some highly optimised DL reason-
ers for OWL DL that behave well in practice. Since our
door lock application does not allow for computations times
longer than a couple of seconds, it is interesting to get an im-
pression of the performance of the reasoners for computing
realization. The door ontology uses general concept inclu-
sions (GCIs) which are known to make reasoning harder in
practice. A natural question is whether one should disal-
low these from the ontology. To get a clearer picture, we



Table 2. ABox realization Run-times (in s).
| Door | no-GCls | 1-Sit | 2-Sit | 4-Sit

Racer 24.70 4.68 1.04 | 1.39 | 3.57
RacerPro 431 1.58 0.28 | 0.38 | 0.86
Pellet 27.75 7.70 0.31 | 0.59 | 1.79

ran an evaluation with two versions of the door ontology:
Door (KB described in the last Section; contains 12 Situa-
tion descriptions.) and no-GCls (Door KB without GCls,
i.e., disjointness and domain and range restrictions for roles
are deleted.) Obviously the number of individuals is cru-
cial for the performance of ABox realization. In our con-
text application framework an ABox contains only a single
situation description. Nevertheless to get an impression of
the scalability we ran with 12 situations (in Door) and also
tests with 2 and 4 situation descriptions in the ABox of the
door ontology. We tested three DL reasoners that imple-
ment realization: the well-known system Racer (v. 1.7.24)
[11], its commercial successor system RacerPro (v. 1.9) [12]
and Pellet (v. 1.3 beta2) [13] a comparatively new OWL DL
reasoner. The run-times shown in Table 2 were measured on
a Pentium 1V System, 2 GHz system. For a single situation
and even for 2 or 4 situations the run-times for all systems
are feasible for the door lock application. The increase of
run-time w.r.t. the increase of situations modeled, indicates
that keeping several situation description in the ABox will
not result in drastic performance degradation.

For the ontology no-GCls the deletion of GCls speeds-up
the realization of the individuals. Nevertheless, reduction
of the language constructs comes at the cost of missing im-
plicit subsumption or instance relations. For no-GCls sev-
eral of these relations can no longer be detected and not the
most specific context can be recognised from the informa-
tion available. So, it is not advisable for this application to
degrade expressivity to obtain better run-times.

To sum up today’s DL reasoners can compute realization
for ABoxes with few situation descriptions in a run time
acceptable for the door lock application.

5 Conclusionsand Futurework

We have proposed a framework for processing context
information based on the modeling of contexts in OWL
DL. We have realised the task for context recognition by
employing the DL reasoning service realization and have
shown the applicability of our approach by using it in our
application scenario of an automatic door lock. Further-
more, our approach seems to be practicable as a first perfor-
mance evaluation indicates.

Our application scenario appears to be simple, but it
exemplifies the main difficulties of context-aware applica-

tions. However, it is of course necessary to refine the mod-
eling and, moreover, to apply our approach also to other
application domains and more complex scenarios. Besides
this our work can be extended in many ways. On the prac-
tical side we have to investigate how the DL systems can
be coupled to context applications. On the theoretical side
the automatic generation of context profiles from the con-
cepts in the TBox and to develop a method to match context
profiles can with the data sources available to the context
service are most prominent. Moreover, the trade-off be-
tween expressiveness and performance as well as the limits
of modeling in OWL DL, especially in comparison to other
modeling and reasoning approaches have to be investigated
in detail.
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