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Abstract

This paper solves an open problem concerning the generadiver of non-
erasing context-free rewriting systems using a simple aeism for checking for
context dependencies, in the literature known as semiitondl grammars of
degree(1,1). In these grammars, two nonterminal symbols are attacheddb
context-free production, and such a production is applécilone of the two at-
tached symbols occurs in the current sentential form, wihideother does not.
Specifically, this paper demonstrates that the family ofjleages generated by
semi-conditional grammars of degrék 1) coincides with the family of random
context languages. In addition, it shows that the normahfproved by Mayer
for random context grammars with erasing productions hfddsandom context
grammars without erasing productions, too. It also disesi$&o possible defini-
tions of the relation of the direct derivation step used mliterature.

1 Introduction

It is well known that context-free grammars play an impottate in form language
theory from both practical and theoretical point of view.vttwer, some kinds of con-
text dependencies are required in many practical apmieatisuch as the analysis of
programming and natural languages, which, therefore,aamn handled by context-
free grammars. For that reason, some more powerful regritiachanisms that gener-
ate convenient proper subfamilies of the family of contextsitive languages and that
make use of advantages of the simple form of context-fregymriions are of interest.
This paper discusses two such rewriting mechanisms basedraaxt-free pro-
ductions. Specifically, it discusses random context grararaad their special and
more simple variant, semi-conditional grammars of deg@ieg). In comparison with
context-free grammars where erasing productions can iménelied without affecting
the generative power, erasing productions play a signifioale in random context
grammars and semi-conditional grammars of dedde#). Specifically, with them
both these rewriting mechanisms characterize the familyeofirsively enumerable


http://arxiv.org/abs/1004.3635v1

languages (se&l[4] and [13], respectively), while withdend they are less powerful
then context sensitive grammars (s€e [4] and [14], respEg}i As the erasing cases of
random context grammars and semi-conditional grammare@feg(1,1) have been
studied carefully, this paper concentrates its attentiorth@ nonerasing variants of
these grammars.

A random context grammaintroduced by van der Walt [16] in 1970, is a context-
free grammar the productions of which are applicable to tesgial form only if some
of the nonterminal symbols occur in the sentential form,leZBbme others do not.
Specifically, two finite sets of nonterminal symbols-parmitting and aforbidding
set—are attached to each production, and such a produstmplicable to a sentential
form if all permitting symbols occur in that sentential farnwhile no forbidding symbol
does. It is well known (seé L] 4]) that the family of languagenerated by random
context grammars is properly included in the family of comiteensitive languages,
and, in addition, that the elimination of either all permni¢tor all forbidding sets makes
them less powerful (seel![1}5,]17]).

In 1985, Paun[14] introducesemi-conditional grammaras a variant of random
context grammars, where permitting and forbidding setggpiaced with permitting
and forbidding strings. According to the length of thesingss, semi-conditional gram-
mars of degreédi, j), fori, j > 0, are defined. It is proved ia [14] that for any > O,
the family of languages generated by semi-conditional gnans of degreéi, j) con-
tains the family of context-free languages and, in addjtisicluded in the family of
context sensitive languages. Furthermore, semi-comgitigrammars of degreg, j),
where 1<i,j < 2,i # j, are powerful enough to characterize the family of context
sensitive languages. On the other hand, however, the prgeigerative power of semi-
conditional grammars of degrég, 1) was left open.

This paper solves this problem so that it demonstrates &mai-sonditional gram-
mars of degreé¢l, 1) characterize the family of random context languages. Asma co
sequence, it presents a normal form for random context geaswrithout erasing pro-
ductions similar to the normal form for random context graamswith erasing produc-
tions proved by Mayer ir. [13], who left the question of whettiés normal form also
holds for random context grammars without erasing produastopen. Two possible
definitions of the relation of the direct derivation step dige the literature are also
discussed.

A semi-conditional grammda is calledsimpleif for each production, either its per-
mitting or its forbidding set is empty. It is proved in [7] thfar every semi-conditional
grammaiG, there is an equivalent simple semi-conditional gram@fanf the same de-
gree such tha®' is without erasing productions if and only@&is. If, in addition,G is
of degreg(1,1), terminal symbols are not contained in either permittingpobidding
sets, and the set of productions can be decomposed into sj@ndisets according
to the permitting and forbidding symbols, we have so-cafledditional context-free
rewriting systemsntroduced in[[12]. It is known that these rewriting systefnéth
or without erasing productions) are as powerful as semditimmal grammars of de-
gree(1,1) (with or without erasing productions, respectively), S€gll2]. Thus, this
paper proves that they are as powerful as random contextngaasn The reader is
also referred to [6] for the discussion of some additionatrietions placed on these
systems.



Finally, as far as the descriptional complexity of semiditional grammars is con-
cerned, the reader is referred fo [[10] 11} 18] for the latestilts; an overview of
these results is also presentedlih [7]. Note also that therigésnal complexity of
semi-conditional grammars without erasing productiones,descriptional complexity
of semi-conditional grammars of degrég 1), and the descriptional complexity of
conditional context-free rewriting systems are open.

2 Preliminaries and Definitions

This paper assumes that the reader is familiar with formajlage theory (see [15]).
For a setA, |A| denotes the cardinality &f. For an alphabet (finite nonempty skt)
V* represents the free monoid generatedvbwhere the unit is denoted by. Set
VT =V*—{A}. Forastringv € V*, let|w| denote the length of andalph(w) denote
the set of all symbols occurring in. For a symbok €V, let |w|; be the number of
occurrences ohin w. Let CF, CS, REC, andRE denote the families of context-free,
context-sensitive, recursive, and recursively enumerianguages, respectively.

A random context grammésee [16]) is a quadruplé = (N, T,P, S), whereN is
the alphabet of nonterminal§,is the alphabet of terminals such thah T =0,Se N
is the start symbol, anB is a finite set of productions of the for(é — x, Per, For),
whereA — xis a context-free productiode N, xe V" (V =NUT), andPer, For C N.
If for each productiofA — x, Per,For) € P, Per= 0, thenG is said to be dorbidding
grammar Analogously, if for each productiofA — x, Per, For) € P, For = 0, thenG
is said to be germitting grammar

For two stringau, v € V* and a productiofiA — x, Per, For) € P, the relatioruAv=-
uxvholds provided that

Per C alph(uv) and  alph(uv)n For=0. 1)

The language generated Byis defined ad. (G) = {we T* : S=* w}, where="* is
the reflexive and transitive closure of the relation A random context language a
language generated by a random context grammar. The familimnguages gener-
ated by random context grammars, permitting grammars,@bitiding grammars are
denoted byRC, P, andF, respectively. As usual, if there is no confusion, forbiagli
sets are omitted from the permitting productions; L& x, Per) is written instead of
(A — x,Per,0). Analogously in case of forbidding grammars.

A semi-conditional grammar of degreg, j), for i,j > 0, is a quadruples =
(N,T,P,S), whereN is the alphabet of nonterminal§, is the alphabet of terminals
such thaNNT =0, Se N is the start symbol, anB is a finite set of productions of
the form(A — x,Per, For), whereA — x is a context-free productiol,=NUT,

1. PerC Ul_, VK,
2. For C U}_, V¥,
3. |Per,|For| <1,



and the rewritten symbol is considered in the relation ofdinect derivation step (cf.
the definition(]), where the rewritten symbol is not considered). Specificédk two
stringsu,v € V* and a productioflA — x, Per, For) € P, the relatioruAv=- uxvholds
provided that

Per C alph(uAv) and  alph(uAv) N For=0. (2)

The language generated Byis defined ad. (G) = {we T* : S=* w}, where="* is
the reflexive and transitive closure of the relatien A semi-conditional language of
degree(i, j) is a language generated by a semi-conditional grammar otdégj).
The family of languages generated by semi-conditional gnans of degreé€i, j) is
denoted bySC(i, j). As usual and for the simplicity, curly brackets are omithexn
the notation and 0 is replaced with 0; i.e., for instar{ée~ X, p,0) is written instead
of (A— x,{p},0).

To prove the main results of this paper, we use the notion@bemting distributed
grammar systems, which are rewriting devices composedveirgkecomponents rep-
resented by grammars cooperating according to a given gobtdn this paper, the
considered protocol is so-called terminal derivation mfate-mode, for short) that
makes the component work until it can.

A cooperating distributedCD) grammar systenfsee [2] for more information)
is a construct = (N, T,P,P,,...,P,,S), for somen > 1, whereN is the alphabet of
nonterminals,T is the alphabet of terminals such théth T = 0, S€ N is the start
symbol, andP;, P, ... B, are finite sets of productions.

By componentsve understand the seBsand byg-components/e understand the
grammarss; = (N, T,R,S), foralli=1,2,...,n. By a CD grammar system we under-
stand a grammar system wheregitomponents are context-free grammars.

A permitting CD grammar systerfsee [3]) is a CD grammar system where all
g-components are permitting grammars.

For two stringsu,v e V* (V = NUT) and a number X k < n, let the relation
u = v denote a derivation step made by treomponenGy, and letu =} v be a
derivation such thati = v and there is nav € V* for which v = w, where=/
denotes the transitive closure of the relatisn. The language generated by a CD
grammar systeril working in the terminal mode{mode) is defined as

L(N)={weT* : thereexists > 1 such that; =} a1,
1<k <n,foreachi=1,....,/—1,0,=S anda, =w}.

Let CD(P) denote the family of languages generated by permitting Gidngnar
systems working in the-mode. It is proved in[[3] tha€D(P) = RC. (The reader is
referred to[[3] and[[8] for more details on CD grammar systevith permitting and
forbidding components, respectively.) Finally, note ttiet generative power of CD
grammar systems, whegecomponents are permitting grammars using the definition
(@) of the direct derivation step, is an open problem.



3 Results

Recall that it is known tha€F c SC(1,1) andRC C CS (see, for instance|,_[14] and
[4], respectively). For an example of a semi-conditionargmar of degre€l,1)
generating the set of all prime numbers, the reader is extaa [7].

3.1 Comparison of the two definitions
Theorem 1. SG1,1) C RC.

Proof. Let L € SC(1,1), then there is a semi-conditional gramn@u= (N, T,P,S)
of degree(1,1) such thatL(G) = L. Construct the random context gramn@lr=
(N, T,P,S)with N'=NU{a : a€ T} andP’ constructed as follows:

1. setP’ = {(A — h(x),h(Per),h(For)) : (A — x,Per,For) € P}, whereh is a ho-
momorphism defined agX) = X, for X € N, andh(a) =&/, forac T;

2. remove each productigi — x, Per, For) with A € For from P’;
3. replace each productigA — x, Per, For) with (A — x,Per— {A},For) in P';
4. foreachac T, add(a’ — a,0,N) toP'.

Thus, (A — h(x),h(Per) — {A},h(For)) € P’ if and only if (A — x,Per,For) € P
andA ¢ For. In addition,

(A — x,Per,For) € Pis applicable taiAvin G if and only if

Per C alph(uAv) andFor nalph(uAv) = 0, which is if and only if
Per— {A} C alph(uv), For nalph(uv) = 0, andA ¢ For.

This is if and only if(A — h(x),h(Per) — {A},h(For)) is applicable td(uAv) in
G.

As h(PerUFor) C N’, G’ is a random context grammar generating O

More generally, the previous proof gives a method how tosfieaimn any random
context grammar using the definitionl (2) of the direct ddidbrastep to an equiva-
lent random context grammar using the definitibh (1). Theveose transformation
is proved so that each productioh — X, Per, For) is replaced with two productions
(A— A0,{X": X € N}) and(A" — x, Per,For). Thus, both definitions of the relation
of the direct derivation step are equivalent for random exingrammars.

This paper also proves the analogous result for semi-donditgrammars of de-
gree(1,1). LetSC/(1,1) denote the family of languages generated by semi-condition
grammars of degref, 1) using the definitior()), then we have the following result.

Corollary 2. SC(1,1) € SC(1,1).

Proof. Modify the construction o5’ = (N',T,P’,S) from the previous proof so that
N’ = N andP’ is constructed fron® using only clauses 2 and 3. O



Theorem 3. SG1,1) =SC(1,1).

Proof. By Corollary[2, it remains to sho®C'(1,1) C SC(1,1). LetG = (N,T,P,S)

be a semi-conditional of degreé@,1) using the definition(T]) such thatL(G) = L.

Construct the semi-conditional gramn@r= (N',T,P’,S) of degree(1,1) using the
definition ([2)), whereS; is a new start symboN' = NU{S; } U{[A]: Ae NUT}U{A":

Ae NYU{[pA,[p:1A],[p2A] : p= (A— a,u,v) € P}, and initialize

P ={(S—[9,0,00}uU{([a] +a,0,0):acT}.

Then, for each productiop= (A — a,u,v) € P, the following productions are added
toP.

1. ([Al = ¥B,u,v) fora=xB,xeV,

and foreaclBe NUT, add

2. ([B] — [pB},0,0),

3. (A= A,[pB,A),

4. ([pB] — [p1B],A’,0),

5. ([pB] = [p2B],u,v)  forv#B,

6. ([p1B] — [p2B],0,v) foru=Bandv#B,
7. (N = a,[p2B],0),

8. ([p2B] — [B],0,A).
Itis not hard to see that(G') = L(G). O

3.2 Generative power

Recall that the following hold<CF € SC(1,1) C RC C CS. In the rest of this section,
we prove the other inclusion, i.e., we prove ti8(1,1) = RC. To do this, we first
prove two auxiliary lemmas.

Lemma 4. For each random context grammar G, there is an equivalerdoamcontext
grammar G such that{ A — x, Per, For) is a production of Gimplies that A¢ For.

Proof. Let G = (N, T,P,S) be a random context grammar. Construct the random con-
textgrammaG’ = (NUN’,T,P,S), whereN’ = {A': A€ N} is such thaNNN' =0,
andP' = {(A— A ,0,N'), (A — x,Per,For) : (A— x,Per,For) € P}. Then, it is not
hard to see thaG and G’ generate the same language #idsatisfies the required

property. o
The following lemma proves that every random context lagguia generated by a

CD grammar system with permitting components working inttheode, where each
permitting set is of cardinality no more than one.



Lemma 5. Every random context language is generated by a permittbg@mmar
system where each permitting set is either empty or a oneceleset.

Proof. LetL be arandom contextlanguage, and3et (N, T,P,S) be arandom context
grammar generating that satisfies the property of Lemina 4. Let the productions of
P be labeled by numbers from 1 to= |P|. Then, for each labeled productiafA —

x, Per, For) € P with Per= {X1,Xy,..., X}, for somek > 0, create a new component
P containing the following productions:

1. ([Ai] = [AI,1],0),
2. ([A’ivj] - [A’i7j+1]’{[xjvi]})’ for1<j <Kk,

3. ([Ai,k+1] — (hi(x)),0), whereh; is a homomorphism defined g X) = [X, i],
for X € N, andhj(a) = a, foraeT,

4. ((hi(x)) = (hi(x)), {(hi(x)) }),

5. ([X,i] = [X,i],0), for X € For,

6. ([X,i] = [X,i]",{(hi(x))}), for X € N — For,
7. ([AQLJ] — [ALLj],0), for 1< j <K,

and a new componef containing the following productions:
8. ([X,i] = [X,]],0),forX eN,1<j <n,
9. ([X,K = [X,£],{[Y,m]}), for X,Y e N, 1<k, Z,m<n,k#m.
Finally, add the component
Po={(S = [Si],0).([Ai]' = [Ai],0),((hi(x)) = hi(x),0) :A€N,1<i<n}.
Letl = (N, T,Py,Py,Py,...,Pn, P, S) be a permitting CD grammar system, where
N’ {S}UNx{1,2,...,n}
{[Ai,j]:i.(A—=x Per,For) e P 1< j <|Per+1}
{(hi(x)) : (A— x,Per,For) e P,1<i <n}.

C C

To prove thatL(G) C L(I), consider a derivation step of a successful derivation
of G. Assume that a productiofd — x, Per,For) € P labeled byi is applied in this
derivation step, i.eyAv=- uxyv, Per C alph(uv), andForNalph(uv) = 0. We prove that

hi (UAV) =1 by (u) (hi (X)) hi (V)" = hi (uxv)

in ', wherehj(z)’ denotesh;(z) with all nonterminal symbols primed. Furthermore,
if the next production applied i is labeled byj, we prove that the derivation &f
proceeds either by productions frdfp for i = j, or, otherwise, by productions from
R, i.e.,hi(uxv) =th;(uxv).



Clearly, by productions frori,
hi (U)[A,iThi(v) = hi(W)[A i, 1]hi(v) = hi(U)[A,i, 2]hi(v) =" hi(u) (hi (X)Yhi (V)

because all symbols frofer occur inuv. Then, all other nonterminals can be primed
since there are no symbols frdrar in uv, i.e.,h; (u) (hi(x)Yhi (v) =* hi (u) (hi (X)) hi (v)".
Now, notice that only one symbdh;(x)) is presented i (u)’(h; (x))h; (v)’, and, there-
fore, this component of is blocked; i.e., the whole derivation by productions from
R is hi(UAV) ={ hi(u)’(hi(x))hi(v)’. Then, by productions frorR, the derivation pro-
ceeds ady(u)’(hi(x))hi(v)" =} hi(uxv). Finally, for j =i, productions fromP are
applied again. Otherwise, jf# i, productions fronR are applied and the derivation
is hi (uxv) :>}—hj (uxv). In either case, the proof proceeds by induction.

To prove the other inclusior,(I") C L(G), consider a successful derivationfof
Such a derivationis of the for® =} a1 =' o, =! ... = ay, whereay € T*, for some
k> 1. Assume thatrm =! am,1 by productions fronR, for somei € {0, j, j}, where
1< j<nand 1< m< k, and thatom = hj(UpAui Al . .. Al ), for somer > 0, where
A¢ alph(ugus ... ur ), r =0implies that there is n@\i] in am, andhg € {h; : 1 <i <n}.

Then, with respect ta

A Ifi= j_ thendm;1 = hy(UAWAL, ... Al ), for somel #i. In addition, the only
applicable productions are productions frérandP,. Therefore, the derivation
proceeds as iA or B.

B. If i =], let (A— x,Per,For) € P be the production labeled by Then,upu; ...u €
hi((V — (Foru {A}))*), which follows from the fact that the derivation is suc-
cessful because if there appeared a symbal For in the sentential form, the
derivation would keep replacir, i] with [X,i] for ever, see production 5. It also
implies thatr > 1; otherwise, there is no applicable productiorPinbut each
componentis required to make at least one derivation stegrefore, according
to the productions o,

Om+1 = hi (UO)/Alhi (ul)/Azhi (UZ)/ .. Arh| (Ur)/ R (3)

whereAr, Ay, ..., A € {(hi(X)),[Ai],[A 1, j] : 1< j <n}, andm+1 < k. How-
ever, the derivation is successful only if there is no mosntbne occurrence

of (hi(x)) and no occurrence of a symbol of the foffi, j] in am1; other-
wise, (hi(x)) or [Ai, j] are replaced with themselves for ever, see productions
4 and 7. This and production 6 imply that, A;,... A, € {(hi(X)),[Ai]'} and
|am+1]n ) = 1. Finally, notice that only the productionsief are applicable.

Thus, we can assume thah, = hj(VpAvi) andam,1 = hi(vo)’(hi(x))hi(v1)’, for
somevpvs € (V —For)*. By productions constructed in 2 and 5, we have verified
thatPer C alph(vpvi) andFornalph(vov1) = 0. Then,

VoAV, = VoXVp

in G by the productiofA — x, Per, For).



C. If i =0, then, as shown above, there is an applicable producti® amly if o,
is of the form achieved irff3) above, i.e.,am = hj(u)’{(hi(x))h;(v)’, for some
X, uv e V*, anddm;1 = hi(uxv).

The proof now proceeds by induction.
As a; =[S i], for some 1< i < n, the inclusion is proved. O

Using the previous lemma, we can prove that any random cblateguage is gen-
erated by a semi-conditional grammar of degitd).

Theorem 6. RCC SC(1,1).

Proof. Let L be a random context language, andllet (N, T,P,P,... R, S), for
somen > 1, be a permitting CD grammar system workingtimode generating.
constructed as in Lemnia 5. L'¢t= NUT. Construct the semi-conditional grammar
of degreg(1,1) as follows. For eacfA — x, Per) € R, recall thatPer| < 1, add

1. (S —[Si],0,0)
where 1<i < n;

2. (A— [x Per],[X,i],0)
whereX € V;

3. ([x,Per — x, Per,0);

4. ([x,Per] — x,[Z,i],0)
wherePer= {Z};

5. ([Ai] = [Xa,i]X2. .. Xz, Per,0)
wherex = X1X2...%z, forsomez>1,x,€V,i=1,...,z

6. ([X,i] — [X,Qi],0,0)
whereX € V andQ; = {[x,Per} : (A— x,Per) e B};

7. ([X,Q] - [Xv(Q_ {Q})U{q/}],o,(.])
whereX €V,QC QUQ, Q = {X :x€ Q}, andg € QNQ;

8. ([X,Q] — [X,R],0,0)
whereX € V;

9. (Pl = [X,(P—{pj}) U{P}}],0,A))
whereP C RUP/, P = {X': x€ R}, pj is the label of(A; — x;,Per;) e PNR,
andX eV —{A;};

10. (IX,P] = [X, (P—{pj}) U{P}}],Aj,Y) and
([Aj, Pl = [Aj,(P—{pj}) U{p{}],0,Y)
whereP C B UF/, p; is the label of(Aj — xj,Perj) e PNR, Y € Per;, and
XeV—-{Y}

11. ([X,R] = [X,],0,0)
whereX e V andj € {1,2,...,n}.



12. ([x,P'] = x,0,0)
wherex e T;

Let G= (N, T,P,S) be the semi-conditional grammar of degrdel) defined
above, i.e.P’ is defined as described above and

N'=NU{S} U {[X,i]:XeV,ie{12,...,n}}
U {[X,Q: XeV,Qe {Q1,Q2,...,Qn},Q; are defined as aboye
U {[X,P]:XeV,Pe{P,P,....,P}}

U {[x,Pen: [x Per e LnJQi}.
i=1

Informally, G simulated” so that it remembers the simulated comporiof I in
the first nonterminal, which is of the forfiX,i], for someX € V. More specifically,
production§ P t615 simulate the derivation steps ofitheomponent of . Production
starts the verification process during which none of pradog2[4, andl5 are appli-
cable: productions constructedih 7 verify that there isymalsol of the form[x, Per]
in the sentential form; if so, productidh 3 is not applicalziad productiofl8 starts to
verify whether there is no applicable productiorfrof I' (see productions constructed
in[@ and10); if so, productidn11 changes the simulated comapp or productioh 12
finishes the derivation.

Formally, to prove that(I") C L(G), consider a successful derivationfafSuch a
derivation is of the forn8=! a1 =t a, = ... =t ay, wherea, € T*, for somek > 1.
Assume that, :>} 0m.1 by productions fronP, for some 1< i <nand 1< m<k.
Letam=2z12...Z anddmi1 =VY1Yz... Yy, Wherezs, vy €V foralls=1,2,... fandt =
1,2,...,¢'. As the derivation of starts by the application of a production constructed
in [, i.e., the sentential form is of the forf8,i], for some 1< i < n, assume that
[z1,i]22...7 is the current sentential form @&. Then, if the rewritten symbol is the
first symbol of the current sentential form bf productior is applied i65, and if
the rewritten symbol is not the first symbol of the senterftain of I', productioi  is
applied inG followed by an application of productidh 3[dr 4, where theickalepends
on the permitting set. In either case, sentential fornis ahdG modified as described
above coincide except for the first symbol. Howeveg &V is the first symbol of the
sentential form of", then[x,i] is the first symbol of the sentential form &f for some
1 <i < n. Therefore, by the corresponding derivation replacingsdm@e symbols at
the same positions as I we have thaiz,i]z...z =* [y1,i]y2...yy in G. There is
no production applicable tam,,; in . Thus, productionl6 is applied followed by a
sequence of productions constructeflin 7 verifying thateti®eno symbol of the form
[x, Per] in the sentential form. As there is no such symbol, produ@ids applied. As
no productions fronP are applicable irf”, which means that either there is not the
left-hand side of the production in the sentential form hare is the left-hand side of
the production but there is not a symbol from its permittiagjia the sentential form,
productions constructed[in 9 and 10, followed by produdii@inare applicable, i.e.,

Yuily2..yr = yLQlY2.-.Yer =% [y, Qly2...ye
= [YuRlyz2...yr =" [yuRly2...ye
= [y ily2-..ye,
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wherej is such thatiy, 1 :>tj Omyi2. The proof then proceeds by inductionnif+ 1 =
k, then productiof 12 is applied instead of producfioh 11.

To prove the other inclusio,(G) C L(I"), consider a successful derivation®f
Such a derivation startS =[S, j], for some 1< j < n. Consider a more general
sentential form{X,ijw, for someX €V, 1 <i <n, andw € (N'UT)*. To simplify the
proof, denote each nonterminal symifglPer] by the nonterminal that has generated
it. It means, if, for instancé A — [x, Per], [X,i],0) was applied, writéx, Perja. Assume
thatS="* X f(w) in I', wheref is a homomorphism defined d$[x,Per]4) = A, and
f(X) = X otherwise. Then, there are the following possibilities Howproceed the
derivation:

1. If production’2 is applied in the successful derivatian,,iS =* [X,iJuAv=-
[X,i]u[x, Peflav. Then, by the assumption,

S=" Xf(u)Af(v) = X f(ux,Perav)
inT.

2. Assume that productidn 3 bF 4 is applied in the successgivation, replacing
the nonterminalx, Perla. Then, there had to be a preceding application of a
production constructed [d 2 in the derivation, i.e.,

S =" Y, iJuAv= [Y,i]u[x,Perfav =" [X,i]u'[x, PeraV = [X,i]u'xV,

wherei is unchanged in the first nonterminals of the shown part oflrévation
as proved ¥ below. By the assumption and the produc#ior x, Per) € P,

S=* Xf(U)AF(V) = X f(U)xf(V)
becauséer C alph(XuVv) NN C alph(X f(u'V)).

3. If productior® is applied in the successful derivatipQilw = [x1,i]X2. .. XcW,
then
S=" X F(w) = x3Xo. . % F(w)

by the productiorfX — x3xz. .. X, Per) € B.
4. Finally, assume that productibh 6 is applied in the susfakslerivation. Then,

only productions constructed[ih 7 3 are applicablepfadid by an applica-
tion of productioi 8, i.e.,

X,iw= [X,Qw="[X,Q]w=[X,R]w.

However, each of the productions constructed in 7 primesresy|y, Per] € Q;
only if there is no nonterminal symbdy, Per] in the current sentential form.
Therefore, after this part of the derivation, it is verifibditw € V*, which im-
plies that any application of a production constructedirs Zollowed by an
application of a production constructedin Ior 4 before patithn[ is applied.
By the assumption and the argument analogous to the argumi2above,

S=" X f(w) =% Xw.

11



Then, only productions constructedin 9 10 are applicall.,
[X,R]w =" [X,P]w.

More specifically, if productiohl9 is applied, thé does not occur in the sen-
tential formXw, which implies that the productiopy.(A; — x;,Per;) € R is not
applicable in. On the other hand, if productién]10 is applied, tigroccurs
in the current sentential form, but sorffe= Per; does not. Again, the produc-
tion p;j.(Aj — X;j,Per;) € R is not applicable i". As all productions o, are
checked by this part of the derivation, it is verified thatréhis no production
in B applicable byl". Then, production 11 is applied, whidhsimulates by
changing the component.

If production[12 is applied, then no production construdted is applicable,
which implies thalXw e T*, and the derivation is successfully finished.

As, in all cases, the sentential form is of the fojnj]w/, for someY e V, 1< j <n,
andw € (N'UT)*. The proof proceeds by induction. O

Thus, we have proved that the family of random context laggaand the family
of semi-conditional languages of degidel) coincide.

Corollary 7. RC = SC(1,1).

3.3 Normal forms of random context grammars

This section discusses the normal forms of random contexhgrars. Specifically, it
proves that the normal form proved by Mayer [in][13] for randoomtext grammars
with erasing productions holds for random context gramnmageneral. It means that
it holds for random context grammars without erasing prdidas, too.

Definition 1. A random context gramm& = (N, T,P,S) is calledproduction-limited
if every production fronP is of one of the following three forms:

1. (A— BC,Per,For)
2. (A— B, Per,For)
3. (A—2a,0,0)
whereA B,C € N,ae T, andPer, For C N.
Definition 2. A random context grammas = (N, T,P,S) is calledlimited if it is

production-limited and, in addition, eadter,For C N is either empty or a one ele-
ment set.

Mayer [13, Theorem 6] proved that if erasing productionsali@ved, then each
recursively enumerable language can be generated by adimehdom context gram-
mar. In the nonerasing case, however, he only proved|(séé §h3mas 7 and 8]) that
every random context language can be generated by a proddictiited random con-
text grammar, and it was left open whether the same normal &so holds for random
context grammars without erasing productions. The foll@aéorollary answers this
question.

12



Corollary 8. Every random context language can be generated by a limaadam
context grammar.

Proof. Given a production-limited random context grammar, theusege of applica-

tions of constructions of Lemnia 5, Theoren 6, and Corollarg&pectively, preserves
the required form of productions. The resulting grammagaisdom context because
there are no terminal symbols in permitting and forbiddiatss In addition, each of
these sets is either empty or contains only one element. O

4 Conclusion

This section summarizes the results and open problems mongaandom context
grammars and semi-conditional grammars. In what follote stuperscript is added
if erasing productions are allowed.

Theorem 9. The following holds for grammars with erasing productiofibe proofs
can be found in[[1, 14, 13, 14].

1. SC*(0,0) = CF.
2. CFc SC'0,1) C F* c REC.
3. CF Cc SC'(1,0) C P* c REC.
4. SC'(1,1) =RE.

Theorem 10. The following holds for grammars without erasing produsto The
proofs can be found in [1]5, 14, 17]. The first part 5 is provedhiis paper.

1. SC(0,0) = CF.

2. CF C SC(0,1) C F C RC.
3. CF Cc SC(1,0) C P C RC.
4. SC(2,1) = SC(1,2) = CS.
5. SC(1,1) = RC C CS.

The generative power of semi-conditional grammars of de@@¢) and(i, 0) (with

or without erasing productions), for> 2, is not known. However, if more than one
forbidding string is allowed to be attached to a productios (there are sets of for-
bidding strings instead of only one string), it is known teath grammars (referred to
asgeneralized forbidding grammarare computationally complete. In addition, it is
sufficient to have no more than four forbidding strings eattWluich is of length one

or two to characterize the family of recursively enumerdatguages (seel[9, Corol-
lary 6]). On the other hand, however, the question of whatésgenerative power of
generalized permitting grammagdefined in the same manner) is an open problem.
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Let (A— a,u,v) be a production of a semi-conditional grammau # v= 0, then
it is said to be context-free; otherwise, it is said todeaditional The latest descrip-
tional complexity result showing that only a finite numbermre$ources is needed by
semi-conditional grammars to generate any recursivelynemable language is proved
in [11].

Theorem 11([11]). Every recursively enumerable language is generated by & sem
conditional grammar of degre€,1) with seven conditional productions and eight
nonterminals.

Finally, Example 4.1.1iri [4] shows that there is no boundr@rtumber of nonter-
minals for random context grammars. (The proof works forissonditional grammars
of degreg(1, 1) where terminals are not allowed to appear as permittingrtaidding
symbols, too.) More specifically, the example shows thatrangom context grammar
generating the language

n
Tn:U{aiJ rj>1}
i=1
requires, in the nonerasing case, exantlyl nonterminals and, in the erasing case, at
leastf (n) nonterminals, for some unbounded mappfrnig\N — N.

In the case of semi-conditional grammars, terminal symboésallowed to ap-
pear as both permitting and forbidding symbols.@s- ({S A},{a1,az,...,an},P,9),
where

P={(S— aA0,0),(S— &,0,0),(A— aA &,0),(A—a,8,0):1<i<n},

is a semi-conditional grammar of degrge0) generatingly,, the question of whether
analogous descriptional complexity results can be acHifsmesemi-conditional gram-
mars of degre€l, 1) is open.
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