
ar
X

iv
:1

00
4.

36
35

v1
 [

cs
.F

L]
 2

1
A

pr
 2

01
0

Comparison of Two Context-Free Rewriting
Systems with Simple Context-Checking

Mechanisms

Tomáš Masopust
Institute of Mathematics of the Czech Academy of Sciences

Žižkova 22, 616 62 Brno, Czech Republic

masopust@ipm.cz

Abstract

This paper solves an open problem concerning the generativepower of non-
erasing context-free rewriting systems using a simple mechanism for checking for
context dependencies, in the literature known as semi-conditional grammars of
degree(1,1). In these grammars, two nonterminal symbols are attached toeach
context-free production, and such a production is applicable if one of the two at-
tached symbols occurs in the current sentential form, whilethe other does not.
Specifically, this paper demonstrates that the family of languages generated by
semi-conditional grammars of degree(1,1) coincides with the family of random
context languages. In addition, it shows that the normal form proved by Mayer
for random context grammars with erasing productions holdsfor random context
grammars without erasing productions, too. It also discusses two possible defini-
tions of the relation of the direct derivation step used in the literature.

1 Introduction

It is well known that context-free grammars play an important role in form language
theory from both practical and theoretical point of view. However, some kinds of con-
text dependencies are required in many practical applications, such as the analysis of
programming and natural languages, which, therefore, cannot be handled by context-
free grammars. For that reason, some more powerful rewriting mechanisms that gener-
ate convenient proper subfamilies of the family of context sensitive languages and that
make use of advantages of the simple form of context-free productions are of interest.

This paper discusses two such rewriting mechanisms based oncontext-free pro-
ductions. Specifically, it discusses random context grammars and their special and
more simple variant, semi-conditional grammars of degree(1,1). In comparison with
context-free grammars where erasing productions can be eliminated without affecting
the generative power, erasing productions play a significant role in random context
grammars and semi-conditional grammars of degree(1,1). Specifically, with them
both these rewriting mechanisms characterize the family ofrecursively enumerable

1

http://arxiv.org/abs/1004.3635v1

languages (see [4] and [13], respectively), while without them they are less powerful
then context sensitive grammars (see [4] and [14], respectively). As the erasing cases of
random context grammars and semi-conditional grammars of degree(1,1) have been
studied carefully, this paper concentrates its attention on the nonerasing variants of
these grammars.

A random context grammar, introduced by van der Walt [16] in 1970, is a context-
free grammar the productions of which are applicable to a sentential form only if some
of the nonterminal symbols occur in the sentential form, while some others do not.
Specifically, two finite sets of nonterminal symbols—apermitting and aforbidding
set—are attached to each production, and such a production is applicable to a sentential
form if all permitting symbols occur in that sentential form, while no forbidding symbol
does. It is well known (see [1, 4]) that the family of languages generated by random
context grammars is properly included in the family of context sensitive languages,
and, in addition, that the elimination of either all permitting or all forbidding sets makes
them less powerful (see [1, 5, 17]).

In 1985, Păun [14] introducedsemi-conditional grammarsas a variant of random
context grammars, where permitting and forbidding sets arereplaced with permitting
and forbidding strings. According to the length of these strings, semi-conditional gram-
mars of degree(i, j), for i, j ≥ 0, are defined. It is proved in [14] that for anyi, j ≥ 0,
the family of languages generated by semi-conditional grammars of degree(i, j) con-
tains the family of context-free languages and, in addition, is included in the family of
context sensitive languages. Furthermore, semi-conditional grammars of degree(i, j),
where 1≤ i, j ≤ 2, i 6= j, are powerful enough to characterize the family of context
sensitive languages. On the other hand, however, the precise generative power of semi-
conditional grammars of degree(1,1) was left open.

This paper solves this problem so that it demonstrates that semi-conditional gram-
mars of degree(1,1) characterize the family of random context languages. As a con-
sequence, it presents a normal form for random context grammars without erasing pro-
ductions similar to the normal form for random context grammars with erasing produc-
tions proved by Mayer in [13], who left the question of whether this normal form also
holds for random context grammars without erasing productions open. Two possible
definitions of the relation of the direct derivation step used in the literature are also
discussed.

A semi-conditional grammarG is calledsimpleif for each production, either its per-
mitting or its forbidding set is empty. It is proved in [7] that for every semi-conditional
grammarG, there is an equivalent simple semi-conditional grammarG′ of the same de-
gree such thatG′ is without erasing productions if and only ifG is. If, in addition,G is
of degree(1,1), terminal symbols are not contained in either permitting orforbidding
sets, and the set of productions can be decomposed into two disjoint sets according
to the permitting and forbidding symbols, we have so-calledconditional context-free
rewriting systemsintroduced in [12]. It is known that these rewriting systems(with
or without erasing productions) are as powerful as semi-conditional grammars of de-
gree(1,1) (with or without erasing productions, respectively), see [7, 12]. Thus, this
paper proves that they are as powerful as random context grammars. The reader is
also referred to [6] for the discussion of some additional restrictions placed on these
systems.

2

Finally, as far as the descriptional complexity of semi-conditional grammars is con-
cerned, the reader is referred to [10, 11, 18] for the latest results; an overview of
these results is also presented in [7]. Note also that the descriptional complexity of
semi-conditional grammars without erasing productions, the descriptional complexity
of semi-conditional grammars of degree(1,1), and the descriptional complexity of
conditional context-free rewriting systems are open.

2 Preliminaries and Definitions

This paper assumes that the reader is familiar with formal language theory (see [15]).
For a setA, |A| denotes the cardinality ofA. For an alphabet (finite nonempty set)V,
V∗ represents the free monoid generated byV where the unit is denoted byλ . Set
V+ =V∗−{λ}. For a stringw∈V∗, let |w| denote the length ofw andalph(w) denote
the set of all symbols occurring inw. For a symbola ∈ V, let |w|a be the number of
occurrences ofa in w. Let CF, CS, REC, andRE denote the families of context-free,
context-sensitive, recursive, and recursively enumerable languages, respectively.

A random context grammar(see [16]) is a quadrupleG= (N,T,P,S), whereN is
the alphabet of nonterminals,T is the alphabet of terminals such thatN∩T = /0, S∈ N
is the start symbol, andP is a finite set of productions of the form(A → x,Per,For),
whereA→ x is a context-free production,A∈N, x∈V+ (V =N∪T), andPer,For⊆N.
If for each production(A→ x,Per,For) ∈ P, Per= /0, thenG is said to be aforbidding
grammar. Analogously, if for each production(A→ x,Per,For) ∈ P, For = /0, thenG
is said to be apermitting grammar.

For two stringsu,v∈V∗ and a production(A→ x,Per,For)∈P, the relationuAv⇒
uxvholds provided that

Per⊆ alph(uv) and alph(uv)∩ For = /0. (1)

The language generated byG is defined asL(G) = {w∈ T∗ : S⇒∗ w}, where⇒∗ is
the reflexive and transitive closure of the relation⇒. A random context languageis a
language generated by a random context grammar. The families of languages gener-
ated by random context grammars, permitting grammars, and forbidding grammars are
denoted byRC, P, andF, respectively. As usual, if there is no confusion, forbidding
sets are omitted from the permitting productions; i.e.,(A→ x,Per) is written instead of
(A→ x,Per, /0). Analogously in case of forbidding grammars.

A semi-conditional grammar of degree(i, j), for i, j ≥ 0, is a quadrupleG =
(N,T,P,S), whereN is the alphabet of nonterminals,T is the alphabet of terminals
such thatN∩T = /0, S∈ N is the start symbol, andP is a finite set of productions of
the form(A→ x,Per,For), whereA→ x is a context-free production,V = N∪T,

1. Per⊆
⋃i

k=1Vk,

2. For ⊆
⋃ j

k=1Vk,

3. |Per|, |For| ≤ 1,

3

and the rewritten symbol is considered in the relation of thedirect derivation step (cf.
the definition(1), where the rewritten symbol is not considered). Specifically, for two
stringsu,v∈V∗ and a production(A→ x,Per,For) ∈ P, the relationuAv⇒ uxvholds
provided that

Per⊆ alph(uAv) and alph(uAv)∩ For = /0. (2)

The language generated byG is defined asL(G) = {w∈ T∗ : S⇒∗ w}, where⇒∗ is
the reflexive and transitive closure of the relation⇒. A semi-conditional language of
degree(i, j) is a language generated by a semi-conditional grammar of degree(i, j).
The family of languages generated by semi-conditional grammars of degree(i, j) is
denoted bySC(i, j). As usual and for the simplicity, curly brackets are omittedfrom
the notation and /0 is replaced with 0; i.e., for instance,(A→ x, p,0) is written instead
of (A→ x,{p}, /0).

To prove the main results of this paper, we use the notion of cooperating distributed
grammar systems, which are rewriting devices composed of several components rep-
resented by grammars cooperating according to a given protocol. In this paper, the
considered protocol is so-called terminal derivation mode(or t-mode, for short) that
makes the component work until it can.

A cooperating distributed(CD) grammar system(see [2] for more information)
is a constructΓ = (N,T,P1,P2, . . . ,Pn,S), for somen ≥ 1, whereN is the alphabet of
nonterminals,T is the alphabet of terminals such thatN∩T = /0, S∈ N is the start
symbol, andP1,P2, . . .Pn are finite sets of productions.

By componentswe understand the setsPi and byg-componentswe understand the
grammarsGi = (N,T,Pi ,S), for all i = 1,2, . . . ,n. By a CD grammar system we under-
stand a grammar system where allg-components are context-free grammars.

A permitting CD grammar system(see [3]) is a CD grammar system where all
g-components are permitting grammars.

For two stringsu,v ∈ V∗ (V = N∪ T) and a number 1≤ k ≤ n, let the relation
u ⇒k v denote a derivation step made by theg-componentGk, and letu ⇒t

k v be a
derivation such thatu ⇒+

k v and there is now ∈ V∗ for which v ⇒k w, where⇒+
k

denotes the transitive closure of the relation⇒k. The language generated by a CD
grammar systemΓ working in the terminal mode (t-mode) is defined as

L(Γ) = {w∈ T∗ : there existsℓ≥ 1 such thatαi ⇒
t
ki

αi+1,

1≤ ki ≤ n, for eachi = 1, . . . , ℓ−1, α1 = S, andαℓ = w} .

Let CD(P) denote the family of languages generated by permitting CD grammar
systems working in thet-mode. It is proved in [3] thatCD(P)= RC. (The reader is
referred to [3] and [8] for more details on CD grammar systemswith permitting and
forbidding components, respectively.) Finally, note thatthe generative power of CD
grammar systems, whereg-components are permitting grammars using the definition
(2) of the direct derivation step, is an open problem.

4

3 Results

Recall that it is known thatCF ⊂ SC(1,1) andRC ⊂ CS (see, for instance, [14] and
[4], respectively). For an example of a semi-conditional grammar of degree(1,1)
generating the set of all prime numbers, the reader is referred to [7].

3.1 Comparison of the two definitions

Theorem 1. SC(1,1)⊆ RC.

Proof. Let L ∈ SC(1,1), then there is a semi-conditional grammarG = (N,T,P,S)
of degree(1,1) such thatL(G) = L. Construct the random context grammarG′ =
(N′,T,P′,S) with N′ = N∪{a′ : a∈ T} andP′ constructed as follows:

1. setP′ = {(A → h(x),h(Per),h(For)) : (A → x,Per,For) ∈ P}, whereh is a ho-
momorphism defined ash(X) = X, for X ∈ N, andh(a) = a′, for a∈ T;

2. remove each production(A→ x,Per,For) with A∈ For from P′;

3. replace each production(A→ x,Per,For) with (A→ x,Per−{A},For) in P′;

4. for eacha∈ T, add(a′ → a, /0,N) to P′.

Thus,(A → h(x),h(Per)−{A},h(For)) ∈ P′ if and only if (A → x,Per,For) ∈ P
andA /∈ For. In addition,

• (A→ x,Per,For) ∈ P is applicable touAv in G if and only if

• Per⊆ alph(uAv) andFor∩alph(uAv) = /0, which is if and only if

• Per−{A} ⊆ alph(uv), For∩alph(uv) = /0, andA /∈ For.

• This is if and only if(A→ h(x),h(Per)−{A},h(For)) is applicable toh(uAv) in
G′.

As h(Per∪For)⊆ N′, G′ is a random context grammar generatingL.

More generally, the previous proof gives a method how to transform any random
context grammar using the definition (2) of the direct derivation step to an equiva-
lent random context grammar using the definition (1). The converse transformation
is proved so that each production(A → x,Per,For) is replaced with two productions
(A→ A′, /0,{X′ : X ∈ N}) and(A′ → x,Per,For). Thus, both definitions of the relation
of the direct derivation step are equivalent for random context grammars.

This paper also proves the analogous result for semi-conditional grammars of de-
gree(1,1). LetSC′(1,1) denote the family of languages generated by semi-conditional
grammars of degree(1,1) using the definition(1), then we have the following result.

Corollary 2. SC(1,1)⊆ SC′(1,1).

Proof. Modify the construction ofG′ = (N′,T,P′,S) from the previous proof so that
N′ = N andP′ is constructed fromP using only clauses 2 and 3.

5

Theorem 3. SC(1,1) = SC′(1,1).

Proof. By Corollary 2, it remains to showSC′(1,1) ⊆ SC(1,1). Let G = (N,T,P,S)
be a semi-conditional of degree(1,1) using the definition(1) such thatL(G) = L.
Construct the semi-conditional grammarG′ = (N′,T,P′,S′) of degree(1,1) using the
definition(2), whereS1 is a new start symbol,N′ = N∪{S1}∪{[A] : A∈ N∪T}∪{A′ :
A∈ N}∪{[pA], [p1A], [p2A] : p= (A→ α,u,v) ∈ P}, and initialize

P′ = {(S1 → [S],0,0)}∪{([a]→ a,0,0) : a∈ T} .

Then, for each productionp= (A→ α,u,v) ∈ P, the following productions are added
to P′.

1. ([A]→ [x]β ,u,v) for α = xβ , x∈V,

and for eachB∈ N∪T, add

2. ([B]→ [pB],0,0),

3. (A→ A′, [pB],A′),

4. ([pB]→ [p1B],A′,0),

5. ([p1B]→ [p2B],u,v) for v 6= B,

6. ([p1B]→ [p2B],0,v) for u= B andv 6= B,

7. (A′ → α, [p2B],0),

8. ([p2B]→ [B],0,A′).

It is not hard to see thatL(G′) = L(G).

3.2 Generative power

Recall that the following holds:CF ⊂ SC(1,1)⊆ RC ⊂ CS. In the rest of this section,
we prove the other inclusion, i.e., we prove thatSC(1,1) = RC. To do this, we first
prove two auxiliary lemmas.

Lemma 4. For each random context grammar G, there is an equivalent random context
grammar G′ such that(A→ x,Per,For) is a production of G′ implies that A/∈ For.

Proof. Let G= (N,T,P,S) be a random context grammar. Construct the random con-
text grammarG′ = (N∪N′,T,P′,S), whereN′ = {A′ : A∈ N} is such thatN∩N′ = /0,
andP′ = {(A → A′, /0,N′),(A′ → x,Per,For) : (A → x,Per,For) ∈ P}. Then, it is not
hard to see thatG and G′ generate the same language andG′ satisfies the required
property.

The following lemma proves that every random context language is generated by a
CD grammar system with permitting components working in thet-mode, where each
permitting set is of cardinality no more than one.

6

Lemma 5. Every random context language is generated by a permitting CD grammar
system where each permitting set is either empty or a one element set.

Proof. LetL be a random context language, and letG=(N,T,P,S) be a random context
grammar generatingL that satisfies the property of Lemma 4. Let the productions of
P be labeled by numbers from 1 ton= |P|. Then, for each labeled productioni.(A→
x,Per,For) ∈ P with Per= {X1,X2, . . . ,Xk}, for somek ≥ 0, create a new component
Pi containing the following productions:

1. ([A, i]→ [A, i,1], /0),

2. ([A, i, j]→ [A, i, j +1],{[Xj , i]}), for 1≤ j ≤ k,

3. ([A, i,k+1]→〈hi(x)〉, /0), wherehi is a homomorphism defined ashi(X) = [X, i],
for X ∈ N, andhi(a) = a, for a∈ T,

4. (〈hi(x)〉 → 〈hi(x)〉,{〈hi(x)〉}),

5. ([X, i]→ [X, i], /0), for X ∈ For,

6. ([X, i]→ [X, i]′,{〈hi(x)〉}), for X ∈ N−For,

7. ([A, i, j]→ [A, i, j], /0), for 1≤ j ≤ k,

and a new component̄Pi containing the following productions:

8. ([X, i]→ [X, j], /0), for X ∈ N, 1≤ j ≤ n,

9. ([X,k]→ [X, ℓ],{[Y,m]}), for X,Y ∈ N, 1≤ k, ℓ,m≤ n, k 6= m.

Finally, add the component

P0 = {(S′ → [S, i], /0),([A, i]′ → [A, i], /0),(〈hi(x)〉 → hi(x), /0) : A∈ N, 1≤ i ≤ n} .

Let Γ = (N′,T,P0,P1, P̄1, . . . ,Pn, P̄n,S′) be a permitting CD grammar system, where

N′ = {S′}∪N×{1,2, . . . ,n}

∪ {[A, i, j] : i.(A→ x,Per,For) ∈ P, 1≤ j ≤ |Per|+1}

∪ {〈hi(x)〉 : (A→ x,Per,For) ∈ P, 1≤ i ≤ n} .

To prove thatL(G) ⊆ L(Γ), consider a derivation step of a successful derivation
of G. Assume that a production(A → x,Per,For) ∈ P labeled byi is applied in this
derivation step, i.e.,uAv⇒ uxv, Per⊆ alph(uv), andFor∩alph(uv) = /0. We prove that

hi(uAv)⇒t
i hi(u)

′〈hi(x)〉hi(v)
′ ⇒t

0 hi(uxv)

in Γ, wherehi(z)′ denoteshi(z) with all nonterminal symbols primed. Furthermore,
if the next production applied inG is labeled byj, we prove that the derivation ofΓ
proceeds either by productions fromPi , for i = j, or, otherwise, by productions from
P̄i, i.e.,hi(uxv)⇒t

ī h j(uxv).

7

Clearly, by productions fromPi,

hi(u)[A, i]hi(v)⇒ hi(u)[A, i,1]hi(v)⇒ hi(u)[A, i,2]hi(v)⇒
∗ hi(u)〈hi(x)〉hi(v)

because all symbols fromPer occur inuv. Then, all other nonterminals can be primed
since there are no symbols fromFor in uv, i.e.,hi(u)〈hi(x)〉hi(v)⇒∗ hi(u)′〈hi(x)〉hi(v)′.
Now, notice that only one symbol〈hi(x)〉 is presented inhi(u)′〈hi(x)〉hi(v)′, and, there-
fore, this component ofΓ is blocked; i.e., the whole derivation by productions from
Pi is hi(uAv)⇒t

i hi(u)′〈hi(x)〉hi(v)′. Then, by productions fromP0, the derivation pro-
ceeds ashi(u)′〈hi(x)〉hi(v)′ ⇒t

0 hi(uxv). Finally, for j = i, productions fromPi are
applied again. Otherwise, ifj 6= i, productions fromP̄i are applied and the derivation
is hi(uxv)⇒t

ī h j(uxv). In either case, the proof proceeds by induction.
To prove the other inclusion,L(Γ) ⊆ L(G), consider a successful derivation ofΓ.

Such a derivation is of the formS′ ⇒t
0 α1 ⇒

t α2 ⇒
t . . .⇒t αk, whereαk ∈T∗, for some

k≥ 1. Assume thatαm ⇒t
i αm+1 by productions fromPi , for somei ∈ {0, j, j̄}, where

1≤ j ≤ n and 1≤ m< k, and thatαm = hi(u0Au1Au2 . . .Aur), for somer ≥ 0, where
A /∈ alph(u0u1 . . .ur), r = 0 implies that there is no[A, i] in αm, andh0 ∈ {hi : 1≤ i ≤ n}.

Then, with respect toi:

A. If i = j̄ , thenαm+1 = hℓ(u0Au1Au2 . . .Aur), for someℓ 6= i. In addition, the only
applicable productions are productions fromPℓ andP̄ℓ. Therefore, the derivation
proceeds as inA or B.

B. If i = j, let (A→ x,Per,For) ∈ P be the production labeled byi. Then,u0u1 . . .ur ∈
hi((V − (For∪{A}))∗), which follows from the fact that the derivation is suc-
cessful because if there appeared a symbolX ∈ For in the sentential form, the
derivation would keep replacing[X, i]with [X, i] for ever, see production 5. It also
implies thatr ≥ 1; otherwise, there is no applicable production inPi, but each
component is required to make at least one derivation step. Therefore, according
to the productions ofPi,

αm+1 = hi(u0)
′A1hi(u1)

′A2hi(u2)
′ . . .Arhi(ur)

′ , (3)

whereA1,A2, . . . ,Ar ∈ {〈hi(x)〉, [A, i]′, [A, i, j] : 1≤ j ≤ n}, andm+1< k. How-
ever, the derivation is successful only if there is no more than one occurrence
of 〈hi(x)〉 and no occurrence of a symbol of the form[A, i, j] in αm+1; other-
wise, 〈hi(x)〉 or [A, i, j] are replaced with themselves for ever, see productions
4 and 7. This and production 6 imply thatA1,A2, . . . ,Ar ∈ {〈hi(x)〉, [A, i]′} and
|αm+1|〈hi(x)〉 = 1. Finally, notice that only the productions ofP0 are applicable.

Thus, we can assume thatαm = hi(v0Av1) andαm+1 = hi(v0)
′〈hi(x)〉hi(v1)

′, for
somev0v1 ∈ (V−For)∗. By productions constructed in 2 and 5, we have verified
thatPer⊆ alph(v0v1) andFor∩alph(v0v1) = /0. Then,

v0Av1 ⇒ v0xv1

in G by the production(A→ x,Per,For).

8

C. If i = 0, then, as shown above, there is an applicable production inP0 only if αm

is of the form achieved in(3) above, i.e.,αm = hi(u)′〈hi(x)〉hi(v)′, for some
x,uv∈V∗, andαm+1 = hi(uxv).

The proof now proceeds by induction.
As α1 = [S, i], for some 1≤ i ≤ n, the inclusion is proved.

Using the previous lemma, we can prove that any random context language is gen-
erated by a semi-conditional grammar of degree(1,1).

Theorem 6. RC⊆ SC(1,1).

Proof. Let L be a random context language, and letΓ = (N,T,P1,P2, . . . ,Pn,S), for
somen ≥ 1, be a permitting CD grammar system working int-mode generatingL
constructed as in Lemma 5. LetV = N∪T. Construct the semi-conditional grammar
of degree(1,1) as follows. For each(A→ x,Per) ∈ Pi, recall that|Per| ≤ 1, add

1. (S′ → [S, i],0,0)
where 1≤ i ≤ n;

2. (A→ [x,Per], [X, i],0)
whereX ∈V;

3. ([x,Per]→ x,Per,0);

4. ([x,Per]→ x, [Z, i],0)
wherePer= {Z};

5. ([A, i]→ [x1, i]x2 . . .xz,Per,0)
wherex= x1x2 . . .xz, for somez≥ 1, xi ∈V, i = 1, . . . ,z;

6. ([X, i]→ [X,Qi],0,0)
whereX ∈V andQi = {[x,Per] : (A→ x,Per) ∈ Pi};

7. ([X,Q]→ [X,(Q−{q})∪{q′}],0,q)
whereX ∈V, Q⊆ Qi ∪Q′

i , Q′
i = {x′ : x∈ Qi}, andq∈ Q∩Qi;

8. ([X,Q′
i]→ [X,Pi],0,0)

whereX ∈V;

9. ([X,P]→ [X,(P−{p j})∪{p′j}],0,A j)
whereP⊆ Pi ∪P′

i , P′
i = {x′ : x∈ Pi}, p j is the label of(A j → x j ,Perj) ∈ P∩Pi ,

andX ∈V −{A j};

10. ([X,P]→ [X,(P−{p j})∪{p′j}],A j ,Y) and
([A j ,P]→ [A j ,(P−{p j})∪{p′j}],0,Y)
whereP ⊆ Pi ∪P′

i , p j is the label of(A j → x j ,Perj) ∈ P∩Pi, Y ∈ Perj , and
X ∈V −{Y};

11. ([X,P′
i]→ [X, j],0,0)

whereX ∈V and j ∈ {1,2, . . . ,n}.

9

12. ([x,P′
i]→ x,0,0)

wherex∈ T;

Let G = (N′,T,P′,S′) be the semi-conditional grammar of degree(1,1) defined
above, i.e.,P′ is defined as described above and

N′ = N∪{S′} ∪ {[X, i] : X ∈V, i ∈ {1,2, . . . ,n}}

∪ {[X,Q] : X ∈V, Q∈ {Q1,Q2, . . . ,Qn},Qi are defined as above}

∪ {[X,P] : X ∈V, P∈ {P1,P2, . . . ,Pn}}

∪ {[x,Per] : [x,Per] ∈
n⋃

i=1

Qi}.

Informally,G simulatesΓ so that it remembers the simulated componentPi of Γ in
the first nonterminal, which is of the form[X, i], for someX ∈ V. More specifically,
productions 2 to 5 simulate the derivation steps of theith component ofΓ. Production
6 starts the verification process during which none of productions 2, 4, and 5 are appli-
cable: productions constructed in 7 verify that there is no symbol of the form[x,Per]
in the sentential form; if so, production 3 is not applicable, and production 8 starts to
verify whether there is no applicable production inPi of Γ (see productions constructed
in 9 and 10); if so, production 11 changes the simulated component, or production 12
finishes the derivation.

Formally, to prove thatL(Γ) ⊆ L(G), consider a successful derivation ofΓ. Such a
derivation is of the formS⇒t α1 ⇒

t α2 ⇒
t . . .⇒t αk, whereαk ∈ T∗, for somek≥ 1.

Assume thatαm ⇒t
i αm+1 by productions fromPi , for some 1≤ i ≤ n and 1≤ m< k.

Let αm= z1z2 . . .zℓ andαm+1 = y1y2 . . .yℓ′ , wherezs,yt ∈V for all s= 1,2, . . . , ℓ andt =
1,2, . . . , ℓ′. As the derivation ofG starts by the application of a production constructed
in 1, i.e., the sentential form is of the form[S, i], for some 1≤ i ≤ n, assume that
[z1, i]z2 . . .zℓ is the current sentential form ofG. Then, if the rewritten symbol is the
first symbol of the current sentential form ofΓ, production 5 is applied inG, and if
the rewritten symbol is not the first symbol of the sententialform of Γ, production 2 is
applied inG followed by an application of production 3 or 4, where the choice depends
on the permitting set. In either case, sentential forms ofΓ andG modified as described
above coincide except for the first symbol. However, ifx∈V is the first symbol of the
sentential form ofΓ, then[x, i] is the first symbol of the sentential form ofG, for some
1≤ i ≤ n. Therefore, by the corresponding derivation replacing thesame symbols at
the same positions as inΓ, we have that[z1, i]z2 . . .zℓ ⇒∗ [y1, i]y2 . . .yℓ′ in G. There is
no production applicable toαm+1 in Γ. Thus, production 6 is applied followed by a
sequence of productions constructed in 7 verifying that there is no symbol of the form
[x,Per] in the sentential form. As there is no such symbol, production 8 is applied. As
no productions fromPi are applicable inΓ, which means that either there is not the
left-hand side of the production in the sentential form, or there is the left-hand side of
the production but there is not a symbol from its permitting set in the sentential form,
productions constructed in 9 and 10, followed by production11, are applicable, i.e.,

[y1, i]y2 . . .yℓ′ ⇒ [y1,Qi]y2 . . .yℓ′ ⇒∗ [y1,Q′
i]y2 . . .yℓ′

⇒ [y1,Pi]y2 . . .yℓ′ ⇒∗ [y1,P′
i]y2 . . .yℓ′

⇒ [y1, j]y2 . . .yℓ′ ,

10

where j is such thatαm+1 ⇒
t
j αm+2. The proof then proceeds by induction. Ifm+1=

k, then production 12 is applied instead of production 11.
To prove the other inclusion,L(G) ⊆ L(Γ), consider a successful derivation ofG.

Such a derivation startsS′ ⇒ [S, j], for some 1≤ j ≤ n. Consider a more general
sentential form[X, i]w, for someX ∈V, 1≤ i ≤ n, andw∈ (N′ ∪T)∗. To simplify the
proof, denote each nonterminal symbol[x,Per] by the nonterminal that has generated
it. It means, if, for instance,(A→ [x,Per], [X, i],0) was applied, write[x,Per]A. Assume
thatS⇒∗ X f(w) in Γ, where f is a homomorphism defined asf ([x,Per]A) = A, and
f (X) = X otherwise. Then, there are the following possibilities howto proceed the
derivation:

1. If production 2 is applied in the successful derivation, i.e., S′ ⇒∗ [X, i]uAv⇒
[X, i]u[x,Per]Av. Then, by the assumption,

S⇒∗ X f(u)A f(v) = X f(u[x,Per]Av)

in Γ.

2. Assume that production 3 or 4 is applied in the successful derivation, replacing
the nonterminal[x,Per]A. Then, there had to be a preceding application of a
production constructed in 2 in the derivation, i.e.,

S′ ⇒∗ [Y, i]uAv⇒ [Y, i]u[x,Per]Av⇒∗ [X, i]u′[x,Per]Av′ ⇒ [X, i]u′xv′ ,

wherei is unchanged in the first nonterminals of the shown part of thederivation
as proved in 4 below. By the assumption and the production(A→ x,Per) ∈ Pi,

S⇒∗ X f(u′)A f(v′)⇒ X f(u′)x f(v′)

becausePer⊆ alph(Xu′v′)∩N ⊆ alph(X f(u′v′)).

3. If production 5 is applied in the successful derivation,[X, i]w⇒ [x1, i]x2 . . .xkw,
then

S⇒∗ X f(w)⇒ x1x2 . . .xk f (w)

by the production(X → x1x2 . . .xk,Per) ∈ Pi .

4. Finally, assume that production 6 is applied in the successful derivation. Then,
only productions constructed in 7 and 3 are applicable, followed by an applica-
tion of production 8, i.e.,

[X, i]w̄⇒ [X,Qi]w̄⇒∗ [X,Q′
i]w⇒ [X,Pi]w.

However, each of the productions constructed in 7 primes a symbol [y,Per] ∈ Qi

only if there is no nonterminal symbol[y,Per] in the current sentential form.
Therefore, after this part of the derivation, it is verified thatw∈ V∗, which im-
plies that any application of a production constructed in 2 is followed by an
application of a production constructed in 3 or 4 before production 8 is applied.
By the assumption and the argument analogous to the argumentin 2 above,

S⇒∗ X f(w̄)⇒∗ Xw.

11

Then, only productions constructed in 9 and 10 are applicable, i.e.,

[X,Pi]w⇒∗ [X,P′
i]w.

More specifically, if production 9 is applied, thenA j does not occur in the sen-
tential formXw, which implies that the productionp j .(A j → x j ,Perj) ∈ Pi is not
applicable inΓ. On the other hand, if production 10 is applied, thenA j occurs
in the current sentential form, but someY ∈ Perj does not. Again, the produc-
tion p j .(A j → x j ,Perj) ∈ Pi is not applicable inΓ. As all productions ofPi are
checked by this part of the derivation, it is verified that there is no production
in Pi applicable byΓ. Then, production 11 is applied, whichΓ simulates by
changing the component.

If production 12 is applied, then no production constructedin 2 is applicable,
which implies thatXw∈ T∗, and the derivation is successfully finished.

As, in all cases, the sentential form is of the form[Y, j]w′, for someY ∈V, 1≤ j ≤ n,
andw′ ∈ (N′∪T)∗. The proof proceeds by induction.

Thus, we have proved that the family of random context languages and the family
of semi-conditional languages of degree(1,1) coincide.

Corollary 7. RC = SC(1,1).

3.3 Normal forms of random context grammars

This section discusses the normal forms of random context grammars. Specifically, it
proves that the normal form proved by Mayer in [13] for randomcontext grammars
with erasing productions holds for random context grammarsin general. It means that
it holds for random context grammars without erasing productions, too.

Definition 1. A random context grammarG= (N,T,P,S) is calledproduction-limited
if every production fromP is of one of the following three forms:

1. (A→ BC,Per,For)

2. (A→ B,Per,For)

3. (A→ a, /0, /0)

whereA,B,C∈ N, a∈ T, andPer,For ⊆ N.

Definition 2. A random context grammarG = (N,T,P,S) is called limited if it is
production-limited and, in addition, eachPer,For ⊆ N is either empty or a one ele-
ment set.

Mayer [13, Theorem 6] proved that if erasing productions areallowed, then each
recursively enumerable language can be generated by a limited random context gram-
mar. In the nonerasing case, however, he only proved (see [13, Lemmas 7 and 8]) that
every random context language can be generated by a production-limited random con-
text grammar, and it was left open whether the same normal form also holds for random
context grammars without erasing productions. The following corollary answers this
question.

12

Corollary 8. Every random context language can be generated by a limited random
context grammar.

Proof. Given a production-limited random context grammar, the sequence of applica-
tions of constructions of Lemma 5, Theorem 6, and Corollary 2, respectively, preserves
the required form of productions. The resulting grammar is random context because
there are no terminal symbols in permitting and forbidding sets. In addition, each of
these sets is either empty or contains only one element.

4 Conclusion

This section summarizes the results and open problems concerning random context
grammars and semi-conditional grammars. In what follows, the superscriptλ is added
if erasing productions are allowed.

Theorem 9. The following holds for grammars with erasing productions.The proofs
can be found in [1, 7, 13, 14].

1. SCλ (0,0) = CF.

2. CF ⊂ SCλ (0,1)⊆ Fλ ⊂ REC.

3. CF ⊂ SCλ (1,0)⊆ Pλ ⊂ REC.

4. SCλ (1,1) = RE.

Theorem 10. The following holds for grammars without erasing productions. The
proofs can be found in [1, 5, 14, 17]. The first part 5 is proved in this paper.

1. SC(0,0) = CF.

2. CF ⊂ SC(0,1)⊆ F ⊂ RC.

3. CF ⊂ SC(1,0)⊆ P⊂ RC.

4. SC(2,1) = SC(1,2) = CS.

5. SC(1,1) = RC ⊂ CS.

The generative power of semi-conditional grammars of degree(0, i) and(i,0) (with
or without erasing productions), fori ≥ 2, is not known. However, if more than one
forbidding string is allowed to be attached to a production (i.e., there are sets of for-
bidding strings instead of only one string), it is known thatsuch grammars (referred to
asgeneralized forbidding grammars) are computationally complete. In addition, it is
sufficient to have no more than four forbidding strings each of which is of length one
or two to characterize the family of recursively enumerablelanguages (see [9, Corol-
lary 6]). On the other hand, however, the question of what is the generative power of
generalized permitting grammars(defined in the same manner) is an open problem.

13

Let (A→ α,u,v) be a production of a semi-conditional grammar. Ifu= v= 0, then
it is said to be context-free; otherwise, it is said to beconditional. The latest descrip-
tional complexity result showing that only a finite number ofresources is needed by
semi-conditional grammars to generate any recursively enumerable language is proved
in [11].

Theorem 11([11]). Every recursively enumerable language is generated by a semi-
conditional grammar of degree(2,1) with seven conditional productions and eight
nonterminals.

Finally, Example 4.1.1 in [4] shows that there is no bound on the number of nonter-
minals for random context grammars. (The proof works for semi-conditional grammars
of degree(1,1) where terminals are not allowed to appear as permitting or forbidding
symbols, too.) More specifically, the example shows that anyrandom context grammar
generating the language

Tn =
n⋃

i=1

{a j
i : j ≥ 1}

requires, in the nonerasing case, exactlyn+1 nonterminals and, in the erasing case, at
least f (n) nonterminals, for some unbounded mappingf : N → N.

In the case of semi-conditional grammars, terminal symbolsare allowed to ap-
pear as both permitting and forbidding symbols. AsG= ({S,A},{a1,a2, . . . ,an},P,S),
where

P= {(S→ aiA,0,0),(S→ ai ,0,0),(A→ aiA,ai ,0),(A→ ai ,ai ,0) : 1≤ i ≤ n} ,

is a semi-conditional grammar of degree(1,0) generatingTn, the question of whether
analogous descriptional complexity results can be achieved for semi-conditional gram-
mars of degree(1,1) is open.

References

[1] H. Bordihn and H. Fernau. Accepting grammars and systems. Technical Report
9/94, Universitat Karlsruhe, Fakultat fur Informatik, 1994.

[2] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, and Gh. Păun.Grammar Systems: A
Grammatical Approach to Distribution and Cooperation. Gordon and Breach
Science Publishers, Topics in Computer Mathematics 5, Yverdon, 1994.

[3] E. Csuhaj-Varjú, T. Masopust, and Gy. Vaszil. Cooperating distributed grammar
systems with permitting grammars as components.Romanian Journal of Infor-
mation Science and Technology, 12(2):175–189, 2009.

[4] J. Dassow and Gh. Păun.Regulated Rewriting in Formal Language Theory.
Springer-Verlag, Berlin, 1989.

[5] S. Ewert and A. P. J. van der Walt. A pumping lemma for random permitting
context languages.Theoretical Computer Science, 270(1–2):959–967, 2002.

14

[6] T. Masopust. Simple restriction in context-free rewriting. Submitted manuscript.

[7] T. Masopust. A note on the generative power of some simplevariants of context-
free grammars regulated by context conditions. In A.H. Dediu, A.M. Ionescu, and
C. Martı́n-Vide, editors,LATA 2009 proceedings, volume 5457 ofLecture Notes
in Computer Science, pages 554–565. Springer-Verlag, 2009.

[8] T. Masopust. On the terminating derivation mode in cooperating distributed gram-
mar systems with forbidding components.Internation Journal of Foundations of
Computer Science, 20(2):331–340, 2009.

[9] T. Masopust and A. Meduna. Descriptional complexity of generalized forbid-
ding grammars. InProceedings of 9th International Workshop on Descriptional
Complexity of Formal Systems, pages 170–177. High Tatras, Slovakia, 2007.

[10] T. Masopust and A. Meduna. Descriptional complexity ofgrammars regulated
by context conditions. InPre-proceedings of 1st International Conference on
Language and Automata Theory and Application (LATA 2007), pages 403–411,
Tarragona, Spain, 2007.

[11] T. Masopust and A. Meduna. Descriptional complexity ofsemi-conditional gram-
mars.Information Processing Letters, 104(1):29–31, 2007.

[12] T. Masopust and A. Meduna. On context-free rewriting with a simple restric-
tion and its computational completeness.RAIRO – Theoretical Informatics and
Applications, 43(2):365–378, 2009.

[13] O. Mayer. Some restrictive devices for context-free grammars.Information and
Control, 20:69–92, 1972.

[14] Gh. Păun. A variant of random context grammars: Semi-conditional grammars.
Theoretical Computer Science, 41:1–17, 1985.

[15] A. Salomaa.Formal languages. Academic Press, New York, 1973.

[16] A. P. J. van der Walt. Random context grammars. InProceedings of the Sympo-
sium on Formal Languages, pages 163–165. 1970.

[17] A. P. J. van der Walt and S. Ewert. A shrinking lemma for random forbidding
context languages.Theoretical Computer Science, 237(1-2):149–158, 2000.

[18] Gy. Vaszil. On the descriptional complexity of some rewriting mechanisms regu-
lated by context conditions.Theoretical Computer Science, 330:361–373, 2005.

15

	1 Introduction
	2 Preliminaries and Definitions
	3 Results
	3.1 Comparison of the two definitions
	3.2 Generative power
	3.3 Normal forms of random context grammars

	4 Conclusion

