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† Knowledge-Based Systems

TU Dresden

Full paper: https://iccl.inf.tu-dresden.de/web/DL2017-keynote

DL Workshop 2017

https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch
https://iccl.inf.tu-dresden.de/web/DL2017-keynote


The Semantic Web (2007)

Markus Krötzsch Ontologies for Knowledge Graphs? slide 2 of 33



2012: The Knowledge Graph

“. . . one of the key breakthroughs
behind the future of search”
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More Knowledge Graphs
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What is a Knowledge Graph?

More than “a database used in an AI application”?

Charateristics of today’s KGs:

Normalised: Data decomposed into small units (“edges”)

Connected: Knowledge represented by relationships be-
tween these units

Annotated: Enriched with contextual information to record
meta-data and auxiliary details

• Typical for many KG applications

• Often comes with a promise of declarative processing
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Summary
Knowledge graphs
• introduce graph-based data models
• requiring declarative analytics
• that make non-local connections

 reasoning on graphs

Conclusion

Symbolic KR is the key technology
in modern data management

especially in AI applications

Not really

happening
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A Free Knowledge Graph

Wikidata
• Wikipedia’s knowledge graph

• Free, community-built database

• Large graph
(July 2017: >165M statements on >29M entities)

• Large, active community
(July 2017: >175,000 logged-in human editors)

• Many applications

Freely available, relevant, and active knowledge graph

[Vrandečić & K; Comm. ACM 2014]
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Statements in Wikidata

Wikidata’s basic information units
• Built from Wikidata items (“CERN”, “Vint Cerf”),

Wikidata properties (“award received”, “end time”), and
data values (“2013”)

• Based on directed edges
(“Tim Berners-Lee −employer→ CERN”)

• Annotated with property-value pairs (“end time: 1994”)
– same property can have multiple annotation values

(“together with: Robert Kahn, Vint Cerf, . . . ”)
– same properties/values used in directed edges and annotations

• Items and properties can be subjects/values in
statements

• Multi-graph

Markus Krötzsch Ontologies for Knowledge Graphs? slide 12 of 33



Fig.: Taylor standing in multiple relations; from https://tools.wmflabs.org/sqid/#/view?id=Q34851
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Wikidata Statements in Terms of Graphs

“Property Graph”: Taylor Burton
spouse

start time: 1975-10-10
end time: 1976-07-29

“RDF”: Taylor Burton
spousein spouseout

1975-10-10 1976-07-29

start time end time
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Ontological Modelling in Wikidata

Classification
• 25,298,346 instance of statements (for 84.9% of entities)

• 2,056,181 subclass of statements (for 4.5% of entities)

Property characteristics/constraints
• symmetric property (17 instances)

• transitive property (8 instances)

• 12,595 statements specifying other constraints
(domain, range, disjointness, . . . )
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Queries on Wikidata
SPARQL query service: https://query.wikidata.org
• officially maintained, live data
• based on RDF mapping [Erxleben et al., ISWC 2014]
• heavily used: 60M–135M queries per month

Initial analysis of the non-public logs:
• ≤1% queries from human traffic (400–500K per month)
• ≥99% service calls from tools and robots
• Irregular distributions and biases – hard to analyse

Property paths used for transitivity reasoning

• used in about 50% of human subclass-of queries (20K)

• over 500K queries with subclass-of paths overall

(statistics for May 2017)
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OBQA via SPARQL

SPARQL is actually powerful enough for OWL QL reasoning
[Bischoff et al., ISWC 2014]

. . . but the queries then are getting lengthy . . .

Fig.: A query that checks if x is equivalent to ⊥ (abbreviated)
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Beyond OWL QL

SPARQL cannot support arbitrary OWL reasoning:
• computing power limited by data complexity

• SPARQL can only perform reasoning in NL

Queries with higher data complexities?
• Datalog: PTime-complete data complexity

• Datalog can be used for “query-based” EL reasoning
[K, IJCAI 2011]

Query-Based Reasoning:

• ontologicl information as part of data

• logic for meta-reasoning on top

• same data can be viewed under different semantics
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Ontologies for Wikidata?

Markus Krötzsch Ontologies for Knowledge Graphs? slide 19 of 33



A Simple Example

Wikidata declares the spouse property to be symmetric:

Taylor Burton
spousein spouseout

1975-10-10 1976-07-29

start time end time ⇒

Taylor Burton
spouseinspouseout

1975-10-10 1976-07-29

start time end time

ABox:
spousein(taylor, s) spouseout(s, burton)

start(s, 1975-10-10) end(s, 1976-07-29)

An axiom of symmetry:

∀x, y, z1, z2, v.spousein(x, v) ∧ spouseout(v, y) ∧ start(v, z1) ∧ end(v, z2)

→ ∃w.spousein(y, w) ∧ spouseout(x, y) ∧ start(w, z1) ∧ end(w, z2)
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Existential rules

spousein(x, v) ∧ spouseout(v, y) ∧ start(v, z1) ∧ end(v, z2)

→ ∃w.spousein(y, w) ∧ spouseout(x, y) ∧ start(w, z1) ∧ end(w, z2)

This axiom is an existential rule

• it is not expressible in Datalog

• it is not expressible in DL

• it is not linear

• it is not (frontier) guarded

• it is not acyclic (w.r.t. predicate dependencies)

but it might be weakly acyclic/frontier guarded
(depends on other axioms)
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Breaking the Rules

Observation: Normalisation may destroy syntactic properties
[K & Thost; ISWC 2016]

• Acyclicity properties are mostly ften preserved

• Linearity and guardedness are lost (syntactically)

• Can sometimes recover by denormalising rules

Existential rules are a first step, but:
• Normalised rules are hard to read and write

• Not expressive enough, e.g., cannot copy arbitrary
annotation sets

• Loss of structure by flattening annotations, e.g., cannot
have closed-world negation on annotation sets
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Annotated Logics
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MARS
Idea: Change from relational structures to “relational
structures with annotated tuples” [Marx, K, Thost, IJCAI 2017]

Multi-Attributed Relational Structures (MARS):

• standard interpretation domain ∆I

• finite annotation sets S ∈ Pfin(∆I × ∆I)
• n-ary relations r interpreted as

rI ⊆ (∆I)n × Pfin(∆I × ∆I)

Multi-Attributed Predicate Logic (MAPL)
• Ground fact:

spouse(taylor, burton)@{start : 1975, end : 1976}
• Object and set variables:
∀x, y, Z.spouse(x, y)@Z → spouse(y, x)@Z
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Expressivity of MAPL

Theorem: MAPL is equivalent to Weak Second-Order Logic,
hence reasoning is not semi-decidable.

Research goal: Identify practical fragments

A decidable fragment:

MAPL Rules (MARPL)

• Horn rules, with all variables universally quantified

• all set variables bound in body atoms

Example: ∀x, y, Z.spouse(x, y)@Z → spouse(y, x)@Z

Markus Krötzsch Ontologies for Knowledge Graphs? slide 25 of 33



Expressivity of MAPL

Theorem: MAPL is equivalent to Weak Second-Order Logic,
hence reasoning is not semi-decidable.

Research goal: Identify practical fragments

A decidable fragment:

MAPL Rules (MARPL)

• Horn rules, with all variables universally quantified

• all set variables bound in body atoms

Example: ∀x, y, Z.spouse(x, y)@Z → spouse(y, x)@Z

Markus Krötzsch Ontologies for Knowledge Graphs? slide 25 of 33



Expressivity of MAPL

Theorem: MAPL is equivalent to Weak Second-Order Logic,
hence reasoning is not semi-decidable.

Research goal: Identify practical fragments

A decidable fragment:

MAPL Rules (MARPL)

• Horn rules, with all variables universally quantified

• all set variables bound in body atoms

Example: ∀x, y, Z.spouse(x, y)@Z → spouse(y, x)@Z

Markus Krötzsch Ontologies for Knowledge Graphs? slide 25 of 33



MARPL: Additional Features
We really need more expressive features

Conditions on annotation sets Z
• [start : 1975, end : ∗](Z):

“Z has given start and some end, but nothing more”
• bstart : 1975c(Z): “Z has given start, and possibly more”

{ supported in MARPL rule bodies

Inferring new annotation sets
• Support declarative definition of deterministic functions

that derive new sets
• Example:

employer(x, cern)@Z ∧ bpos : fellowc(Z)

→ cernFellow(x)@[start : Z.start, end : Z.end]

{ supported in MARPL rule heads
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MARPL Complexity

Theorem: Conjunctive query answering ove MARPL ontolo-
gies is ExpTime-complete, both for combined complexity
and for data complexity.

Problem?
• Not really: hardness requires annotation sets of

unbounded size (not a practical concern)

• Actually, it’s a feature: high data complexity enables
powerful meta-reasoning in query-based approaches
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Attributed Description Logics

MARPL is a simple rule language
(“Datalog for annotated logic”)

How about DLs?

Attributed Description Logics
see DL talk later today [K et al., ISWC 2017]

How about attributed existential rules?

{ future work
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The Future of KR
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Problem solved?

So all we need to marry KG and KR are attributed logics?

Surely not – many other areas need more work!

We also need to change some of our premises:

Traditional KR View vs. Knowledge Graphs View

schema first data first

unique purpose multi-purpose

fixed application emerging applications

closed expert team open community/many teams

Markus Krötzsch Ontologies for Knowledge Graphs? slide 30 of 33



Problem solved?

So all we need to marry KG and KR are attributed logics?

Surely not – many other areas need more work!

We also need to change some of our premises:

Traditional KR View vs. Knowledge Graphs View

schema first data first

unique purpose multi-purpose

fixed application emerging applications

closed expert team open community/many teams

Markus Krötzsch Ontologies for Knowledge Graphs? slide 30 of 33



Problem solved?

So all we need to marry KG and KR are attributed logics?

Surely not – many other areas need more work!

We also need to change some of our premises:

Traditional KR View vs. Knowledge Graphs View

schema first data first

unique purpose multi-purpose

fixed application emerging applications

closed expert team open community/many teams

Markus Krötzsch Ontologies for Knowledge Graphs? slide 30 of 33



Still Looking for the “Unifying Logic”?
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Conclusions

Summary
• Knowledge Graphs are enriched graphs

• Wikidata: large ABox / “ontology” / path queries

• Query-based reasoning: plug’n’play semantics for data

• Existential rules & DLs: struggling with annotations

• Attributed logics: MAPL & MARPL (& attributed DLs)

What next?

View KR as a declarative computing paradigm & start facing
the competition in this space!

Revisit “Computing in Logic” (but don’t go back to Prolog!)
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