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Syntax of Existential Rules

An existential rule is an expression

VXYY (o(X,Y) > 3Z ¢(X,Z))

=
body head

« X,Yand Z are tuples of variables of V

«  (X,Y) and (X,Z) are (constant-free) conjunctions of atoms

...a.k.a. tuple-generating dependencies, and Datalog* rules
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Semantics of Existential Rules

* Aninstance Jis a model of the rule
o = VXYY (o(X,Y) > IZ (X,Z))
written as J E o, if the following holds:
whenever there exists a homomorphism h such that h(p(X,Y)) C J,

then there exists g O hx such that g(¥(X,Z)) C J

e

{t » h(t) |t € X} — the restriction of h to X
 Given a set 2 of existential rules, Jis a model of 2, written as J = %, if the
following holds: foreacho € 2, JF O

« It can be shown that J F X iff Jis a model of the first-order theory A cs O
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Ontology-Based Query Answering (OBQA)

database (or ABox)

knowledge base

Y

N

ontology (or TV @
s \i/

existential rules
VXYY (o(X,Y) > 3Z (X,Z))
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Syntax of Conjunctive Queries

A conjunctive query (CQ) is an expression

Y (p(X,Y))

« XandY are tuples of variables of V

*  ¢(X)Y) is a conjunction of atoms (possibly with constants)

The most important query language used in practice

Forms the SELECT-FROM-WHERE fragment of SQL
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Semantics of Conjunctive Queries

« A match of a CQ Y (¢p(X,Y)) in an instance J is a homomorphism h such that
h(o(X,Y)) C J i.e., all the atoms of the query are satisfied

« The answerto Q =Y (p(X,Y)) over Jis the set of tuples
Q(J) = {h(X) | hiis a match of Q in J}

« The answer consists of the witnesses for the free variables of the query
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Ontology-Based Query Answering (OBQA)

database (or ABox)

knowledge base
Y
N

(D.5)
ontology (or TV @
s \i/
T Q
existential rules conjunctive queries
VXYY (o(X,Y) = 3Z (X,Z)) FY (¢(X,Y))
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OBQA: Formal Definition

active domain — constants occurring in D

CQ-Answering: \

Input: database D, existential rules Z, CQ Q = 3Y (p(X,Y)), tuple t € adom(D)X

Question: decide whether t € certain(Q,(D,%)) = ﬂJe models(D 7 3) Q(J);

t € certain(Q,(D %)) iff te mJe models(D A 5) Q(J),

iff VJ e models(D A 2), JE JY (o(tY))
iff DAXZEJY (otY))

O\

Boolean CQ (BCQ) — no free variables
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BCQ-Answering: Our Main Decision Problem

database (aka ABox)

knowledge base

YN

N

ontology (aka V @
s \i/

VXYY (o(X,Y) = 3Z (X,2Z))

decide whether DA 2 E Q
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Universal Models (a.k.a. Canonical Models)

An instance U is a universal model of D A X if the following holds:
1. Uisamodel of D A 2

2.YJ € models(D A %), there exists a homomorphism h, such that h(U) C J
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Query Answering via Universal Models

Theorem: D A 2 E Q iff UE Q, where U is a universal model of D A 2

Proof: (=) Trivial since, for every J € models(D A ¥), JFE Q

(<) By exploiting the universality of U

Q by hypothesis

h1 hn by universality of U

VJ € models(D A %), 3h,such that h(g(Q)) € J = VJemodels(DAZ),JEFQ
= DAZEQ
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The Chase Procedure

« Fundamental algorithmic tool used in databases

* |t has been applied to a wide range of problems:
o Checking containment of queries under constraints
o Computing data exchange solutions
o Computing certain answers in data integration settings

o ...

... what’s the reason for the ubiquity of the chase in databases?

it constructs universal models
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The Chase Procedure

De—r"""
person(Alice)

VX (Person(X) — 3Y (hasParent(X,Y) A Person(Y)))

chase(D,2) =D U
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The Chase Procedure

De—r"""
person(Alice)

v
e
-
e

-
-
-
e

5 -
VX (Person(X) — 3Y (hasParent(X,Y) A Person(Y)))
/ /

chase(D,2) = D U {hasParent(Alice, z,), Person(z,)
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The Chase Procedure

D—""""+
person(Alice)

VX (Person(X) — 3Y (hasParent(X,Y) A Person(Y)))
~ / /

chase(D,2) = D U {hasParentfAlice, z4), Persgn(z,),

hasParent(z,, z,), Person(z,)
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The Chase Procedure

D—""""+
person(Alice)

VX (Person(X) — 3Y (hasParent(X,Y) A Person(Y)))

chase(D,2) = D U {hasParent

)

ice, zv), Persornfz,),
4

hasPareni(z4, z,), Person(z,),

hasParent(z,, z3), Person(zs)
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The Chase Procedure

D—""""+
person(Alice)

VX (Person(X) — 3Y (hasParent(X,Y) A Person(Y)))

chase(D,2) = D U {hasParent(Alice, z4), Person(z,),
hasParent(z,, z,), Person(zy),

hasParent(z,, z3), Person(zs), ...

infinite instance
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The Chase Procedure: Formal Definition

» Chase rule - the building block of the chase procedure

« Arule o = VXYY (p(X)Y) > 3Z ¢(X,Z)) is applicable to instance J if:
1. There exists a homomorphism h such that h(¢(X,Y)) C J
2. There is no g D hy such that g((X,Z)) C J

J ={R(a), P(a,b)} J={R(a), P(b.a);
h={xa) g={X—a, Y- b} h= (X a)
vX (R(X) = 3Y P(X.Y)) vX (R(X) — 3Y P(X.Y))
X v

7'
5 |
[ Existential Rules — Lecture 2 — Sebastian Rudolph Slide 18



The Chase Procedure: Formal Definition

Chase rule - the building block of the chase procedure

Arule o = VXYY (o(X,Y) > 3Z (X,2)) is applicable to instance J if:
1. There exists a homomorphism h such that h(¢(X,Y)) C J
2. There is no g D hy such that g((X,Z)) C J

Let J,. = J U {g(¥(X,Z))}, where g © hx and g(Z) are “fresh” nulls not in J

The result of applying o to J is J., denoted J(o,h)J. - single chase step
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The Chase Procedure: Formal Definition

« Afinite chase of D w.r.t. Z is a finite sequence
D(01,h1)J1(02,h2)J2(03,h3)J3 ... (On,hp)J;

where no rule from  is applicable in J, .

Then, chase(D,2) is defined as the instance J,

all applicable rules will eventually be applied

/.

* An infinite chase of D w.r.t. Z is a fair finite sequence
D<01,h1>J1 <0'2,h2>J2<0'3,h3>J3 <0nahn>Jn---

and chase(D,z) is defined as the instance Uy~ o Jx (with Jy = D)

"

least fixpoint of a monotonic operator - chase step
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Chase: A Universal Model

Theorem: chase(D,2) is a universal model of D A X

Proof;

the result of the chase after k applications of the chase step

By construction, chase(D,2) € models(D A %)

It remains to show that chase(D, %) can be homomorphically embedded into
every other model of D A X
Fix an arbitrary instance J € models(D A ). We need to show that there exists
h such that h(chase(D,%)) C J
By induction on the number of applications of the chase step, we show that for
every k > 0, there exists h, such that h,(chasel®(D,%)) C J, and hy is
compatible with h_;

Clearly, Uk > ¢ hyis a well-defined homomorphism that maps chase(D,2) to J

The claim follows with h = U, - ¢ hy
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Chase: Uniqueness Property

The result of the chase is not unique - depends on the order of rule application
D ={P(a)} o1 = VX (P(X) — 3Y R(Y)) g, = VX (P(X) - R(X))
Result; = {P(a), R(z), R(a)} o, then o,

Result, = {P(a), R(a)} 0, then o,

But, it is unique up to homomorphic equivalence
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Query Answering via the Chase

Theorem: D A 2 E Q iff UE Q, where U is a universal model of D A

+

Theorem: chase(D, %) is a universal model of D A 2

Corollary: DA ZE Q iff chase(D,2)F Q

« We can tame the first dimension of infinity by exploiting the chase procedure

» But, what about the second dimension of infinity? - the chase may be infinite
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Rest of the Lectrure

« Undecidability of BCQ-Answering

» Gaining decidability - terminating chase

 Full Existential Rules

* Acyclic Existential Rules
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Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape
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Deterministic Turing Machine (DTM)

S\{Sacc} X A = S x A x {-1,0,+1}

/ / accepting state

M=S/\|—|680’8CC

/TN N

states tape blank initial state
symbols  symbol

6(81’ G) = (82’ B’ +1)

IF at some time instant 1 the machine is in sate s¢, the cursor

points to cell K, and this cell contains a

THEN at instant 7+1 the machine is in state s,, cell K contains 3,

and the cursor points to cell k+1
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Undecidability of BCQ-Answering

Our Goal: Encode the computation of a DTM M with an empty tape
using a database D, a set 2 of existential rules, and a BCQ Q such that

DA ZEQ iff Maccepts
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Build an Infinite Grid

k-th horizontal line represents the

k-th configuration of the machine

VX (Start(X) — Node(X) A Initial(X))

D = {Start(c)}

fixes the origin of the grid

VX (Node(X) — 3Y (H(X,Y) A Node(Y)))

X Y VX (Node(X) — 3Y (V(X,Y) A Node(Y)))
li:\lv VXVYVZYW (H(X,Y) H(Z,W) V(X,Z) —> V(Y,W))
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Initialization Rules

) 4
®
) 4

Existential Rul

VXYY (Initial(X) A H(X,Y) = Initial(Y))

VX (Start(X) — Cursor{sp](X))

VX (Initial(X) — Symbol[L1](X))

es — Lecture 2 — Sebastian Rudolph
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Transition Rules

6(81 ’G) = (SZ’B’+1 )

VXVYVZ (Cursoris ](X) A Symbol[a](X) A V(X,Y) A H(Y,Z) —

Cursor{s,](Z) A Symbol[B]1(Y) A Mark(X))
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Inertia Rules

BeforeCursor AfterCursor
a B Y 3

" .—)?—I_W—»? [
a B Y 3

VXYY (Mark(X) A H(X,Y) — AfterCursor(Y))

VXYY (AfterCursor(X) A H(X,Y) — AfterCursor(Y))

VXVY (AfterCursor(X) A Symbol[a](X) A V(X,Y) - Symbol[a](Y))

...we have similar rules for the cells before the cursor
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Accepting Rule

Once we reach the accepting state we accept

VX (Cursorsacc](X) — Accept(X))

D A ZFE dX Accept(X) iff the DTM M accepts
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Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

...syntactic restrictions are needed!!!
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