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Abstract

We investigate the computational complexity of axiom pinpointing in Description Logics, which
is the task of finding minimal subsets of a knowledge base thathave a given consequence. We con-
sider the problems of enumerating such subsets with and without order, and show hardness results
that already hold for the propositional Horn fragment, or for the Description LogicEL. We show
complexity results for several other related decision and enumeration problems for these fragments
that extend to more expressive logics. In particular we showthat hardness of these problems depends
not only on expressivity of the fragment but also on the shapeof the axioms used.

1 Introduction

Description Logics (DLs) [BCM+03] are a well-established family of logic-based knowledgerepre-
sentation formalisms that are used to represent the conceptual knowledge of an application domain
in a structured and formally well-understood way. DLs have proven successful in various application
domains, but they have gained increased attention due to thefact that they provide the logical under-
pinning of OWL [HPSvH03], the standard ontology language for the semantic web. As a consequence
of this standardization, several ontology editors [KFNM04, KPS+06, HTR06], now support OWL and
ontologies written in OWL are employed in more and more applications. As the size of these ontologies
grows, tools that support knowledge engineers in maintaining their quality become more important. In
real world applications often the knowledge engineer not only wants to know whether her ontology has
a certain (unwanted) consequence or not, but also wants to know why it has this consequence. Even for
KBs of moderate size, finding explanations for a given a consequence is not an easy task without getting
support from an automated tool. The task of finding explanations for a given consequence, i.e., minimal
subsets of the original KB that have the given consequence iscalledaxiom pinpointingin the literature.

Existing work on axiom pinpointing in DLs can be classified under two main categories, namely the
glass-box approach, and the black-box approach. The idea lying under theglass-box approachis to
extend the existing reasoning algorithms such that while reasoning, at the same time they can keep track
of the axioms used, and detect which of the axioms in the KB areresponsible for a given consequence.
In [SC03] a pinpointing extension of the well-known tableau-based satisfiability algorithm for the DL
ALC [SSS91] has been introduced. Later in [PSK05], this approach has been further extended to DLs

∗Part of this work has been done when the author was still employed at Institute of Theoretical Computer Science, TU Dresden
in the DFG Project BA 1122/12-1.
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that are more expressive thanALC. In [MLBP06] a pinpointing algorithm forALC with general con-
cept inclusions (GCIs) has been presented by following the approach in [BH95]. In order to overcome
the problem of developing a pinpointing extension for everyparticular tableau-based algorithm, a gen-
eral pinpointing extension for tableau algorithms has beendeveloped in [BP07, BP10]. Similarly, an
automata-based general approach for obtaining glass-box pinpointing algorithms has been introduced
in [BP08, BP09].

In contrast to the glass-box approach, the idea lying under theblack-box approachis to make use of the
existing highly optimized reasoning algorithms wihout having to modify them. The most naı̈ve black-
box approach would of course be to generate every subset of the originial KB, and ask a DL reasoner
whether this subset has the given consequence or not, which obviously is very inefficient. In [KPHS07]
more efficient approaches based on Reiter’s hitting set treealgorithm [Rei87] have been presented.
The experimental resuts in [KPHS07] demonstrate that this approach behaves quite well in practice on
realistic KBs written in expressive DLs. A similar approachhas successfully been used in [HPS09] for
explaining inconsistencies in OWL ontologies. The main advantages of the black-box approach are that
one can use existing DL reasoners, and that it is independentof the DL reasoner being used. In [HPS08]
the black-box approach has been used for computing more fine grained explanations, i.e., not just the
set of relevant axioms in the KB but parts of these axioms thatactually lead to the given consequence.

Although various methods and aspects of axiom pinpointing have been considered in the literature,
its computational complexity has not been investigated in detail yet. Obviously, axiom pinpointing is
at least as hard as reasoning. Nevertheless, especially fortractable DLs it makes sense to investigate
whether explanations for a consequence can efficiently be enumerated or not. In [BPS07] it has been
shown that a given consequence can have exponentially-manyexplanations (there calledMinAs, which
stands for minimal axiom sets), and checking the existence of a MinA within a cardinality bound is
NP-complete. There it has also been shown that in a setting where MinAs are required to contain
certain (static) part of the KB, then the set of all MinAs cannot be computed in output polynomial time.
In [PS09] among other results we have shown that without the static part this problem is at least as hard
as computing minimal transversals of a hypergraph. We have also shown that if the MinAs are required
to be output in a specified order, then the problem is not solvable with polynomial delay.

In the present paper we present several new interesting complexity results on axiom pinpointing. We
give a polynomial delay algoritm for enumerating MinAs in the Horn setting, show that for dual-Horn
KBs the problem is at least as hard as hypergraph transversalenumeration, and forEL KBs it is not
output polynomial. We show that if MinAs are required to be output in a specified order, then for dual-
Horn andEL KBs this cannot be done with polynomial delay. We also consider several other decision
and enumeration problems on MinAs in different settings.

2 Preliminaries

We briefly recall basic notions from propositional logic, DLs, and complexity of enumeration. In propo-
sitional logic we build formulae using a set ofpropositional variablesand theBoolean connectives¬
(negation),∨ (disjunction) and∧ (conjunction). A variable or its negation is called aliteral, and a dis-
junction of literals is called aclause. A clause is called aHorn (dual-Horn) clause if it contains at most
one positive (negative) literal, and adefinite Horn (dual-Horn)clause if it contains exactly one positive
(negative) literal. A Horn clausep1 ∨ ¬p2 ∨ ¬p3 can also be written as animplication of the form
p2∧p3 → p1. Throughout the text we will call definite Horn (dual-Horn) clauses just Horn (dual-Horn)
clauses for short. We will call clauses with exactly one positive and one negative literal likep1 → p2 as
coreclauses.

In DLs one formalizes the relevant notions of an applicationdomain withconcept descriptions. Concept
descriptions are inductively built with the help of a set ofconstructors, starting with a setNC of concept
namesand a setNR of role names. EL concept descriptions are formed using the three constructors⊓, ∃
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Syntax Semantics

⊤ ∆I

C ⊓D CI ∩DI

∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

C ⊑ D CI ⊆ DI

Table 1: Syntax and semantics ofEL.

and⊤ as shown in the upper part of Table 1. AnEL TBox is a finite set ofgeneral concept inclusion
axioms (GCIs), whose syntax is shown in the lower part of Table 1. The semantics ofEL is defined in
terms ofinterpretationsI = (∆I , ·I), where thedomain∆I is a non-empty set of individuals, and the
interpretation function·I maps each concept nameA ∈ NC to a subsetAI of ∆I and each role name
r ∈ NR to a binary relationrI on∆I . The mapping·I can be extended to arbitrary concept descriptions
as shown in the second colum of Table 1. An interpretationI is amodelof a TBoxT if, for every GCI
in T the conditions on the semantics column of Table 1 are satisfied. The main inference problem for
EL is the subsumption problem: Given twoEL concept descriptionsC,D and anEL TBox T , check
if C is subsumedby D w.r.t. T (written T |= C ⊑ D), i.e, check ifCI ⊆ DI holds in every model
I of T . We will call a concept descriptionsimpleif it is of the formA or ∃r.A for A ∈ NC, r ∈ NR,
and a GCI aHorn-EL GCI if it is of the formC1 ⊓ . . . ⊓ Cn ⊑ D, whereCi, D are simple concept
descriptions,1 ≤ i ≤ n.

We will refer to both propositional clauses andEL GCIs asaxioms, and a set of axioms as aknowledge
base (KB). We will say that a KB is a Horn (core, dual-Horn,EL) KB if it contains only Horn (core,dual-
Horn,EL) axioms. We are going to formulate our problems in a generic way without referring to a
specific type of KB, and show our results for each KB type separately.

In complexity theory, we say that an algorithm runs withpolynomial delay[JYP88] if the time until the
first solution is generated, and thereafter the time betweenany two consecutive solutions is bounded
by a polynomial in the size of the input. We say that it runs inoutput polynomial timeif it outputs all
solutions in time polynomial in the size of the inputand the output.

3 Complexity of Enumerating All MinAs

The main problem we consider is, given a KB and a consequence of it, computing all MinAs for this
consequence in the given KB. We start with the definition of a MinA.

Definition 1. Let K be a set of axioms andϕ be a logical consequence of it, i.e.,K |= ϕ. We call a set
M ⊆ K a minimal axiom setor MinA for ϕ in K if M |= ϕ and it is minimal w.r.t. set inclusion.

Our problem is formally defined as follows:

Problem: MINA -ENUM

Input: A KB K and an axiomϕ of the same type such thatK |= ϕ.
Output:The set of all MinAs forϕ in K.

Note that for core KBs, which are basically directed graphs,a MinA is a simple path between two given
vertices, and enumerating all MinAs corresponds to enumerating all simple paths between two given
vertices, which can easily be done with polynomial delay. However, the situation is not so clear for
Horn KBs. To the best of our knowledge, only [NPA06] considers a problem related to ours on directed
hypergraphs, but it is not exactly the one considered here.
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3.1 Enumeration without a Specific Order

We start with the Horn setting and show that for this setting MinAs can efficiently be enumerated by
giving a polynomial delay algorithm. The algorithm dependson the following particular notion.

Definition 2. LetK be a Horn KB, andφ =
∧n

i=1 ai → b be an axiom inK. We denote the left handside
(lhs) ofφ with T(φ), and its right handside (rhs) withh(φ), i.e.,T(φ) := {a1, . . . , an} andh(φ) := b.
With h−1(b) we denote the set of axioms inK whose rhs areb. LetM = {t1, . . . , tm} be a MinA for∧
a∈A a → c. We call an orderingt1 < . . . < tm a valid orderingon M if for every 1 ≤ i ≤ m,

T(ti) ⊆ A ∪ {h(t1), . . . , h(ti−1)} holds.1

It is easy to see that for every MinAM there is always at least one such valid ordering. In the following,
we use this fact to construct from a given MinA a set of KBs thatprecisely contain the remaining MinAs.

Definition 3. Let M be a MinA inK with |M| = m, and< be a valid ordering onM. For each
1 ≤ i ≤ m we obtain a KBKi from K as follows: (i) for eachj s.t. i < j ≤ m remove all axioms in
h−1(h(tj)) except fortj , i.e., remove all axioms with the same rhs astj except fortj itself. (ii) remove
ti.

Lemma 4. Let M be a MinA forφ in K, and letK1, . . . ,Km be constructed fromK andM as in
Definition 3. Then, for every MinAN for φ in K that is different fromM, there existsexactly onei,
where1 ≤ i ≤ m, such thatN is a MinA forφ in Ki.

Proof. Let t1 < . . . < tm be a valid ordering onM, andN a MinA for φ in K such thatN 6= M.
Then,M\N 6= ∅. Let tk be the largest axiom inM\N w.r.t. the ordering<. We show thatN ⊆ Kk
andN 6⊆ Ki for all i 6= k, 1 ≤ i ≤ m.

Assume there is an axiomt ∈ N s.t. t 6∈ Kk. t should be one of the axioms removed fromK either in
step (i), or in step (ii) of Definition 3. It cannot be step (ii)becausetk 6∈ N sincetk ∈ M \ N . Thus
it should be step (i). This implies that there exists aj, k < j ≤ m, such thattj satisfiesh(t) = h(tj).
Recall that we chosej to be the largest axiom inM\N w.r.t. the valid ordering< onM. Then thistj
should be inN . But thenN contains two axioms with the rhsh(t), which contradicts with the fact that
N is a MinA, and thus it is minimal. Hence,N ⊆ Kk.

Now take ani s.t. i 6= k. If i > k, thenti ∈ N but ti /∈ Ki, and henceN 6⊆ Ki. If i < k, then
there is an axiomt ∈ N such thath(t) = h(tk) since otherwiseM andN would not be MinAs. By
construction,t /∈ Ki, henceN 6⊆ Ki.

Lemma 4 gives an idea of how to compute the remaining MinAs from a given one. Algorithm 1 describes
how we can use this lemma for enumerating all MinAs.

Theorem 5. Algorithm 1 solvesMINA -ENUM for Horn KBs with polynomial delay.

Proof. The algorithm terminates sinceK is finite. It is sound since its outputs are MinAs forφ in K.
Completeness follows from Lemma 4.

In each recursive call of the algorithm there is one consequence check (line 2), and one MinA compu-
tation (line 4). The consequence check can be done in polynomial time by the well-known linear-time
algorithm in [DG84]. One MinA can be computed in polynomial time by iterating over the axioms in
K and removing an axiom if remaining ones still have the consequence. Thus the algorithm spends at
most polynomial time between each output, i.e., it is polynomial delay.

1That is, each variable on the lhs ofti is in A, or it is the rhs of a previous axiom.
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Algorithm 1 Enumerating all MinAs for Horn KBs
1: ALL -M INAS(K,φ)
2: ⊲ (K a Horn KB,φ an axiom s.t.K |= φ)
3: if K 6|= φ then return
4: else
5: M := a MinA in K
6: outputM
7: for 1 ≤ i ≤ |M| do
8: computeKi fromM as in Definition 3
9: ALL -M INAS(Ki,φ)

10: end for
11: end if

Next we considerMINA -ENUM for dual-Horn KBs. For this, we first investigate the following decision
problem which is is closely related toMINA -ENUM. As we will see, determining its complexity is
important for determining the complexity ofMINA -ENUM.

Problem: ALL -MINAS

Input: A KB K and an axiomϕ of the same type such thatK |= ϕ, and a set of KBsK ⊆ P(K).
Question:Is K precisely the set of all MinAs forϕ in K?

As Proposition 6 shows, ifALL -MINAS cannot be decided in polynomial time, thenMINA -ENUM cannot
be solved in output polynomial time.

Proposition 6. If ALL -MINAS cannot be decided in polynomial time, thenMINA -ENUM cannot be
solved in output-polynomial time.

Proof. Assume we have an algorithmA that solvesMINA -ENUM in output-polynomial time. Let its
runtime be bounded by a polynomialp(IS,OS) whereIS denotes the size of the input KB andOS
denotes the size of the output, i.e., the set of all MinAs.

In order to decideALL -MINAS for an instance given byK, ϕ, andK ⊆ P(K), we construct another
algorithmA

′ that works as follows: it runsA on K andϕ for at mostp(|K|, |K |)-many steps. IfA
terminates within this many steps, thenA

′ compares the output ofA with K and returnsyesif and only
if they are equal. If they are not equal,A

′ returnsno. If A has not yet terminated afterp(|K|, |K |)-many
steps, this implies that there is at least one MinA that is notcontained inK , soA

′ returnsno. It is easy
to see that the runtime ofA′ is bounded by a polynomial in|K| and|K |, that isA′ decidesALL -MINAS

in polynomial time.

This proposition shows that the complexity ofALL -MINAS is indeed closely related to the complexity of
MINA -ENUM. It is not difficult to see that, for all types of axioms considered in this paper,ALL -MINAS

is in coNP: given an instance ofALL -MINAS, a nondeterministic algorithm can guess a subset ofK that
is not inK , and in polynomial time verify that this is a MinA, thusK is not the set of all MinAs. In
the following we show that for dual-Horn KBsALL -MINAS is at least as hard as recognizing the set of
all minimal transversals of a given hypergraph. However, whether it is coNP-hard remains unfortunately
open. We later show thatALL -MINAS is coNP-complete if Horn-EL axioms are considered.

First we briefly recall some basic notions on hypergraphs. Ahypergraph[Ber89]H = (V, E) consists of
a set ofverticesV = {vi | 1 ≤ i ≤ n}, and a set of(hyper)edgesE = {Ej | 1 ≤ j ≤ m} whereEj ⊆
V . Following the convention in [Ber89] we assume that the set of edges as well as the set of vertices is
nonempty, and the union of all edges yields the vertex set. A setW ⊆ V is called atransversalof H
if it intersects every edge ofH, i.e.,∀E ∈ E . E ∩W 6= ∅. A transversal is calledminimal if no proper
subset of it is a transversal. The set of all minimal transversals ofH constitutes another hypergraph onV

5



called thetransversal hypergraphof H, which is denoted byTr(H). GeneratingTr(H) is an important
problem which has applications in many fields of computer science [GKMT97, EG02, Hag08]. It is
defined as follows:

Problem: TRANSVERSAL ENUMERATION (TRANS-ENUM)
Input: A hypergraphH = (V, E) on a finite setV .
Output:The edges of the transversal hypergraphTr(H).

The well-known decision problem associated to this computation problem is defined as follows:

Problem: TRANSVERSAL HYPERGRAPH(TRANS-HYP)
Input: Two hypergraphsH = (V, EH) andG = (V, EG).
Question:Is G the transversal hypergraph ofH, i.e., doesTr(H) = G hold?

Complexity of TRANS-HYP has been investigated in detail in the literature [EG91, EG95b, EGM03,
EMG08, KS03]. It is known to be in coNP, but its lower bound is a prominent open problem. So
far neither a polynomial time algorithm has been found, nor has it been proved to be coNP-hard. In
a landmark paper [FK96] Fredman and Khachiyan proved thatMONOTONE BOOLEAN DUALIZATION,
which is another well known problem that is computatitionally equivalent toTRANS-HYP, can be solved
in no(log n) time. This implies thatTRANS-HYP is most likelynot coNP-hard. It is conjectured that this
problem, together with several computationally equivalent problems, forms a class properly contained
betweenP and coNP [FK96].

In the following we say that a decision problemπ is TRANS-HYP-hard if TRANS-HYP can be reduced to
π by a standard polynomial transformation.We say thatπ is TRANS-HYP-complete if it isTRANS-HYP-
hard andπ can be reduced toTRANS-HYP by a polynomial transformation.

Theorem 7. ALL -MINAS is TRANS-HYP-hard for dual-Horn KBs.

Proof. Let an instance ofTRANS-HYP be given by the hypergraphsH = (V, EH) andG = (V, EG).
FromH andG we construct an instance ofALL -MINAS as follows: for every vertexv ∈ V we introduce a
propositional variablepv, for every edgeE ∈ EH a propositional variablepE , and finally one additional
propositional variablea. For constructing a dual-Horn KB fromH and a set of verticesW ⊆ V , we
define the following operator, which is also going to be used in later proofs:

KW,H := {pv →
∧

v∈E,E∈EH

pE | v ∈W} ∪ {a→
∧

v∈V

pv}.

Using these we construct the KBK := KV,H, a set of KBsK := {KE,H | E ∈ EG} ⊆ P(K), and the
axiomϕ := a →

∧
E∈EH

pE that follows fromK. Obviously this construction creates an instance of
ALL -MINAS for dual-Horn KBs and it can be done in time polynomial in the sizes ofH andG.

We claim thatG is the transversal hypergraph ofH if and only if K is precisely the set of all MinAs for
ϕ in K. Note thata →

∧
v∈V pv is the only axiom inK such thata appears on the lhs, which implies

that every MinA must contain this axiom. Hence, every MinA isof the formKW,H for someW ⊆ V .
To prove our claim, it suffices to show that a set of verticesW ⊆ V is a minimal transversal ofH if and
only if the set of axiomsKW,H is a MinA.

(⇒) Assume thatW is a minimal transversal ofH. By definitionW satisfiesW ∩ E 6= ∅ for every
E ∈ EH . This implies thatKW,H |= ϕ holds. Moreover,KW,H is minimal sinceW is minimal, i.e.,
KW,H is a MinA.

(⇐) Now assume thatKW,H is a MinA. Then everypE whereE ∈ EH appears on the rhs of at least one
of the axioms inKW,H. This implies thatW intersects everyE, i.e., it is a transversal ofH. Moreover
it is minimal sinceKW,H is minimal.
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Corollary 8. MINA -ENUM for dual-Horn KBs is at least as hard as enumerating hypergraph transver-
sals.

Next we show thatALL -MINAS becomes intractable for Horn-EL KBs.

Theorem 9. ALL -MINAS is coNP-complete for Horn-EL TBoxes.

Proof. We have already shown that it is in coNP. To show coNP-hardness, we present a reduction from
the following coNP-hard problem [EG91, BPS07].

Problem: ALL -MV

Input: A monotone Boolean formulaφ and a setV of minimal valuations satisfyingφ.
Question:Is V precisely the set of all minimal valuations satisfyingφ?

Let φ,V be an instance ofALL -MV ; we denote assub(φ) the set of all subformulas ofφ, and define
csub(φ) := sub(φ) \ {p ∈ sub(φ) | p is a propositional variable}. We introduce three concept names
Bψ, Cψ, Dψ, and two role namesrψ, sψ for every subformulaψ of φ and two additional concept names
A andE. For eachψ ∈ sub(φ) we define a TBoxTψ as follows: ifψ is the propositional variablep,
thenTψ := {A ⊑ Bp}; if ψ = ψ1 ∧ ψ2, thenTψ := {A ⊑ ∃rψ .Cψ , Cψ ⊑ Bψ1

, Cψ ⊑ Bψ2
, ∃rψ .Bψ ⊑

Dψ, Bψ1
⊓ Bψ2

⊑ Bψ}; if ψ = ψ1 ∨ ψ2, thenTψ := {A ⊑ ∃rψ .Bψ1
, A ⊑ ∃sψ .Bψ2

, ∃rψ .Bψ ⊓
∃sψ.Bψ ⊑ Dψ, Bψ1

⊑ Bψ, Bψ2
⊑ Bψ}. Finally, we set

T :=
⋃

ψ∈sub(φ)

Tψ ∪ {
l

ψ∈csub(φ)

Dψ ⊓Bφ ⊑ E}.

Notice that for everyT ′ ⊆ T , if T ′ |= A ⊑ E, then alsoA ⊑ Dψ for everyψ ∈ csub(φ). But in order
to haveA ⊑ Dψ, all the axioms inTψ are necessary, and thusTψ ⊆ T ′. In particular, ifψ = ψ1 ∧ ψ2,
thenBψ1

⊓ Bψ2
⊑ Bψ ∈ T ′, and ifψ = ψ1 ∨ ψ2, then{Bψ1

⊑ Bψ , Bψ2
⊑ Bψ} ⊆ T ′. Thus, a

valuationV satisfiesφ iff TV := {A ⊑ Bp | p ∈ V} ∪
⋃
ψ∈csub(φ) Tψ ∪ {

d
ψ∈csub(φ)Dψ ⊓ Bφ ⊑ E}

entailsA ⊑ E. This in particular shows thatV is the set of all minimal valuations satisfyingφ iff
{TV | V ∈ V } is the set of all MinAs forA ⊑ E in T .

The following is an immediate consequence of Theorem 9 and Proposition 6.

Corollary 10. For Horn-EL TBoxesMINA -ENUM cannot be solved in output polynomial time, unless
P =NP.

3.2 Enumeration in a Specified Order

We now consider the case when MinAs are required to be output in a specified lexicographic order. The
lexicographic order we use is defined as follows:

Definition 11. Let the elements of a setS be linearly ordered. This order induces a linear strict order
onP(S), which is called thelexicographic order. We say that a setR ⊆ S is lexicographically smaller
than a setT ⊆ S whereR 6= T if the first element at which they disagree is inR.

Problem: FIRST-MINA

Input: A KB K and an axiomϕ of the same type such thatK |= ϕ, a MinA M for ϕ in K, and a linear
order onK.
Question:IsM the first MinA w.r.t. the lexicographic order induced by the given linear order?

Theorem 12. FIRST-MINA is coNP-complete for dual-Horn KBs.
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Proof. The problem is in coNP. If M is not the lexicographically first MinA, a proof of this can begiven
by guessing a subset ofK and verifying in polynomial time that it is a MinA, and it is lexicographically
smaller thanM.

In order to show coNP-hardness, we present a reduction from the problem of checking whether a given
maximal independent set is the lexicographically last maximal independent set of a given graph. Recall
that amaximal independent setof a graphG = (V, E) is a subsetV ′ ⊆ V of the vertices such that no
two vertices inV ′ are joined by an edge inE , and each vertex inV \ V ′ is joined by an edge to some
vertex inV ′. This problem is known to be coNP-complete [JYP88].

Problem: LAST MAX . INDEPENDENT SET(LAST-MIS)
Input: A graphG = (V, E), a maximal independent setS ⊆ V , and a linear order onV .
Question: Is S the last maximal independent set w.r.t. the lexicographic order induced by the given
linear order?

Let an instance ofLAST-MIS be given with the graphG = (V, E) and the maximal independent set
S. FromG andS we construct an instance ofFIRST-MINA as follows: We construct the setsKW,G
as in the proof of Theorem 7, and consider the axiomϕ := a →

∧
E∈E pE that follows fromKV,G .

Additionally by usingS we construct the set of axiomsM := KV \S,G. Note thatKV,G contains exactly
|V |+1 axioms. We order these axioms such that an axiom with premisepv comes before the axiom with
premisepv′ if and only if the vertexv comes before the vertexv′ in the originally given linear order on
V . Finally we placeϕ as the last one. It is easy to see that this construction indeed creates an instance
of FIRST-MINA for dual-Horn KBs, and it can be done in time polynomial in thesizes ofG andS. We
claim thatS is lexicographically the last maximal independent set if and only if M is lexicographically
the first MinA.

(⇒) AssumeS is the lexicographically last maximal independent set. Then V \ S contains at least one
vertex from every edge (i.e., it is a vertex cover), since otherwiseS would not be an independent set.
Thus everypE , forE ∈ E , appears on the rhs of at least one axiom inM. That isM |= ϕ holds. Since
S is maximal,V \ S and thusM is minimal, i.e.,M is a MinA. Moreover it is lexicographically the
first one sinceS is lexicographically the last maximal independent set.

(⇐) AssumeM is lexicographically the first MinA. Then everypE , for E ∈ E , appears on the rhs of
at least one axiom inM since otherwiseM |= ϕ would not hold. That is,V \ S contains at least one
vertex from every edge. ThenS contains at most one vertex from every edge, i.e., it is an independent
set. SinceM is minimal, V \ S is also minimal, and thusS is maximal. That is,S is a maximal
independent set. Moreover it is lexicographically the lastone sinceM is the lexicographically first
MinA.

Since generating the lexicographically first MinA is already intractable, Theorem 12 has the following
consequence:

Corollary 13. UnlessP = NP, MinAs cannot be enumerated for dual-Horn KBs in lexicographic order
with polynomial delay.

Next we consider the problem for Horn-EL KBs.

Theorem 14. FIRST-MINA is coNP-complete for Horn-EL KBs.

Proof. The problem is clearly in coNP. To show hardness, we give a reduction fromLAST-MIS. Let
G = (V, E) andS be an instance ofLAST-MIS. FromG we construct a Horn-EL TBox T as follows:
first we introduce a conceptPE for everyE ∈ E , and conceptsPv, Qv and role namerv for each
v ∈ V , and additionally two concept namesA,B. For everyv ∈ V we construct the TBoxTv :=
{Pv ⊑ PE | v ∈ E,E ∈ EG} ∪ {A ⊑ ∃rv.Pv,

d
v∈E,E∈EG

∃rv.PE ⊑ Qv}. We then define the
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Algorithm 2 Enumerating all MinAs in reverse lex. order
1: ALL -M INAS-REV-ORDER(K,φ)
2: ⊲ (K a Horn KB,φ an axiom s.t.K |= φ)
3: Q := {K}
4: while Q 6= ∅ do
5: J := maximum element ofQ
6: removeJ fromQ
7: M := the lex. largest MinA inJ
8: outputM
9: for 1 ≤ i ≤ |M| do

10: computeKi fromM as in Definition 3
11: insertKi intoQ if Ki |= φ
12: end for
13: end while

setTf :=
⋃
v∈V Tv ∪ {

d
E∈EH

PE ⊓
d
v∈V Qv ⊑ B}, and finally, for a set ofW ⊆ V , we define

TW := Tf ∪ {A ⊑ Pv | v ∈ W}.

Notice that for everyT ′ ⊆ T , if T ′ |= A ⊑ Qv, thenTv ⊆ T ′. Hence, ifT ′ |= A ⊑ B, thenTf ⊆ T ′.
Furthermore,S ⊆ V is an independent set iffTV \S |= A ⊑ B.

We now order the axioms inTV as follows: first appear all the axiomsA ⊑ Pv using the same order of
V , and afterwards are all the axioms inTf in any order. ThenS is the last maximal independent set iff
TV \S is the first MinA forA ⊑ B in TV .

Although computing the first MinA is coNP-hard for both dual-Horn and Horn-EL KBs, interestingly
computing the last MinA is polynomial for all types of KBs we consider here. We start iterating over the
axioms of the KB with the axiom that is the smallest one w.r.t.the linear order on KB, and remove an
axiom if the remaining ones still have the given conseqence.The resulting set of axioms is lexicograph-
ically the last MinA. Even more interestingly, we now give analgorithm for Horn KBs that enumerates
MinAs in reverse lexicographic order with polynomial delay.

Our algorithm keeps a set of KBs in a priority queueQ. These KBs are the “candidates” from which
the MinAs are going to be computed. Each KB can contain zero ormore MinAs. They are inserted
into Q by the algorithm at a cost ofO(n · log(M)) per insertion, wheren is the size of the original
KB andM is the total number of such KBs inserted. Note thatM can be exponentially bigger thann
since there can be exponentially many MinAs. That is the algorithm uses potentially exponential space.
The other operation that the algorithm performs onQ is to find and delete the maximum element ofQ.
The maximum element ofQ is the KB inQ that contains the lexicographically largest MinA among the
MinAs contained in all other KBs inQ. This operation can also be performed withinO(n · log(M))
time bound. The time bounds for insertion and deletion depend also onn since they require a last MinA
computation.

Theorem 15. Algorithm 2 enumerates MinAs in the Horn setting in reverse lexicographic order with
polynomial delay.

Proof. The algorithm terminates sinceK is finite. Soundness is shown as follows:Q contains initially
only the original KBK. Thus the first output is lexicographically the last MinA inK. By Lemma 4
the MinA that comes just before the last one is contained in exactly one of theKis that are computed
and inserted intoQ in lines 10 and 11. In line 5J is assigned the KB that contains this MinA. Thus
the next output will be the MinA that comes just before the lexicographically last one. It is not difficult
to see that in this way the MinAs will be enumerated in reverselexicographic order. By Lemma 4 it is
guaranteed that the algorithm enumerates all MinAs.
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In one iteration, the algorithm performs one find operation and one delete operation onQ, which both
take timeO(n · log(M)), and a MinA computation that takesO(n) time. In addition it performs at most
n Ki computations, and at mostn insertions intoQ. EachKi computation takesO(n2) time, and each
insertion takesO(n·log(M)) time. The total delay is thusO(2·(n·log(M))+n+n·(n2+n·log(M))) =
O(n3).

4 Preferred and Unwanted Axioms

Next we investigate the problem of existence of a MinA that does not contain any of the given sets of
axioms. This problem can be useful in applications where onewants to avoid certain combinations of
axioms in the MinAs.

Problem: MINA -IRRELEVANCE

Input: A KB K and an axiomϕ of the same type such thatK |= ϕ, and a setK ⊆ P(K).
Question:Is there a MinAM for ϕ in K such thatS 6⊆ M for everyS ∈ K ?

Theorem 16. MINA -IRRELEVANCE is NP-complete for dual-Horn KBs.

Proof. The problem is clearly inNP. A nondeterministic algorithm for solving it first guesses aset
M ⊆ K, then tests in polynomial time whether it is a MinA that does not contain any of theS in K .
For showing hardness we give a reduction from theNP-hard hypergraph 2-coloring problem [GJ90].

Problem: HYPERGRAPH2-COLORING

Input: A hypergraphH = (V, E).
Question:IsH 2-colorable, i.e., is there aW ⊆ V such that for allE ∈ E ,W∩E 6= ∅ and(V \W )∩E 6=
∅?

Let an instance ofHYPERGRAPH2-COLORING be given with the hypergraphH = (V, E). We construct
an instance ofMINA -IRRELEVANCE as follows: as in the proof of Theorem 7, we construct the KB
K := KV,H and the axiomϕ contructed there, as well as a set of KBsK = {KE,H | E ∈ E}. It is easy
to see that this construction indeed creates an instance ofMINA -IRRELEVANCE for dual-Horn KBs and
it can be done in time polynomial in the size ofH. We claim thatH is 2-colorable if and only if there is
a MinA M for ϕ in K such thatM satisfiesS 6⊆ M for everyS ∈ K .

(⇒) AssumeH is 2-colorable. Then there is aW ⊆ V such thatW ∩ E 6= ∅ and(V \W ) ∩ E 6= ∅
for everyE ∈ E , i.e., bothW and its complement are transversals ofH. Assume w.l.o.g. thatW is
minimal. We claim thatKW,H is the MinA we are looking for. SinceW is a transversal, everypE for
E ∈ E , appears on the rhs of at least one axiom inKW,H. That isKW,H |= ϕ holds.KW,H is minimal
sinceW is minimal. Moreover, sinceV \W is also a transversal, every edgeE ∈ E contains at least
one vertex that isnot in W . Thus everyS ∈ K contains at least one axiom that isnot in KW,H. In
other words,KW,H is a MinA that is not a superset of anyS ∈ K .

(⇐) AssumeM is a MinA that is not a superset of anyS ∈ K . Define the setWM = {v | pv →∧
v∈E,E∈E pE ∈ M}. SinceM is a MinA for ϕ, for everyE ∈ E it contains at least one axiom on

whose rhspE occurs. That is,WM intersects everyE ∈ E . SinceM is not a superset of anyS ∈ K ,
everyS contains at least one axiom that isnot in M. This that everyE ∈ E contains at least one vertex
that isnot in WM. That is,V \ WM intersects everyE ∈ E . Thus we have shown thatWM is a
2-coloring ofH.

Theorem 17. MINA -IRRELEVANCE is NP-complete for Horn-EL TBoxes
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Proof. The problem is clearly inNP. We showNP-hardness by a reduction from theHYPERGRAPH

2-COLORING problem. LetH = (V, E) be a hypergraph; we construct the TBoxesTv, Tf andTV as
in the proof of Theorem 14. It is easy to see thatT := TV , φ := A ⊑ B and the set of TBoxes
K := {TE | E ∈ E} form an instance ofMINA -IRRELEVANCE for Horn-EL TBoxes. Furthermore,
we know that for everyW ⊆ V ,W is a transversal ofH iff TW is a MinA forφ in T . The hypergraphH
is 2-colorable iff there is a transversalW of H such that for allE ∈ E , E 6⊆W . Hence,H is 2-colorable
iff there is a MinAT ′ for φ in T such thatTE 6⊆ T ′ for all E ∈ E .

Next we consider the dual problem, which is checking the existence of a MinA that contains a certain
axiom.

Problem: MINA -RELEVANCE

Input: A KB K and an axiomϕ of the same type such thatK |= ϕ, and an axiomψ ∈ K.
Question:Is there a MinAM for ϕ in K such thatψ ∈ M?

Theorem 18. MINA -RELEVANCE is NP-complete for Horn KBs.

Proof. The problem is clearly inNP. A nondeterministic algorithm for solving it first guesses asubset
of K, then tests in polynomial time whether it is a MinA containing ψ. For showing hardness we are
going to give a reduction from the followingNP-complete problem [EG95a]:

Problem: HORN-RELEVANCE

Input: Two sets of propositional variablesH andM , a setC of definite Horn clauses overH ∪M , and
a propositional variablep ∈ H .
Question:Is there a minimalG ⊆ H such thatG ∪ C |= M andp ∈ G?

Let an instance ofHORN RELEVANCEbe given withH,M, C andp. We construct an instance ofMINA -
RELEVANCE as follows: In addition to the propositional variables inH ∪M , we introduce two more
fresh onesa, andb. Using these we construct the Horn KBK := {a→ h | h ∈ H}∪C∪{

∧
m∈M m→

b}, the axiomϕ := a → b, and the axiomψ := a → p. It is easy to see that this construction indeed
creates an instance ofMINA -RELEVANCE and it can be done in polynomial time. We claim that there is
a minimalG ⊆ H such thatG ∪ C |= M andp ∈ G if and only if there is a MinAM for ϕ in K such
thatψ ∈ M.

(⇒) Assume that there is such a minimalG. FromG we constructKG := {a → g | g ∈ G} ∪ C ∪
{
∧
m∈M m→ b}. KG |= a→ b sinceG∪C |= M . Thus, there is a MinAM for φ in KG. Furthermore,

sinceG is minimal, for everyg ∈ G the axioma→ g is inM. In particular,φ ∈ M.

(⇐) Assume that there is such a MinAM. It contains the axiom
∧
m∈M m → b, and also contains

axioms fromC such that everym ∈M occurs on the rhs of at least one axiom. AdditionallyM contains
axioms of the forma → h such thatM |= a →

∧
m∈M m. Then the setG := {h | a → h ∈ M}

satisfiesG ∪ C |= M . Moreoverp ∈ G sincea→ p ∈ M, andG is minimal sinceM is minimal.

5 Counting MinAs

In applications where one is interested in computing all MinAs, it might also be useful to know in
advance how many of them exist. Next we consider this counting problem.

Problem: #MINA

Input: A KB K and an axiomφ of the same type such thatK |= φ.
Output:The number of all MinAs forφ in K.
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If K is a core KB, the problem boils down to the problem of countingsimple paths between two vertices
of a given directed graph. This problem calledS-T CONNECTEDNESShas already been considered
in [Val79b].

Problem: S-T CONNECTEDNESS

Input: A directed graphG = (V,E), and two verticess, t ∈ V .
Output:The number of subgraphs ofG in which there is a path froms to t.

In [Val79b] it has been shown that this problem is #P-complete. #P is defined [Val79a] as the class of
functions counting the accepting paths of nondeterministic Turing machines. Typical members of this
class are the problems of counting the number of solutions ofNP-complete problems. Among them,
the most well-known one is #SAT, which is the problem of counting the distinct truth assignments that
satisfy a given Boolean formula in CNF.

Since core KBs are the simplest type of KB, the hardness result applies to the other KB types we
consider here. Moreover for the most expressive fragment weconsider, namelyEL, the problem of
checking whether a given set of axioms is a MinA is polynomial. This implies that for this fragment,
and all others considered here, #MINA is is in #P, thus it is #P-complete.

Corollary 19. #MINA is #P-complete for core,Horn,dual-Horn,Bool andEL KBs.

Next we consider another counting problem. Instead of the number of all MinAs, one can also be
interested in the number of MinAs that contain a specific axiom. If we are trying to explain an unwanted
consequence, the solution of this counting problem will allow us to detect axioms that are most likely
to be faulty, i. e. those that appear in the most MinAs. This idea has been proposed in [SHCH07] as a
heuristic for correcting an error while minimizing the changes in the set of axioms.

Problem: #MINA -RELEVANCE

Input: A KB K and an axiomφ of the same type such thatK |= φ, and an axiomψ ∈ K.
Output:The number of all MinAs forφ in K that containψ.

Theorem 20. #MINA -RELEVANCE is #P-complete for Horn KBs.

Proof. The problem is in #P since given a Horn KBK, an axiomφ that follows fromK, an axiom
ψ ∈ K, and a candidate solutionK′ ⊆ K, we can in polynomial time verify thatK’ is a MinA and it
containsψ.

For showing #P-hardness we give a parsimonious reduction from #MINA for core KBs, which has been
shown to be #P-hard above. Given an instance of #MINA with the core KBK and the axioma → b
we construct the Horn KBK′ := K ∪ S, whereS = {a → c, b ∧ c → d}, andc andd are two fresh
propositional variable names not occurring inK. It is not difficult to see that a setM ⊆ K is a MinA
for a → b in K if and only if M ∪ S is a MinA for a → d in K′. Moreover, every MinA fora → d
in K′ contains the axioms inS. Thus, there are exactly as many MinAs fora → b in K as there are for
a→ d in K’ containing the axioma→ c.

Obviously, Theorem 20 implies that #MINA is #P-complete for Bool and Horn-EL KBs.

6 Concluding Remarks and Future Work

We have analyzed the complexity of axiom pinpointing and many related problems in the propositional
Horn fragment and in the DLEL. Our hardness results extend to more expressive DLs. Tables2 and 3
summarize our results whereTH stands forTRANS-HYP, TE stands for transversal enumeration, ‘-h’
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FIRST- LAST- ALL - MINA - MINA - #MINA #MINA -
MINA MINA MINAS REL IRREL REL

core poly poly #P-c
Horn poly poly NP-c #P-c #P-c

dual-Horn coNP-c poly TRANS-HYP-h NP-c #P-c
Bool coNP-c poly TRANS-HYP-h NP-c NP-c #P-c #P-c

Horn-EL coNP-c poly coNP-c NP-c NP-c #P-c #P-c

Table 2: Complexity of related decision and counting problems

MINA -ENUM

in lexicographic order unordered
forward backward

core output polynomial polynomial delay polynomial delay
Horn output polynomial polynomial delay polynomial delay

dual-Horn not polynomial delay TRANS-ENUM-h TRANS-ENUM-h
Bool not polynomial delay TRANS-ENUM-h TRANS-ENUM-h

Horn-EL not output polynomial

Table 3: Complexity ofMINA -ENUM in different settings

stands for hard, and ‘-c’ stands for complete. As future workwe are going to work on determining
the exact complexity ofALL -MINAS problem for dual-Horn KBs. We are going to check whether it is
equivalent to theTRANS-HYP problem. We are also going to investigate the complexity ofALL -MINAS

for more expressive DLs to see whether it remains in the same complexity class as reasoning.
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[BP10] Franz Baader and Rafael Peñaloza. Axiom pinpointing in general tableaux.Journal of
Logic and Computation, 2010. To appear.

13
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