
Faculty of Computer Science Institute of Artificial Intelligence Knowledge Representation and Reasoning

Modern Parallel SAT-Solvers

Steffen Hölldobler, Norbert Manthey, Van Hau Nguyen, Peter Steinke,

Julian Stecklina

KRR Report 11-06

Mail to Bulk mail to Office Internet

Technische Universität Dresden Technische Universität Dresden Room 2006 http://www.wv.inf.tu-dresden.de

01062 Dresden Helmholtzstr. 10 Nöthnitzer Straße 46

01069 Dresden 01187 Dresden



Modern Parallel SAT-Solvers

Steffen Hölldobler, Norbert Manthey, Van Hau Nguyen, Peter Steinke, Julian Stecklina

Faculty of Computer Science

Technische Universität Dresden, 01062 Dresden, Germany

sh@iccl.tu-dresden.de

Abstract

This paper surveys modern parallel SAT-solvers. It

focusses on recent successful techniques and points out

weaknesses that have to be overcome to exploit the full

power of modern multi-core processors.

1. Introduction

The Boolean Satisfiability Problem (SAT) is one

of most-researched NP-complete problem in Computer

Science [13]. Over the last twenty years improvements

on all levels, from the logic over calculi, heuristics

and data structures to low-level processes, have turned

modern sequential SAT-solvers into practical tools in

many different application areas like hardware and

software verification, planning, scheduling, termination

analysis, configuration, or bioinformatics (see [6]).

An analysis of modern sequential SAT-solvers has

revealed that the efficiency and speed of these systems

hinges – among others – on the appropriate usage of

the available hardware and low level processes like

access to caches and main memory, the usage of slab

allocators, prefetching schemas or lazy maintenance

(see e.g. [29], [10] for details).

Of course, the steady improvement of single pro-

cessor systems in the last decades has also helped to

increase the performance of SAT-solvers considerably.

However, from an architecture point of view we cur-

rently observe a dramatic change from single proces-

sor systems to multi-core designs including integrated

memory controllers and large caches leading – among

others – to non-uniform memory access latencies.

Naturally, modern SAT-solvers should utilize these

multi-core design. However, from a theoretical and

worst-case analysis point of view, the SAT-problem is

inherently sequential. This leads to several serious re-

search problems: How can SAT-problems be solved in

a multi-core system effectively? Which calculi support

multi-core systems? Which data structures, heuristics,

and low level processes make appropriate use of the

non-uniform memory access latencies? Which kind

of communication shall be employed? How can we

compare the performance of parallel SAT-solvers? Can

the encoding of applications into SAT-problems be

improved in order to better utilize multi-core archi-

tectures?

After stating some preliminaries in Section 2, se-

quential SAT-solvers are characterized in Section 3.

The main contribution of this paper is a survey on

modern parallel SAT-solvers in Section 4. In Section 5

we briefly review modern multi-core architectures.

A second contribution is a first attempt to specify

requirements for the implementation of SAT-solvers on

multi-core designs in Section 6.

2. Preliminaries

A problem that should be solved by a SAT-solver

is usually specified in conjunctive normal form (CNF)

of propositional logic. This form restricts propositional

logic to variables and the three connectives negation

(¬), disjunction (∨), and conjunction (∧). A literal

consists of a variable A and is either positive (A) or

negated (¬A). A clause is a disjunction of literals.

Finally, a (CNF) formula is a conjunction of clauses.

It can be shown that any propositional formula can be

transformed into an equivalent formula in CNF. 1

An interpretation is a mapping from formulas to the

set of truth values {⊤,⊥}. It is usually represented

by a mapping from variables to truth values as the

connectives are interpreted in a standard way. SAT-

solvers construct interpretations and in this process

make use of partial interpretations, where only some

1. In this paper we ignore the problem of characterizing an
application by a propositional logic formula as well as its transfor-
mation into CNF. These processes are quite involved and subject of
research. In particular, knowledge encoded in the application might
be extremely valuable for heuristic and other decisions made by a
SAT-solver.



of the variables are assigned to truth values. Partial

interpretations are applied to formulas by replacing the

already assigned variables by their truth values2 and

simplifying the obtained formula accordingly.

The Boolean Satisfiability Problem is the question

whether there exists an interpretation for a proposi-

tional formula such that the formula evaluates to ⊤
with respect to the interpretation.

3. Sequential SAT-Solving

Modern sequential SAT-solvers are still rooted in

the Davis-Putnam-Loveland-Logemann (DPLL) algo-

rithm [15], [14]. The algorithm consists of rules which

are applied to generate and traverse a binary (semantic)

search tree. Each branch of the search tree represents

a (partial) interpretation. Let F be the given formula

and I the interpretation represented by branch B. We

distinguish the following cases: (i) If I maps F to ⊤,

then a model has been found and F is satisfiable. (ii) If

I does not map F to a truth value, then B is expanded

by the so-called split rule: a currently unassigned

variable is assigned a new truth value and a backtrack

point is recorded. Afterwards, I is extended by all

the implications that can be found with respect to the

formula. This is mainly done by the unit propagation

rule, but additional simplification rules are possible.

(iii) If a clause of F is mapped to ⊥ by I , then this

clause is called conflict (clause) and B can be closed.

Thereafter, naive backtracking is applied to explore

most recent alternative branches in the search tree.

The idea to analyze the conflict clause further led to

the conflict driven clause learning (CDCL) algorithm

that was first presented in the SAT-solver GRASP [55].

By applying resolution to the conflict clause and to the

clauses which have been used in the implications, new

clauses are learned. These learned clauses can be added

to the given formula leading to an improved backtrack-

ing behavior, where larger parts of the search tree are

closed by a single conflict. The most commonly used

version of this algorithm is described in [64].

In addition, very special data structures like the two-

watched-literal schema [47] and an involved memory

management (see e.g. [29], [10]) are implemented to

minimize the number of accesses to memory as well

as the latency of memory access.

Heuristics are applied at many different stages like,

for example, to decide which variable is assigned in

a split step, which assignment is first explored, which

clauses are learned, or which learned clauses are to be

removed again (see e.g. [47], [51], [17]).

2. Formally, by formulas which are valid or unsatisfiable, resp.

Restarts are another technique to improve the perfor-

mance. In this case, the search for a satisfying assign-

ment is started from scratch again. Since previously

learned clauses are kept, the search tree is usually

explored in a very different way (see e.g. [52]).

In certain cases it appears to be promising to look-

ahead by assuming unit literals. This techniques is

valuable for certain formulas, because the look ahead

gathers extra information about the formula and can

exclude splitting variables early.

The most commonly used SAT-solver that imple-

ments most of the mentioned techniques is MINISAT

2.2 ([48], [17]). This solver has been first implemented

in 2003 and has been improved each year. It is used as

a basis for many sequential and parallel SAT-solvers.

4. Development of Parallel SAT-Solvers

While sequential solvers have been improved it-

eratively, also parallel systems have been developed.

Based on single-core architectures, the first paralleliza-

tions were based on network communication. With the

occurrence of multi-core CPUs, shared memory was

also used for communication. Orthogonally, with the

move from DPLL- to CDCL-solvers including restarts,

different techniques were developed to parallelize the

algorithms for solving SAT-instances.

In 2006, a first overview on parallel SAT-solvers

was presented in [56]. However, much of the work

on parallel SAT-solvers was done in the last five

years and we focus on these recent developments. We

further restrict our attention to complete solvers, whose

parallelization should reach a superlinear speedup for

satisfiable instances.

4.1. DPLL-based parallelizations

The recursive application of the split rule in the

DPLL algorithm provides a natural way to parallelize

the search. Initially, each computing node receives

the given formula. Thereafter, only partial interpre-

tations are communicated such that each computing

node receives a different partial interpretation. The

first parallel SAT-solvers used single-core CPUs which

communicated via a network; see [56] for a survey.

The introduction of shared memory computing sys-

tems made it possible to replace the communication via

networks by shared memory communication. In [58]

two parallelizations of the SAT-solver SATZ were com-

pared: a version using single-core CPUs with network

communication based on MPI [21] and a version using

a multi-core CPU with shared memory communication

based on OpenMP [50].



In a first step, several splitting heuristics were con-

sidered: the original SATZ heuristic, picking variables

randomly, and picking the variable that occurs maxi-

mally in small sized clauses [20]. Load balancing is

obtained by picking enough splitting variables, such

that sufficiently many subformulas can be created by

assigning all possible truth-value combinations to the

splitting variables. A first experiment showed that in

both parallel versions the best results were obtained by

splitting the search tree according to the SATZ splitting

heuristics.

In a second step, the two parallel versions were

compared. The result of the study showed that the

network communication is more efficient than the

shared memory communication. This can be explained

as follows: running a DPLL solver on a single-core

CPU gives this solver full access to all the resources

of this computing node. Thus, the solver can exploit

the memory hierarchy, especially the small caches, as

much as possible to maintain a high performance. For

the network configuration, the overhead comes only

from the comparable high communication times. If a

solver is executed on a multi-core CPU using shard

memory communication, then the communication time

is much smaller. On the other hand, as the cores

share memory, there are frequently more occurrences

of cache misses leading to a 15% decrease of the

performance of a solver running on a particular core

(compare [46]). Because there is only little communi-

cation (by communicating partial interpretations), the

slowdown based on cache misses on the multi-core

architecture is higher than the network communication

costs.

4.2. CDCL-based parallelizations

With the success of the first CDCL-based SAT-

solvers in 1996 [55], the situation changed dramati-

cally. Due to the addition (and deletion) of learned

clauses the search space is traversed much less orderly

than in DPLL-based solvers and many new questions

arose like: Which learned clauses should be send

to other solvers? Which learned clauses should be

incorporated into the own search? When shall learned

clauses by deleted?

4.2.1. Network communication.

GRIDSAT [9] was the first solver employing a

grid. It uses a master-slave approach. A task queue

is provided by the master and slaves can be added if a

SAT-instance is hard to solve (see [56] for an in-depth

discussion). A performance analysis revealed that the

speedup can be from sub- to super-linear for both

satisfiable and unsatisfiable SAT-instances. Still, the

authors claim that the parallel solver is more efficient

than a sequential one because (i) by using several

CPUs more parts of the search space can be analyzed in

the same time, (ii) by splitting and removing redundant

parts of subformulas each node can solve smaller

formulas, and (iii) by splitting an instance resources

can be added whenever they are required. A problem

of GRIDSAT appears to be that learned clauses are

not kept if a slave finishes to analyze an unsatisfiable

subformula. In this case, the slave becomes idle and

when solving the next job it cannot use its previously

learned clauses.

PMSAT [22] is based on MINISAT 1.14 and MPI.

Like GRIDSAT, it uses a master-slave approach, but

assigns a fixed number of slaves to a SAT-instance.

Thus, new tasks are only assigned if a slave becomes

idle. The master creates the assumptions that are used

to split an instance. In particular, for k slaves, 3k
splitting variables are selected such that 23k jobs have

to be handled in the worst case. The master stores

the splitting variables and sends a partial interpretation

based on these variables to the next free slave. Load

balancing is implemented by providing sufficiently

many tasks.

After a slave has solved its task and proved unsat-

isfiability, it can send 50 of its most active learned

clauses with a size of less equal 20 literals to the

master. The underlying MINISAT is able to solve an

instance provided a certain set of assumed literals.

The created learned clauses are also valid for all other

parts of the search space, because these learned clauses

contain the assumed literals if necessary. Thus, the

master can forward these learned clauses to the running

slaves. Furthermore, the master removes tasks which

became unsatisfiable based on the newly received

learned clauses from its tasks queue.

PMSAT implements two approaches for selecting

the splitting variables and for applying the selected

variables to create subtasks. Either the most frequent

variables or variables that occur most frequently in

large clauses are selected. The motivation for the latter

is to reduce the size of the formula as much as

possible. The selected variables are used to generate

subtasks by either creating a simply binary search tree

based on the possible assignments of these variables

or by scattering [34]: Let v1, . . . , vn be the selected

variables. In a first step, scattering creates a binary

split by assigning the unit clauses [v1], . . . , [vn] to the

given formula on the one hand, and by assigning the

clause [¬v1, . . . ,¬vn] on the other hand. Thereafter,



this schema is applied recursively to the latter, possibly

with new variables, until sufficiently many splits are

created. Based on the possible four configurations in

PMSAT, experiments have been carried out by com-

paring the performance of the best and the worst con-

figuration. For the best configuration and unsatisfiable

SAT-instances an efficiency3 upper bound of two has

been reported. For satisfiable instances almost always

a super-linear speedup could be reached. However, for

the worst configuration and satisfiable instances only

sometimes a super-linear speedup could be found and

unsatisfiable instances have most often an efficiency

below 0.5. Additionally, there is the open question of

how to determine the best configuration given a SAT-

instance. Furthermore, measuring the runtime of the

solver is a bit strange. The parallel runtime is the sum

of the runtime of the master and the most occupied

slave. However, the runtime of all the other running

slaves has not been taken into account.

Another method to solve SAT-instances is by ap-

plying different search strategies in parallel and in-

dependently. In [32] different restart strategies have

been implemented into MINISAT 1.14 to be executed

in a grid. In particular, the restart schemas based

on the Luby series [43] and the exponential series

21.2X , where X is the number of the next restart, are

investigated. Two restart parallelization schemas are

analyzed: the straightforward and the faithful schema.

Let N ∈ N. The straightforward schema divides

the restart schedule into partitions and executes N

parallel tasks per partition as follows: The first partition

consists of the first N restarts of the chosen schedule;

these restarts are used for the first N parallel tasks.

The second partition consists of the restarts number

N + 1 to 2N ; these restarts are used for the second

N parallel tasks. This partitioning is repeated until

the desired number of tasks is created. The faithful

schema uses the same partition as the straightforward

schema, but only one task per partition is created.

One should observe that there is no communication

between the solvers in the grid as they solve their tasks

independently.

The results of this study show that the efficiency of

this problem reaches from 0.5 to close to 1 if there

are no delays in the grid. When the task submission

delay is included into the runtime, no super-linear

speedups are reported. Furthermore, the study shows

that the more parallel solvers are executed, the less

3. The efficiency is the ratio of the sequential time Ts and the
product of the parallel time Tp and the number of processors p:

eff =
Ts

Tp×p
.

important is the used restart strategy. Additionally, it

is reported that already a small number of parallel

solvers is sufficient to solve a SAT-instance fast. This

result indicates that the approach is unlikely to be

highly scalable. However, since grids provide a huge

parallel computing capacity, the authors consider their

approach suited for solving a set of instances fast.

Running a solver in parallel on a grid has been

improved in [31] by collecting learned clauses of

unterminated jobs and share them with the other par-

allel solvers that are started after the termination. The

study shows that sharing learned clauses increases the

performance, but no superior heuristic has been found.

Furthermore, it is shown that adding learned clauses

most of the time increases the solver performance. In

detail, hard instances that have not been solved by

sequential solvers can be solved by the clause sharing

grid approach.

The parallel solver C-SAT [49] combines two ways

of parallelism, viz. cooperative parallelism by splitting

the search space and competitive parallelism by execut-

ing different solver configurations on the same search

space. The solver is based on MINISAT 1.14 and

MPI, and is implemented for computing clusters. Two

different configurations of MINISAT are obtained by

using (i) the VSIDS heuristics [47] and (ii) a heuristics,

where the activity is stored per literal, for the selection

of variables. Search space splitting is implemented by

selecting split variables from the current path in the

search tree.

C-SAT is organized in three layers. In the first layer a

grand-master connects to several masters as its slaves.

The grand-master distributes the input formula to the

masters. Furthermore, it receives learned clauses from

the masters and distributes them among all masters.

Additionally, all the learned clauses are checked for

redundancy and are simplified if possible. All mas-

ters work on the same input formula. Each master

maintains a group of slaves that work on subtasks.

Selected learned clauses are sent to the master every

100 conflicts.

The highest performance of C-SAT has been

achieved by using both decision heuristics in parallel as

this allows the solver to learn more different conflict

clauses. In particular, the efficiency of this approach

is super-linear for satisfiable SAT-instances and more

than 0.6 for unsatisfiable SAT-instances.4 The experi-

ments further revealed that by running more slaves the

4. One should observe that the means reported for C-SAT are
geometric means, whereas all the other reported means are arithmetic
means. Usually, the value of the arithmetic mean is higher than for
the geometric mean.



chance of learning redundant clauses increases. Finally,

the stability of the solver with respect to runtime

increases, if more processing units are used to solve a

SAT-instance.

In [33] MINISAT 1.14 is used to analyze search

tree partitioning techniques. In contrast to all previ-

ously mentioned solvers that split the search space,

the presented solver does not only split the input

formula and solves the subformulas, but also solves

the original SAT-instance in parallel. By doing so,

the solver is able to solve a given input instance at

least as fast as the sequential solver. In particular,

[33] discusses three tree partitioning techniques. The

first technique is called simple splitting and simply

solves the input instance by executing several solvers in

parallel. The second technique splits the tree according

to the DPLL procedure and additionally applies a

look ahead before the next split. This way, branches

that result in a conflict at the next level are closed

immediately and a better splitting variable is selected

instead. The third techniques splits the search tree

based on scattering. Because the grid environment

limits the task execution time, subtasks might time

out, in which case the subtask is split further. For

experiments, splitting a formula into subtasks is limited

to 5 minutes. Tasks may be solved within 90 minutes.

The comparison of the partition techniques shows that

the DPLL look ahead partitioning can solve instances

faster than scattering. However, the latter is able to

solve more instances of the used benchmark. A major

disadvantage of the approach is that learned clauses

are completely lost when a certain subtask is solved

or times out.

This disadvantage has been tackled in further re-

search [35]. Based on MINISAT 2.2 a grid is used

again, but now selected learned clauses are submitted

back to the master if a slave finishes its task. Two

approaches are considered: In the assumption tagging

approach the master adds the list of assumptions to the

learned clause before sending it to its slaves. Because

MINISAT treats these assumptions as decisions, all

learned clauses are logical consequences of the input

formula. However, the more assumptions there are, the

longer the clauses might get. Very long clauses may

be generated, which do not prune the search space

much. As a result, the overall performance of the

approach decreases. In the flag-based tagging approach

the assumptions are not treated as decision but as

clauses of the formula. In this way, the input formula

can be simplified before the search is started. Now,

a clause that depends on the assumptions is tagged.

Whenever a new learned clause is derived, it is also

tagged if a tagged clause participated in the derivation.

This way, the untagged learned clauses, i.e., the clauses

which are logical consequences of the input formula,

are underestimated, but they are much shorter than

in the first approach. Treating assumptions as part

of the formula speeds up the solving process twice:

Firstly, the formula in each task can be simplified

and, secondly, the returned learned clauses are much

smaller. Experimental results show that the approach

slows down solving simple formulas but improves if

more difficult SAT-instances have to be solved.

4.2.2. Shared-memory communication. When multi-

core architecture became available, parallel SAT-

solvers have been developed that use the shared mem-

ory as communication basis. As discussed in Sec-

tion 4.1 running DPLL-based solvers in parallel on

shared-memory communication slowed each individual

solver down by about 15%. Because using two cores

often leads to shorter runtimes than than using a single

core, the performance of the SAT-solvers increased by

exploiting more cores, although the achieved speedup

might not be the best. Furthermore, the architecture

changed. The first multi-core system were built by

combining two single-core CPUs, where each CPU

had its own memory bus and main memory. Thus,

non uniform memory accesses slowed the performance

down. This effect was decreased by combining several

cores into a single CPU. Thus, memory access became

uniform again and the access times of sequential and

parallel solver became more similar again.

The first shared memory solver based on CDCL

is PASAT [59]. Each running solver picks the next

decision literal by choosing a literal from short clauses

to prune the search tree by receiving unit clauses. The

parallel execution is based on search space partitioning.

To this end, a threat splits a part of the current path

in the search tree, sets up another solver, and marks

the corresponding branch as closed. The newly set-up

solver starts analyzing the obtained subtask in parallel.

Learned clause of at most size 5 are shared among the

solvers by pushing them into a global storage. Each

thread incorporates all shared clauses into its database

by copying them into its private physical copy of the

formula. One should observe that a received learned

clause can close a task. The experiments showed

that the effect of sharing learned clauses is complex.

Depending on the given SAT-instance, the effect can

increase or decrease the performance of the solver.

Furthermore, the global storage for the learned clauses

can become a bottleneck for the performance, because



only one client can write to it simultaneously. Without

exchanging learned clause superlinear speedup can be

reached for satisfiable instances, whereas the efficiency

is close to 1 for unsatisfiable instances. When learned

clauses are exchanged, the performance for satisfiable

instances increased whereas it differs only slightly for

unsatisfiable instances.

By combining several multi-core computing systems

to a network, the performance of parallel solvers

can be increased further. This approach has been

applied to PASAT in [7]. Specifically, PASAT has

been distributed and different decision heuristics are

applied. Sharing of learned clauses is also extended

to the network. For each PASAT instance, a mobile

agent collects learned clauses from the other running

PASAT solvers. The authors notice that the runtime

distribution of the parallel solver heavily depends on

clause learning and sharing, because different parts of

the search space might be analyzed in different runs

resulting in very different run times.

The solver YSAT has been used to study the ef-

ficiency of shared memory solvers in [18]. For the

parallel implementation the authors chose to split the

search tree based on a variable that is close to the root

of the tree. The splits are stored in a global work queue.

All the learned clauses are also stored in a globally

accessible list. Both these data structures have to be

read and written by all threads. The formula is also

physically shared. The authors report a write blocking

overhead of up to 10 % for their parallel solver. Fur-

thermore, the standard deviation of the runtime of the

YSAT on certain instances ranges from 20 % to 30 %.

The scalability analysis performed in [18] is based

on several architectures and an input formula of the

size 1.5 MB. It was noticed that by using n cores

(where n is limited to 4) in parallel approximately n

times more learned clauses are produced than in the

sequential case in the same time. Consequently, the

necessary storage for the learned clauses also increases

n-fold. By using a single thread, the clocks per instruc-

tion (CPI) ratio is 1.4. This value is not 1, because

sometimes the CPU has to wait for longer memory

accesses. Still, this number is quite low, because the

instance and most of the learned clauses fit well into

the cache. When 4 threads are used, the ratio increases

to 3.7 and the number of stall cycles increases [29].

This effect can be explained by the increased number

of created learned clauses, whereas the size of the

cache is fixed. It can be assumed that the measured

effect is much smaller, if the input formula would

be much larger. In this case, the size of the learned

clauses is negligible and the CPI ratio would stay

almost the same for both the single core and quad-

core configuration. However, [18] concludes that using

multi-core parallelization cannot be done efficiently.

The solver MIRAXT [41] proved to be a counter

example. It parallelizes the solver MIRA [42] by split-

ting the formula based on the current path of the

search tree. Before solving an instance, the prepro-

cessor SatELite [16] is applied. The authors claim

that by doing so bad splitting variables are already

removed from the formula. As in YSAT, all clauses

are shared physically. To implement the two-watched-

literal unit propagation [47], each thread has to in-

troduce an additional literal reference to store the

currently watched literals. The main difference is the

way how to share learned clauses. As in YSAT, all

learned clauses are shared, but each thread can decide

which clause it wants to incorporate. In particular, only

clauses that appear to be useful are incorporated, viz.

unsatisfied clauses which contain (after reduction) at

most 10 literals. In contrast to PASAT, this approach

also provides a communication without delays because

all threads can access the shared clauses immediately.

The performance analysis showed, that the two-core

solver is more powerful than the single core solver,

although the efficiency seems to stay below 1.

By extending MIRAXT to networks [54], its perfor-

mance could be increased further. The parallel incarna-

tion divide the search space by requesting splits from

loaded clients. Furthermore, learned clauses are shared

among the master and the client, where the master

implements a receive filter. Although the efficiency of

PAMIRAXT [54] is only about 0.25 for 8 cores, it is

still able to solve many instances faster than sequential

reference solvers as MINISAT 2.

The parallel solver PMINISAT [11] is based on

MINISAT 2.0. It splits SAT-instances on the top-most

decision variables of the current search path to create

a task queue. Shared learned clauses are incorporated

into the running solvers after reducing them with

respect to the current partial interpretation. A novel

idea of this solver is to keep learned clauses if they

reduce to a unit clause under the partial interpretation

of some task in the task queue. Thus, whenever an

idle solver is assigned the next task, it can propagate

the corresponding units by incorporating these shared

clauses.

The way of splitting an instance has been analyzed

in [46]. In addition, SAT4J// implements parallel port-

folio solving. It first splits the instance and if the



runtime for the splitting mechanism reaches a certain

limit, the solver switches to the portfolio approach (see

Section 4.2.3) and tries to solve the instance by using

different heuristics. The novel idea for splitting is to

execute several CDCL solvers with the VSIDS decision

heuristic in parallel. After a certain time, the activities

of the variables are cumulated and, afterwards, the vari-

ables with the highest activities are chosen as splitting

variables. In this way, the overall information about

the variables is higher than if a single CDCL solver

would be used to determine the splitting variables. The

results of the work show, that the performance of the

hybrid approach is higher than using either splitting

or portfolio solving purely. Furthermore, the analysis

shows that running four times SAT4J [40] on a quad-

core CPU in parallel slows down each solver by 25 %.

4.2.3. Pure Portfolio solvers. After it became clear

that the frequent use of restarts improved the perfor-

mance of sequential SAT-solvers significantly, many

researchers moved from cooperative parallelism by

splitting the search space to competitive parallelism

where all parallel solvers try to find a solution for the

same SAT-instance. The latter are often called portfolio

solvers.

With MANYSAT [27] portfolio solvers became pop-

ular. MANYSAT is based on MINISAT 2.0 and applies

several restart, decision and learning heuristics to its

four parallel instances. Learned clauses with at most

eight5 literals are shared among the instances. Each

MINISAT instance has its private copy of all the

clauses. The restart heuristics are the geometric, nested

geometric, arithmetic, and Luby series [43]. For the

decision heuristic the VSIDS heuristic with different

ratios for random decision, namely 2% and 3%, is

used. Finally, for two MiniSAT instances, learning

is extended by the algorithms mentioned in [2]. The

obtained efficiency for the chosen combination of the

heuristics is reported with 1.5 when compared to

MINISAT 2.1, the best sequential solver of the SAT

Race 2008.

Further experiments on the threshold for sharing

learned clauses in [26] showed that the performance

can be increased if a dynamic limit is used instead of

a static predefined limit. It has been shown that the

average size of learned clauses increases over time, so

that after a certain runtime no clauses would be shared

anymore. Thus, the threshold has to be adopted during

search. The authors suggest two measurements. The

first one is based on the number of the exchanged

5. The number was experimentally determined.

clauses between two solvers. If this number drops

below a threshold, the length limit is increased. Oth-

erwise, it is decreased. The second criterion is based

on the quality of the clauses, where the quality is

measured by the size of the clause after reduction. As

in the first measurement, the quality limit is loosened,

if the number of qualitative exchanged clauses drops

below a threshold. The performance of ManySAT was

improved by using the size based control. By also

adding the quality measure, 6 more instances out of the

201 instances of the SAT Race 2008 could be solved.

The overall performance of portfolio solvers can be

further improved by exchanging additional information

between the solvers. In [24], the solvers are divided

into masters and slaves and additional information is

sent from a master to its slaves. This information

may include the last decision literals, the asserting

literals of the last conflict analyses, or the literals

that have been used to derive the very last conflict

clause. With the additional information, the slaves

can either search in the same search space of their

master, can make better use of the learned clauses

of their master, or search around the same conflict

as their master, respectively. Experiments showed that

solving around the same conflict results in the best

performance. For the parallel running solvers, several

topologies were tested. It turned out that using two

masters and two slaves resulted in the best performance

of the solver, both in number of solved instances and

average runtime. In comparison to the original version

of MANYSAT, this configuration is able to solve nine

more instances on the industrial benchmark of the SAT

Competition 2009, namely 221 out of 292 instances.

The latest development on MANYSAT is to avoid

non-determinism introduced by the parallel execution

of the CDCL algorithm and the sharing of learned

clauses [25]. By introducing so-called barriers, the

solvers execution becomes repeatable. Barriers are

introduced at restarts and during the exchange of

learned clauses. Because learned clauses are shared

during a restart, all solvers wait at a restart until

each solver reaches a predefined barrier. Thereafter,

the learned clauses are shared deterministically. It was

shown experimentally that if the barrier is set after

a static period, the average waiting time among all

threads is quite high; If sharing is carried out after

10000 conflicts, the waiting time still consumes 17 %

of the overall runtime; For sharing at each conflict,

the waiting ratio is 40.9 %; It is reduced to 26.3 % if

the sharing of learned clauses is carried out every 100

conflicts. In order to minimize the waiting time, for

each solver the number of learned clauses is measured

and the periods are dynamically calculated. With this



technique, the deterministic parallel solver performed

as least as high as the non-deterministic version of

MANYSAT.

A different portfolio approach has been implemented

in the parallel solver SARTAGNAN [39]. This solver

supports up to eight cores, where only six of them

execute the CDCL algorithm. The seventh core uses

decision making with reference points [23] to solve the

instance. The last core tries to simplify the formula. All

reported simplifications are incorporated into the other

running solvers because the given SAT-instance and

all learned clauses are shared. Furthermore, updating

a clause or sharing learned clauses has been imple-

mented without using locks. Clauses are incorporated

into a solver, if their LBD activity [3] is good enough,

or if a certain percentage of the clauses literals have an

activity that is higher than half the maximum variable

activity.

Other recent successful parallel portfolio solvers

are PLINGELING [5] and a new version of CRYPTO-

MINISAT [60]. Both solvers execute the same solver

configuration in parallel and differ only in the used

random seed. Usually, only very short clauses are

shared. In particular, PLINGELING shares only unit

clauses. Both solvers have been successful in the SAT

Competition 2011. A different portfolio approach has

been also shown to perform very well. By simply

running very different solvers in parallel, the solver

PPFOLIO [53] was ranked high in most of the tracks of

the SAT Competition 2011. The different solvers have

been executed without any communication. Still, by

combining a stochastic local search solver [30], a look

ahead solver and several specialized CDCL solvers the

overall performance has been well enough to achieve

a good ranking.

4.3. Other parallelization approaches

In NAGSAT [19] the DPLL search has been paral-

lelized by nagging [61]. One master is executing a

DPLL search. Additional slaves are added that perform

nagging by picking the first r decisions of the master

in the same polarity, where r is chosen randomly. The

chosen split is called nagpoint. Afterwards, the slaves

perturbate the order of the remaining decision variables

and solve the same subspace as their master. Four

cases can occur: (i) a nagging slave finds a solution

before the master, (ii) a slave proves unsatisfiability

before the master, (iii) the master backtracks over the

nagpoint and, thus, proves unsatisfiability before the

slaves, or (iv) the master finds a solution before the

slaves. Experiments on NAGSAT showed that for two

computing nodes the efficiency for both satisfiable and

unsatisfiable instances is higher than 2.3. However, the

approach does not scale well up to 64 processors,

because the measured efficiency for satisfiable and

unsatisfiable instances is sub-linear. For satisfiable in-

stances, an efficiency of 0.65 can be reached, whereas

the efficiency for unsatisfiable instances is only 0.11.

An alternative splitting approach is to divide the

variables into two partitions and try to find a model for

each partition that can be extended so that the other

partition can be satisfied as well [57]. The splitting

works as follows. First, the set of variables V is

divided into two sets V = V1 ∪ V2. The intersection

Vjs = V1 ∩ V2 of this two sets should be as small

as possible because this set determines the number

of possible partial interpretations that have to be ex-

tended. According to the variable sets, the clauses are

partitioned into three sets: C1 is the set of all clauses

that contain only variables that do not occur in V2,

C2 is the set of all clauses that contain only that do

not occur in V1, and C3 is the set which contains

all remaining clauses. Solving is done by creating a

satisfying assignment for C1. If this assignment cannot

be satisfied with respect to C3 it is rejected. Otherwise,

an attempt is made to extend it with respect to C2 and

C3. Obviously, finding satisfying assignments for the

sets C1 and C2 can be done in parallel. Furthermore, in

JACKSAT [57], the splitting is applied recursively and

the models for the clause sets are created by using an

all model finding SAT-solver such as RELSAT [4]. The

approach has one weakness, namely finding a good

splitting that reduces the size of Vjs. The results in

the publication are created on instances that do have

less than 100 variables and at most 500 clauses. Still,

the runtime of the parallel solver is much slower than

the runtime of an sequential algorithm. An explanation

can be as follows: Because not only a single model has

to be found, but several models have to be created,

checked and extended, much additional work has to

be done compared to running a single tree search on

the original input formula.

Finally, in contrast to the statement that an optimized

search with already implemented shortcuts is hard to

parallelize, the solver PRISS [45] can run a parallel

two-watched-literal unit propagation [44]. Although it

has been shown in [37] that unit propagation itself is

P-complete, this publication shows that on real world

instances the performance of the solver can still be

increased. A reason for choosing to parallelize the unit

propagation is that this part of the algorithm uses 80%



of the overall runtime of a modern SAT-solver [29],

[10]. The parallel unit propagation separates the in-

put formula and learned clauses into partitions. Each

thread is assigned a private partition and it is the

only thread with access to these clauses during unit

propagation. Thus, each thread has to propagate the

current decision and its implied literals on its private

clause partition. Furthermore, found implied literals

have to be shared with the other threads to keep

completeness. This part of the algorithm introduces

overhead. The results of this study show that in average

an efficiency of 0.65 for two threads can be reached.

Furthermore it is shown, that the approach does not

scale beyond two threads. The performance of the

parallel unit propagation also suffers from the shared

memory bus as reported in [46].

5. Modern Architecture

Single processor systems have for a long time

dominated the computing landscape. The steady per-

formance improvements per processor generation left

little incentive to parallelize applications.

Improvements to uniprocessor performance started

to decline about ten years ago due to power dissipa-

tion problems, almost fully utilized instruction-level

parallelism, and missing improvements in memory

latency [28]. Parallelism instead of single core clock

frequency has started to dominate performance of a

given computer system. At present, every major chip

manufacturer has switched to multi-core designs.

Another development that is indirectly caused by

increased parallelism is the move away from front

side bus (FSB) architectures, in which every proces-

sor in a SMP system accesses main memory via a

shared bus. Because memory accesses from different

processors compete for bus and memory controller

resources, the front side bus can become a performance

bottleneck [12].

Current systems avoid this bottleneck by integrat-

ing memory controllers inside the processor die [38],

[65]. On system with multiple dies, memory accesses

are distributed across multiple controllers. this creates

non-uniform memory access latencies depending on

which memory controller has to serve the request. This

property is exaggerated by large caches that are meant

to hide comparatively long memory access delays [8].

To fully utilize the available processing power, an

application needs to be aware of which memory is

cheap to access.

While the trend toward commercial many-core ar-

chitectures is not as fast as predicted by Asanovic

et al [1], chip manufacturers are experimenting with

designs that incorporate an order of magnitude more

cores on a chip than commercially available today,

such as Intel’s 80-core prototype [63] and its Single-

Chip Cloud Computer (SCC) [36].

The SCC combines 48 standard, but comparatively

weak, cores on a single die. Two cores form a node in

a mesh network. Access to main memory is provided

by four memory controllers sitting on the edge of the

mesh. Communication between cores is facilitated by

dedicated message passing buffers. While this proces-

sor is not meant for production, similar network-on-a-

chip processors are expected to be commercially avail-

able in 2012 [62]. Serial applications cannot exploit

such systems.

It is never easy to give a reliable outlook into the fu-

ture, but regarding future processors one can formulate

solid assumptions: (1) Multi- and many-core systems

will be the norm. A single processor system will be the

exception. (2) Single core performance improvements

will further decline. (3) Memory access latency and

bandwidth will be increasingly non-uniform.

While the future may be foggy, it is clear that

current software needs to change to adapt to hardware

developments.

6. Conclusion

Until now, modern CPUs contain only few cores.

Recent parallel SAT-solvers for such shared-memory

architectures are mainly based on the techniques de-

veloped for sequential SAT-solvers. In most cases,

they either run few sequential solvers independently

with different random seeds and heuristics or they

share selected learned clauses. However, as soon as

the individual solvers running on different cores and

share memory, the efficiency of the individual solvers

decreases. None of these parallel solvers seem to scale

well if hundreds or even thousands of cores become

available. None of these parallel solvers seem to be

aware and make use of the specific features of mod-

ern computer architectures like non-uniform memory

access latencies. At least we are not aware of reports

that mention such techniques.

A lesson learned from the development of sequential

SAT-solvers is that these solvers are only fast if they

take the specific features of the underlying hardware

into account. We expect that this holds for parallel

SAT-solvers as well. Efficient parallel SAT-solvers run-

ning on many-core systems should be based on the

following principles: (1) The solver implementation

should be aware of the underlying hardware to tackle

bottlenecks like the non-uniform memory access as

well as possible. (2) The exchange of learned clauses



and other data between the processes running on

different cores has to be carefully balanced on all levels

from the calculus and heuristics level up to the data

structure, implementation, and hardware level.

Designing a parallel SAT-solver respecting these

principles seems to be difficult on the basis of current

sequential state-of-the-art SAT-solvers. To create a

parallel solver for many-core systems, the complete

implementation of the sequential solvers needs to be

reviewed and redesigned. For example, techniques

like the two-watched-literal propagation might not be

the best way to yield a good compromise between

streaming memory accesses and fewer random mem-

ory accesses. Also, the splitting approach, which was

neglected in recent years, might be reconsidered as a

candidate to solve huge industrial formulas by dividing

them into many partitions. It remains an open question,

how to design the architecture of a future SAT-solvers

to achieve a reasonable efficiency and a high scalability

to exploit the parallel architectures, which will be

installed in all future computing systems.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California,
Berkeley, Dec 2006.

[2] G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour,
and L. Sais. A generalized framework for conflict
analysis. In Proceedings of the 11th international
conference on Theory and applications of satisfiability
testing, SAT’08, pages 21–27, Berlin, Heidelberg, 2008.
Springer.

[3] G. Audemard and L. Simon. Predicting Learnt
Clauses Quality in Modern SAT Solver. In Twenty-
first International Joint Conference on Artificial Intel-
ligence(IJCAI’09), pages 399–404, jul 2009.

[4] R. J. Bayardo, Jr., and J. D. Pehoushek. Counting
Models using Connected Components. In In AAAI,
pages 157–162, 2000.

[5] A. Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT
at SAT Race 2010. Technical report, Technical Report
10/1, Institute for Formal Models and Verification,
Johannes Kepler University, 2009.

[6] A. Biere, M. Heule, H. van Maaren, and T. Walsh,
editors. Handbook of Satisfiability. IOS Press, 2009.

[7] W. Blochinger, C. Sinz, and W. Küchlin. A Universal
Parallel SAT Checking Kernel. In H. R. Arabnia and
Y. Mun, editors, Proc. of the Intl. Conf. on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’03), volume 4, pages 1720–1725, Las Vegas,
NV, June 2003. CSREA Press.

[8] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,
F. Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu,
Y. Dai, Y. Zhang, and Z. Zhang. Corey: an operating
system for many cores. In Proceedings of the 8th
USENIX conference on Operating systems design and
implementation, OSDI’08, pages 43–57, Berkeley, CA,
USA, 2008. USENIX Association.

[9] W. Chrabakh and R. Wolski. GridSAT: A Chaff-based
Distributed SAT Solver for the Grid. In Proceedings
of the 2003 ACM/IEEE conference on Supercomputing,
SC ’03, New York, NY, USA, 2003. ACM.

[10] G. Chu, A. Harwood, and P. J. Stuckey. Cache con-
scious data structures for boolean satisfiability solvers.
JSAT, 6:99–120, 2009.

[11] Chu, Geoffrey and Stuckey, Peter J. and Harwood,
Aaron. PMiniSat - A parallelization of MiniSat
2.0. http://baldur.iti.uka.de/sat-race-2008/descriptions/
solver 32.pdf, 2008.

[12] P. Conway and B. Hughes. The AMD Opteron North-
bridge Architecture. Micro, IEEE, 27(2):10–21, March-
April 2007.

[13] S. A. Cook. The complexity of theorem-proving pro-
cedures. In STOC ’71: Proceedings of the third annual
ACM symposium on Theory of computing, pages 151–
158, New York, NY, USA, 1971. ACM Press.

[14] M. Davis, G. Logemann, and D. Loveland. A Machine
Program for Theorem Proving. Communications of the
ACM, 5(7):394–397, 1962.

[15] M. Davis and H. Putnam. A Computing Procedure for
Quantification Theory. Journal of the ACM, 7(3):201–
215, 1960.

[16] N. Eén and A. Biere. Effective preprocessing in sat
through variable and clause elimination. In In proc.
SAT’05, volume 3569 of LNCS, pages 61–75. Springer,
2005.

[17] N. Eén and N. Sörensson. An Extensible SAT-solver.
In Proc. 6th SAT, LNCS 2919, 2004.

[18] Y. Feldman, N. Dershowitz, and Z. Hanna. Parallel
Multithreaded Satisfiability Solver: Design and Imple-
mentation. In Proceedings of the 3rd International
Workshop on Parallel and Distributed Methods in Veri-
fication (PDMC 2004), volume 128 of Electronic Notes
in Theoretical Computer Science, pages 75–90, 2005.

[19] S. L. Foremane and A. M. Segre. NAGSAT: A
Randomized, Complete, Parallel Solver for 3-SAT. In
E. Giunchiglia and A. Tacchella, editors, SAT, volume
2919 of Lecture Notes in Computer Science, pages 236–
243. Springer, 2002.

http://baldur.iti.uka.de/sat-race-2008/descriptions/solver_32.pdf
http://baldur.iti.uka.de/sat-race-2008/descriptions/solver_32.pdf


[20] J. W. Freeman. Improvements to propositional satisfia-
bility search algorithms. PhD thesis, Philadelphia, PA,
USA, 1995. UMI Order No. GAX95-32175.

[21] A. Geist, A. G. Ornl, W. S. Nas, and T. Skjellum. MPI-
2: Extending the Message-Passing Interface, 1996.

[22] L. Gil, P. Flores, and L. M. Silveira. PMSat: a parallel
version of MiniSAT. Journal on Satisfiability, Boolean
Modeling and Computation, 6:71–98, 2008.

[23] E. Goldberg. A decision-making procedure for
resolution-based SAT-solvers. In Proceedings of the
11th international conference on Theory and applica-
tions of satisfiability testing, SAT’08, pages 119–132,
Berlin, Heidelberg, 2008. Springer.

[24] L. Guo, Y. Hamadi, S. Jabbour, and L. Sais. Diversifica-
tion and intensification in parallel SAT solving. In Pro-
ceedings of the 16th international conference on Prin-
ciples and practice of constraint programming, CP’10,
pages 252–265, Berlin, Heidelberg, 2010. Springer.

[25] Y. Hamadi, S. Jabbour, C. Piette, and L. Saı̈s. Determin-
istic Parallel DPLL: System Description. In Pragmatics
of SAT(POS’11), jun 2011.

[26] Y. Hamadi, S. Jabbour, and L. Sais. Control-based
clause sharing in parallel SAT solving. In Proceedings
of the 21st international jont conference on Artifical
intelligence, pages 499–504, San Francisco, CA, USA,
2009. Morgan Kaufmann Publishers Inc.

[27] Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: a
Parallel SAT Solver. JSAT, 6(4):245–262, 2009.

[28] J. L. Hennessy and D. A. Patterson. Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufmann,
2007.

[29] S. Hölldobler, N. Manthey, and A. Saptawijaya. Im-
proving resource-unaware SAT solvers. In C. Fermüller
and A. Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, volume 6397 of
Lecture Notes in Computer Science, pages 357–371.
Springer Berlin / Heidelberg, 2010.

[30] H. H. Hoos and T. Stützle. Stochastic Local Search:
Foundations & Applications. Elsevier / Morgan Kauf-
mann, 2004.

[31] A. E. Hyvärinen, T. Junttila, and I. Niemelä. Incorporat-
ing Learning in Grid-Based Randomized SAT Solving.
In Proceedings of the 13th international conference
on Artificial Intelligence: Methodology, Systems, and
Applications, AIMSA ’08, pages 247–261, Berlin, Hei-
delberg, 2008. Springer-Verlag.

[32] A. E. Hyvärinen, T. Junttila, and I. Niemelä. Strategies
for Solving SAT in Grids by Randomized Search.
In Proceedings of the 9th AISC international confer-
ence, the 15th Calculemas symposium, and the 7th
international MKM conference on Intelligent Computer
Mathematics, pages 125–140, Berlin, Heidelberg, 2008.
Springer-Verlag.

[33] A. E. J. Hyvärinen, T. Junttila, and I. Niemelä. Parti-
tioning SAT instances for distributed solving. In Pro-
ceedings of the 17th international conference on Logic
for programming, artificial intelligence, and reasoning,
LPAR’10, pages 372–386, Berlin, Heidelberg, 2010.
Springer.

[34] A. E. J. Hyvärinen, T. Junttila, and I. Niemelä. A
distribution method for solving SAT in grids. In In SAT
2006, 4121 of LNCS, pages 430–435. Springer, 2006.

[35] A. E. J. Hyvärinen, T. Junttila, and I. Niemelä. Grid-
Based SAT Solving with Iterative Partitioning and
Clause Learning. In In CP 2011, 2011.

[36] Intel. SCC External Architecture Specification, 2010.

[37] S. Kasif. On the Parallel Complexity of Discrete
Relaxation in Constraint Satisfaction Networks. AI,
45(3):275–286, 1990.

[38] C. Keltcher, K. McGrath, A. Ahmed, and P. Con-
way. The AMD Opteron processor for multiprocessor
servers. Micro, IEEE, 23(2):66–76, March-April 2003.

[39] S. Kottler and M. Kaufmann. SArTagnan - A parallel
portfolio SAT solver with lockless physical clause
sharing. In Pragmatics of SAT, 2011.

[40] D. Le Berre. Sat4j: a reasoning engine in Java based on
the SATisfiability problem (SAT). http://www.sat4j.org.

[41] M. D. T. Lewis, T. Schubert, and B. Becker. Multi-
threaded SAT Solving. In ASP-DAC, pages 926–931.
IEEE, 2007.

[42] M. D. T. Lewis, T. Schubert, and B. W. Becker. Early
Conflict Detection Based BCP for SAT Solving. In The
International Conference on Theory and Applications
of Satisfiability Testing, 2004.

[43] M. Luby, A. Sinclair, and D. Zuckerman. Optimal
speedup of Las Vegas algorithms. Inf. Process. Lett.,
47:173–180, 1993.

[44] N. Manthey. Parallel SAT Solving - Using More Cores.
In Pragmatics of SAT(POS’11), 2011.

[45] N. Manthey. Solver Submission of riss 1.0 to the SAT
Competition 2011. Technical Report 2011-1, Knowl-
edge Representation and Reasoning Group, Technische
Universität Dresden, 01062 Dresden, Germany, 2011.

[46] R. Martins, V. Manquinho, and I. Lynce. Improving
Search Space Splitting for Parallel SAT Solving. In
Proceedings of the 2010 22nd IEEE International Con-
ference on Tools with Artificial Intelligence - Volume
01, ICTAI ’10, pages 336–343, Washington, DC, USA,
2010. IEEE Computer Society.

[47] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an Efficient SAT Solver.
Design Automation Conference, pages 530–535, 2001.

http://www.sat4j.org


[48] Niklas Sörensson. MiniSAT 2.2 and MiniSAT++
1.1. http://baldur.iti.uka.de/sat-race-2010/descriptions/
solver 25+26.pdf, 2010.

[49] K. Ohmura and K. Ueda. c-sat: A Parallel SAT Solver
for Clusters. In O. Kullmann, editor, SAT, volume 5584
of Lecture Notes in Computer Science, pages 524–537.
Springer, 2009.

[50] OpenMP Architecture Review Board. OpenMP Appli-
cation Program Interface. Specification, 2008. http:
//www.openmp.org/mp-documents/spec30.pdf.

[51] K. Pipatsrisawat and A. Darwiche. A Lightweight
Component Caching Scheme for Satisfiability Solvers.
In Proceedings of 10th International Conference on
Theory and Applications of Satisfiability Testing(SAT),
pages 294–299, 2007.

[52] A. Ramos, P. van der Tak, and M. Heule. Between
Restarts and Backjumps. In K. Sakallah and L. Simon,
editors, SAT 2011, Lecture Notes in Computer Science.
Springer, 2011.

[53] O. Roussel. ppfolio solver.
http://www.cril.univ-artois.fr/∼roussel/ppfolio/, 2011.

[54] T. Schubert, M. Lewis, and B. Becker. PaMiraXT:
Parallel SAT solving with threads and message pass-
ing. Journal on Satisfiability, Boolean Modeling and
Computation, 6:203–222, 2009.

[55] J. P. M. Silva and K. A. Sakallah. GRASP: A New
Search Algorithm for Satisfiability. In Proceedings
of the 1996 IEEE/ACM international conference on
Computer-aided design, ICCAD ’96, pages 220–227,
Washington, DC, USA, 1996. IEEE Computer Society.

[56] D. Singer. Parallel Resolution of the Satisfiability
Problem: A Survey. Wiley Interscience, Oct. 2006.

[57] D. Singer and A. Monnet. JaCk-SAT: a new parallel
scheme to solve the satisfiability problem (SAT) based
on join-and-check. In Proceedings of the 7th interna-
tional conference on Parallel processing and applied
mathematics, PPAM’07, pages 249–258, Berlin, Hei-
delberg, 2008. Springer.

[58] D. Singer and A. Vagner. Parallel Resolution of the
Satisfiability Problem (SAT) with OpenMP and MPI. In
Parallel Processing and Applied Mathematics (PPAM
2005), volume 3911/2006 of Lecture Notes in Computer
Science, pages 380–388, 2006.

[59] C. Sinz, W. Blochinger, and W. Küchlin. PaSAT -
parallel SAT-checking with lemma exchange: Imple-
mentation and applications. In H. Kautz and B. Selman,
editors, LICS 2001 Workshop on Theory and Applica-
tions of Satisfiability Testing (SAT 2001), volume 9 of
Electronic Notes in Discrete Mathematics, Boston, MA,
June 2001. Elsevier Science Publishers.

[60] M. Soos. CryptoMiniSat 2.5.0. In SAT Race competitive
event booklet, July 2010.

[61] D. Sturgill and A. Segre. A novel asynchronous
parallelism scheme for first-order logic. In A. Bundy,
editor, Automated Deduction — CADE-12, volume 814
of Lecture Notes in Computer Science, pages 484–498.
Springer Berlin / Heidelberg, 1994.

[62] Tilera. TILE-Gx 3000 Series Overview, 2011.

[63] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain,
V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar,
and S. Borkar. An 80-Tile Sub-100-W TeraFLOPS
Processor in 65-nm CMOS. Solid-State Circuits, IEEE
Journal of, 43(1):29 –41, jan. 2008.

[64] L. Zhang, C. F. Madigan, and M. H. Moskewicz.
Efficient Conflict Driven Learning in a Boolean Sat-
isfiability Solver. In ICCAD, pages 279–285, 2001.

[65] D. Ziakas, A. Baum, R. Maddox, and R. Safranek.
Intel QuickPath Interconnect Architectural Features
Supporting Scalable System Architectures. In High
Performance Interconnects (HOTI), 2010 IEEE 18th
Annual Symposium on, pages 1–6, August 2010.

http://baldur.iti.uka.de/sat-race-2010/descriptions/solver_25+26.pdf
http://baldur.iti.uka.de/sat-race-2010/descriptions/solver_25+26.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://www.cril.univ-artois.fr/~roussel/ppfolio/

	Introduction
	Preliminaries
	Sequential SAT-Solving
	Development of Parallel SAT-Solvers
	DPLL-based parallelizations
	CDCL-based parallelizations
	Network communication
	Shared-memory communication
	Pure Portfolio solvers

	Other parallelization approaches

	Modern Architecture
	Conclusion
	References

