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Abstract. For a non-negative integer k, a language is k-piecewise test-
able (k-PT) if it is a finite boolean combination of languages of the form
Σ∗a1Σ

∗ · · ·Σ∗anΣ
∗ for ai ∈ Σ and 0 ≤ n ≤ k. We study the following

problem: Given a DFA recognizing a piecewise testable language, decide
whether the language is k-PT. We provide a complexity bound on this
problem and a detailed analysis for small k’s. The result can be use to find
the minimal k for which the language is k-PT. We show that the upper
bound on k given by the depth of the minimal DFA can be exponentially
bigger than the minimal possible k, and provide a tight upper bound on
the depth of the minimal DFA recognizing a k-PT language.

1 Introduction

A regular language is piecewise testable (PT) if it is a finite boolean combination
of languages of the form Σ∗a1Σ

∗a2Σ
∗ · · ·Σ∗anΣ∗, where ai ∈ Σ and n ≥ 0.

It is k-piecewise testable (k-PT) if n ≤ k. These languages were introduced
by Simon in his PhD thesis [31]. Simon proved that PT languages are exactly
those regular languages whose syntactic monoid is J -trivial. He provided various
characterizations of PT languages in terms of monoids, automata, etc.

In this paper, we study the k-piecewise testability problem, that is, to decide
whether a PT language is k-PT.

Name: k-PiecewiseTestability
Input: an automaton (minimal DFA or NFA) A
Output: Yes if and only if L(A) is k-piecewise testable

Note that the problem is trivially decidable, since there is only a finite number
of k-PT languages over the input alphabet of A.

We investigate the complexity of the problem and the relationship between k
and the depth of the input automaton. The motivation to study this relationship
comes from the result showing that a PT language is k-PT for any k bigger than
or equal to the depth of its minimal DFA [21].

Our motivation is twofold. The first motivation is theoretical and comes from
the investigation of various fragments of first-order logic over words, namely the
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Straubing-Thérien and dot-depth hierarchies. For instance, the languages of lev-
els 1/2 and 1 of the dot-depth hierarchy are constructed as boolean combinations
of variants of languages of the form Σ∗w1Σ

∗ . . . Σ∗wnΣ
∗, where wi ∈ Σ∗, cf. [23,

Table 1]. The reader can notice a similarity to PT languages. For these fragments,
a problem similar to k-piecewise testability is also relevant.

The second, practical motivation comes from simplifying the XML Schema
specification language.

Simplification of XML Schema XML Schema is currently the only schema lan-
guage that is widely accepted and supported by industry. However, it is rather
machine-readable than human-readable. It increases the expressiveness of DTDs,
but this increase goes hand in hand with loss of simplicity. Moreover, its logical
core does not seem to be well understood by users [24]. Therefore, the BonXai
schema language has recently been proposed as an attempt to design a human-
readable schema language. It combines the simplicity of DTDs with the expres-
siveness of XML Schema. Its aim is to simplify the development and analysis of
XML Schema Definitions (XSDs). The BonXai schema is a set of rules of the
form Li → Ri, where Li and Ri are regular expressions. An XML document
(unranked tree) belongs to the language of the schema if, for every node of the
tree, the labels of its children form a word that belongs to Ri and its ancestors
form a word that belongs to Li, see [24] for more details.

When translating an XSD into an equivalent BonXai schema, the regular
expressions Li are obtained from a finite automaton embedded in the XSD.
However, the current techniques of translating automata to regular expressions
do not yet generate human-readable results. Therefore, we restrict ourselves to
simpler classes of expressions that suffice in practice. Practical and theoretical
studies show evidence that expressions of the form Σ∗a1Σ

∗ · · ·Σ∗an, where ai ∈
Σ, and their variations are suitable for this purpose [15, 25].

Every state of the DFA embedded in the XSD represents a language and
we need to compute an over-approximation Li for each of them that is disjoint
with the others. This reduces to the language separation problem: Given two
languages K and L and a family of languages F , is there a language S in F such
that S includes K and is disjoint with L? It is independently shown in [7] and [28]
that the separation problem for regular languages represented by NFAs and the
family of PT languages is decidable in polynomial time. A simple method (in the
meaning of description) to compute a PT separator is described in [17], where
its running time is investigated. Another technique is described in [28].

Assume that we have computed a PT separator. Since the standard algo-
rithms translating automata to regular expressions do not generate human-
readable results and mostly use “only” the basic operations (concatenation,
Kleene star and union), we face the problem how to generate human-readable
expressions of the considered simple forms. Note that the expressions we are
interested in contain the operations of intersection and complement (called gen-
eralized regular expressions). These operations make them non-elementary more
succinct than classical regular expressions [33]. Unfortunately, not much is known
about transformations to generalized regular expressions [10].



On the Complexity of k-Piecewise Testability and the Depth of Automata 3

For a PT language it means to decompose it into a boolean combination of
expressions Σ∗a1Σ

∗a2Σ
∗ · · ·Σ∗anΣ∗. If we knew that the language is k-PT, this

could be derived using a brute-force method and/or the ∼k-canonical DFA, the
DFA whose states are ∼k classes, cf. Fact 1. Indeed, the lower the k, the lower the
complexity. An upper bound on k is given by the depth of the minimal DFA [21].
However, we show later that the minimal k can be exponentially smaller than
the depth of the DFA. Note that the number of states of the ∼k-canonical DFA
has recently been investigated in [19] and the literature therein.

Applications of PT Languages Piecewise testable languages are of interest in
many disciplines of mathematics and computer science. For instance, in semi-
group theory [1, 2, 26], since they possess interesting algebraic properties, namely,
the syntactic monoid of a PT language is J -trivial, where J is one of the Green
relations; in logic over words [9, 27, 29] because of their close relation to first-order
logic—piecewise testable languages can be characterized by a (two-variable) frag-
ment of first-order logic over words, namely, they form level 1 of the Straubing-
Thérien hierarchy as already depicted above; in formal languages and automata
theory [8, 21, 28], since their automata are of a special simple form (they are par-
tially ordered and confluent) and PT languages form a strict subclass of the class
of star-free languages, that is, languages definable by LTL formulas; in natural
language processing, since they can describe some non-local patterns [12, 30]; in
learning theory, since they are identifiable from positive data in the limit [13,
22]; in XML databases [7], which is our original motivation described in detail
above. The list is not comprehensive and many other interesting results con-
cerning PT languages can be found in the literature. It is also worth mentioning
that PT languages and several results have recently been generalized from word
languages to tree languages [5].

We now give a brief overview on the complexity of the problem to decide
whether a regular language is piecewise testable. As mentioned above, decidabil-
ity was shown by Simon. In 1985, Stern showed that the problem is decidable
in polynomial time for DFAs [32]. In 1991, Cho and Huynh [6] proved NL-
completeness of the problem for DFAs. In 2001, Trahtman [34] improved Stern’s
result to obtain a quadratic algorithm. Another quadratic algorithm can be found
in [21]. The problem is PSPACE-complete if the languages are represented as
NFAs [18].

Our Contribution The k-piecewise testability problem asks whether, given a finite
automaton A, the language L(A) is k-PT. It is easy to see that if a language
is k-PT, it is also (k + 1)-PT. Kĺıma and Polák [21] have shown that if the
depth of a minimal DFA recognizing a PT language is k, then the language is
k-PT. However, the opposite implication does not hold, that is, the depth of the
minimal DFA is only an upper bound on k. To the best of our knowledge, no
efficient algorithm to find the minimal k for which a PT language is k-PT nor
an algorithm to decide whether a language is k-PT has been published so far.1

1 Very recently, a co-NP upper bound appeared in [16] in terms of separability.
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We first give a co-NP upper bound to decide whether a minimal DFA recog-
nizes a k-PT language for a fixed k (Theorem 1), which results in an algorithm
to find the minimal k that runs in the time single exponential with respect to
the size of the DFA and double exponential with respect to the resulting k. We
then provide a detailed complexity analysis for small k’s. In particular, the prob-
lem is trivial for k = 0, decidable in deterministic logarithmic space for k = 1
(Theorem 2), and NL-complete for k = 2, 3 (Theorems 3 and 4). As a result, we
obtain a PSPACE upper bound to decide whether an NFA recognizes a k-PT
language for a fixed k (Theorem 5). Recall that it is PSPACE-complete to decide
whether an NFA recognizes a PT language, and it is actually PSPACE-complete
to decide whether an NFA recognizes a 0-PT language (Proposition 2).

Since the depth of the minimal DFAs plays a role as an upper bound on k,
we investigate the relationship between the depth of an NFA and k-piecewise
testability of its language. We show that, for every k ≥ 0, there exists a k-PT
language with an NFA of depth k−1 and with the minimal DFA of depth 2k−1
(Theorem 7). Although it is well known that DFAs can be exponentially larger
than NFAs, a by-product of our result is that all the exponential number of
states of the DFA form a simple path. Finally, we investigate the opposite impli-
cation and show that the tight upper bound on the depth of the minimal DFA
recognizing a k-PT language over an n-letter alphabet is

(
k+n
k

)
−1 (Theorem 8).

A relationship with Stirling cyclic numbers is also discussed.

2 Preliminaries and Definitions

We assume that the reader is familiar with automata theory. The cardinality of
a set A is denoted by |A| and the power set of A by 2A. An alphabet Σ is a finite
nonempty set. The free monoid generated by Σ is denoted by Σ∗. A word over
Σ is any element of Σ∗; the empty word is denoted by ε. For a word w ∈ Σ∗,
|w|a denotes the number of occurrences of letter a in w. A language over Σ is a
subset of Σ∗.

A nondeterministic finite automaton (NFA) is a quintupleA = (Q,Σ, ·, I, F ),
where Q is a finite nonempty set of states, Σ is an input alphabet, I ⊆ Q is a
set of initial states, F ⊆ Q is a set of accepting states, and · : Q×Σ → 2Q is the
transition function that can be extended to the domain 2Q ×Σ∗. The language
accepted by A is the set L(A) = {w ∈ Σ∗ | I ·w∩F 6= ∅}. We usually omit · and
write simply Iw instead of I · w. A path π from a state q0 to a state qn under
a word a1a2 · · · an, for some n ≥ 0, is a sequence of states and input symbols
q0a1q1a2 . . . qn−1anqn such that qi+1 ∈ qi · ai+1, for all i = 0, 1, . . . , n − 1. The
path π is accepting if q0 ∈ I and qn ∈ F . A path is simple if all states of the
path are pairwise different. The number of states on the longest simple path of
A decreased by one (i.e., the number of transitions on that path) is called the
depth of the automaton A, denoted by depth(A).

The NFA A is deterministic (DFA) if |I| = 1 and |q · a| = 1 for every q in Q
and a in Σ. Then the transition function · is a map from Q×Σ to Q that can be
extended to the domain Q×Σ∗. Two states of a DFA are distinguishable if there
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exists a word w that is accepted from one of them and rejected from the other.
A DFA is minimal if all its states are reachable and pairwise distinguishable.

Let A = (Q,Σ, ·, I, F ) be an NFA. The reachability relation ≤ on the set of
states is defined by p ≤ q if there exists a word w in Σ∗ such that q ∈ p ·w. The
NFA A is partially ordered if the reachability relation ≤ is a partial order. For
two states p and q of A, we write p < q if p ≤ q and p 6= q. A state p is maximal
if there is no state q such that p < q. Partially ordered automata are also called
acyclic automata, see, e.g., [21].

The notion of confluent DFAs was introduced in [21]. Let A = (Q,Σ, ·, i, F )
be a DFA and Γ ⊆ Σ be a subalphabet. The DFA A is Γ -confluent if, for
every state q in Q and every pair of words u, v in Γ ∗, there exists a word w in
Γ ∗ such that (qu)w = (qv)w. The DFA A is confluent if it is Γ -confluent for
every subalphabet Γ . The DFA A is locally confluent if, for every state q in Q
and every pair of letters a, b in Σ, there exists a word w in {a, b}∗ such that
(qa)w = (qb)w.

An NFA A = (Q,Σ, ·, I, F ) can be turned into a directed graph G(A) with
the set of vertices Q, where a pair (p, q) in Q×Q is an edge in G(A) if there is
a transition from p to q in A. For Γ ⊆ Σ, we define the directed graph G(A, Γ )
with the set of vertices Q by considering all those transitions that correspond
to letters in Γ . For a state p, let Σ(p) = {a ∈ Σ | p ∈ p · a} denote the set
of all letters under which the NFA A has a self-loop in the state p. Let A be a
partially ordered NFA. If for every state p of A, state p is the unique maximal
state of the connected component of G(A, Σ(p)) containing p, then we say that
the NFA satisfies the unique maximal state (UMS) property.

A regular language is k-piecewise testable if it is a finite boolean combination
of languages of the form Σ∗a1Σ

∗a2Σ
∗ · · ·Σ∗anΣ∗, where 0 ≤ n ≤ k and ai ∈ Σ.

A regular language is piecewise testable if it is k-piecewise testable for some k ≥ 0.
We adopt the notation La1a2···an = Σ∗a1Σ

∗a2Σ
∗ · · ·Σ∗anΣ∗ from [21]. For two

words v = a1a2 · · · an and w ∈ Lv, we say that v is a subsequence of w, denoted
by v 4 w. For k ≥ 0, let subk(v) = {u ∈ Σ∗ | u 4 v, |u| ≤ k}. For words w1, w2,
we define w1 ∼k w2 if and only if subk(w1) = subk(w2). If w1 ∼k w2, we say
that w1 and w2 are k-equivalent . Note that ∼k is a congruence with finite index.

Fact 1 ([31]) Let L be a regular language, and let ∼L denote the Myhill con-
gruence. A language L is k-PT if and only if ∼k⊆∼L. Moreover, L is a finite
union of ∼k classes.

The theorem says that if L is k-PT, then any two k-equivalent words either
both belong to L or neither does. In terms of minimal DFAs, two k-equivalent
words lead the automaton to the same state.

Fact 2 Let L be a language recognized by the minimal DFA A. The following is
equivalent.

1. The language L is PT.
2. The minimal DFA A is partially ordered and (locally) confluent [21].
3. The minimal DFA A is partially ordered and satisfies the UMS property [34].
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3 Complexity of k-Piecewise Testability for DFAs

The k-piecewise testability problem for DFAs asks whether, given a minimal DFA
A, the language L(A) is k-PT. We show that it belongs to co-NP, which can be
used to compute the minimal k for which the language is k-PT in the time single
exponential with respect to the size of A and double exponential with respect
to the resulting k. For small k’s we then provide precise complexity analyses.

Theorem 1. The following problem belongs to co-NP:

Name: k-PiecewiseTestability
Input: a minimal DFA A
Output: Yes if and only if L(A) is k-PT

Proof (sketch). One first checks that the automaton A over Σ recognizes a PT
language. If L(A) is not k-PT, then there exist two k-equivalent words w1 and
w2. It can be shown that the length of w1 is at most k|Σ|k, w1 is a subword of
w2, and w1 and w2 lead the automaton to two different states. In addition, it can
be shown that one can choose w2 of length at most depth(A) bigger than the
length of w1. A polynomial certificate for non k-piecewise testability can thus
be given by providing such w1 and w2, which are indeed of polynomial length in
the size of A and Σ. ut

If we search for the minimal k for which the language is k-PT, we can first
check whether it is 0-PT. If not, we check whether it is 1-PT and so on until
we find the required k. In this case, the bounds k|Σ|k and k|Σ|k + depth(A)
on the length of words w1 and w2 that need to be investigated are exponential
with respect to k. To investigate all the words up to these lengths then gives an
algorithm that is exponential with respect to the size of the minimal DFA and
double exponential with respect to the desired k.

Proposition 1. Let A be a minimal DFA that is partially ordered and confluent.
To find the minimal k for which the language L(A) is k-PT can be done it time
exponential with respect to the size of A and double exponential with respect to
the resulting k.

Theorem 1 gives an upper bound on the complexity to decide whether a
language is k-PT for a fixed k. We now show that for k ≤ 3, the complexity is
much simpler.

0-Piecewise Testability The language L(A) of a minimal DFA A over Σ is 0-PT
if and only if it has a single state, that is, it recognizes either Σ∗ or ∅. Thus,
given a minimal DFA, it is decidable in O(1) whether its language is 0-PT.

1-Piecewise Testability Let A = (Q,Σ, ·, i, F ) be a minimal DFA. It can be
shown that the language L(A) is 1-PT if and only if (1) for every p ∈ Q and
a ∈ Σ, pa = q implies qa = q, and (2) for every p ∈ Q and a, b ∈ Σ, pab = pba.
Since this property can be verified locally in the DFA, we have the following.

Theorem 2. The problem to decide whether a minimal DFA recognizes a 1-PT
language is in LOGSPACE.
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2-Piecewise Testability We show that the problem to decide whether a minimal
DFA recognizes a 2-PT language is NL-complete. Note that this complexity
coincides with the complexity to decide whether the language is PT, that is,
whether there exists a k for which the language is k-PT.

Theorem 3. The problem to decide whether a minimal DFA recognizes a 2-PT
language is NL-complete.

Proof (sketch). To show that the problem is in NL, we need the following struc-
tural characterization of 2-PT languages. Let A = (Q,Σ, ·, i, F ) be a minimal
partially ordered and confluent DFA. The language L(A) is 2-PT if and only
if for every a ∈ Σ and every state s such that iw = s for some w ∈ Σ∗ with
|w|a ≥ 1, sba = saba for every b ∈ Σ ∪ {ε}.

The NL-hardness is shown by reduction from the monotone graph accessibil-
ity problem. ut

It was shown in [3] that the syntactic monoids of 1-PT languages are defined
by equations x = x2 and xy = yx, and those of 2-PT languages by equations
xyzx = xyxzx and (xy)2 = (yx)2. These equations can be used to achieve NL
algorithms. However, our characterizations improve these results and show that,
for 1-PT languages, it is sufficient to verify the equations x = x2 and xy = yx
on letters (generators), and that, for 2-PT languages, equation xyzx = xyxzx
can be verified on letters (generators) up to the element y, which is a general
element of the monoid. It decreases the complexity of the problems. Moreover,
the partial order and (local) confluency properties can be checked instead of the
equation (xy)2 = (yx)2.

3-Piecewise Testability The equations (xy)3 = (yx)3, xzyxvxwy = xzxyxvxwy
and ywxvxyzx = ywxvxyxzx characterize the variety of 3-PT languages [3].
Non-satisfiability of any of these equations can be check in the DFA in NL
by guessing a finite number of states and the right sequences of transitions
between them (in parallel, when labeled with the same labels). Thus, we have
the following.

Theorem 4. The problem to decide whether a minimal DFA recognizes a 3-PT
language is NL-complete.

k-Piecewise Testability Even though [4] provides a finite sequence of equations
to define the k-PT languages over a fixed alphabet for any k ≥ 4, the equations
are more involved and it is not clear whether they can be used to obtain the
precise complexity. So far, the k-piecewise testability problem can be shown to
be NL-hard (for k ≥ 2) and in co-NP, and it is open whether it tends rather to
NL or to co-NP.2

2 See the acknowledgement for the recent development.
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4 Complexity of k-Piecewise Testability for NFAs

The k-piecewise testability problem for NFAs asks whether, given an NFA A,
the language L(A) is k-PT. A language is 0-PT if and only if it is either empty
or universal. Since the universality problem for NFAs is PSPACE-complete [14],
the 0-PT problem for NFAs is PSPACE-complete. Using the same argument as
in [18] then gives us the following result.

Proposition 2. For every integer k ≥ 0, the problem to decide whether an NFA
recognizes a k-PT language is PSPACE-hard.

Since k is fixed, we can make use of the idea of Theorem 1 to decide whether
an NFA recognizes a k-PT language. The length of the word w2 is now bounded
by 2n, where n is the number of states of the NFA. Guessing the word w2 on-the-
fly then gives that the k-piecewise testability problem for NFAs is in PSPACE.

Theorem 5. The following problem is PSPACE-complete:

Name: k-PiecewiseTestabilityNFA
Input: an NFA A
Output: Yes if and only if L(A) is k-PT

The problem to find the minimal k for which the language recognized by an
NFA is k-PT is PSPACE-hard, since a language is PT if and only if there exists
a minimal k ≥ 0 for which it is PT.

5 Piecewise Testability and the Depth of NFAs

In this section, we generalize a result valid for DFAs to NFAs and investigate
the relationship between the depth of an NFA and the minimal k for which its
language is k-PT. We show that the upper bound on k given by the depth of the
minimal DFA can be exponentially far from such a minimal k. More specifically,
we show that for every k ≥ 0, there exists a k-PT language L recognized by an
NFA A of depth k − 1 and by the minimal DFA D of depth 2k − 1.

Recall that a regular language is PT if and only if its minimal DFA satisfies
some properties that can be tested in a quadratic time, cf. Fact 2. We now show
that this characterization generalizes to NFAs. We say that an NFA A over an
alphabet Σ is complete if for every state q of A and every letter a in Σ, the
set q · a is nonempty, that is, in every state, a transition under every letter is
defined.

Theorem 6. A regular language is PT if and only if there exists a complete
NFA that is partially ordered and satisfies the UMS property.

As it is PSPACE-complete to decide whether an NFA defines a PT language,
it is PSPACE-complete to decide whether, given an NFA, there is an equivalent
complete NFA that is partially ordered and satisfies the UMS property.
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5.1 Exponential Gap between k and the Depth of DFAs

It was shown in [21] that the depth of minimal DFAs does not correspond to the
minimal k for which the language is k-PT. Namely, an example of (4` − 1)-PT
languages with the minimal DFA of depth 4`2, for ` > 1, has been presented.
We now show that there is an exponential gap between the minimal k for which
the language is k-PT and the depth of a minimal DFA.

Theorem 7. For every n ≥ 2, there exists an n-PT language that is not (n−1)-
PT, it is recognized by an NFA of depth n−1, and the minimal DFA recognizing
it has depth 2n − 1.

Proof (sketch). For k ≥ 0, let Ak = (Ik, {a0, a1, . . . , ak}, ·, Ik, {0}) be an NFA
with Ik = {0, 1, . . . , k} and the transition function consisting of the self-loops
under ai in all states j > i and transitions under ai from the state i to all states
j < i as depicted in Fig. 1.

012 a1

a0a0, a1

a2

a2 0123 a3 a2 a1

a3

a3

a2

a0, a1, a2 a0, a1 a0

Fig. 1. Automata A2 and A3.

Every NFA Ak has depth k. Using Theorem 6 or noticing that the reversed
automata are deterministic, we can show that it accepts a (k+ 1)-PT language.
It can be shown that the language is not k-PT and that its minimal DFA has
depth 2k+1 − 1. ut

Although it is well known that DFAs can be exponentially larger than NFAs,
an interesting by-product of this result is that there are NFAs such that all the
exponential number of states of their minimal DFAs form a simple path.

It could seem that NFAs are more convenient to provide upper bounds on
the k. However, the following simple example demonstrates that even for 1-PT
languages, the depth of an NFA depends on the size of the input alphabet. Specif-
ically, for any alphabet Σ, the language L =

⋂
a∈Σ La of all words containing

all letters of Σ is a 1-PT language such that any NFA recognizing it requires at
least 2|Σ| states and has depth |Σ|. A deeper investigation in this direction is
provided in the next section.

6 Tight Bounds on the Depth of Minimal DFAs

If a PT language is recognized by a minimal DFA of depth `, then it is `-PT.
However, the opposite implication does not hold and the analysis of Section 5
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shows that the language can be (`− i)-PT for exponentially large i’s. Therefore,
we study the opposite implication of the relationship between k-piecewise testa-
bility and the depth of the minimal DFA in this section. Specifically, given a
k-PT language over an n-letter alphabet, we show that the depth of the minimal
DFA recognizing it is at most

(
k+n
k

)
− 1.

To this end, we first investigate the following problem.

Problem 1. Let Σ be an alphabet of cardinality n ≥ 1 and let k ≥ 1. What is
the length of a longest word, w, such that subk(w) = Σ≤k = {v ∈ Σ∗ | |v| ≤ k}
and, for any two distinct prefixes w1 and w2 of w, subk(w1) 6= subk(w2)?

The answer to this question is formulated in the following proposition.

Proposition 3. Let Σ be an alphabet of cardinality n. The length of a longest
word, w, satisfying the requirements of Problem 1 is given by the recursive for-
mula |w| = Pk,n = Pk−1,n + Pk,n−1 + 1, where P1,m = m = Pm,1, for m ≥ 1.

It follows by induction that for any positive integers k and n

Pk,n =

(
k + n

k

)
− 1 .

We now use this result to show that the depth of the minimal DFA recognizing
a k-PT language over an n-letter alphabet is Pk,n in the worst case.

Theorem 8. For any natural numbers k and n, the depth of the minimal DFA
recognizing a k-PT language over an n-letter alphabet is at most Pk,n. Moreover,
the bound is tight for any k and n.

A few of these numbers are listed in Table 1. We now present several conse-
quences of these results.

1. Note that it follows from the formula that Pk,n = Pn,k. This gives and
interesting observation that increasing the length of the considered subwords
has exactly the same effect as increasing the size of the alphabet.

2. Equivalently stated, Problem 1 asks what is the depth of the ∼k-canonical
DFA, whose states are ∼k classes. The number of equivalence classes of ∼k,
i.e., the number of states, has recently been investigated in [19].

n=1 n=2 n=3 n=4 n=5 n=6

k=1 1 2 3 4 5 6

k=2 2 5 9 14 20 27

k=3 3 9 19 34 55 83

k=4 4 14 34 69 125 209

k=5 5 20 55 125 251 461

k=6 6 27 83 209 461 923

Table 1. The table of a few first numbers Pk,n
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3. It provides a precise bound on the length of w1 of Theorem 1. However, it
does not improve the statement of the theorem.

To provide a relationship of Pk,n with Stirling cyclic numbers, it can be shown
that, for any positive integers k and n,

Pk,n =
1

k!

k∑
i=1

[
k + 1

i+ 1

]
ni

where
[
k
n

]
denotes the Stirling cyclic numbers.

Finally, note that one could also see a noticeable relation between the columns
(resp. rows) of Table 1 and the generalized Catalan numbers of [11]. We leave
the details of this correspondence for a future investigation.

Acknowledgements. We would like to thank an anonymous reviewer for inform-
ing us about the unpublished manuscript [20] and its authors for providing it. It
turns out that we have independently obtained two results—the bound of The-
orem 8 and the co-NP bound on the k-PT problem for DFAs. Furthermore, it is
shown in [20] that the k-PT problem is co-NP-complete for k ≥ 4. It also pro-
vides a smaller bound on the length of the witnesses, the consequence of which
is a single exponential algorithm to find the minimal k. On the other hand, for
k ≤ 3, that paper only says that the k-PT problem belongs to P .

The authors are grateful to Sebastian Rudolph for a fruitful discussion.
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17. Holub, Š., Jirásková, G., Masopust, T.: On upper and lower bounds on the length
of alternating towers. In: MFCS. LNCS, vol. 8634, pp. 315–326. Springer (2014)
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