
Lecture 2: Towards Bisimulation
Concurrency Theory Summer 2024

Dr. Stephan Mennicke

April 9th, 2024
TU Dresden, Knowledge-Based Systems Group

Review

Overview

Part 0: Completing the Introduction (today)
• learning about bisimilarity and bisimulations

Part 1: Semantics of (Sequential) Programming Languages
• WHILE – an old friend
• denotational semantics (a baseline and an exercise of the inductive method)
• natural semantics and (structural) operational semantics

Part 2: Towards Parallel Programming Languages
• bisimilarity and its success story
• deep-dive into induction and coinduction
• algebraic properties of bisimilarity

Part 3: Expressive Power

• Calculus of Communicating Systems (CCS)

• Petri nets
Dr. Stephan Mennicke Concurrency Theory 3 / 26

Overview

• denotations as sound basis for sequential programming language semantics

• denotations insufficient when concurrency is involved
‣ computation is interaction
‣ interaction between processes

• labeled transition systems (Definition 3) as the model for behavior
‣ basic notions and notations
‣ classes of LTSs and processes (Definition 5)

Dr. Stephan Mennicke Concurrency Theory 4 / 26

Labeled Transition Systems

Central Questions:
1. What is a process, mathematically?
2. What does it mean for two processes to be equal?

• seek notions of equality that are effective
• equality must be justifiable, according to the notion of process

Definition 3 (Labeled Transition System): A labeled transition system (LTS) is a triple
(Pr,Act,→) where Pr is a non-empty set, the domain of the LTS; Act is the set of
actions; and →⊆ Pr × Act × Pr is the transition relation.

Dr. Stephan Mennicke Concurrency Theory 5 / 26

The Vending Machine as an LTS

1€

?c

? 𝑡

!𝑐

!𝑡

𝑃1 𝑃2

𝑃3

𝑃4

This is the LTS 𝑉 = (Pr,Act,→) where Pr = {𝑃1, 𝑃2, 𝑃3, 𝑃4}, Act = {1€,? 𝑐,? 𝑡, !𝑐, !𝑡},
and →= {(𝑃1, 1€, 𝑃2), (𝑃2,? 𝑐, 𝑃3), (𝑃2,? 𝑡, 𝑃4), (𝑃3, !𝑐, 𝑃1), (𝑃4, !𝑡, 𝑃1)}

Dr. Stephan Mennicke Concurrency Theory 6 / 26

Classes of LTSs and Processes

An LTS is
• image-finite if for each 𝜇, relation →

𝜇
 is image-finite (i.e., for all 𝑃 , the set {𝑃 ′ | 𝑃 →

𝜇
𝑃 ′}

is finite);
• finitely branching if it is image-finite and, for each 𝑃 , the set {𝜇 | 𝑃 →

𝜇
} is finite;

• finite-state if it has a finite number of states;
• finite if it is finite-state and acyclic;
• deterministic if all processes are deterministic (i.e., for 𝑃 and 𝜇, 𝑃 →

𝜇
𝑃1 and 𝑃 →

𝜇
𝑃2

implies 𝑃1 = 𝑃2)

Dr. Stephan Mennicke Concurrency Theory 7 / 26

Getting Inspiration for Process Equality

Process Relations and Equivalences

By equality we mean equivalence relations for LTSs (i.e., binary relations on processes).

A process relation is a binary relation on the processes of an LTS.

Reminder: A process relation ℛ ⊆ Pr × Pr is an equivalence relation if ℛ is
1. reflexive (i.e., for all 𝑃 ∈ Pr, (𝑃 , 𝑃) ∈ ℛ)
2. symmetric (i.e., for all (𝑃 ,𝑄) ∈ ℛ, (𝑄, 𝑃) ∈ ℛ), and
3. transitive (i.e., for all (𝑃 ,𝑄) ∈ ℛ and (𝑄,𝑅) ∈ ℛ, (𝑃 ,𝑅) ∈ ℛ).

Intuition: Two processes should be equivalent if they cannot be distinguished by interacting
with them.

Because of the resemblence of LTSs to (1) edge-labeled directed graphs and (2)
nondeterministic finite automata, we let both fields try.

Dr. Stephan Mennicke Concurrency Theory 9 / 26

Equality Stolen from Graph Theory

In graph theory, or generally relational structures, equality is established by means of
isomorphisms.

Definition: Two LTSs 𝑇 = (Pr,Act,→) and 𝑇 ′ = (Pr′, Act,→
𝑎

′) are isomorphic, denoted
𝑇 ≅ 𝑇 ′, if there is a bijective function 𝑓 : Pr → Pr′ such that 𝑃 →

𝜇
𝑃 ′ if, and only if,

𝑓(𝑃) →
𝜇

′𝑓(𝑃 ′). (For experts: 𝑓 is a bijective and strong homomorphism)

Two processes 𝑃 and 𝑄 are isomorphic, denoted 𝑃 ≅ 𝑄, if their induced LTSs are
isomorphic.

Exercise: Is ≅ an equivalence relation for LTSs/processes?

Exercise: Is it a good equivalence for processes?

Dr. Stephan Mennicke Concurrency Theory 10 / 26

Counterexample for Graph Theory

a

b

𝑃1 𝑃2
a

b

a

𝑄1 𝑄2 𝑄3

Dr. Stephan Mennicke Concurrency Theory 11 / 26

Equality Stolen from Automata Theory

Two nondeterministic finite automata (NFAs) are equal if they accept the same language.

LTSs neither have initial nor final states.

The LTS analogue to NFA language equivalence is called trace equivalence: Two processes 𝑃
and 𝑄 are equal if they can produce the same finite sequences of transitions.

Definition: Let 𝑇 = (Pr,Act,→) be an LTS and 𝑃 ,𝑄 ∈ Pr. The set of traces of process 𝑃 is
defined by tr(𝑃) ≔ {𝑠 ∈ Act⋆ | 𝑃 →

𝑠
}.

𝑃 and 𝑄 are trace equivalent, denoted 𝑃 ≡tr 𝑄, if tr(𝑃) = tr(𝑄).

Exercise: Is =tr an equivalence relation?

Exercise: Is it a good one?

Dr. Stephan Mennicke Concurrency Theory 12 / 26

Counterexample for Graph Theory Revisited

a

b

𝑃1 𝑃2
a

b

a

𝑄1 𝑄2 𝑄3

Dr. Stephan Mennicke Concurrency Theory 13 / 26

Example (1) for Automata Theory

a

b

c

d

e

𝑃1 𝑃2

𝑃3

𝑃4

a

b

c

a

d

e

𝑄1

𝑄2 𝑄4

𝑄3 𝑄5

Dr. Stephan Mennicke Concurrency Theory 14 / 26

Counterexample (1) for Automata Theory

1€

?c

?t

!c

!t

𝑃1 𝑃2

𝑃3

𝑃4

1€

?c

?t

1€

!c

!t

𝑄1

𝑄2 𝑄4

𝑄3 𝑄5

Dr. Stephan Mennicke Concurrency Theory 15 / 26

Counterexample (2) for Automata Theory

a

b

a

𝑃1

𝑃3 𝑃4

𝑃2

a b
𝑄1 𝑄2 𝑄3

Dr. Stephan Mennicke Concurrency Theory 16 / 26

Summary from Counterexamples

• look for something that distinguishes more than trace equivalence
• rather transition-based than structure-based

Intuition: If we do something with the one process, we should be able to do the same with
the other.

Dr. Stephan Mennicke Concurrency Theory 17 / 26

Bisimulation

Bisimilarity

Definition 6 (Bisimilarity): A process relation ℛ is a bisimulation if, for all (𝑃 ,𝑄) ∈ ℛ and
all 𝜇 ∈ Act:
1. for 𝑃 ′ with 𝑃 →

𝜇
𝑃 ′, a 𝑄′ exists such that 𝑄 →

𝜇
𝑄′ and (𝑃 ′, 𝑄′) ∈ ℛ;

2. for 𝑄′ with 𝑄 →
𝜇

𝑄′, a 𝑃 ′ exists such that 𝑃 →
𝜇

𝑃 ′ and (𝑃 ′, 𝑄′) ∈ ℛ.

Bisimilarity, denoted by ⇔, is the union of all bisimulations.

Processes 𝑃 and 𝑄 are bisimilar, consequently denoted by 𝑃 ⇔ 𝑄, if there is a bisimulation
ℛ such that (𝑃 ,𝑄) ∈ ℛ.

Dr. Stephan Mennicke Concurrency Theory 19 / 26

Counterexample for Graph Theory Revisited

a

b

𝑃1 𝑃2
a

b

a

𝑄1 𝑄2 𝑄3

Dr. Stephan Mennicke Concurrency Theory 20 / 26

Counterexample (1) for Automata Theory Revisited

a

b

c

d

e

𝑃1 𝑃2

𝑃3

𝑃4

a

b

c

a

d

e

𝑄1

𝑄2 𝑄4

𝑄3 𝑄5

Dr. Stephan Mennicke Concurrency Theory 21 / 26

Another Example: 𝑄1 ⇔ 𝑅1?

a
b

a

𝑄1 𝑄2 𝑄3

a b
a

b

b

𝑅1 𝑅2 𝑅3 𝑅4

Dr. Stephan Mennicke Concurrency Theory 22 / 26

Counterexample (2) for Automata Theory Revisited

a

b

a

𝑃1

𝑃3 𝑃4

𝑃2

a b
𝑄1 𝑄2 𝑄3

Dr. Stephan Mennicke Concurrency Theory 23 / 26

Regarding Bisimilarity

Definition 6 (Bisimilarity): A process relation ℛ is a bisimulation if, for all (𝑃 ,𝑄) ∈ ℛ and
all 𝜇 ∈ Act:
1. for 𝑃 ′ with 𝑃 →

𝜇
𝑃 ′, a 𝑄′ exists such that 𝑄 →

𝜇
𝑄′ and (𝑃 ′, 𝑄′) ∈ ℛ;

2. for 𝑄′ with 𝑄 →
𝜇

𝑄′, a 𝑃 ′ exists such that 𝑃 →
𝜇

𝑃 ′ and (𝑃 ′, 𝑄′) ∈ ℛ.

Bisimilarity, denoted by ⇔, is the union of all bisimulations. Processes 𝑃 and 𝑄 are bisimilar,
consequently denoted by 𝑃 ⇔ 𝑄, if there is a bisimulation ℛ such that (𝑃 ,𝑄) ∈ ℛ.

Theorem 7:
1. ⇔ is an equivalence relation.
2. ⇔ is itself a bisimulation.

Corollary: ⇔ is the largest bisimulation.

Dr. Stephan Mennicke Concurrency Theory 24 / 26

Proof of Theorem 7

⬜⬜

ToDo: write down the proof here

Dr. Stephan Mennicke Concurrency Theory 25 / 26

Dwelling on the Corollary

Corollary: ⇔ is the largest bisimulation.

Definition 8 (Bisimilarity): Bisimilarity, denoted by ⇔, is the largest process relation such
that 𝑃 ⇔ 𝑄 implies for all 𝜇 ∈ Act:
1. for 𝑃 ′ with 𝑃 →

𝜇
𝑃 ′, a 𝑄′ exists such that 𝑄 →

𝜇
𝑄′ and 𝑃 ′ ⇔ 𝑄′;

2. for 𝑄′ with 𝑄 →
𝜇

𝑄′, a 𝑃 ′ exists such that 𝑃 →
𝜇

𝑃 ′ and 𝑃 ′ ⇔ 𝑄′.

Strange: circular definition?

Strange: proof technique requires bisimulations ℛ that have the same properties as ⇔?

Outlook: ⇔ is defined coinductively
⇝ see you again in four weeks

Next: Baseline Semantics of Programming Languages

Dr. Stephan Mennicke Concurrency Theory 26 / 26

