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Abstract

We investigate the computational complexity of axiom pingiag in Description Logics, which
is the task of finding minimal subsets of a knowledge basehthed a given consequence. We con-
sider the problems of enumerating such subsets with andwutitbrder, and show hardness results
that already hold for the propositional Horn fragment, artfte Description Logic€£. We show
complexity results for several other related decision amaheeration problems for these fragments
that extend to more expressive logics. In particular we sthaivhardness of these problems depends
not only on expressivity of the fragment but also on the sludjiee axioms used.

1 Introduction

Description Logics (DLs) [BCM 03] are a well-established family of logic-based knowledgere-
sentation formalisms that are used to represent the caraégtowledge of an application domain
in a structured and formally well-understood way. DLs hak@vpn successful in various application
domains, but they have gained increased attention due tiathé¢hat they provide the logical under-
pinning of OWL [HPSVHO03], the standard ontology languagetifie@ semantic web. As a consequence
of this standardization, several ontology editors [KFNMB#ST06, HTR06], now support OWL and
ontologies written in OWL are employed in more and more aapions. As the size of these ontologies
grows, tools that support knowledge engineers in maimgittieir quality become more important. In
real world applications often the knowledge engineer ndt mants to know whether her ontology has
a certain (unwanted) consequence or not, but also wantsote Why it has this consequence. Even for
KBs of moderate size, finding explanations for a given a cgueece is not an easy task without getting
support from an automated tool. The task of finding explamatfor a given consequence, i.e., minimal
subsets of the original KB that have the given consequenzalsdaxiom pinpointingn the literature.

Existing work on axiom pinpointing in DLs can be classifieddantwo main categories, namely the
glass-box approach, and the black-box approach. The idieg Winder theglass-box approacks to
extend the existing reasoning algorithms such that whdeaaring, at the same time they can keep track
of the axioms used, and detect which of the axioms in the KBesponsible for a given consequence.
In [SCO03] a pinpointing extension of the well-known tabldzased satisfiability algorithm for the DL
ALC [SSS91] has been introduced. Later in [PSKO05], this apgrbas been further extended to DLs

*Part of this work has been done when the author was still eyeglat Institute of Theoretical Computer Science, TU Drasde
in the DFG Project BA 1122/12-1.



that are more expressive thatCC. In [MLBPO06] a pinpointing algorithm ford£LC with general con-
cept inclusions (GCIs) has been presented by following pgpeaach in [BH95]. In order to overcome
the problem of developing a pinpointing extension for evygaticular tableau-based algorithm, a gen-
eral pinpointing extension for tableau algorithms has tegreloped in [BPO7, BP10]. Similarly, an
automata-based general approach for obtaining glass4bpwipting algorithms has been introduced
in [BPO8, BP09].

In contrast to the glass-box approach, the idea lying uriadslack-box approaciks to make use of the
existing highly optimized reasoning algorithms wihout imavto modify them. The most naive black-
box approach would of course be to generate every subse¢ afrifjinial KB, and ask a DL reasoner
whether this subset has the given consequence or not, whidbusly is very inefficient. In [KPHSO07]
more efficient approaches based on Reiter’s hitting setahgerithm [Rei87] have been presented.
The experimental resuts in [KPHS07] demonstrate that fhis@ach behaves quite well in practice on
realistic KBs written in expressive DLs. A similar approduds successfully been used in [HPS09] for
explaining inconsistencies in OWL ontologies. The maineadages of the black-box approach are that
one can use existing DL reasoners, and that it is indepeofltre DL reasoner being used. In [HPS08]
the black-box approach has been used for computing more ffaieegl explanations, i.e., not just the
set of relevant axioms in the KB but parts of these axiomsdbatally lead to the given consequence.

Although various methods and aspects of axiom pinpointiagehbeen considered in the literature,
its computational complexity has not been investigatedeitaitiyet. Obviously, axiom pinpointing is
at least as hard as reasoning. Nevertheless, especialisaftable DLs it makes sense to investigate
whether explanations for a consequence can efficiently benerated or not. In [BPS07] it has been
shown that a given consequence can have exponentially-exguignations (there callddinAs which
stands for minimal axiom sets), and checking the existefigeMinA within a cardinality bound is
NP-complete. There it has also been shown that in a settingeviénAs are required to contain
certain (static) part of the KB, then the set of all MinAs cahibe computed in output polynomial time.
In [PS09] among other results we have shown that withoutttiteegpart this problem is at least as hard
as computing minimal transversals of a hypergraph. We hiageshown that if the MinAs are required
to be output in a specified order, then the problem is not stdvaith polynomial delay.

In the present paper we present several new interestinglegitypresults on axiom pinpointing. We
give a polynomial delay algoritm for enumerating MinAs iretHorn setting, show that for dual-Horn
KBs the problem is at least as hard as hypergraph transwemsaheration, and fof £ KBs it is not
output polynomial. We show that if MinAs are required to béput in a specified order, then for dual-
Horn and€ £ KBs this cannot be done with polynomial delay. We also coerségiveral other decision
and enumeration problems on MinAs in different settings.

2 Preliminaries

We briefly recall basic notions from propositional logic, &land complexity of enumeration. In propo-
sitional logic we build formulae using a set pfopositional variablesand theBoolean connectives
(negation),v (disjunction) and\ (conjunction). A variable or its negation is callediteral, and a dis-
junction of literals is called alause A clause is called &lorn (dual-Horn) clause if it contains at most
one positive (negative) literal, anddafinite Horn (dual-Hornlause if it contains exactly one positive
(negative) literal. A Horn clausg; V —ps V —ps can also be written as d@mplication of the form
p2 Aps — p1. Throughout the text we will call definite Horn (dual-Hormugses just Horn (dual-Horn)
clauses for short. We will call clauses with exactly one fasiand one negative literal like, — po as
coreclauses.

In DLs one formalizes the relevant notions of an applicatiomain withconcept descriptionsConcept
descriptions are inductively built with the help of a setohstructorsstarting with a sel¢ of concept
namesand a selg of role names& L concept descriptions are formed using the three constsiatal



Syntax Semantics
T AT
cnb ctnp?
Ir.C | {xec AT |Iyec AT (2,y) €t Ay e CT}
CCD ctc p?

Table 1: Syntax and semantics&f.

andT as shown in the upper part of Table 1. &4 TBoxis a finite set ofgeneral concept inclusion
axioms (GClg), whose syntax is shown in the lower part of Table 1. The se¢icgof £L is defined in
terms ofinterpretationsZ = (AZ,-7), where thedomainAZ is a non-empty set of individuals, and the
interpretation function” maps each concept nandec Nc to a subsetd? of AZ and each role name
r € Nr to a binary relation? on AZ. The mapping” can be extended to arbitrary concept descriptions
as shown in the second colum of Table 1. An interpretafiemamodelof a TBox7 if, for every GCI

in 7 the conditions on the semantics column of Table 1 are satisfibe main inference problem for
EL is the subsumption problem: Given twia@C concept description€, D and anE L TBox 7, check

if C is subsumedy D w.r.t. 7 (written 7 = C C D), i.e, check ifCZ C DZ holds in every model
7 of 7. We will call a concept descriptiosimpleif it is of the form A or 3r.A for A € N¢,r € N,
and a GCl Horn-££ GCl ifitis of the formCy 1 ... M C,, C D, whereC;, D are simple concept
descriptions] < i < n.

We will refer to both propositional clauses afid GCls asaxioms and a set of axioms askaowledge
base (KB)We will say that a KB is a Horn (core, dual-Ho#\) KB if it contains only Horn (core,dual-
Horn£L) axioms. We are going to formulate our problems in a genesig without referring to a
specific type of KB, and show our results for each KB type saiedy.

In complexity theory, we say that an algorithm runs witilynomial delayjJYP88] if the time until the
first solution is generated, and thereafter the time betveagntwo consecutive solutions is bounded
by a polynomial in the size of the input. We say that it runsirtput polynomial timéf it outputs all
solutions in time polynomial in the size of the infand the output

3 Complexity of Enumerating All MinAs

The main problem we consider is, given a KB and a consequefritecomputing all MinAs for this
consequence in the given KB. We start with the definition ofiaM

Definition 1. Let K be a set of axioms angd be a logical consequence of it, i.&,|= ¢. We call a set
M C K aminimal axiom sebr MinAfor ¢ in K if M = ¢ and itis minimal w.r.t. set inclusion.

Our problem is formally defined as follows:

Problem: MINA -ENUM
Input: A KB K and an axionp of the same type such thit = .
Output: The set of all MinAs forp in .

Note that for core KBs, which are basically directed graphdinA is a simple path between two given
vertices, and enumerating all MinAs corresponds to enutimgrall simple paths between two given
vertices, which can easily be done with polynomial delaywkeleer, the situation is not so clear for
Horn KBs. To the best of our knowledge, only [NPAO6] consgdaiproblem related to ours on directed
hypergraphs, but it is not exactly the one considered here.



3.1 Enumeration without a Specific Order

We start with the Horn setting and show that for this settingA4 can efficiently be enumerated by
giving a polynomial delay algorithm. The algorithm dependdhe following particular notion.

Definition 2. Let K be aHorn KB, an@ = A", a; — b be an axiomiriC. We denote the left handside
(Ins) of ¢ with T(¢), and its right handside (rhs) witi(¢), i.e., T(¢) := {a1,...,a,} andh(¢) := b.
With h=1(b) we denote the set of axioms kd whose rhs aré. Let M = {t4,...,t,} be a MinA for
/\aeAa — ¢. We call an ordering; < ... < t,, avalid orderingon M if for every1 < i < m,
T(tz) - AU {h(tl), ey h(tzfl)} holds?

Itis easy to see that for every MinAd there is always at least one such valid ordering. In theioiig,
we use this fact to construct from a given MinA a set of KBs firatisely contain the remaining MinAs.

Definition 3. Let M be a MinA in KC with |M| = m, and< be a valid ordering onM. For each
1 < i < m we obtain a KBK; from K as follows: (i) for eacly s.t.i < j < m remove all axioms in
h=1(h(¢,)) except fort;, i.e., remove all axioms with the same rhs asxcept fort; itself. (i) remove
t;.

Lemma 4. Let M be a MinA for¢ in K, and letky, ..., K,, be constructed fron'C and M as in
Definition 3. Then, for every MinA/ for ¢ in K that is different fromM, there existexactly ones,
wherel < ¢ < m, such that\V/ is a MinA for¢ in ;.

Proof. Lett; < ... < t,, be a valid ordering oo\, and /N a MinA for ¢ in K such that\" # M.
Then, M \ N # (. Lett;, be the largest axiom int \ A w.r.t. the ordering<. We show that\" C Ky,
andN g K; foralli £k, 1 <i<m.

Assume there is an axiome N s.t.t € K. t should be one of the axioms removed fréireither in
step (i), or in step (ii) of Definition 3. It cannot be step @i¢cause; ¢ N sincet, € M\ N. Thus
it should be step (i). This implies that there exists & < j < m, such that; satisfiesh(t) = h(¢;).
Recall that we chosgto be the largest axiom iM \ NV w.r.t. the valid ordering< on M. Then thist;
should be in\. But then\/ contains two axioms with the rhgt), which contradicts with the fact that
N is a MinA, and thus it is minimal. Henc&/ C K.

Now take ani s.t. i+ # k. If i > k, thent; € N butt; ¢ K;, and henceV & K;. If i < k, then
there is an axiom € N such thath(¢) = h(¢;) since otherwise\! and A/ would not be MinAs. By
constructiont ¢ K;, henceNV € K;. O

Lemma 4 gives an idea of how to compute the remaining MinAsifaagiven one. Algorithm 1 describes
how we can use this lemma for enumerating all MinAs.

Theorem 5. Algorithm 1 solves1iNA -ENUM for Horn KBs with polynomial delay.

Proof. The algorithm terminates singé is finite. It is sound since its outputs are MinAs foiin .
Completeness follows from Lemma 4.

In each recursive call of the algorithm there is one consecgieheck (line 2), and one MinA compu-
tation (line 4). The consequence check can be done in poliagidime by the well-known linear-time
algorithm in [DG84]. One MinA can be computed in polynomiat¢ by iterating over the axioms in
K and removing an axiom if remaining ones still have the consrge. Thus the algorithm spends at
most polynomial time between each output, i.e., it is potyred delay. O

1That is, each variable on the Ihs#fis in A, or it is the rhs of a previous axiom.



Algorithm 1 Enumerating all MinAs for Horn KBs
1: ALL-MINAS(KC,0)
2: > (K a Horn KB, ¢ an axiom s.tX = ¢)
- if K B~ ¢ then return
. else
M :=aMinAin K
outputm
for1 <i<|M|do
computelC; from M as in Definition 3
ALL-MINAS(K;,0)
10: end for
11: end if

© X N RE®

Next we considemMINA -ENUM for dual-Horn KBs. For this, we first investigate the follagidecision
problem which is is closely related taINA-ENUM. As we will see, determining its complexity is
important for determining the complexity ®fiNA -ENUM.

Problem: ALL -MINAS
Input: A KB K and an axionp of the same type such thit|= ¢, and a set of KBs# C #(K).
Question:ls ¢ precisely the set of all MinAs fop in £?

As Proposition 6 shows, KLL -MINAS cannot be decided in polynomial time, thema -ENUM cannot
be solved in output polynomial time.

Proposition 6. If ALL-MINAS cannot be decided in polynomial time, theiNA -ENUM cannot be
solved in output-polynomial time.

Proof. Assume we have an algoritha that solvesviNA-ENUM in output-polynomial time. Let its
runtime be bounded by a polynomiall S, OS) wherelS denotes the size of the input KB adds
denotes the size of the output, i.e., the set of all MinAs.

In order to decideLL -MINAS for an instance given bi(, ¢, and.#” C &?(K), we construct another
algorithm A’ that works as follows: it runsl on XC and¢ for at mostp(|K|, |-#'|)-many steps. 14
terminates within this many steps, thahcompares the output of with .#” and returnyesif and only
if they are equal. If they are not equal, returnsno. If A has not yet terminated afte(|C|, | |)-many
steps, this implies that there is at least one MinA that iscootained inz", so A’ returnsno. It is easy
to see that the runtime of’ is bounded by a polynomial iffC| and|.7|, thatisA’ decidesaLL -MINAS
in polynomial time. O

This proposition shows that the complexityafl -MINAS is indeed closely related to the complexity of
MINA -ENUM. It is not difficult to see that, for all types of axioms coresidd in this papeRLL -MINAS

iS in CONP: given an instance ofLL -MINAS, a nondeterministic algorithm can guess a subsét tifat

is not in.#", and in polynomial time verify that this is a MinA, thug” is notthe set of all MinAs. In
the following we show that for dual-Horn KBsLL -MINAS is at least as hard as recognizing the set of
all minimal transversals of a given hypergraph. Howeveethhr it is coip-hard remains unfortunately
open. We later show that_L -MINAS is canP-complete if HornE L axioms are considered.

First we briefly recall some basic notions on hypergrapHsypergrapt{Ber89]H = (V, £) consists of

a set ofverticesV = {v; | 1 <i < n}, and a set ofhyper)edgeg = {E; | 1 < j < m} whereE; C

V. Following the convention in [Ber89] we assume that the $etlges as well as the set of vertices is
nonempty, and the union of all edges yields the vertex setetAi5 C V is called atransversalof H

if it intersects every edge 6#, i.e.,VE € £. ENW # (. A transversal is callechinimalif no proper
subset of it is a transversal. The set of all minimal transaisrofH constitutes another hypergraphdn



called thetransversal hypergrapbf H, which is denoted b§'r(H). Generatind'r(H) is an important
problem which has applications in many fields of computeersme [GKMT97, EG02, Hag08]. It is
defined as follows:

Problem: TRANSVERSAL ENUMERATION (TRANS-ENUM)
Input: A hypergraph = (V, &) on afinite sel/.
Output: The edges of the transversal hypergrapiiH).

The well-known decision problem associated to this contmrtgroblem is defined as follows:

Problem: TRANSVERSAL HYPERGRAPH(TRANS-HYP)
Input: Two hypergraphdt = (V, x) andg = (V, &g).
Question:ls G the transversal hypergraph®f, i.e., does'r(H) = G hold?

Complexity of TRANS-HYP has been investigated in detail in the literature [EG91, Hi;EGMO3,
EMGO08, KS03]. It is known to be in eep, but its lower bound is a prominent open problem. So
far neither a polynomial time algorithm has been found, res i been proved to be me-hard. In

a landmark paper [FK96] Fredman and Khachiyan provedMitatOTONE BOOLEAN DUALIZATION,
which is another well known problem that is computatitidyatjuivalent torRANS-HYP, can be solved

in n°(eg ») time. This implies that RANS-HYP is most likelynot conp-hard. It is conjectured that this
problem, together with several computationally equivafgoblems, forms a class properly contained
betweerp and covp [FK96].

In the following we say that a decision problenis TRANS-HYP-hard if TRANS-HYP can be reduced to
« by a standard polynomial transformation.We say th& TRANS-HYP-complete if it ISTRANS-HYP-
hard andr can be reduced toRANS-HYP by a polynomial transformation.

Theorem 7. ALL -MINAS iS TRANS-HYP-hard for dual-Horn KBs.

Proof. Let an instance of RANS-HYP be given by the hypergrapli¢ = (V,&x) andg = (V,&g).
FromH andg we construct an instance 8fL -MINAS as follows: for every vertex € V we introduce a
propositional variable,,, for every edgdy € £ a propositional variablez, and finally one additional
propositional variable. For constructing a dual-Horn KB frof¥ and a set of verticed/ C V, we
define the following operator, which is also going to be useldier proofs:

Kww = {ps — /\ pE|veWiu{a— /\pv}.
veEE E€Ey veV

Using these we construct the KB := Ky 5, aset of KBs# := {Kg | E € £} C Z(K), and the
axiomy := a — /\EegH pg that follows from/C. Obviously this construction creates an instance of
ALL -MINAS for dual-Horn KBs and it can be done in time polynomial in ties of H andg.

We claim that is the transversal hypergraph#fif and only if #” is precisely the set of all MinAs for
@ in K. Note thata — A .y p, is the only axiom inC such that: appears on the Ihs, which implies
that every MinA must contain this axiom. Hence, every Minffghe form Ky », for somel C V.
To prove our claim, it suffices to show that a set of vertidésC V' is a minimal transversal ¢f if and
only if the set of axiom&yy, 7, is a MinA.

(=) Assume tha#¥” is a minimal transversal df{. By definition W satisfiesW N E # () for every
E € Eg. This implies thatCyy 1, = ¢ holds. MoreoverCy,3 is minimal sincelV’ is minimal, i.e.,
ICW,H is a MinA.

(<) Now assume thd€yy, 3 is a MinA. Then every i whereE € &, appears on the rhs of at least one
of the axioms inCyy 5. This implies thall intersects every, i.e., it is a transversal ¢f. Moreover
it is minimal sincelCyy, 1 is minimal. O



Corollary 8. MINA-ENUM for dual-Horn KBs is at least as hard as enumerating hypepgraansver-
sals.

Next we show thabLL -MINAS becomes intractable for Ho£ KBs.

Theorem 9. ALL -MINAS is coNP-complete for HornE L TBoxes.

Proof. We have already shown that it is inree. To show caiP-hardness, we present a reduction from
the following cavp-hard problem [EG91, BPSO07].

Problem: ALL-MV
Input: A monotone Boolean formula and a set”” of minimal valuations satisfying.
Question:ls ¥ precisely the set of all minimal valuations satisfying

Let ¢, ¥ be an instance oiLL -MV; we denote asub(¢) the set of all subformulas af, and define
csub(¢) = sub(¢) \ {p € sub(¢) | p is a propositional variable We introduce three concept names
By, Cy, Dy, and two role namesy, s, for every subformula of ¢ and two additional concept names
A andE. For eachy € sub(¢) we define a TBoxZ,, as follows: ify is the propositional variable,
thenTw = {A C Bp}; if ¥ =1 As, thenTw = {A C ET’qb.Cw, C¢ C B¢1,C¢ C B¢2, 37’¢.B¢ C
Dy, By, M By, C B¢}; if ¥ = 11 V 1o, thenTw ={ALC ET’qb.Bwl,A C dsy.By,,dry.By N
381/).31/) C Dw, Bwl C Bw, sz C Bw}. Fina”y, we set

7= |J Twu{ [| DynBsCE}.
wesub(¢) wecsub(@)

Notice that foreveryf’ C 7, if 7" = A C E, then alsaA C D, for everyy € csub(¢). But in order
to haveA C D, all the axioms irnZy, are necessary, and thiig C 7. In particular, ifyy = ¢1 A g,
thenBy, M By, C By € T', and ify) = 4y V 1o, then{By, C By, By, & By} C 7'. Thus, a
valuationV satisfiesy iff 7, := {A T B, | p € V}UUycesun(s) 7o Yl lpecsubs) Pvw M By & E}
entailsA C FE. This in particular shows that” is the set of all minimal valuations satisfyingiff
{T,, |V € ¥} isthe setof all MinAs forA C E'in 7. O

The following is an immediate consequence of Theorem 9 aoddgition 6.

Corollary 10. For Horn-££ TBOXesMINA -ENUM cannot be solved in output polynomial time, unless
P =NP.

3.2 Enumeration in a Specified Order

We now consider the case when MinAs are required to be outguspecified lexicographic order. The
lexicographic order we use is defined as follows:

Definition 11. Let the elements of a sétbe linearly ordered. This order induces a linear strict orde
on Z(S), which is called théexicographic order We say that a sg® C S is lexicographically smaller
than a sef” C S whereR # T if the first element at which they disagree isfin

Problem: FIRST-MINA

Input: A KB K and an axionp of the same type such thkt = ¢, a MinA M for ¢ in K, and a linear
order onk.

Question:ls M the first MinA w.r.t. the lexicographic order induced by theem linear order?

Theorem 12. FIRST-MINA is conP-complete for dual-Horn KBs.



Proof. The problemis in cap. If M is not the lexicographically first MinA, a proof of this can igen
by guessing a subset &f and verifying in polynomial time that it is a MinA, and it isdieographically
smaller thanM.

In order to show ceP-hardness, we present a reduction from the problem of chgakhether a given
maximal independent set is the lexicographically last makindependent set of a given graph. Recall
that amaximal independent sef a graphG = (V) is a subset’ C V of the vertices such that no
two vertices inV’ are joined by an edge ifi, and each vertex iy \ V' is joined by an edge to some
vertex inV’. This problem is known to be esw-complete [JYP88].

Problem: LAST MAX . INDEPENDENT SET(LAST-MIS)

Input: A graphG = (V, £), a maximal independent s6tC V, and a linear order oW

Question:Is S the last maximal independent set w.r.t. the lexicographi@oinduced by the given
linear order?

Let an instance of AST-mIS be given with the graply = (V, &) and the maximal independent set
S. From@G and S we construct an instance 6fRSTMINA as follows: We construct the sekSy ¢

as in the proof of Theorem 7, and consider the axiom= a — A, pr that follows fromKy g.
Additionally by usingS we construct the set of axiorsl := Ky 5 g. Note thatkCy, g contains exactly
|[V|+1 axioms. We order these axioms such that an axiom with pregpisemes before the axiom with
premisep, if and only if the vertex» comes before the vertex in the originally given linear order on
V. Finally we placep as the last one. It is easy to see that this construction thdesates an instance
of FIRST-MINA for dual-Horn KBs, and it can be done in time polynomial in fiees ofG and.S. We
claim thatS is lexicographically the last maximal independent set d anly if M is lexicographically
the first MinA.

(=) Assumes is the lexicographically last maximal independent set.nfkie, .S contains at least one
vertex from every edge (i.e., it is a vertex cover), sinceeptlise S would not be an independent set.
Thus everypg, for E € &£, appears on the rhs of at least one axiomMin ThatisM = ¢ holds. Since
S is maximal,V \ S and thusM is minimal, i.e., M is a MinA. Moreover it is lexicographically the
first one sinces is lexicographically the last maximal independent set.

(<) AssumeM is lexicographically the first MinA. Then evepy, for E € £, appears on the rhs of
at least one axiom itM since otherwise\ = ¢ would not hold. That s}y \ S contains at least one
vertex from every edge. Theficontains at most one vertex from every edge, i.e., it is anpeddent
set. SinceM is minimal, V' \ S is also minimal, and thu$' is maximal. That is,S is a maximal
independent set. Moreover it is lexicographically the ¢ sinceM is the lexicographically first
MinA. O

Since generating the lexicographically first MinA is alrgaatractable, Theorem 12 has the following
consequence:

Corollary 13. UnlessP = NP, MinAs cannot be enumerated for dual-Horn KBs in lexicodpiarder
with polynomial delay.

Next we consider the problem for Hothe KBs.

Theorem 14. FIRSTMINA is conP-complete for HornEL KBs.

Proof. The problem is clearly in aop. To show hardness, we give a reduction froasT-MIS. Let
G = (V,&) and S be an instance afasT-mIS. FromG we construct a Horig:L TBox 7 as follows:
first we introduce a concep®s for every £ € £, and conceptd,, (), and role name-, for each
v € V, and additionally two concept namels B. For everyv € V we construct the TBo%, :=
{P, C Pg|veEEFEEec&IU{AL ETU'PU’I_IvEE,Eei'g Ir,.Pr C @Q,}. We then define the



Algorithm 2 Enumerating all MinAs in reverse lex. order
1: ALL-MINAS-REV-ORDERK,¢)

2: > (K a Horn KB, ¢ an axiom s.tX = ¢)
3 Q:={K}

4: while Q # () do

5: J = maximum element o

6: removeJ from Q

7 M :=the lex. largest MinA in/

8: outputM

9 for1 <i<|M|do

10: computelC; from M as in Definition 3
11: insert/C; into Qif ; = ¢

12: end for

13: end while

set7y := J,ey 7o U {|_|E65H Pg N[],ey Qv C B}, and finally, for a set ofV C V, we define
Tw =T, U{AC P, |ve W}

Notice that foreveryf’ C 7, if 7' = AC Q,, then7, C T'. Hence, ifT’ = A C B, then7, C T".
FurthermoreS C V is an independent set iffy\ ¢ = A C B.

We now order the axioms ifly, as follows: first appear all the axiomsC P, using the same order of
V', and afterwards are all the axioms7p in any order. Therd' is the last maximal independent set iff
Ty\ s is the first MinAforA C B in 7y. O

Although computing the first MinA is aor-hard for both dual-Horn and Horei£ KBs, interestingly
computing the last MinA is polynomial for all types of KBs wertsider here. We start iterating over the
axioms of the KB with the axiom that is the smallest one wthe linear order on KB, and remove an
axiom if the remaining ones still have the given consegenbe.resulting set of axioms is lexicograph-
ically the last MinA. Even more interestingly, we now giveagorithm for Horn KBs that enumerates
MinAs in reverse lexicographic order with polynomial delay

Our algorithm keeps a set of KBs in a priority que@e These KBs are the “candidates” from which
the MinAs are going to be computed. Each KB can contain zemare MinAs. They are inserted
into Q by the algorithm at a cost a(n - log(M)) per insertion, where is the size of the original
KB and M is the total number of such KBs inserted. Note tlvatcan be exponentially bigger than
since there can be exponentially many MinAs. That is therélyn uses potentially exponential space.
The other operation that the algorithm performs®is to find and delete the maximum elementf
The maximum element aP is the KB in Q that contains the lexicographically largest MinA among the
MinAs contained in all other KBs ir®. This operation can also be performed witldiin - log(M))
time bound. The time bounds for insertion and deletion dd@¢so on» since they require a last MinA
computation.

Theorem 15. Algorithm 2 enumerates MinAs in the Horn setting in reveeséclographic order with
polynomial delay.

Proof. The algorithm terminates sinéé is finite. Soundness is shown as followg:contains initially
only the original KBK. Thus the first output is lexicographically the last MinAfh By Lemma 4
the MinA that comes just before the last one is contained ac#y one of thel(;s that are computed
and inserted int@ in lines 10 and 11. In line 57 is assigned the KB that contains this MinA. Thus
the next output will be the MinA that comes just before thadegraphically last one. It is not difficult
to see that in this way the MinAs will be enumerated in revéegeographic order. By Lemma 4 it is
guaranteed that the algorithm enumerates all MinAs.



In one iteration, the algorithm performs one find operatind ane delete operation ap, which both
take timeO(n -log(M)), and a MinA computation that takéXn) time. In addition it performs at most
n K; computations, and at mostinsertions intoQ. EachkC; computation take®(n?) time, and each
insertion take®) (n-log(M)) time. The total delay is thu8(2-(n-log(M))+n+n-(n?+n-log(M))) =
O(n?). O

4 Preferred and Unwanted Axioms

Next we investigate the problem of existence of a MinA thatglnot contain any of the given sets of
axioms. This problem can be useful in applications wherevesuats to avoid certain combinations of
axioms in the MinAs.

Problem: MINA -IRRELEVANCE
Input: A KB K and an axionp of the same type such th&t|= ¢, and a set?” C Z(K).
Question:ls there a MinAM for ¢ in K such thatS Z M for everyS € 7?

Theorem 16. MINA -IRRELEVANCE is NP-complete for dual-Horn KBs.

Proof. The problem is clearly inp. A nondeterministic algorithm for solving it first guesseset
M C K, then tests in polynomial time whether it is a MinA that does contain any of thes in 7.
For showing hardness we give a reduction fromnirehard hypergraph 2-coloring problem [GJ90].

Problem: HYPERGRAPH2-COLORING

Input: A hypergraptH = (V, £).

Question:ls H 2-colorable, i.e., is therel& C V suchthatforalll € &, WNE # @ and(V\W)NE #
0?

Let an instance ofiYPERGRAPH2-COLORING be given with the hypergrapht = (V, £). We construct
an instance oMINA -IRRELEVANCE as follows: as in the proof of Theorem 7, we construct the KB
K := Ky » and the axionp contructed there, as well as a set of KBS = {Kg » | E € £}. Itis easy

to see that this construction indeed creates an instanaenef- RRELEVANCE for dual-Horn KBs and

it can be done in time polynomial in the sizef We claim thatH is 2-colorable if and only if there is

a MinA M for ¢ in K such thatM satisfiesS ¢ M for everyS € 7.

(=) AssumeH is 2-colorable. Then there isi& C V suchthatV N E # §and(V\W)NE # 0
for everyE € &, i.e., bothiW and its complement are transversalstof Assume w.l.0.g. thall’ is
minimal. We claim thafCy, 4 is the MinA we are looking for. Sinc#’ is a transversal, evepy for
E € &, appears on the rhs of at least one axionCig ;. ThatisKyw » = ¢ holds. Ky 5 is minimal
sinceW is minimal. Moreover, sinc& \ W is also a transversal, every edfec £ contains at least
one vertex that imotin W. Thus everyS € ¢ contains at least one axiom thatriet in Ky 2. In
other words/Cyy ¢ is a MinA that is not a superset of asye 7.

(<) AssumeM is a MinA that is not a superset of ady € 7. Define the seWy = {v | p, —
Nvep pes PE € M}. SinceM is a MinA for ¢, for every £ € £ it contains at least one axiom on
whose rho g occurs. That isWW intersects every € £. SinceM is not a superset of any € 7,
everyS contains at least one axiom thanistin M. This that everyr € £ contains at least one vertex
that isnotin Wy,. Thatis,V \ Wy, intersects everfy € £. Thus we have shown th@t/, is a
2-coloring ofH. O

Theorem 17. MINA -IRRELEVANCE is NP-complete for HornrE£L TBoxes
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Proof. The problem is clearly inp. We showNpP-hardness by a reduction from therPERGRAPH
2-COLORING problem. LetH = (V, &) be a hypergraph; we construct the TBo&s7; and 7y as
in the proof of Theorem 14. It is easy to see that.= 7y,¢ := A C B and the set of TBoxes
# = {Tg | E € &£} form an instance of1INA -IRRELEVANCE for Horn-££ TBoxes. Furthermore,
we know that for everyV C V', W is a transversal of( iff 7y is a MinA for ¢ in 7. The hypergrapi
is 2-colorable iff there is a transvers#l of H such thatforall € £, E ¢ W. Hence/H is 2-colorable
iff there is a MinA7"’ for ¢ in 7 such thatlp ¢ 7' forall E € £. O

Next we consider the dual problem, which is checking theterise of a MinA that contains a certain
axiom.

Problem: MINA -RELEVANCE
Input: A KB K and an axionp of the same type such th&t = ¢, and an axiom) € K.
Question:ls there a MinAM for ¢ in K such that) € M?

Theorem 18. MINA -RELEVANCE is NP-complete for Horn KBs.

Proof. The problem is clearly inp. A nondeterministic algorithm for solving it first guessesudbset
of IC, then tests in polynomial time whether it is a MinA contagpih. For showing hardness we are
going to give a reduction from the followingP-complete problem [EG95a]:

Problem: HORN-RELEVANCE

Input: Two sets of propositional variablds and M, a setC of definite Horn clauses ovéf U M, and
a propositional variablg € H.

Question:ls there a minimaly C H such thatG UC = M andp € G?

Let an instance ofilORN RELEVANCEDe given withH, M, C andp. We construct an instance @iNA -
RELEVANCE as follows: In addition to the propositional variablesfinU M, we introduce two more
fresh ones, andb. Using these we construct the Horn KB:= {a — h | h € H}UCU{A .,y m —

b}, the axiomy := a — b, and the axiom) := a — p. Itis easy to see that this construction indeed
creates an instance BfiNA -RELEVANCE and it can be done in polynomial time. We claim that there is
aminimalG C H such thalG UC = M andp € G if and only if there is a MinAM for ¢ in K such
thaty € M.

(=) Assume that there is such a minin@ FromG we construciCe == {a — g | g € G} UCU
{Amenm — b}. Kg = a — bsinceGUC |= M. Thus, there is a MinAM for ¢ in K. Furthermore,
sinceG is minimal, for everyy € G the axioma — g is in M. In particularg € M.

(«=) Assume that there is such a MinAd. It contains the axiom\  .,, m — b, and also contains
axioms fromC such that everyn € M occurs on the rhs of at least one axiom. Additionaiycontains
axioms of the formu — h such thatM = a — A, ., m. Thenthe seG := {h | a — h € M}
satisfies7 UC = M. Moreoverp € G sincea — p € M, andG is minimal sinceM is minimal. O

5 Counting MinAs

In applications where one is interested in computing all AMinit might also be useful to know in
advance how many of them exist. Next we consider this cogmiioblem.

Problem: #MINA
Input: A KB K and an axiomp of the same type such thit = ¢.
Output: The number of all MinAs for in .

11



If ICis a core KB, the problem boils down to the problem of counsiimgple paths between two vertices
of a given directed graph. This problem calledd CONNECTEDNESShas already been considered
in [Val79b].

Problem: s-T CONNECTEDNESS
Input: A directed graplG = (V, E), and two vertices, t € V.
Output: The number of subgraphs 6fin which there is a path fromto ¢.

In [Val79Db] it has been shown that this problem isébmplete. # is defined [Val79a] as the class of
functions counting the accepting paths of nondetermaigtiring machines. Typical members of this
class are the problems of counting the number of solutionspedomplete problems. Among them,
the most well-known one isSAT, which is the problem of counting the distinct truth assigmts that
satisfy a given Boolean formula in CNF.

Since core KBs are the simplest type of KB, the hardnesstrapplies to the other KB types we
consider here. Moreover for the most expressive fragmentamsider, namel¥ £, the problem of
checking whether a given set of axioms is a MinA is polynomiiis implies that for this fragment,
and all others considered hereyi#iA is is in #p, thus it is #-complete.

Corollary 19. #MINA is #P-complete for core,Horn,dual-Horn,Bool aidiC KBs.

Next we consider another counting problem. Instead of thabrer of all MinAs, one can also be
interested in the number of MinAs that contain a specific sxitf we are trying to explain an unwanted
consequence, the solution of this counting problem wibwallus to detect axioms that are most likely
to be faulty, i. e. those that appear in the most MinAs. Théeaitlas been proposed in [SHCHO07] as a
heuristic for correcting an error while minimizing the clgas in the set of axioms.

Problem: #MINA -RELEVANCE
Input: A KB K and an axiomp of the same type such thit = ¢, and an axiom) € K.
Output: The number of all MinAs for in K that containy.

Theorem 20. #MINA -RELEVANCE is #P-complete for Horn KBs.

Proof. The problem is in # since given a Horn KBC, an axiom¢ that follows from/C, an axiom
1 € K, and a candidate solutidd’ C K, we can in polynomial time verify tha€’ is a MinA and it
containsy.

For showing #-hardness we give a parsimonious reduction fromna for core KBs, which has been
shown to be #-hard above. Given an instance afiftA with the core KBKC and the axionu — b
we construct the Horn KB’ := K U S, whereS = {a — ¢,b A ¢ — d}, andc andd are two fresh
propositional variable names not occurringkin It is not difficult to see that a se¥f C K is a MinA
fora — bin K if and only if M U S is a MinA for a — d in K’. Moreover, every MinA fora — d
in K’ contains the axioms if§. Thus, there are exactly as many MinAs for— b in K as there are for
a — d in K’ containing the axiomu — c. O

Obviously, Theorem 20 implies that#NA is #P-complete for Bool and Horg-L KBs.

6 Concluding Remarks and Future Work

We have analyzed the complexity of axiom pinpointing and ynatated problems in the propositional
Horn fragment and in the DEL. Our hardness results extend to more expressive DLs. Talzed 3
summarize our results whem stands foITRANS-HYP, TE stands for transversal enumeration, ‘-h’

12



FIRST | LAST- ALL - MINA- | MINA- | #MINA | #MINA -
MINA | MINA MINAS REL | IRREL REL
core poly poly #p-c
Horn poly poly NP-C #P-C #P-C
dual-Horn || conp-c | poly | TRANS-HYP-h NP-C #pP-c
Bool CONP-C | poly | TRANS-HYP-h | NP-C NP-C #P-C #P-C
Horn-£L || conp-c | poly CONP-C NP-C NP-C #P-C #P-C

Table 2: Complexity of related decision and counting protse

MINA -ENUM
in lexicographic order unordered
forward | backward

core output polynomial | polynomial delay| polynomial delay

Horn output polynomial | polynomial delay| polynomial delay
dual-Horn | not polynomial delay] TRANS-ENUM-h | TRANS-ENUM-h

Bool not polynomial delay] TRANS-ENUM-h | TRANS-ENUM-h
Horn-£L not output polynomial

Table 3: Complexity oMINA -ENUM in different settings

stands for hard, and ‘-c’ stands for complete. As future wwekare going to work on determining
the exact complexity oALL -MINAS problem for dual-Horn KBs. We are going to check whether it is
equivalent to theRANS-HYP problem. We are also going to investigate the complexityLaf-MINAS

for more expressive DLs to see whether it remains in the samplexity class as reasoning.
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