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4. Showcase 1: Games on sets (FO[()]-nondefinability of “even” strikes back) ¢ chapters 3.1, 3.2, 3.6 of
5. Showcase 2: Games on linear orders (“even” is not FO[{<}]-definable) [Libkin’s FMT BooX]

6. Logical reductions, e.g. “even” ¢ FO[{<}] = "connectivity” ¢ FO[{E}]

@ Feel free to ask questions and interrupt me!

Don’t be shy! If needed send me an email (bartosz.bednarczyk@©cs.uni.wroc.pl) or approach me after the lecture!

Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!
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Measuring complexity of a formula: quantifier rank

The quantifier rank qr(y) of  is its depth of quantifier nesting.

e qr(p) := 0 for atomic ¢ o ar(—p) == ar(p)
o ar(p © ¢') = max(ar(p), ar(e )) for & € {A,V, =, ¢}
e qr(Fx ) = ar(Vx @) == ar(p) +

\
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Examples:
qr(3IxVyVz R(x,y,z)) =3
ar(@x [AGOA (WR(y) v (3T)]) = 2
for ¢ in PNF qr(y) = #quantifiers.

Quantifier rank can be exponentially smaller than the total number of quantifiers.

900(X7y) = E(Xay)v Qpn—irl(X?y) = dz (gpn(X,Z) A\ 90”(27)/))

~+ qr(yvn) = n but ¢, has 2" — 1 quants.

Formulae with bounded quantifier rank

Let 7 be a finite signature, and let m € N. FO,,[7] is set of all FO formulae over 7 with q.r. < m.

Notation: 2l =] ‘5
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Notation: 2l =7 5 iff 2 and 2B satisfy precisely the same FO,,[7] sentences
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Lemma (Finiteness of FO,[7] with < k free variables)

The set of all FO,[7] formulae with at most k free variables is finite up to logical equivalence.
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Examples:
qr(3IxVyVz R(x,y,z)) =3
ar(@x [AGOA (WR(y) v (3T)]) = 2
for ¢ in PNF qr(y) = #quantifiers.

Quantifier rank can be exponentially smaller than the total number of quantifiers.

QOO(Xay) = E(Xay)v 90n+1(x7y) = dz (Qpn(sz) A\ 90”(27)/))

~+ qr(yvn) = n but ¢, has 2" — 1 quants.

Formulae with bounded quantifier rank

Let 7 be a finite signature, and let m € N. FO,,[7] is set of all FO formulae over 7 with q.r. < m.

Notation: 2l =7 5 iff 2 and 9B satisfy precisely the same FO,,[7] sentences (7 often omitted).

Lemma (Finiteness of FO,[7] with < k free variables)

The set of all FO,[7] formulae with at most k free variables is finite up to logical equivalence.

Proof

|dea: characterise FOg[7] with a “truth table” of equality between constants/variables + induction!
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e Playground: two 7-structures 2l and ‘8.
e Two players: Spoil3r (D3vil/Jloise/Ive/Player ) vs Dupllc‘v’tor Vngel/VbeIard/‘v’dam/PIayer 1)

Goal of V: 2,8 “look the same”.
Goal of H: pinpoint the difference.

e During the i-th round:
1. d selects a structure (say 2A) and picks an element (say a; € A)
2.V replies with an element (say b; € B) in the other structure (in this case B)
so that (ay — by, ..., a; +—> b;) is a partial isomorphism between 2( and ‘B.
e J wins if V cannot reply with a suitable element. V wins if he survives m rounds.
Theorem (Fraissé 1950 & Ehrenfeucht 1961)
V has a winning strategy in m-round Ehrenfeucht-Fraissé game on 7-structures 2l and ‘B iff 2l =7 ‘8.

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 3/ 10



Playing Ehrenfeucht-Fraissé games on sets

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 4 /10



Playing Ehrenfeucht-Fraissé games on sets
Consider an 3-round play of E-F game on sets 2 :={1,2 3}, B := {a,b,c,d}.

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 4 /10



Playing Ehrenfeucht-Fraissé games on sets
Consider an 3-round play of E-F game on sets 2 :={1,2 3}, B := {a,b,c,d}.
@ © 0O B= @@ ® OO0 O

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 4 /10



Playing Ehrenfeucht-Fraissé games on sets
Consider an 3-round play of E-F game on sets 2 :={1,2 3}, B := {a,b,c,d}.
® @ O —d, 3- @ 60 0 @

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 4 /10



Playing Ehrenfeucht-Fraissé games on sets
Consider an 3-round play of E-F game on sets 2 :={1,2 3}, B := {a,b,c,d}.
A= DO @ O 1—d, - 0 ©® O @

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 4 /10



Playing Ehrenfeucht-Fraissé games on sets
Consider an 3-round play of E-F game on sets 2 :={1,2 3}, B := {a,b,c,d}.
Y = M ©) l—d, 2+~ B = @ ® © @

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 4 /10



Playing Ehrenfeucht-Fraissé games on sets
Consider an 3-round play of E-F game on sets 2 :={1,2 3}, B := {a,b,c,d}.
A-— ©) l—d, 2+ b, B—- @ M ©

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 4 /10



Playing Ehrenfeucht-Fraissé games on sets
Consider an 3-round play of E-F game on sets 2 :={1,2 3}, B := {a,b,c,d}.
O — D @ @ 1—d, 2— b, 3— B — @ A @©

~—

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 4 /10



Playing Ehrenfeucht-Fraissé games on sets
Consider an 3-round play of E-F game on sets 2 :={1,2 3}, B := {a,b,c,d}.
A= D @ @ l—d, 2— b,3— c B—- @ M O

~—

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 4 /10



Playing Ehrenfeucht-Fraissé games on sets
Consider an 3-round play of E-F game on sets 2 :={1,2 3}, B := {a,b,c,d}.

A= D l—d, 2— b,3— c B—- @ M O
@ @ Result: V wins, so 2 =3 ‘5. o =

~—

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 4 /10



Playing Ehrenfeucht-Fraissé games on sets
Consider an 3-round play of E-F game on sets 2 :={1,2 3}, B := {a,b,c,d}.

A= D l—d, 2— b,3— c B—- @ M O
@ @ Result: V wins, so U =3 ‘5. o =

~—

Following the strategy “always reply with a fresh element”, V wins any m-round game on sets of size > m.
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< @ @ Result: V wins, so U =3 ‘5. o =
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Following the strategy “always reply with a fresh element”, V wins any m-round game on sets of size > m.

Lemma (Even is not expressible in FO[()])

Proof Assume that such a @ exists. Let m := qr(¢). Let 2 (resp. 2B) be an 2m (resp. 2m+1) element set.
By definition, we clearly have 2l |= ¢ and 5 |~ .

As we already noticed V has the winning strategy in any m-round E-F game.Thus 2l =, 5 holds.

By collecting the inferred information, we conclude 5 = . A contradiction!

General proof scheme for showing that P is not FO[r]-definable with Ehrenfeucht-Fraissé games

infer B = ¢
ad absurdum ¢ exists g.r. of ¢  craft T-structures 2 = ¢, B £ ¢ play qr(¢)-round game  E-F theorem contradiction!

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 4 /10



Playing Ehrenfeucht-Fraissé games on sets
Consider an 3-round play of E-F game on sets 2 :={1,2 3}, B := {a,b,c,d}.

A= D l—d, 2— b,3— c B—- @ M O
< @ @ Result: V wins, so U =3 ‘5. o =

~—

Following the strategy “always reply with a fresh element”, V wins any m-round game on sets of size > m.

Lemma (Even is not expressible in FO[()])

Proof Assume that such a @ exists. Let m := qr(¢). Let 2 (resp. 2B) be an 2m (resp. 2m+1) element set.
By definition, we clearly have 2l |= ¢ and 5 |~ .

As we already noticed V has the winning strategy in any m-round E-F game.Thus 2l =, 5 holds.
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Proof Suppose that ¢ exists. Let m := qr(p). Let 2 (resp. B) be linear orders of size 2 (resp. 27+1).
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What remains to be done is to show that
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Proof Suppose that ¢ exists. Let m := qr(p). Let 2 (resp. B) be linear orders of size 2 (resp. 27+1).
By definition, we clearly have 2l = ¢ and 5 |~ ¢.

What remains to be done is to show that V has the winning strategy in any m-round E-F game.

Thus 2l =,, 5 holds.

infer B = ¢
ad absurdum ¢ exists q.r. of ¢  craft 7-structures 2 = ¢, B |~ ¢ play qr(p)-round game  E-F theorem contradiction!

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 5/ 10



Playing Ehrenfeucht-Fraissé games on linear orders

e Who has the winning strategy in 2 rounds? e In 3 rounds? more?

Lemma (Even is not expressible in FO[{<}])

Proof Suppose that ¢ exists. Let m := qr(p). Let 2 (resp. B) be linear orders of size 2 (resp. 27+1).
By definition, we clearly have 2l = ¢ and 5 |~ ¢.
What remains to be done is to show that V has the winning strategy in any m-round E-F game.
Thus 2L =,, 5 holds. By collecting the inferred information, we conclude 5 = ¢.

infer B = ¢
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e Who has the winning strategy in 2 rounds? e In 3 rounds? more?

Lemma (Even is not expressible in FO[{<}])

Proof Suppose that ¢ exists. Let m := qr(p). Let 2 (resp. B) be linear orders of size 2 (resp. 27+1).
By definition, we clearly have 2l = ¢ and 5 |~ ¢.
What remains to be done is to show that V has the winning strategy in any m-round E-F game.

Thus 2L =, 5 holds. By collecting the inferred information, we conclude 5 = ¢. A contradiction!

infer B = ¢
ad absurdum ¢ exists q.r. of ¢  craft 7-structures 2 = ¢, B |~ ¢ play qr(p)-round game  E-F theorem contradiction!
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Any linearly ordered? {<}-structures A, B of cardinality > 2™ satisfy 2A ={=} 9B,

®We assume that 2,5 interpret < as a linear order over the domain
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Any linearly ordered? {<}-structures A, B of cardinality > 2™ satisfy 2A ={=} 9B,

®We assume that 2,5 interpret < as a linear order over the domain
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Lemma (Sufficiently large linear orders look similar)

Any linearly ordered? {<}-structures A, B of cardinality > 2™ satisfy 2A ={=} 9B,

®We assume that 2,5 interpret < as a linear order over the domain

_ induction
o Let 3:=(a_1,a0,...,a;) and b := (b_1, by, . .., b;) be the history of the play after i-rounds.
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Any linearly ordered? {<}-structures A, B of cardinality > 2™ satisfy 2A ={=} 9B,

®We assume that 2,5 interpret < as a linear order over the domain
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Any linearly ordered? {<}-structures A, B of cardinality > 2™ satisfy 2A ={=} 9B,

®We assume that 2,5 interpret < as a linear order over the domain
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Lemma (Sufficiently large linear orders look similar)

Any linearly ordered? {<}-structures A, B of cardinality > 2™ satisfy 2A ={=} 9B,

®We assume that 2,5 interpret < as a linear order over the domain

_ induction
o Let 3:=(a_1,a0,...,a;) and b := (b_1, by, . .., b;) be the history of the play after i-rounds.

e Dummy (—1)-th and O-th rounds of the game: select min/max elements of 2, 5. i

This establishes an invariant that any freshly selected element is between some previously selected ones.

e We play as V: we want to guarantee that after the j-th round we have for all /, k < i:

A _ - B S o _ \ V should preserve
1. ay <* a; iff by <® by (maintain the partial isomorphism).

2. If dist(ak, a;) > 2™ then dist(by, b)) > 2™ (“play far if 7 plays far"). \
3. If dist(ax, a) < 2™ ' then dist(ax, a;) = dist(by, b;) (“play close if 7 plays close”).

these conditions

e Assume 3 picks aj.; € A. Let a;, a, be the closest such that a; <* a;,.; <™ 2.
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Lemma (Sufficiently large linear orders look similar)
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o Let 3:=(a_1,a0,...,a;) and b := (b_1, by, . .., b;) be the history of the play after i-rounds.

e Dummy (—1)-th and O-th rounds of the game: select min/max elements of 2, 5. i

This establishes an invariant that any freshly selected element is between some previously selected ones.

e We play as V: we want to guarantee that after the j-th round we have for all /, k < i:
oA - - o _ \ V should preserve
1. ay <* a; iff by <® by (maintain the partial isomorphism). these conditions

2. If dist(ak, a;) > 2™ then dist(by, b)) > 2™ (“play far if 7 plays far"). \
3. If dist(ax, a) < 2™ ' then dist(ax, a;) = dist(by, b;) (“play close if 7 plays close”).

J
e Assume 3 picks aj.; € A. Let a;, a, be the closest such that a; <* a,.; <™ a,. Goal: Choose b;.;
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Recall that 3 picked aj;; € A and a, a are the closest such that a, <* a;,; <* a.
\_J

Inductive assumption for all /. k < i:
1. a, < 4, iff by <® by (maintain the partial isomorphism).
2. If dist(ax, a) > 2™ then dist(by, b;) > 2™ (“play far if 3 plays far”). \
3. If dist(ax, a/) < 2™ ' then dist(ax, a;) = dist(by, b;) (“play close if 7 plays close”).
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Inductive assumption for all /. k < i:
) v should find

Q[ . % . . . . .
1. ay <* a; iff by <* by (maintain the partial isomorphism). 2 suitable b1

2. If dist(ax, a) > 2™ then dist(by, b;) > 2™ (“play far if 3 plays far”). \
3. If dist(ax, a/) < 2™ ' then dist(ax, a;) = dist(by, b;) (“play close if 7 plays close”).
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Q[ . % . . . . .
1. ay <* a; iff by <* by (maintain the partial isomorphism). 2 suitable b1

2. If dist(ax, a) > 2™ then dist(by, b;) > 2™ (“play far if 3 plays far”). \
3. If dist(ax, a/) < 2™ ' then dist(ax, a;) = dist(by, b;) (“play close if 7 plays close”).

Case |: dist(a/, ax) < 2"
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o _,‘_, f * DN () S ) S
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Recall that 3 picked aj;; € A and a, a are the closest such that a, <* a;,; <* a.
\_J

Inductive assumption for all /. k < i:
) v should find

Q[ . % . . . . .
1. ay <* a; iff by <* by (maintain the partial isomorphism). 2 suitable b1

2. If dist(ax, a) > 2™ then dist(by, b;) > 2™ (“play far if 3 plays far”). \
3. If dist(ax, a/) < 2™ ' then dist(ax, a;) = dist(by, b;) (“play close if 7 plays close”).

Case |: dist(a/, ax) < 2"
dist(a;, ax) < 2™’

_ X . by assump: dist(bj/i bx) = dist(ay, ax)
A — @ B — _, _,
\_/

Then by ind. ass. dist(a), ax) = dist(by, by),
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Recall that 3 picked aj;; € A and a, a are the closest such that a, <* a;,; <* a.
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dist( a/,ak < mi

by assump: dist(by, by) = (a/ ak)

-

o _,‘_, f * . %%

Then by ind. ass. dist(a, ax) = dist(by, by), and hence [a), ax] = [by, by].
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Then by ind. ass. dist(a, ax) = dist(by, by), and hence [a), ax] = [by, by].
Pick bjy1 such that
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Then by ind. ass. dist(a, ax) = dist(by, by), and hence [a), ax] = [by, by].
Pick bi 1 such that b <® b1 <2 by.
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Recall that 3 picked aj;; € A and a, a are the closest such that a, <* a;,; <* a.
\_J

Inductive assumption for all /. k < i:
) v should find

Q[ . % . . . . .
1. ay <* a; iff by <* by (maintain the partial isomorphism). 2 suitable b1

2. If dist(ax, a) > 2™ then dist(by, b;) > 2™ (“play far if 3 plays far”). \
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Then by ind. ass. dist(a, ax) = dist(by, by), and hence [a), ax] = [by, by].
Pick bjy1 such that by <® by 1 <* by. dist(ay, aj41) = dist(by, bjy1),
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Recall that 3 picked aj;; € A and a, a are the closest such that a, <* a;,; <* a.
\_J

Inductive assumption for all /. k < i:
) v should find

Q[ . % . . . . .
1. ay <* a; iff by <* by (maintain the partial isomorphism). 2 suitable b1

2. If dist(ax, a) > 2™ then dist(by, b;) > 2™ (“play far if 3 plays far”). \
3. If dist(ax, a/) < 2™ ' then dist(ax, a;) = dist(by, b;) (“play close if 7 plays close”).

Case |: dist(a/, ax) < 2"

dist(ay, ak < omi

by assump: dist(by, by) = dist(a;, ay)

e Y

o _,‘_, f * NG N R e W

Then by ind. ass. dist(a, ax) = dist(by, by), and hence [a), ax] = [by, by].
Pick bjy1 such that by <® by 1 <* by. dist(ay, aj41) = dist(by, bj;1), and dist(ax, ai11) = dist(byg, biy1).

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 7/ 10



Super Lemma About Linear Orders: IlI

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 8/ 10



Super Lemma About Linear Orders: IlI
Inductive assumption for all /. k < i:
1. a < & iff b <® by (maintain the partial isomorphism).
2. If dist(ax, a/) > 2™ ' then dist(by, b)) > 27" (“play far if 3 plays far”). \
3. If dist(ak, a;) < 2™ then dist(ay, a;) = dist(bx, b;) (“play close if 7 plays close”).
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Q[ . % . . . . .
1. ay <* a; iff by <= by (maintain the partial isomorphism). 2 suitable by,

2. If dist(ax, ) > 2" ' then dist(by, by) > 27" (“play far if 3 plays far"). ,
3. If dist(ax, a/) < 2™ then dist(ay, a;) = dist(bx, by) ("“play close if 7 plays close”).
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Inductive assumption for all /. k < i:
1. a < & iff b <® by (maintain the partial isomorphism).
2. If dist(ax, a/) > 2™ ' then dist(by, b)) > 27" (“play far if 3 plays far”).

3. If dist(ax, a/) < 2™ then dist(ay, a;) = dist(bx, by) ("“play close if 7 plays close”).

Case Il: dist(a, ax) > 2"
dist(aj, ax) > 2"’
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Super Lemma About Linear Orders: IlI

Inductive assumption for all /. k < i:
\ V should find

Q[ . % . . . . .
1. ay <* a; iff by <= by (maintain the partial isomorphism). 2 suitable by 1

2. If dist(ax, ) > 2" ' then dist(by, by) > 27" (“play far if 3 plays far"). ,
3. If dist(ax, a/) < 2™ then dist(ay, a;) = dist(bx, by) ("“play close if 7 plays close”).

Case Il: dist(a, ax) > 2"

dist(ay, a&) > 2 by assump: dist(a;, ax) > 2"’

A
- ~N

B (o) oo

Then by ind. ass. dist(b, by) > 2™,
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Inductive assumption for all /. k < i:
1. a < & iff b <® by (maintain the partial isomorphism).
2. If dist(ax, a/) > 2™ ' then dist(by, b)) > 27" (“play far if 3 plays far”). \
3. If dist(ax, a/) < 2™ then dist(ay, a;) = dist(bx, by) ("“play close if 7 plays close”).

Case Il: dist(a, ax) > 2"
dist(aj, ax) > 2"’

V should find

a suitable b; 1

X by assump: dist(a;, ax) > 2"’

e N

-

Then by ind. ass. dist(b;, by) > 2™, We have three cases.
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Inductive assumption for all /. k < i:
oA - B S o _ \ V should find
1. ay <* a; iff by <= by (maintain the partial isomorphism). 2 suitable by
2. If dist(ax, a;) > 2M=" then dist(by, b)) > 2™~ (“play far if 3 plays far"). |

3. If dist(ax, a/) < 2™ then dist(ay, a;) = dist(bx, by) ("“play close if 7 plays close”).

Case Il: dist(a, ax) > 2"

. m—i ]
) dist(ay, a&) > 2 § by assump: dist(a;, ax) > 27

B (o) oo

Then by ind. ass. dist(b;, by) > 2™, We have three cases.
o x >2m =1 gpd y > 2m—i-1
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. m—i ]
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Then by ind. ass. dist(b;, by) > 2™, We have three cases.
o x > 2=l and y > 2™ =1 <y Take bj;; to the middle between b; and by.
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Q[ . % . . . . .
1. ay <* a; iff by <= by (maintain the partial isomorphism). 2 suitable by 1

2. If dist(ax, ) > 2" ' then dist(by, by) > 27" (“play far if 3 plays far"). ,
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\ V should find

1. ay <* a; iff by <= by (maintain the partial isomorphism). 2 suitable by 1

2. If dist(ax, ) > 2" ' then dist(by, by) > 27" (“play far if 3 plays far"). ,
3. If dist(ax, a/) < 2™ then dist(ay, a;) = dist(bx, by) ("“play close if 7 plays close”).

Case Il: dist(a, ax) > 2"
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Then by ind. ass. dist(b;, by) > 2™, We have three cases.

o x > 2=l and y > 2™ =1 <y Take bj;; to the middle between b; and by.

o x < 2™ Land y > 2™~ s p;,; is the unique node to the right of b; so that dist(by, b 1) = x.
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\ V should find
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2. If dist(ax, ) > 2" ' then dist(by, by) > 27" (“play far if 3 plays far"). ,
3. If dist(ax, a/) < 2™ then dist(ay, a;) = dist(bx, by) ("“play close if 7 plays close”).

Case Il: dist(a, ax) > 2"

dist(ay, a&) > 2 by assump: dist(a;, ax) > 2"’

A
- ~N

B (o) oo

Then by ind. ass. dist(b;, by) > 2™, We have three cases.

o x > 2=l and y > 2™ =1 <y Take bj;; to the middle between b; and by.
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Inductive assumption for all /. k < i:
\ V should find

1. ay <* a; iff by <= by (maintain the partial isomorphism). 2 suitable by 1
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o x > 2=l and y > 2™ =1 <y Take bj;; to the middle between b; and by.

o x < 2™ Land y > 2™~ s p;,; is the unique node to the right of b; so that dist(by, b 1) = x.

o x > 2™ 1 and y < 2™~ s b, 1 is the unique node to the left of by so that dist(b; 1, bx) = .

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 8/ 10



Super Lemma About Linear Orders: IlI

Inductive assumption for all /. k < i:
\ V should find

1. ay <* a; iff by <= by (maintain the partial isomorphism). 2 suitable by 1

2. If dist(ay, a) > 2M=" then dist(by, b)) > 2™~ (“play far if 3 plays far"). |
3. If dist(ax, a/) < 2™ then dist(ay, a;) = dist(bx, by) ("“play close if 7 plays close”).

Case Il: dist(a, ax) > 2"

dist(ay, a&) > 2 by assump: dist(a;, ax) > 2"’

A
e ~

B (o) oo

Then by ind. ass. dist(b;, by) > 2™, We have three cases.
o x > 2=l and y > 2™ =1 <y Take bj;; to the middle between b; and by.

o x < 2™ Land y > 2™~ s p;,; is the unique node to the right of b; so that dist(by, b 1) = x.

o x > 2™ 1 and y < 2™~ s b, 1 is the unique node to the left of by so that dist(b; 1, bx) = .

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Long) 8/ 10



Super Lemma About Linear Orders: IlI

Inductive assumption for all /. k < i:
\ V should find

1. ay <* a; iff by <= by (maintain the partial isomorphism). 2 suitable by 1

2. If dist(ay, a) > 2M=" then dist(by, b)) > 2™~ (“play far if 3 plays far"). |
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VY wins!

Then by ind. ass. dist(b;, by) > 2™, We have three cases.
o x > 2=l and y > 2™ =1 <y Take bj;; to the middle between b; and by.

o x < 2™ Land y > 2™~ s p;,; is the unique node to the right of b; so that dist(by, b 1) = x.

o x > 2™ 1 and y < 2™~ s b, 1 is the unique node to the left of by so that dist(b; 1, bx) = .
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https://www.youtube.com/watch?v=rfvYLCixrdQ
https://homepages.inf.ed.ac.uk/libkin/fmt/fmt.pdf
https://link.springer.com/chapter/10.1007/10703163_11
https://users.dimi.uniud.it/~angelo.montanari/scuolaSuperioreUdine2015.pdf

More about Ehrenfeucht-Fraissé games

There is an alternative approach to the previous proof by composing winning strategies.
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https://www.youtube.com/watch?v=rfvYLCixrdQ
https://homepages.inf.ed.ac.uk/libkin/fmt/fmt.pdf
https://link.springer.com/chapter/10.1007/10703163_11
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Algorithmic approach to Ehrenfeucht-Fraissé games: Can we make E-F games computable?
Input: finite 7, 7-structures 2, B and m € N.

Output: Has Duplication the winning strategy in m-round E-F game on 2l and B7
Is this problem decidable?: YES! and PSPACE-complete, c.f. [Pezzoli 1998]

A lot of open problems, e.g. “how difficult is to solve the above problem when %I, 5 are trees?”
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There is an alternative approach to the previous proof by composing winning strategies. Key lemma:
Lemma (Composition lemma)

Let A, B be linearly-ordered, with a € A, b € B s.t. A57 =,, B=L and A= =, B=>. Then A =,, °B.

We can compose strategies under:

1. Disjoint unions. Consult a lecture by Anuj Dawar 9:50-19:20 [Youtube].
2. Ordered sums. as well as Thm. 3.6, Proof #2 (p. 30-31) and Ex. 3.15 from [Libkin’s book].
3. Products.

Algorithmic approach to Ehrenfeucht-Fraissé games: Can we make E-F games computable?
Input: finite 7, 7-structures 2, B and m € N.

Output: Has Duplication the winning strategy in m-round E-F game on 2l and B7
Is this problem decidable?: YES! and PSPACE-complete, c.f. [Pezzoli 1998]

A lot of open problems, e.g. “how difficult is to solve the above problem when %I, 5 are trees?”

Consult excellent slides by [Angelo Montanari] for more!
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Playing Ehrenfeucht-Fraissé games is quite difficult. Can we simplify them?
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If P is not expressible, show that P’ is not. Use case: “odd” ¢ FO[{<}] implies “connectivity” ¢ FO[{E}]

e Suppose ¢ € FO[{E}] defines connectivity.

e From < we can define the succ. relation:
succ(x,y) == (x <y)AVz ((z<x)V (y < 2))
e Prepare y(x, y) that holds if

1. y is the succ of succ of x, or

2. x is sec-to-last and y is the first w.r.t <, or
) ) Reduction of parity to connectivity

3. x is the last one and y is the second w.r.t <.

e Note: ~v defines a graph on the elements of the linear order!

e Observation: graph defined by ~ is connected iff the underlying linear order is odd.
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Conclusion: [E/~] defines “odd”. A contradiction!

Playing Ehrenfeucht-Fraissé games is quite difficult. Can we simplify them?

Yes, with a notion of locality. Next 2-3 lectures!
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