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Abstract. Ontology-Based Data Access (OBDA) is a recent
paradigm aiming at enhancing data access by taking ontological
knowledge into account. When using existential rules as ontologi-
cal language, query answering is an undecidable problem, whence
numerous decidable classes of ontologies have been defined, rang-
ing from classes with very good computational complexities (AC0

in data complexity) to classes with much larger expressivity. How-
ever, actually implementable algorithms have been proposed only for
very restricted classes (typically those coinciding with lightweight
description logics). The aim of this paper is to show how to deal with
more expressive ontologies by proposing an algorithm that performs
both materialization and rewriting and is applicable for a significant
generalization of lightweight description logics. To this end, we first
modify an existing algorithm previously proposed for a very generic
class of rules, namely greedy bounded treewidth sets of rules. We
then exhibit a special case, called pattern oblivious rule sets, which
significantly generalizes the ELHdr description logic, which under-
lies the OWL 2 EL ontology standard, while keeping the beneficial
worst-case computational complexity. We last define a subclass of
pattern oblivious rules that is recognizable in polynomial time.

1 Ontology-Based Data Access

In the last few years, a novel paradigm for data querying has become
increasingly popular in the knowledge representation and reasoning
community as well as in the database community. This paradigm
is called Ontology-Based Data Access (OBDA). The key idea is to
use an ontology to enrich data with domain knowledge, enabling se-
mantic querying. Current research is mainly focusing on conjunctive
queries, which are the basic queries in the database community. The
considered decision problem is then formalized as follows: letting
F be some data (represented as a set of ground atoms and possibly
stored in a relational database), O an ontology and q a query, does
F ∪ O |= q hold?

Depending on the ontology, conjunctive query answering under
an ontology can range from undecidable down to AC0 data com-
plexity (which is the same as conjunctive query answering without
any ontology). An intense research effort aimed at defining classes
of ontologies for which the conjunctive query answering problem is
decidable (or even tractable) has thus taken place, resulting in a com-
prehensive and diversified zoo of decidable classes.

In this research effort, two different ontology representation
paradigms have been intensely studied: Description Logics [4] and
existential rules [5], also known as Datalog+/- [7] or tuple-generating
dependencies (TGDs) in databases [1]. In Description Logics (DLs),
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current research is focusing on so-called lightweight DLs, most no-
tably from the EL [3] and the DL-Lite [8] families. They provide the
logical bases of the tractable profiles OWL 2 EL and OWL 2 QL, re-
spectively, of the OWL ontology language [17]. In existential rules,
considered classes are usually more expressive, but also do not have
as good computational properties as lightweight description logics.

A first approach to design efficient algorithms for OBDA is that of
pure query rewriting. The principle is to use the ontology in order to
reformulate a query that can be directly evaluated against the original
database, which allows (in theory) to make use of good performance
of database management systems. This approach is in particular ap-
plicable for first-order rewritable ontologies [2, 18, 10, 9, 24, 12, 20]
(possibly using Datalog rewritings [11]), but also for EL [19]. An
already known weakness of these approaches is the problem of effi-
ciently evaluating the obtained rewritings, in particular when facing
huge unions of conjunctive queries.

Another trend of research allows to overcome this drawback by
materializing (part of) the entailed facts. The most naive approach
would be to materialize all the entailed facts, but this is not al-
ways possible, since there could be infinitely many. Nonetheless,
it is in some case possible to modify the data, and to rewrite the
query in such a way that when evaluated against the modified data,
it yields sound and complete answers. Such an approach, called a
combined approach, has been applied to DL-Lite and to ELHdr
[16, 13, 14, 15]. However, current combined approach algorithms
are tailored towards lightweight description logics only.

The aim of the current paper is to overcome this shortcoming, by
providing such a mixed approach (both modifying the data and the
query) that is able to deal with ontologies whose expressivity signif-
icantly exceeds that of lightweight description logics. The contribu-
tion of the present paper is threefold:

• First, we consider the very expressive class of greedy bounded
treewidth sets [6]. We argue that the known [22] worst-case opti-
mal algorithm is not efficiently implementable, due to an ad-hoc
querying operation. We thus propose to replace this operation by
the evaluation of a Datalog program, whose size is polynomial in
a parameter of the original algorithm, namely the number of so-
called patterns. While this parameter is high in the worst-case, one
can expect it to be small in practical cases. Given an efficient Dat-
alog solver, that would enable our algorithm to work efficiently
even on large databases.

• Second, we define an algorithmically simple class of rules by “re-
verse engineering”: we look for expressive classes of rules that en-
sure that the number of relevant patterns is polynomial. We iden-
tify such a class which we call pattern oblivious rule sets, which
has nice computational properties: query answering is PTIME
complete in data complexity and NP-complete in combined com-



plexity under mild restrictions.
• Last, we study the computational complexity of recognizing pat-

tern oblivious rules. We show that it is hard for the second level of
the polynomial hierarchy, and thus propose another class of rules,
namely forward-only rules, that is a particular case of pattern
oblivious rules. We show that under mild assumptions, forward-
only rules are recognizable in polynomial time.

2 Preliminaries
An atom is of the form p(t1, . . . , tk) where p is a predicate of ar-
ity k, and the ti are terms, i.e., variables or constants. A fact (resp.
a Boolean conjunctive query) is an existentially closed conjunction
of atoms. In this paper, we consider only Boolean queries for the
sake of simplicity, but the same techniques can also be applied to
non-Boolean queries. Given an atom or a set of atoms A, we denote
by vars(A) and terms(A) its set of variables and of terms, respec-
tively. Given two facts F and Q, a homomorphism π from Q to F
is a mapping from vars(Q) to terms(F ) such that π(Q) ⊆ F . An
existential rule is a formula R = ∀x∀y(B[x, y] → (∃zH[y, z]))
where B = body(R) and H = head(R) are conjunctions of atoms,
called the body and the head of R, respectively. The frontier of R,
denoted by fr(R), is the set of variables vars(B) ∩ vars(H) = y.
Given a fact F and a set of rules R, we denote by C the set of con-
stants that appear either in F or in a rule of R. A rule R is ap-
plicable to a fact F if there is a homomorphism π from body(R)
to F ; the result of the application of R to F w.r.t. π is a fact
α(F,R, π) = F ∪ πsafe(head(R)) where πsafe is a substitution ap-
plied to head(R), which replaces each x ∈ fr(R) with π(x), and
each other variable with a fresh variable. The fusion of the frontier
σπ induced by π is a function from fr(R) to fr(R) ∪ C, such that
σπ(x) = σπ(y) if and only if π(x) = π(y), and σπ(x) = a if
and only if p(x) = a for any constant a. We assume this fusion
to be uniquely defined (for instance, by using a fixed order on the
variables). A fusion of the frontier of a rule is a fusion of the fron-
tier induced by some π. An R-derivation of F is a finite sequence
F = F0, F1, . . . , Fk = F ′ such that for all i ∈ {1, . . . , k}, there are
a rule R ∈ R and a homomorphism π from body(R) to Fi−1 with
Fi = α(Fi−1, R, π). F ′ is the result of the derivation. An extension
of a derivation S = F0, . . . , Fk is a derivation S′ = F ′0, . . . , F

′
n,

with n > k and for all i smaller than k, F ′i = Fi. Classically, a
Boolean query q is entailed by F andR if and only if there exists an
R-derivation S of F such that q is entailed by the result of S. Proofs
are omitted and can be found in [23].

3 On Greedy Bounded Treewidth Sets
The main focus of this paper is the class of greedy bounded treewidth
sets [6] and some of its subclasses. The definition of that class relies
on the notion of a greedy derivation.

Definition 1 (Greedy Derivation) An R-derivation (F0 =
F ), . . . , Fk is said to be greedy if, for all i with 0 < i ≤ k, there
is a j < i such that πi(fr(Ri)) ⊆ vars(Aj) ∪ vars(F0) ∪ C, where
Aj = πsafe

j (head(Rj)).

A set of rulesR is a greedy bounded treewidth set (gbts) if for any
fact F , anyR-derivation is greedy. The gbts class generalizes in par-
ticular lightweight description logics, as well as guarded existential
rules and their main known generalizations, as well as plain Datalog.
A greedy derivation can be associated to a structure called derivation

tree, which is a tree decomposition of the primal graph of its result.
This derivation tree can be built in a greedy way as made formally
precise in the following definition.

Definition 2 (Derivation Tree) Let S = (F0 = F ), . . . , Fk be
a greedy derivation. The derivation tree assigned to S, written:
DT (S), is a tree T with nodesB = {B0, . . . , Bk} (also called bags)
and two functions terms : B → 2terms(Fk) and atoms : B → 2Fk , de-
fined as follows:

1. Let T0 = vars(F )∪C. The root of the tree isB0 with terms(B0) =
T0 and atoms(B0) = atoms(F ).

2. For 0 < i ≤ k, let Ri−1 be the rule applied accord-
ing to homomorphism πi−1 to produce Fi; then terms(Bi) =
vars(Ai−1) ∪ T0 and atoms(Bi) = atoms(Ai−1), where Ai−1 =
πsafe
i−1 (head(Ri−1)). The parent of Bi is the node Bj for which j

is the smallest integer where πi−1(fr(Ri−1)) ⊆ terms(Bj).

Note that, in the second point of the definition, there is at least one
j with πi−1(fr(Ri−1)) ⊆ terms(Xj) because S is greedy. More-
over, we always choose the smallest such j, which means that we
link the new bag “as high as possible” in the tree.

We now present formal tools to describe bags that are “similar”.
This is done in particular using the notion of equivalence function.

Definition 3 (Equivalence Function) Let F be a fact and R be a
gbts. Let P be a set of labels, called patterns, partially ordered using
a relation v . An equivalence function f for F and R associates an
R-derivation S and a bag B of DT(S) with a pattern, in such a way
that if S′ is an extension of S, then f(S,B) v f(S′, B).

The term “pattern” is thus used to denote elements of the range of
an equivalence function. We will use two different notions of patterns
in Section 4 and 5. Let us first introduce the structure function, that
is central in our development.

Definition 4 (Structure function) Let F be a fact andR be a set of
rules. The structure function fR associates any derivation S and any
bagB of DT(S) with (RB , σB) whereRB is the rule that createdB
(by applying πB), and σB the fusion of the frontier induced by πB .

An important property of the structure function is that there is a
canonical bijection between two bags of a derivation tree whose im-
ages by the structure function are equal. If B and B′ are such bags,
we denote by ψB→B′ that bijection. We also define a canonical rep-
resentative, which can by definition be obtained from any bag B of
that class by applying ψB to its terms and atoms. We are also inter-
ested in how bags are linked together, hence Definition 5.

Definition 5 (Link) Let F be a fact, R be a set of rules, S be a
greedy R-derivation of F . Let B and B′ be two bags of DT(S)
such that B′ is a child of B. The induced link λ between B′ and
B is a function from ψB′(fr(B′)) to ψB(terms(B)), defined by:
λ(ψB′(x)) = ψB(x).

We restrict our attention to correct equivalence functions.

Definition 6 (Correct Equivalence Function) Let F be a fact, R
be a gbts, and f be an equivalence function for F andR. f is correct
if for any derivation S and any pair of bags B1, B2 in DT(S):

1. if f(S,B1) v f(S,B2), then fR(S,B1) = fR(S,B2);



2. if f(S,B1) = f(S,B2), then if B1 admits a child B′1 with in-
duced link λ, then there exists an extension S′ of S such that B2

admits a child B′2 with f(S,B′1) v f(S′, B′2).

With this vocabulary, it is shown in [22] that the structure function
is not a correct equivalence function, but that one can be constructed
by refining the structure function by additionally labeling a bag B
by the set of pairs (G,ψB ◦ ϕ|ϕ−1(terms(B))), where G is a subset
of a rule body and ϕ is a homomorphism of G into the result of S.
This “mappability-knowledge” is completed by means of a saturation
mechanism, that halts because of its monotonicity. This knowledge
can then be used to perform querying. However, the proposed solu-
tion [22] guesses both a suitable tree decomposition of the query and
its mapping to the built representation of the canonical model. These
successive guesses make the approach unpractical. Our first aim is to
improve this querying mechanism, by re-using a Datalog engine.

Thanks to the first point of Definition 6, one can define a canonical
representative for any bag whose image by an equivalence function
is a pattern P . In particular, we can associate with it a set of terms
(resp. frontier terms, atoms) denoted by terms(P ) (fr(P ), atoms(P ),
respectively). Moreover, for any bag B such that f(B) = P , there
is a bijection ψB from terms(B) to terms(P ) that is also a bijection
(with domain suitably restricted) from fr(B) to fr(P ) and an isomor-
phism between atoms(B) and atoms(P ).

Provided with a correct equivalence function (giving rise to a fi-
nite number of equivalence classes) one can describe derivation trees
thanks to a set of structure rules, which state that any bag of some
pattern P has a child of pattern P ′, that is linked with it in a certain
way, provided that enough rule applications have been performed.
We first formalize the syntax of such a set of structure rules.

Definition 7 (Structure rules) Let F be a fact andR be a gbts. Let
∼ be a correct equivalence relation and let P be the corresponding
set of patterns. A structure rule is a rule of the form (P, λ, P ′) where
P, P ′ ∈ P and λ is a mapping from fr(P ′) to terms(P ) such that
λ(fr(P ′)) 6⊆ fr(P ). λ is called a link between P ′ and P .

We then define the notion of correctness of a set of structure rules.

Definition 8 (Structure rule correctness) A set S of structure rules
is correct with respect to a fact F and a setR of existential rules if:

• for every (P, λ, P ′) ∈ S, for any R-derivation S of F , for every
bag B of pattern P in DT(S), there exists an extension S′ of S
such that B has a child B′ of pattern P ′ in DT(S′) that is linked
to B via ψ−1

B ◦ λ, and (soundness)
• for any derivation S, for any bagsB andB′ of respective patterns
P and P ′ such that B is a child of B′ with induced link λ, then
(P,ψ−1

B ◦ λ, P
′) belongs to S. (completeness)

Obviously, a set of structure rules can also be seen as a way to
generate facts. In this paper, we assume that such a set of rules is al-
ready computed. This is a non-trivial task, and the interested reader is
invited to consult [21], where so-called creation rules allow to build
structure rules. Let us point out that structure rules are a finite rep-
resentation of the canonical model (also known as chase) of F and
R. Moreover, this finite representation is easier to use than F andR,
since it provides full (certain) information on each individual as soon
as it is introduced. In particular, it encapsulates in the pattern corre-
sponding to the initial fact all the atoms entailed by the knowledge
base that have as arguments terms from the initial fact.

Structure Rules S Query q

Datalog Program Π(S, q)

Data F RulesR

Figure 1. Workflow of the proposed algorithm

4 Datalog Rewriting for Greedy Bounded
Treewidth Sets

In this section, we present a rewriting mechanism for gbts rules. We
first explain, in a high-level fashion, the main ideas of this rewriting
operation, then provide a formal presentation of the rewriting. This
rewriting mechanism takes as input a set of structure rules S and a
query q. It outputs a Datalog program Π(S, q).

4.1 High-level Presentation of the Rewriting

We design a Datalog program that computes homomorphisms of sub-
sets of the query into the set of atoms contained in the patterns. In
other words, we inspect the patterns in order to identify partial query
matches. For each pattern P appearing in S, this will be done thanks
to a fresh predicate qP , of arity j+k, where j is the number of atoms
in the query and k is the number of terms in the query. Intuitively, the
first j positions of the atom carry the information about which atoms
are mapped by the homomorphism encoded, and the last k positions
represent which of the query variables are mapped into the consid-
ered pattern (and, in the positive case, to which terms of the pattern
they are mapped). As we are interested in partial matches, the homo-
morphism may not contain every variable of the query in its domain,
thus we make use of a special constant symbol (�) to represent the
case where the images of some variables are not (yet) specified. Ini-
tially, only mappings of single atoms are represented. Mappings of
larger parts of the query will be obtained thanks to a rule allowing
for combining compatible partial matches into larger ones.

Before introducing this combination rule, let us point out that a
homomorphism from (a part of) the query into the ultimate derivation
tree may map different atoms into different bags. We account for this
thanks to structure rules, using them to propagate information about
partial homomorphisms from one pattern to another. In the course of
this propagation, it is possible that the image of a term x belonging
to the terms of a source pattern does not belong to the target pattern:
we thus only specify, using a new special constant symbol (×), that
the image of x is already fixed, but is not available in the current bag.
This imposes that we cannot choose an(other) image for x anymore.

Information being propagated between different bags, we need to
merge different pieces of information. That is, if we know two par-
tial homomorphisms that are compatible, we can infer the existence
of a joint homomorphism that maps atoms as mapped by the two ho-
momorphisms. In order to get a rewriting that is polynomial in the
query, we make use of the fresh compatible predicate, that encodes
the compatibility of two terms and the result of their unification.



4.2 Formal Presentation of the Rewriting
We now formally present the Datalog rewriting. We take as input a
set of correct structure rules, and a query q. We enumerate the atoms
of the query from 1 to j, and the variables of the query from 1 to k.

4.2.1 Initializing Patterns Predicates

Let P be a pattern. We bijectively associate each term of P with
a fresh constant by πP , and for every atom a(x1, . . . , xk) assigned
to P , we create an atom a(πP (x1), . . . , πP (xk)). We also associate
with P a fresh predicate qP , whose arity equals the number of atoms
in q plus the number of variables in q. If ai is the ith atom of the
query, and there is a homomorphism π from ai to atoms(P ), we
create the following rule:

→ qP (e1, . . . , ej , t1, . . . , tk),

where:

• e` = 1 if ` = i, 0 otherwise;
• t` = πP (π(x`)), if x` belongs to the arguments of ai, t` = �

otherwise.

4.2.2 Propagating Partial Homomorphisms

We now create a predicate link that specifies correspondences be-
tween terms of a bag and terms of its immediate parent. Let
(P, λ, P ′) be a structure rule. We first create the following two rules:

• → linkP,λ,P ′(×,×);
• → linkP,λ,P ′(�,�).

The first one specifies that a term that has been mapped, but whose
image has been forgotten remains in that case when we propagate
the information in a new pattern. The second rule specifies that a
term that has not yet been mapped remains unmapped. Then, for any
term z such that λ(z) = y, we create the following rule:

→ linkP,λ,P ′(πP ′(z), πP (y)),

For any constant x that does not belong to the domain of λ, we create
a new rule:

→ linkP,λ,P ′(πP ′(x),×).

The propagation rule is then:

qP ′(x1, . . . , xj , y1, . . . , yk) ∧
∧

1≤i≤k

linkP,λ,P ′(yi, y
′
i)

→ qP (x1, . . . , xj , y
′
1, . . . , y

′
k).

4.2.3 Combining Partial Homomorphisms

To combine partial homomorphisms with a Datalog program, we use
an auxiliary ternary predicate, compatible. First, on special symbols
0 and 1, it states that if at least one of the homomorphisms maps an
atom, then the combined homomorphism does so as well.

• compatible(0, 0, 0)
• compatible(0, 1, 1)
• compatible(1, 0, 1)
• compatible(1, 1, 1)

Then, the predicate also checks that images of the same variable are
not differently defined in both homomorphisms.

• compatible(x, x, x), for any x 6= ×
• compatible(x,�, x), for any x (including ×)
• compatible(�, x, x), for any x (including ×)

We thus create one combination rule per pattern:

qP (x1, . . . , xj+k) ∧ qP (x′1, . . . , x
′
j+k)∧∧

1≤i≤j+k

compatible(xi, x
′
i, x
′′
i )→ qP (x′′1 , . . . , x

′′
k).

Last, we introduce a predicate goal, with a rule per pattern:

qP (1, . . . , 1, x1, . . . , xk)→ goal.

4.3 Properties of the Rewriting

From Property 1 follows the correctness of Π(S, q), i.e., q is entailed
by F and R if and only if goal is entailed by the Datalog rewriting
designed in the previous section. Let q be a query of j (ordered)
atoms. Let b = (b1, . . . , bj) is a tuple of size j whose elements are
either 0 or 1. We denote by qb the subset of q that contains exactly
the ith atom of q, for all i such that bi is equal to 1. For an atom
a = qP (b1, . . . , bj , y1, . . . , yk), we define qa = q(b1,...,bk). We also
define πa as the function {xi 7→ yi | yi 6∈ {×,�}}, that is, πa
maps exactly those terms xi of q to their respective yi for which yi
is different from × and �. We can now express Property 1.

Property 1 (Correctness of the Rewriting) Let S be a set of struc-
ture rules, and q be a conjunctive query. It holds that a =
qP (b1, . . . , bj , y1, . . . , yk) is entailed by Π(S, q) if and only if for
any bag B of pattern P , there exists a homomorphism π from qa to
the atoms associated with the tree generated from B by S such that
ΨB ◦ π|dom(πa)

= πa.

Property 2 (Size of the Rewriting) Π(S, q) containsO(p·|q|·tk+
p2 · tf ) rules, where p is the number of patterns, t is the maximum
number of terms associated with a pattern, k is the maximum arity of
a predicate and f is the maximum size of a frontier of a rule.

5 Pattern Oblivious Sets of Rules

The rewriting presented in the previous section is polynomial in the
number of patterns. Recall that patterns are elements of the range of
an equivalence function. A straightforward way to ensure that it is
also polynomial in R, F and q is thus to ensure that there exists a
correct equivalence function of range of polynomial size. This is not
possible in the general case of gbts, and we thus reverse-engineer by
instantiating the patterns and then considering the adequate rule sets.

5.1 Definition and Links with other Known Classes

In this section, we focus on the structure function, and a pattern will
thus be a pair (RP , σP ) where RP is a rule and σP a fusion of its
frontier. Moreover, two patterns are incomparable if they are distinct.
We still associate a pattern with terms, frontier, and atoms, by taking
the image of the head ofRP by σP . We then define pattern oblivious
rulesets in a straightforward (but not constructive) way as follows.



Definition 9 (Pattern Obliviousness) A set of rules R is pattern
oblivious if it is gbts and if for any fact F , the structure function
is a correct equivalence function.

When having a polynomial number of patterns, the rewriting pro-
posed in the previous section allows to derive a non-deterministic
polynomial algorithm for conjunctive query answering, which is
polynomial in data complexity. Together with lower bounds coming
from the coverage properties of EL stated below, this allows to state
the following complexity results.

Property 3 (Complexity of Conjunctive Query Answering)
Conjunctive query answering under pattern oblivious sets of rules
has PTIME-complete data complexity. Its combined complexity is
NP-complete if the frontier size and the arity are bounded.

Before turning to the complexity of the recognition of pattern obliv-
ious rules, let us point out that this existential rule fragment covers
lightweight description logics classically used for OBDA.

Property 4 (Covering of ELHdr) Let R be the canonical transla-
tion of an ELHdr ontology into first-order logic. R is a pattern
oblivious set of rules.

Linear rules are existential rules where the body contains at most one
atom. Linear rules (and thus DL-LiteA) are pattern oblivious.

Property 5 (Covering of Linear Rules) Let R be a set of linear
rules. Then,R is pattern oblivious.

In summary, pattern oblivious rules are strictly more expressive than
ELHdr and DL-LiteA without complexity increase compared to
ELHdr . This expressivity increase also exists while keeping the typ-
ical requirement of DLs relative to arities and acyclic rules.

Example 1 Let us consider consider the following translation of an
ELI ontology: RELI = {R1 = p(x) → r(x, y), R2 = r(x, y) ∧
h(x) → r(y, z)}. Let us consider F = {p(a), h(a), p(b)}. R1 is
applicable by mapping its frontier either to a or b, creating two bags
in the associated derivation tree,Ba (resp.Bb) with associated atom
r(a, ya) (resp. r(b, yb)). Ba and Bb have the same image by the
structure function. However, R2 is applicable only by mapping its
frontier to ya, and no other rules are applicable. This shows that
the structure function is not a correct equivalence function, and thus
RELI is not pattern oblivious.
R′ELI = {R1 = p(x)→s(x, y)∧s(z, y) ∧ h(z), R2 = s(x, y) ∧

h(x)→s(x, z)∧p(z)} is expressible neither in ELHdr nor in DL-
LiteA. It is however pattern oblivious, since any bag created by R1

has a similar child created by R2 mapping its frontier to the fresh
instantiation of z, and a similarly for bags created by R2.

Last, let us point out that pattern-oblivious rules are syntactically
incomparable with other known class of existential rules that ad-
mit polynomial data complexity, such as guarded rules [7]. Exam-
ple 1 already shows that guarded rules are not necessarily pattern
oblivious. For the converse, one can consider {r(x, y) ∧ s(y, z) →
r(z, t) ∧ s(t, u)}.

5.2 Complexity of the Recognition Problem
Unfortunately, it happens that deciding if a set of rules is pattern
oblivious is a complex problem.

Property 6 Deciding if a given set of rules is pattern-oblivious is a
Πp

2-hard problem.

We thus define forward-only rules, which are a specific case of pat-
tern oblivious rules, and show that forward-only rules are recogniz-
able in polynomial time, provided the size of their bodies is bounded.
This assumption is natural in practical cases, and it is worth to note
that considering rules with bodies of bounded size does not ensure
decidability of the conjunctive query answering problem if no fur-
ther constraints are considered.

Since recognizing pattern obliviousness is hard, we define a more
restricted class of rules, that implies pattern obliviousness, and that
can be recognized in polynomial time.

Definition 10 (Forward-only Sets of Rules) LetR be a set of exis-
tential rules.R is forward-only if it is gbts and if it holds that for any
fact F , any R-derivation S of F , any bag B of DT (S), any rule R
in R, if π is a homomorphism of body(R) into Fk such that the im-
age of the frontier ofR is included in terms ofB but not of its parent,
then π(body(R)) is a subset of the atoms associated with the subtree
of DT(S) rooted in B.

Property 7 LetR be a set of existential rules. IfR is forward-only,
thenR is pattern oblivious.

We now focus on the recognizability of forward-only rules. To
prove this, we associate with any set of existential rules a set of struc-
ture rules that represents which rule may be applied (and in which
way), provided that we restrict ourselves to rule applications that sat-
isfy the conditions of Definition 10.

Definition 11 (Entailment of a Structure Rule) Let R be a set of
rules, S be a (possibly empty) set of structure rules, P and
P ′ two weak equivalence patterns (associated with (RP , σP )
and (RP ′ , σP ′)) and (P, λ, P ′) be a structure rule. We say that
(P, λ, P ′) is entailed by S and R if at least one of the following
three conditions holds:

• (P, λ, P ′) ∈ S;
• there is a homomorphism π from body(RP ′) to σP (head(RP ))

such that for any x ∈ fr(RP ′), π(x) = λ(x);
• the following two conditions hold:

– Π(S, body(RP ′)) |= qP (1, . . . , 1, y1, . . . , yk);

– λ = πqP (1,...,1,y1,...,yk)|fr(RP ′ )
,

where πqP (1,...,1,y1,...,yk) is defined as in Property 1.

Since there is a finite number of structure rules and that S and R
entail S, Definition 12 is valid.

Definition 12 (Oblivious Structure Rules) LetR be a set of rules.
The set of oblivious structure rules of R is obtained as follows. Let
S0 = ∅. For any i > 1, Si is equal to the set of structure rules that
are entailed by R and Si−1. The set of oblivious structure rules of
R, denoted by SR, is the first Si such that Si = Si+1. For any i ≥ 1,
a structure rule that belongs to Si \ Si−1 is said to have rank i.

In the following we state two technical properties of the set of
oblivious structure rules of a set of existential rules. First, Property 8
deals with the soundness of the set of oblivious structure rules, while
Property 9 focuses on a notion of completeness.

Property 8 Let R be a set of existential rules, and SR the set of
oblivious structure rules of R. If (P, λ, P ′) ∈ SR, then for any fact
F , any greedy R-derivation F0, . . . , Fk of F , any bag B of pattern
P in DT(S), there exists an extension S′ of S that is greedy and is
such that B has a child B′ of pattern P ′ and of link ψ−1

B ◦λ with B.



Property 9 Let R be a set of existential rules, F be a fact, S be
a greedy derivation of F = F0, . . . , Fk, such that for any i > 1,
Fi = α(Fi−1, Ri, πi). We denote by Bp(i) the parent of the bag of
DT(S) created by the application of Ri by πi. We assume that S is
such that for any i, πi maps the body of Ri to the atoms associated
with the subtree rooted in Bp(i). Let B,B′ be bags of DT(S) such
that fR(S,B) = P and fR(S,B′) = P ′, and that B′ is a child of
B with corresponding link λ. Then (P, λ, P ′) belongs to SR.

We can now use these two properties to prove the following result.

Property 10 Let k be a fixed integer. One can decide in polynomial
time whether a set of existential rulesR (whose rule bodies have less
than k atoms) is a set of forward-only rules.

We finish this section by providing the reader with an example of
pattern-oblivious set of rules that is not forward-only.

Example 2 Let us consider R = {R1, R2, R3}, with R1 =
p(x) → r(x, y), R2 = r(x, y) ∧ q(x) → s(y, z) and R3 =
r(x, y) → q(x). Let F = {p(a), q(a)}. R1 is applicable, creat-
ing r(a, x1). R2 is then applicable, by mapping its frontier to x1.
However, an atom of the initial fact is used to map the body of R2,
and thus, the image is not included in the subtree rooted in the bag
created by the application of R1. This shows that R is not forward-
only. Nonetheless, R is pattern oblivious. Given the rule set, it is
enough to check that all bags created by the rule R1 have equivalent
children. This is the case, since R3 allows to add the necessary atom
to trigger an application of R2 whenever R1 is applied. Thus, the
structure function is not a correct equivalence function.

6 Conclusion and Further Work

In this work, we considered the recently introduced class of greedy
bounded treewidth sets of rules and proposed a novel algorithm that
aims at taking advantage of database technology. We first improved
an already existing algorithm [22], modifying the ad-hoc querying
operation developed in it by the evaluation of a Datalog program,
with the aim of enabling the use of existing Datalog solvers. Since
gbts rules are extremely complex, we also identified a large class
of rules on which our algorithm is readily applicable and that have
good computational properties: conjunctive query answering under
such set of rules is NP-complete in combined complexity (when the
arity and the frontier size are fixed) and PTIME-complete in data
complexity. We also defined one of its subclasses, namely the one
of forward-only rules, that is polynomially recognizable under mild
assumptions. Moreover, these classes of rules are a significant gener-
alization of lightweight description logics that are the basis of widely
used Semantic Web languages (ELHdr⊥ and DL-LiteA): indeed, even
when restricting them further to the typical DL restrictions, they still
provide a strict generalization of these lightweight description logics.
We believe that the presented classes are a good trade-off between
expressivity and complexity of reasoning.

As future work, we are going to implement the proposed algorithm
for large subclasses of gbts, including in particular pattern oblivious
and guarded sets of rules. The practical evaluation of such an algo-
rithm is not straightforward, as rule sets that actually make use of all
the allowed features are not available yet. We believe this is due to
the fact that appropriate tools to develop and use such ontologies are
not available yet (another instance of the well-known chicken-and-
egg problem), and not to the fact that the presented features are not

useful. We also believe that the oblivious set of structure rules is in-
teresting in its own right, since it could be a useful tool in the study
of approximate reasoning, in particular by studying the difference
of semantics between an arbitrary rule set and the Datalog program
generated from its set of oblivious structure rules.
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