

FORMALE SYSTEME

4. Vorlesung: Nichtdeterministische Endliche Automaten

Markus Krötzsch Professur für Wissensbasierte Systeme

TU Dresden, 19. Oktober 2023

Wiederholung

- Grammatiken können Sprachen beschreiben und sie grob in Typen unterteilen
- Typ-3-Grammatiken generieren reguläre Sprachen
- Deterministische endliche Automaten erkennen reguläre Sprachen

Reguläre Grammatiken und DFAs

Wir haben bisher gezeigt:

Jede von DFA erkannte Sprache ist regulär.

Für die Umkehrung müsste man reguläre Grammatiken in DFAs übersetzen.

Kann man die Übersetzung nicht einfach umdrehen?

- Für jede reguläre Regel $A \to aB$ definieren wir $\delta(A, a) = B$
- Für jede reguläre Regel $A \to \mathbf{a}$ definieren wir $\delta(A, \mathbf{a}) = C$ mit $C \in F$

Warum funktioniert das nicht?

Weil die Übergangsfunktion dann mehr als einen Wert hätte!

Beispiel: Eine Grammatik kann die Regeln $S \to \mathbf{a}A$, $S \to \mathbf{a}S$ und $A \to \epsilon$ haben, aber wir können nicht $\delta(S, \mathbf{a}) = A$ und $\delta(S, \mathbf{a}) = S$ gleichzeitig fordern.

Nichtdeterministische Übergänge

Kann die Übergangsfunktion "mehr als einen Wert" haben?

 \rightarrow darstellbar als Menge, z.B. $\delta(q, \mathbf{a}) = \{q_1, q_2\}$

Was soll das bedeuten?

- Der Automat hat die Wahl zwischen mehreren Übergängen
- Die Verarbeitung eines Wortes wird nichtdeterministisch (weil die Eingabe nicht völlig bestimmt, in welchen Zustand der Automat gelangt)
- Der Automat akzeptiert ein Wort, wenn es eine "richtige" Wahl von Zustandsübergängen gibt, die zu einem Endzustand führt

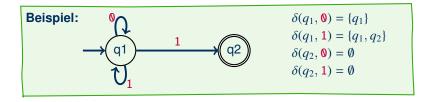
Nichtdeterministische Automaten

Ein nichtdeterministischer endlicher Automat (international: "NFA") \mathcal{M} ist ein Tupel $\mathcal{M} = \langle Q, \Sigma, \delta, Q_0, F \rangle$ mit folgenden Bestandteilen:

- Q: endliche Menge von Zuständen
- Σ: Alphabet
- δ : Übergangsfunktion, eine totale Funktion $Q \times \Sigma \to 2^Q$, wobei 2^Q die Potenzmenge von Q ist
- Q_0 : Menge möglicher Startzustände $Q_0 \subseteq Q$
- F: Menge von Endzuständen $F \subseteq Q$

Notation: Wir schreiben statt $q' \in \delta(q, \mathbf{a})$ auch $q \stackrel{\mathbf{a}}{\to} q'$.

Beispiel: NFA



Wort	Zustandsfolge	Ergebnis
011	$q_1 \ q_1 \ q_2$?	abgelehnt (fehlender Übergang)
011	$q_1 \ q_1 \ q_1 \ q_2$	akzeptiert

→ 011 wird nichtdeterministisch akzeptiert

NFAs: Alternative Definitionen

In der Literatur gibt es leicht abgewandelte Definitionen von NFAs

• Übergangsrelation statt Übergangsfunktion Statt einer Funktion $\delta: Q \times \Sigma \to 2^Q$ kann man auch eine Relation $\Delta \subseteq Q \times \Sigma \times Q$ verwenden, wenn für alle $q, q' \in Q$, $\sigma \in \Sigma$ gilt:

$$q' \in \delta(q, \sigma)$$
 genau dann wenn $\langle q, \sigma, q' \rangle \in \Delta$

- Einzelner Startzustand q_0 Manchmal wird statt der Menge Q_0 nur ein Startzustand q_0 verwendet (es ist leicht, einen NFA unserer Bauart so zu verändern, dass nur ein Startzustand nötig ist)
- ullet Einzelner Endzustand q_f Man kann auch die Menge der Endzustände F leicht auf ein einziges Argument reduzieren

Ist Nichtdeterminismus sinnvoll?

Nichtdeterministische Automaten müssen jeweils den richtigen Übergang "erraten" → entspricht nicht der Funktionsweise echter Computer

Dennoch ist Nichtdeterminismus ein wichtiges Prinzip in der Informatik:

- Kann kompaktere, natürlichere Darstellungen ermöglichen
- Beschreibt treffend die Schwierigkeit vieler praktischer Probleme wichtig für Untersuchung von Komplexität und Berechenbarkeit
- Ist relevant in der Modellierung parallel arbeitender Systeme
- Bildet möglichen Ausgangspunkt für die Entwicklung deterministischer Algorithmen

Die Sprache eines NFA

Läufe eines NFA

Ein Lauf eines NFA $\mathcal{M} = \langle Q, \Sigma, \delta, Q_0, F \rangle$ für ein Wort $w = \sigma_1 \cdots \sigma_n$ ist eine Folge von Zuständen $q_0 \dots q_m$, so dass gilt:

- $q_0 \in Q_0$
- $q_{i+1} \in \delta(q_i, \sigma_{i+1})$ für alle $0 \le i < m$
- (1) m = |w| = n oder (2) m < n und $\delta(q_m, \sigma_m) = \emptyset$

Ein Lauf heißt akzeptierend, falls m = n und $q_n \in F$.

Andernfalls heißt der Lauf verwerfend.

→ Ein DFA hat genau einen Lauf für jedes Wort.

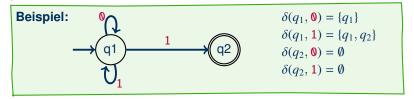
Er akzeptiert wenn dieser Lauf akzeptierend ist.

 \rightarrow Ein NFA kann für ein Wort mehrere Läufe haben.

Er akzeptiert wenn einer dieser Läufe akzeptierend ist.

Sprache eines NFA

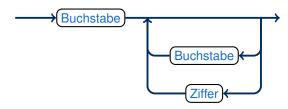
Die Sprache eines NFA $\mathcal{M} = \langle Q, \Sigma, \delta, Q_0, F \rangle$ ist die Menge aller Wörter w für die \mathcal{M} einen akzeptierenden Lauf hat.



Wort	Lauf	Ergebnis
011	$q_1 q_1 q_2$	verwerfend (zu kurz)
011	$q_1 q_1 q_1 q_2$	akzeptierend
011	$q_1 q_1 q_1 q_1$	verwerfend (kein Endzustand)

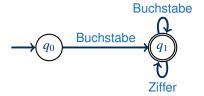
$$\boldsymbol{L}(\mathcal{M}) = \{\boldsymbol{0},\boldsymbol{1}\}^* \circ \{\boldsymbol{1}\}$$

NFA zur Darstellung von Syntaxdiagrammen



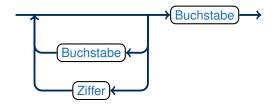
Übersetzung in NFA:

- zusammenhängende Linienbereiche werden Zustände
- Knoten werden Übergänge

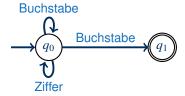


Syntaxdiagramme und Nichtdeterminismus

Das folgende Beispiel führt zu einem NFA, der kein DFA ist:



Entsprechender NFA:



Verallgemeinerte NFA-Übergangsfunktion

Wie beim DFA können wir auch bei einem NFA $\mathcal{M}=\langle Q,\Sigma,\delta,Q_0,F\rangle$ eine erweiterte Übergangsfunktion definieren, die ganze Wörter einliest.

Zuerst erweitern wir δ auf Mengen von Zuständen:

Für eine Zustandsmenge $R \subseteq Q$ und ein Terminalsymbol a sei

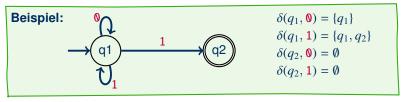
$$\delta(R, \mathbf{a}) = \bigcup_{q \in R} \delta(q, \mathbf{a}).$$

Dann erweitern wir δ von einzelnen Symbolen zu beliebigen Wörtern:

Für eine Zustandsmenge $R\subseteq Q$ und ein Wort $w\in \Sigma^*$ sei $\delta(R,w)$ die Menge aller Zustände, die man erreichen kann, wenn man in einem Zustand aus R beginnt und das Wort w einliest, formal:

- $\delta(R, \epsilon) = R$
- $\delta(R, \mathbf{a}v) = \delta(\delta(R, \mathbf{a}), v)$

Beispiel



Die Menge der Startzustände ist $Q_0 = \{q_1\}.$

Dann gilt:

$$\begin{split} \delta(Q_0, \mathbf{0}) &= \delta(q_1, \mathbf{0}) = \{q_1\} \\ \delta(Q_0, \mathbf{1}) &= \delta(q_1, \mathbf{1}) = \{q_1, q_2\} \\ \delta(Q_0, \mathbf{10}) &= \delta(\delta(Q_0, \mathbf{1}), \mathbf{0}) = \delta(\{q_1, q_2\}, \mathbf{0}) \\ &= \delta(q_1, \mathbf{0}) \cup \delta(q_2, \mathbf{0}) = \{q_1\} \cup \mathbf{0} = \{q_1\} \\ \delta(Q_0, \mathbf{01}) &= \delta(\delta(Q_0, \mathbf{0}), \mathbf{1}) = \delta(\{q_1\}, \mathbf{1}) = \{q_1, q_2\} \end{split}$$

Sprache eines NFA (2. Version)

Die erweiterte Übergangsfunktion hilft bei der Definition der Sprache, die ein NFA akzeptiert:

Die Sprache eines NFA $\mathcal{M} = \langle Q, \Sigma, \delta, Q_0, F \rangle$ ist die Menge

$$\mathbf{L}(\mathcal{M}) = \{ w \in \Sigma^* \mid \delta(Q_0, w) \cap F \neq \emptyset \}$$

Die Bedingung " $\delta(Q_0, w) \cap F \neq \emptyset$ " bedeutet:

"mindestens einer der Zustände, die man durch Einlesen von w von einem Startzustand aus erreichen kann, ist ein Endzustand."

Behauptung: Diese Variante stimmt mit der vorherigen (mit akzeptierenden Läufen) überein.

Äquivalenz der Sprachdefinitionen für NFAs

Sei $\mathcal{M} = \langle Q, \Sigma, \delta, Q_0, F \rangle$ NFA und $w = \sigma_1 \cdots \sigma_n \in \Sigma^*$ ein Wort.

Behauptung: Es gibt einen akzeptierenden Lauf für w genau dann wenn $\delta(Q_0, w) \cap F \neq \emptyset$.

Beweis " \Rightarrow ": Angenommen es gibt einen akzeptierenden Lauf $q_0 \dots q_n$ für w.

- Dann ist $q_n \in F$.
- Wir behaupten $q_n \in \delta(Q_0, w)$ (damit folgt $\delta(Q_0, w) \cap F \neq \emptyset$)
- Wir zeigen die stärkere Behauptung $q_i \in \delta(Q_0, \sigma_1 \cdots \sigma_i)$ für alle $0 \le i \le n$ mittels Induktion über |w|:
 - Induktionsanfang: Für i = 0 gilt $q_0 \in Q_0 = \delta(Q_0, \epsilon)$
 - Induktionshypothese: die Behauptung gelte für i
 - Induktionsschritt: für i + 1 gilt:

```
q_i \in \delta(Q_0, \sigma_1 \cdots \sigma_i) (Induktionshypothese)

q_{i+1} \in \delta(q_i, \sigma_{i+1}) (laut Definition eines Laufs)

q_{i+1} \in \delta(\delta(Q_0, \sigma_1 \cdots \sigma_i), \sigma_{i+1}) = \delta(Q_0, \sigma_1 \cdots \sigma_i \sigma_{i+1})
```

Äquivalenz der Sprachdefinitionen für NFAs

Sei $\mathcal{M} = \langle Q, \Sigma, \delta, Q_0, F \rangle$ NFA und $w = \sigma_1 \cdots \sigma_n \in \Sigma^*$ ein Wort.

Behauptung: Es gibt einen akzeptierenden Lauf für w genau dann wenn $\delta(Q_0, w) \cap F \neq \emptyset$.

Beweis " \Leftarrow ": Angenommen $\delta(Q_0, w) \cap F \neq \emptyset$.

- Wir ermitteln einen akzeptierenden Lauf $q_0 \dots q_n$ für w
- Dazu gehen wir rückwärts vor:
 - − Wähle $q_n ∈ F \cap \delta(Q_0, w)$
 - Für alle i = n, ..., 1: Wähle $q_{i-1} \in \delta(Q_0, \sigma_1 \cdots \sigma_{i-1})$, so dass $q_i \in \delta(q_{i-1}, \sigma_i)$
- Dies ist ein Lauf, da $q_0 \in \delta(Q_0, \epsilon) = Q_0$ und alle Übergänge erlaubt sind.
- Es ist ein akzeptierender Lauf, da $q_n \in F$.

NFA vs. DFA

Vergleich DFA – NFA

Offensichtlich sind NFAs allgemeiner als DFAs:

Satz: Jeder DFA kann als NFA aufgefasst werden. Daher wird jede von einem DFA akzeptierbare Sprache auch von einen NFA akzeptiert.

Beweis: Für jeden DFA
$$\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$$
 gibt es einen entsprechenden NFA $\mathcal{M}' = \langle Q, \Sigma, \delta_{\mathsf{NFA}}, \{q_0\}, F \rangle$ mit $\delta_{\mathsf{NFA}}(q, \mathbf{a}) = \{\delta(q, \mathbf{a})\}.$

Die Umkehrung dieses Satzes gilt allerdings auch:

Satz: Jede von einem NFA akzeptierbare Sprache wird auch von einen DFA akzeptiert.

In diesem Sinne sind NFA nicht ausdrucksstärker als DFA – wie kann das sein?

NFAs als DFAs - Idee

Die verallgemeinerte NFA-Übergangsfunktion bildet Mengen von Zuständen auf Mengen von Zuständen ab:

$$\delta(R, \mathbf{a}) = \bigcup_{q \in R} \delta(q, \mathbf{a}).$$

"Wenn der Automat in einem der Zustände R ist und a liest, so ist er anschließend in einem der Zustände der Menge $\delta(R, \mathbf{a})$."

Dieser Übergang zwischen Mengen möglicher Zustände ist an sich deterministisch.

→ wir können einen NFA deterministisch simulieren, indem wir die Menge der möglichen Zustände berechnen

Die Potenzmengenkonstruktion

Für einen NFA $\mathcal{M} = \langle O, \Sigma, \delta, O_0, F \rangle$ definieren wir den Potenzmengen-DFA $\mathcal{M}_{DFA} =$ $\langle O_{\mathsf{DFA}}, \Sigma, \delta_{\mathsf{DFA}}, g_0, F_{\mathsf{DFA}} \rangle$ wie folgt:

- $Q_{DFA} = 2^Q$ (Potenzmenge von Q)
- $\delta_{\mathsf{DFA}}(R, \mathbf{a}) = \bigcup_{q \in R} \delta(q, \mathbf{a})$
- $q_0 = Q_0$
- $F_{DFA} = \{ R \in 2^Q \mid R \cap F \neq \emptyset \}$

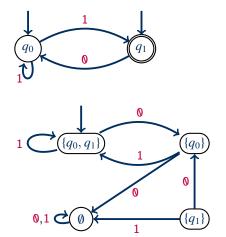
Satz (Rabin/Scott): $L(\mathcal{M}) = L(\mathcal{M}_{DFA})$

(Beweis später)

Michael Oser Rabin

Dana Scott

Beispiel Potenzmengenkonstruktion



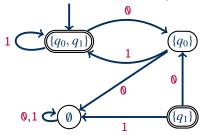
$$\begin{split} & \delta_{\text{DFA}}(\{q_0\}, \textcolor{red}{0}) = \emptyset \\ & \delta_{\text{DFA}}(\{q_0\}, \textcolor{red}{1}) = \{q_0, q_1\} \\ & \delta_{\text{DFA}}(\{q_1\}, \textcolor{red}{0}) = \{q_0\} \\ & \delta_{\text{DFA}}(\{q_1\}, \textcolor{red}{1}) = \emptyset \\ & \delta_{\text{DFA}}(\{q_0, q_1\}, \textcolor{red}{0}) = \{q_0\} \\ & \delta_{\text{DFA}}(\{q_0, q_1\}, \textcolor{red}{1}) = \{q_0, q_1\} \\ & \delta_{\text{DFA}}(0, \textcolor{red}{0}) = \emptyset \\ & \delta_{\text{DFA}}(0, \textcolor{red}{1}) = \emptyset \end{split}$$

Erkannte Sprache:

$$\{{\color{red} 1}\}^* \circ (\{{\color{red} 0}\} \circ \{{\color{red} 1}\}^+)^*$$

Vereinfachung Potenzmengenkonstruktion

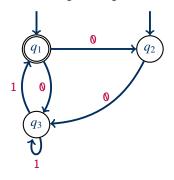
Der Automat aus dem vorherigen Beispiel kann vereinfacht werden:



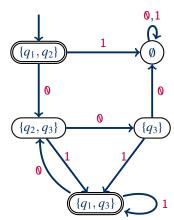
- Zustand {q₁} ist unerreichbar
- Zustand Ø kann nicht verlassen werden (irrelevant für akzeptierende Läufe)

Potenzmengenkonstruktion "on the fly"

Vermeidung unnötiger Zustände durch schrittweise Konstruktion vom Startzustand:



- Erreichbarer Teil spart drei Zustände ein
- Zustand Ø wie zuvor unnötig



Potenzmengenkonstruktion: Korrektheit

Satz (Rabin/Scott): $L(\mathcal{M}) = L(\mathcal{M}_{DFA})$

Beweis: Wir nutzen die Korrespondenz der verallgemeinerten Übergangsfunktionen aus. Zuerst zeigen wir, dass für jedes Wort $w \in \Sigma^*$ und jede Zustandsmenge R gilt: $\delta_{\mathsf{DFA}}(R,w) = \delta(R,w)$.

Induktionsanfang:

- (1) $\delta_{\mathsf{DFA}}(R, \epsilon) = R = \delta(R, \epsilon)$
- (2) $\delta_{\mathsf{DFA}}(R, \mathbf{a}) = \bigcup_{q \in R} \delta(q, \mathbf{a}) = \delta(R, \mathbf{a})$

Induktionshypothese: $\delta_{DFA}(R, \nu) = \delta(R, \nu)$ für Wörter ν der Länge ℓ

Induktionsschritt: wir zeigen $\delta_{DFA}(R, \mathbf{a}v) = \delta(R, \mathbf{a}v)$ ein beliebiges Wort $\mathbf{a}v$ der Länge $\ell + 1$

(3)
$$\delta_{\mathsf{DFA}}(R, \mathsf{a} v) = \delta_{\mathsf{DFA}}(\delta_{\mathsf{DFA}}(R, \mathsf{a}), v)$$

$$= \delta_{\mathsf{DFA}}(\delta(R, \mathsf{a}), v) \qquad \text{(wegen (2))}$$

$$= \delta(\delta(R, \mathsf{a}), v) \qquad \text{(Induktionshypothese)}$$

$$= \delta(R, \mathsf{a} v)$$

Potenzmengenkonstruktion: Korrektheit (2)

```
Satz (Rabin/Scott): L(\mathcal{M}) = L(\mathcal{M}_{DFA})
```

Beweis (Fortsetzung): Wir haben gezeigt: $\delta_{DFA}(R, w) = \delta(R, w)$.

Damit ergibt sich, für beliebige Wörter $w \in \Sigma^*$:

$$w \in \mathbf{L}(\mathcal{M})$$
 gdw. $\delta(Q_0, w) \cap F \neq \emptyset$

gdw.
$$\delta_{DFA}(Q_0, w) \cap F \neq \emptyset$$

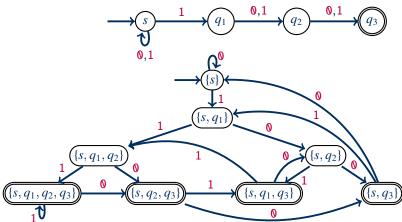
gdw.
$$\delta_{\mathsf{DFA}}(Q_0, w) \in F_{\mathsf{DFA}}$$

gdw.
$$w \in \mathbf{L}(\mathcal{M}_{\mathsf{DFA}})$$

Größenvergleich

Der DFA eines NFA hat $2^{|\mathcal{Q}|}$ – also exponentiell viele – Zustände. Auch "on the fly" lässt sich das im Allgemeinen nicht vermeiden.

Beispiel: "Wörter mit 1 an drittletzter Stelle"



Größenvergleich (2)

Allgemein kann man für jede Zahl $n \ge 1$ die Sprache $\mathbf{L}_n = \{\mathbf{0}, \mathbf{1}\}^* \mathbf{1} \{\mathbf{0}, \mathbf{1}\}^{n-1}$ betrachten ("Wörter mit 1 an n-letzter Stelle")

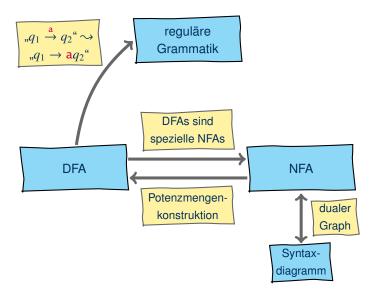
Es gilt:

- Es gibt einen NFA mit n + 1 Zuständen, der \mathbf{L}_n erkennt.
- Jeder DFA, der \mathbf{L}_n erkennt, hat mindestens 2^n Zustände.

Schlussfolgerung:

NFAs können exponentiell kompakter sein als äquivalente DFAs.

Darstellungen von Typ-3-Sprachen



Markus Krötzsch, 19. Oktober 2023

Von regulären Grammatiken zu NFAs

Satz: Die Klasse der Sprachen, die durch DFAs oder NFAs erkannt werden können, ist genau die Klasse der regulären Sprachen.

Beweis: Wir können nun die noch fehlende Richtung dieser Behauptung zeigen: Für jede reguläre Grammatik G gibt es einen NFA \mathcal{M}_G , welcher die selbe Sprache akzeptiert (d.h., $\mathbf{L}(G) = \mathbf{L}(\mathcal{M}_G)$).

Für $G = \langle V, \Sigma, P, S \rangle$ ergibt sich $\mathcal{M}_G = \langle Q, \Sigma, \delta, Q_0, F \rangle$ wie folgt:

- $Q := V \cup \{q_f\}$
- $Q_0 := \{S\}$
- $F := \{q_f\} \cup \{A \in V \mid A \to \epsilon \in P\}$
- $\delta(A, \mathbf{c}) := \{B \mid A \to \mathbf{c}B \in P\} \cup \{q_f \mid A \to \mathbf{c} \in P\}$

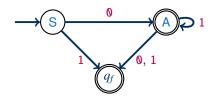
Beispiel

Wir betrachten eine reguläre Grammatik mit den folgenden sechs Regeln:

$$S \rightarrow 1 \mid 0A$$

 $A \rightarrow 0 \mid 1 \mid 1A \mid \epsilon$

Entsprechender NFA:



Dargestellte Sprache: $\{1\} \cup (\{0\} \circ \{1\}^* \circ \{\epsilon, 0\})$

Korrektheit

Satz: Die Klasse der Sprachen, die durch DFAs oder NFAs erkannt werden können, ist genau die Klasse der regulären Sprachen.

Beweis: Wir behaupten, dass $L(G) = L(\mathcal{M}_G)$, d.h. für jedes Wort $w \in \Sigma^*$ soll gelten: $w \in L(G)$ gdw. $w \in L(\mathcal{M}_G)$.

Der Sonderfall $w = \epsilon$ ist ziemlich einfach:

$$\epsilon \in \mathbf{L}(G)$$
 gdw. S $\to \epsilon \in P$ gdw. S $\in F$ gdw. $\epsilon \in \mathbf{L}(\mathcal{M}_G)$

$$L(G) \subseteq L(\mathcal{M}_G)$$

Wir zeigen noch $w \in \mathbf{L}(G)$ gdw. $w \in \mathbf{L}(\mathcal{M}_G)$ für den Fall $|w| \ge 1$.

"⇒" Angenommen $w \in \mathbf{L}(G)$ mit $w = \mathbf{a_1} \cdots \mathbf{a_n}$ und $n \ge 1$.

Es gibt zwei mögliche Herleitungen für w:

$$(1) S \Rightarrow a_1 B_1 \Rightarrow \ldots \Rightarrow a_1 \cdots a_{n-1} B_{n-1} \Rightarrow a_1 \cdots a_{n-1} a_n$$

$$(2) \ S \Rightarrow a_1 B_1 \Rightarrow \ldots \Rightarrow a_1 \cdots a_{n-1} B_{n-1} \Rightarrow a_1 \cdots a_{n-1} a_n B_n \Rightarrow a_1 \cdots a_n$$

In Fall (1) wurden Regeln der folgenden Form angewendet:

$$S \rightarrow a_1 B_1$$
 $B_1 \rightarrow a_2 B_2$

$$B_1 \rightarrow a_2 B_2$$

$$B_{n-1} \rightarrow a_n$$

Also hat \mathcal{M}_G die folgenden Übergänge:

$$S \stackrel{a_1}{\rightarrow} B_1$$

$$S \xrightarrow{a_1} B_1 \qquad \qquad B_1 \xrightarrow{a_2} B_2$$

$$B_{n-1} \stackrel{\mathbf{a}_n}{\to} q_f$$

Also ist $SB_1B_2...B_{n-1}q_f$ ein akzeptierender Lauf von \mathcal{M}_G und \mathcal{M}_G akzeptiert das Wort w.

Fall (2) ist ähnlich, wobei der Lauf auf B_n endet und $B_n \in F$.

$$L(G) \supseteq L(\mathcal{M}_G)$$

Wir zeigen noch $w \in \mathbf{L}(G)$ gdw. $w \in \mathbf{L}(\mathcal{M}_G)$ für den Fall $|w| \ge 1$.

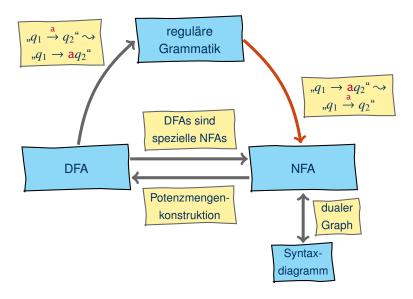
" \Leftarrow " Angenommen $w \in \mathbf{L}(\mathcal{M}_G)$ mit $w = \mathbf{a_1} \cdots \mathbf{a_n}$ und $n \ge 1$.

Beweis analog zur vorangegangenen Richtung; grob skizziert:

- w hat einen akzeptierenden Lauf in \mathcal{M}_G
- wir betrachten die möglichen Formen solcher Läufe
- in jedem Fall finden wir entsprechende NFA-Übergänge
- daraus ergeben sich geeignete Grammatikregeln, um w abzuleiten

П

Darstellungen von Typ-3-Sprachen



Zusammenfassung und Ausblick

Nichtdeterministische endliche Automaten (NFA) vereinfachen die Modellierung, z.B. die direkte Darstellung von Syntaxdiagrammen

Rabin/Scott: DFAs und NFAs erkennen die selben Sprachen (Potenzmengenkonstruktion)

Und das sind zudem genau die regulären Sprachen (Grammatik ↔ NFA)

Offene Fragen:

- Gibt es noch mehr Darstellungsformen für reguläre Sprachen?
- Was kommt heraus, wenn man Operationen auf reguläre Sprache anwendet?
- Wir haben gesehen, dass man Automaten manchmal vereinfachen kann geht das noch besser?