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Abstract—The performance of parallel distributed data man-
agement systems becomes increasingly important with the rise
of Big Data. Parallel joins have been widely studied both in the
parallel processing and the database communities. Neverthe-
less, most of the algorithms so far developed do not consider
the data skew, which naturally exists in various applications.
State of the art methods designed to handle this problem are
based on extensions to either of the two prevalent conventional
approaches to parallel joins - the hash-based and duplication-
based frameworks. In this paper, we introduce a novel parallel
join framework, query-based distributed join (QbDJ), for
handling data skew on distributed architectures. Further, we
present an efficient implementation of the method based on
the asynchronous partitioned global address space (APGAS)
parallel programming model. We evaluate the performance of
our approach on a cluster of 192 cores (16 nodes) and datasets
of 1 billion tuples with different skews. The results show that
the method is scalable, and also runs faster with less network
communication compared to state-of-art PRPD approach in [1]
under high data skew.

Keywords-Distributed join; parallel join; data skew; high
performance; X10

I. INTRODUCTION

The join is a critical operation widely used in various
data management systems. It facilitates the combination of
two relations based on a common key. For example, the join
between a relation R with attribute o and another relation
S with attribute b, is evaluated by the pattern R x S where
R.a = S.b. This operation is associated with a large time
cost and improved the efficient implementation of such an
operation can have a significant impact in improving the
performance of database queries.

The study of parallel joins on shared-memory systems has
already achieved significant performance speedups through
improvements in architecture at the hardware-level of mod-
ern processors [2] [3]. Nevertheless, as applications grow
in scale, the associated scalability is bounded by the limit
on the number of threads available and the availability of
specialized hardware predicates. Furthermore, when the data
reaches very large scale, memory and I/O eventually become
the bottleneck. For this reason, an efficient parallelism of
join on multiple machines becomes increasingly desirable.
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Various distributed join algorithms have been proposed
previously [4] [5] [6], all of which can be considered
extensions to either of the two conventional join frameworks:
hash-based and duplication-based join.

For hash-based frameworks, as shown in Figure 1, the
parallel joins contain three phases: redistribution, build and
probe. For the redistribute phase, using the same hash
function, both the relation R; and S; at each node are
partitioned into distinct sets R;; and S;; according to the
hash values of their join key attributes, and then each set of
tuples is distributed to a corresponding remote node. Next,
the sequential join of local fragments commences. In the
build phase, assuming |R| < |S], the relation Rj, composed
by the redistribution at each node (namely Ry = U], R;x)
will be scanned, and an in-memory hash table will be created
with the join key attributes in the interim. The final probe
phase scans each tuple of the relation Sy (Sx = U, Sik)
to check whether the join key is in the hash table, and the
output will be created in the case of a match.

The duplicated-based distributed join framework is shown
in Figure 2. This join implementation also includes three
phases: replication, build and probe. The replication phase
just simply duplicates (broadcast) R; at each node to all
other nodes. This means that, after the replication, the
relation R will be equal to the full input R, namely, R =
Ui, R; = R. The following two phases are very similar to
the final two phases of the hash-based implementation, i.e.
that local lookups for S}, will commerce once the in-memory
hash table of Ry is created.

Since each phase in the above frameworks is implemented
in parallel among each computing node, and the number of
execution units can be increased by employing new nodes,
both distributed schemes show the potential for scalability
in terms of processing massively parallel joins. However,
though researchers have shown that implementations on the
hash-based scheme can achieve near linear speed-up on
parallel systems under ideal balancing conditions [5], when
the processed data has significant skew, the performance
of such parallel algorithms are dramatically decreased [7].
The duplication-based methods can handle the skew, but the




broadcast of each R; to all the nodes is always time-cost
heavy and the building of a large hash table based on Uj"_; I?;
at each node has detrimental impact on performance due to
the associated memory- and lookup-cost [8].

As mentioned since data skew occurs naturally in vari-
ously applications, it is important for practical data systems
to perform efficiently in such contexts and consequently
different techniques and algorithms have been proposed to
handle the join skew [9] [10] [11] [1], but all of them so far
rely on the conventional frameworks already described.

In this paper, we propose a novel framework as an
alternative to the conventional approaches, called query-
based distributed join (QbDJ), for efficiently handling data
skew in massively parallel joins on distributed systems. From
this basis we develop an efficient distributed join algorithm
and implement our parallel joins using the asynchronous
partitioned global address space (APGAS) model-based pro-
gramming language - X10 [12]. We evaluate performance on
an experimental configuration consisting of 192 cores (16
nodes) and large datasets of 1 billion tuples with different
skews. Moreover, we also have a performance comparison
with the basic hash-based implementation as well as the
state-of-art technique for efficiently handling data skew -
the PRPD method presented in [1].

From these results, our main conclusions are that the
proposed framework is: (a) robust against data skew, show-
ing excellent load balancing, (b) scalable, speedup achieved
with increments in the number of nodes (threads), (c) highly
efficient, since we can process the join 2560 x 1B with
high skew in only 13 seconds, which is magnitudes faster
compared with the conventional hash-based implementation,
and also outperforms the state-of-art PRPD algorithm, and
(d) novel, can be considered as a new approach and alterna-
tive to the two conventional frameworks commonly used.

The rest of this paper is organized as follows: In Section
II, we present the background to the problem of data skew in
parallel joins. We present our query-based distributed join
framework in Section III and its detailed implementation
in Section IV. We provide a quantitative evaluation of our
algorithm in Section V while we conclude the paper and
point to directions for future work in Section VI.

II. DATA SKEW IN PARALLEL JOINS

In this section, we first present an overview of data skew
in parallel joins and the challenges it introduces. Then we
discuss two common algorithms for shared-nothing archi-
tectures that can handle the data skew problem relatively
efficiently. As the duplication-based approach is seldom
adopted, except for some work on its variants [8] [13], which
highly rely on underlying high-speed networks, we just focus
on the hash-based frameworks.

A. Skew in the Join

In a common parallel database management system
(PDBMS) under the hash-based framework, the redistribu-
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Figure 1. Hash-based Distributed Join Framework. The dashed square
refers to the remote computation nodes and objects.
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Figure 2.  Duplication-based Distributed Join Framework. The dashed
square refers to the remote computation nodes and objects.

tion of tuples in relation R and S deeply relies on the hash
function, and all the tuples having the same join attribute
will be transferred to the same remote node.

Assuming tuples in R and S are simply <key, payload> (or
<key, value> in follows) pairs. If there are many tuples in .S
that have the same key but with different payload, then S is
considered as skew data. And during the redistribution of S,
all the popular keys will flood into a small number of nodes
and cause hot spots. These result in performance bottlenecks
due to two reasons: (1) the high time-cost of communication:
large number of tuples are transferred to hot spots through
the network, and (2) load imbalance: a large number of hash
table lookups are implemented at hot spots in the probing
phase. Such issues impact system scalability which will be
reduced as employing new nodes cannot yield improvements
because the skew tuples will be still distributed to the same
nodes. Therefore, an efficient approach to handle this kind
of skew becomes critical for the performance of PDBMS.

B. Two Efficient Approaches

Different techniques, such as DHT [14], dynamic schedul-
ing [15] and statistically based methods [16] etc., have
been applied in the implementation of joins to handle the
skew issue. Here, we discuss two typical methods - one
implements load assignment by histograms while the other



one is the state-of-art PRPD method. We describe each in
turn.

Histograms: Hassan and Bamha et al [16] [17] focus on
improving the redistribution plan to process data skew. They
mainly use distributed histograms in their method, which can
be divided into two parts: (1) histograms for R, S and R x S
are built at each node, in either local or global view or both,
and (2) based on the complete knowledge of the distribution
and join information of the relations, a redistribute plan to
balance the workload for each node is formulated.

Their experimental results show that this method is ef-
ficient and scalable in presence of data skew, nevertheless,
there are still two weak points: (1) histograms are built based
on the redistribution of all the keys of R and S, which leads
to high network communications, and (2) though only the
tuples participating in the join are extracted for redistribu-
tion, which reduces part of the network communication, this
operation is based on the pre-join of the distributed keys,
which incurs a significant time cost.

state-of-art PRPD: Xu et al [1] proposes an algorithm
named partial redistribution & partial duplication (PRPD),
which can be considered as a hybrid method combining both
the hash-based and duplication-based join scheme.

For a single skew relation S (assuming R is uniform
distributed), they partitioning .S into two parts: (1) local kept
part Sj,., the high skew part are kept locally and do not
join the redistribution phase, and (2) the redistributed part
Sredis, the tuples with low frequency key is redistributed
as a common hash-based implementation. The relation R is
divided into two parts as well: (1) the duplicated part Ry,
the tuples in which contain the keys in .Sj,., which will be
broadcast to all other nodes, and (2) the redistributed part
Ry cdis, the remaining part of R that is to be redistributed
as normal. After the duplication and the redistribution oper-
ations, the final join can be composed by R,cqis X Sredis
and Rgy, X Sjoc at each node.

This method illustrates an efficient way to process the
high skew tuples (keys are highly repetitive). All these
tuples of S are not redistributed at all, instead, they just
broadcast a small number of tuples contains the same keys
from R. Their results show that this algorithm can achieve
significant speeds up in the presence of data skew. Even
so, we notice that: (1) their implementation is based on
the assumption that they have knowledge of the data skew,
which means that global statistical operations for R and S
are required initially, and (2) the tuples of the duplicated
part are processed by broadcasting, which is good for load-
balancing but could bring in significant time-cost.

III. QUERY-BASED DISTRIBUTED JOIN

In this section, we first introduce our query-based dis-
tributed join framework and its detailed work flow. Then
we analyze how this scheme can efficiently handle data
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Figure 3. Query-based Distributed Join Framework. The dashed square
refers to the remote computation nodes and objects.

skew. Furthermore, we also discuss its advantages and
disadvantages compared with current approaches.

A. Framework

Assuming the input relations are R and S, where |R| <
|S| and S is skew, there are N computing nodes, and before
the join operations the ¢th node has a subset of both relations
R; and S;. As shown in Figure 3, our framework has two
different communication patterns - distribution and query,
between local and remote nodes, which obviously makes it
different from the conventional hash-based and duplication-
based frameworks. We divide its detailed work flow into the
following four steps.

R Distribution: The relation R is processed the same
way as the hash-based implementations, in that each R;
is partitioned into N chunks, and each tuple is assigned
according to the hash value of its key by a hash function
hi(k) = k mod N. After that, all the chunks R;; will be
transferred to the jth node. There are two reasons to do
so: (1) R is relatively small such that we can afford the
distribution cost, and (2) R can be considered as a uniform
distributed data set, as adding skew to the relation R would
violate the primary key constraint [18].

Push Query Keys: In this phase, we scan each tuple in
the relation S at each node and insert them in a set of local
hash tables 7; (the number of hash tables is N). The tuple
assignment is according to h1(k) = k mod N as well, such
that the tuples having the hash value j are put into the jth
hash table T;;. The structure of the hash tables are shown
as Figure 4(a). It supports the 1 — n mappings, such that
tuples with the same keys will be stored in the same bucket.
After that, iterations on each hash table commence and all
keys in each hash table are picked up and kept sequentially
in memory. Finally, we push the keys from the hash table
T;; to the j node, where these keys are called the query keys
of the node j in our approach.

Return Queried Values: In this step, we first build a
local hash table T at each node, based on the received
tuples from the first phase. After that, we look up each
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Figure 4. The data structure used in query-based distributed join: (a) the
local hash tables of S, the tuples are distributed to a set of hash tables
according to the hash values of their keys and the tuples with the same
keys are inserted into the same bucket (left), and (b) the query keys of a
remote node and its corresponding returned values (right).

of the received query keys in 7] and output the matched
values. If there is no matching keys, the value will be set to
Null. All these values are also kept sequentially as well as
the corresponding query keys. This process can be seen in
Figure 4(b), where all the values are called returned values,
because we push these values back to the nodes where the
query keys originally come from after finishing the lookups.

Result Loopups: After receiving sets of returned values
from remote nodes, we start to scan these values at each
node. Take a node ¢ for example, for the returned values
from jth node, we first check whether the value is null. If
the value is null, we continue scanning the next value. If
it is not, it means that there is a match between R and S.
The reason is that each query key is extracted from S, and
a non-null returned value means that this key exists in R as
well. Therefore, we look up the corresponding query key in
the corresponding hash table T;; and output the join results.
The join operation ends with the output of all the results.

B. Handling Data Skew

Though S'is skewed, we do not transfer any tuples of this
relation in our framework. Instead, we just transfer the keys
of S. More exactly, we only distribute the unique keys of
S on the basis of 1 — n structure of hash tables 7.

Assuming that there exists skew tuples, which have the
same key ks, and appear n, (large number) times in the
relation S. Using the conventional hash-based method, all
these n, tuples will be transferred to the hq(ks)-th node,
which results a hot spot both in communication and the fol-
lowing probing operations. By comparison, our framework
efficiently addresses this problem in two aspects: (1) each
node will receive only one key (or maximum N keys if
these tuples are distributed on the N nodes), and (2) each
query key is treated as the same in the following look up
operations.

C. Comparison with other Approaches

In addition to efficient handling of data skew, compared
with the conventional frameworks, our scheme still has two
other advantages: (1) network communication can be highly
reduced, because we only transferred parts of keys in S, and
their corresponding returned values, and (2) computation can
be decreased when S is high skew, because (a) though we
have two lookup operations on T; and 7T/, the hash tables
in 7; will be very small, (b) skew tuples will be looked
up only once instead of checking all of them and (c) lookup
operations for the tuples that are not participating in the join
results are removed by just checking whether the returned
value is null or not.

Taking a higher level comparison with the histograms [16]
and PRPD [1] method described in § II-B there are two
other advantages to our approach: (1) we do not need any
global knowledge of the relations in the presence of skew
while [16] and [1] require a global statistic to quantify the
skew, and (2) our approach does not involve redundancy
of join (or lookup) operations while the other two have,
because each node in our method is just "Query what I
need", while [16] and [1] have "Broadcast behavior", such
that some nodes may receive some tuples what they do not
really need.

In our framework, we have to build local hash tables for
S; at each node, which could be time-costly. Additionally,
when the skew is low, the number of query keys will be un-
competitive as well, and the two-sided communication will
decrease the performance. We assess the balance of these
advantages and disadvantages through evaluation with real-
world datasets and an appropriate parallel implementation
in § V.

IV. IMPLEMENTATION

In this section, we present a detailed implementation of
the proposed query-based distributed joins using the X10
framework. We compare our algorithm with the hash-based
and the state-of-art PRPD algorithms [1]; since the latter
does not provide any code-level information, we have also
implemented PRPD in X10.

A. An overview of X10

X10 [12] is a new multi-paradigm programming lan-
guage supporting the asynchronous partitioned global ad-
dress space (APGAS) model and is specifically designed to
increase programmer productivity, while being amenable to
programming shared memory and distributed memory super-
computers. It uses the concepts of place and activity
as the kernel notions to exploit parallelism in the available
hardware. A place is a logical abstraction of the underlying
heterogeneous processing element in the hardware, such
as cores in a multi-core architecture, GPUs, or a whole
physical machine. Activities are light-weight threads that
run on places. X10 schedules activities on places to best



Algorithm 1 R Distribution

Algorithm 2 Push Query Keys

I: finish async at p€ P {
. Initialize R_c:array[array[tuple]](IV)
: for tuple € list_of_R do
des=hash(tuple.key)
R_c(des).add(tuple)
end for
: for i 0..(N —1) do
Serialize R_c(i) to ser_R_c(i)
Push ser_R_c(i) to r_R_c(i)(here) at place ¢
end for

11: }

._
e

utilize the available parallelism. The number of places is
constant through the life-time of an X10 program and
is initialized at program startup. Activities on the other
hand can be forked at program execution time. Forking an
activity can be blocking, wherein the parent returns after
the forked activity completes execution, or non-blocking,
wherein the parent returns instantaneously, after forking an
activity. Furthermore, these activities can be forked locally
or on a remote place.

X10 provides a data structure called distributed array
(DistArray) for programming parallel algorithms. One
or more elements in the DistArray can be mapped
to a single place using the concept of points [12]. The
following three X10 primitives are critical in understanding
the pseudocode given in the following sections:

- at (p) S: this construct executes statement S at a
specific place p. The current activity is blocked until S
finishes executing on p.

- async S: a child activity is forked by this construct.
The current activity returns immediately (non-blocking)
after forking S.

- finish S: this construct is used to block the current
activity and wait for all activities forked by S to
terminate.

B. Parallel Join Processing

R Distribution: We are interested in high performance
distributed memory join algorithms, therefore, we first read
all the tuples in ArrayList at each node, and then start
to distribute the relation R. The pseudocode of this process
is given in Algorithm 1. The array R_c is used to collect the
grouped tuples, and its size is initialized to the number of
computing nodes N. Then, each thread reads the arraylist of
R and groups the tuples according to the hash values of their
keys. After that, the grouped items are serialized and sent
to the corresponding remote place. This process is done in
parallel, and we use the £inish predicate to guarantee the
completion of the tuple transfer in each place before pushing
query keys.

I: finish async at p€ P {

2: Initialize T:array[hashmap[key,ArrayList(value)]](V)
3: for tuple € list_of_S do

4 des=hash(tuple.key);

5 if tuple.key & T(des) then

6: T(des).put(tuple.key, tuple.value)

7 else

8 T(des).get(tuple.key).value.add(tuple.value)
9 end if

10: end for

11: for i < 0..(N — 1) do

12: Extract keys in T(i) to local_key_c(here)(i)

13: Serialize local_key_c(here)(i) to ser_key(i)

14: Push ser_key(i) to remote_key_c(i)(here) at place i
15: end for

16: }

Push Query Keys: The detailed implementation of the
second step is given in Algorithm 2. A set of hashmap is
initialized at each place. Each hashmap collects tuples of
S according to their hash values. If the key of a tuple has
already been in the hashmap, then only the value part of
the tuple will be added in the hash table. After processing
all the tuples, the keys in each hash table will be extracted
by an iteration on its keyset. These keys will be kept in
local_key_c, and then serialized and pushed to the assigned
place for further processing.

Both the array[hashmap] and local_key_c are
DistArray objects, which are kept in memory for the
subsequent result lookups, as mentioned in § III-A. The
serialization/deserialization process is used only when the
push array objects are neither 1long, int nor char, other-
wise we directly deploy the array.asycCopy method to
transfer the data. We use the finish operation in this part to
guarantee the completion of the data transfer at each place
before the next phase commences.

Return Queried Values: This phase starts after the
grouped query keys have been transferred to the appropriate
remote places. The implementation at each place is similar
to a sequential hash join. The received serialized tuple and
key arrays, representing the distributed R and grouped query
keys respectively, are deserialized. For the tuples, all the
<key,value> pairs are placed in the local hash table 7. The
keys are used to access this hash table sequentially to get
their values. In this process, if the mapping of a key already
exists, its value is retrieved, otherwise, the value will be
considered as null. In both cases, the value of the query
key is added into a temporary array so that it can be sent
back to the requester(s). All these processes take place in
parallel at each place, and we use the finish operation
for synchronization. The details of the algorithm are given



Algorithm 3 Return Queried Values

I: finish async at p€ P {

2: Initialize T’:hashmap, value_c:array[value]

3: for i < 0..(V — 1) do

4 Deserialize r_R_c(here)(i) to tuples

5 Put all <tuple.key,tuple.value> into T’
6: end for
7
8
9

s for i < 0..(N —1) do
Deserialize remote_key_c(here)(i) to key_c
for key € key_c do

10: if key € T’ then

11: value_c.add(T’.get(key).value)

12: else

13: value_c.add(null)

14: end if

15: end for

16: Push value_c(i) to r_value_c(i)(here) at place i
17: end for

18: }

Algorithm 4 Results Lookups

I: finish async at p€ P {
2: for i < 0..(N — 1) do
3: Deserialize r_value_c(here)(i) to local_value_c

4: for value € local_value_c do

5: if value # null then

6: Look corresponding key in T'(i)
7: Output join results

8: end if

9: end for

10: end for

11: }

in Algorithm 3.

Result Lookups: The join results at each place can be
looked up after all the values of the query keys have been
pushed back. Since the query keys and their respective values
are held in order inside arrays, we can easily look up the
keys in the corresponding hash tables to organize the join
results as shown in Algorithm 4. The entire join process
terminates when all individual activities terminate.

C. PRPD using X10

For our purposes, the X10 implementation of the PRPD
algorithm is as described in the previous section. Addi-
tionally, we add a key sampling process on S to measure
the skew, wherein we use a hashmap counter with two
parameters: (1) sample rate, namely the ratio of the tuples to
be sampled, and (2) threshold, namely the number of occur-
rences of a key in the sample after which the corresponding
tuples are considered as skew tuples. As we also need to
broadcast the skew keys as well as the duplication part

of R, we choose the x10.util.Team API for efficient
multi-point communication [19] instead of using loops on
all places.

V. EVALUATION

In this section, we present the results of our experimental
evaluation on a commodity cluster. We conduct a quantita-
tive evaluation of our implementation and compare them to
the results obtained by other algorithms.

A. Platform

Our evaluation platform is the Exascale Systems Research
Cluster in IBM Research Ireland. Each computation unit of
this cluster is an iDataPlex node with two 6-core Intel Xeon
X5679 processors running at 2.93 GHz, resulting in a total of
12 cores per physical node. Each node has 128GB of RAM
and a single 1TB SATA hard-drive and nodes are connected
by Gigabit Ethernet. The operating system is Linux kernel
version 2.6.32-220 and the software stack consists of X10
version 2.3 compiling to C++ and gcc version 4.4.6.

B. Datasets

The evaluation is implemented on two relations R and S,
which are both two-column tables that are populated with
random data. The key and payload are both set to 8-byte
integers. We fix the cardinality of R to 256 million tuples
and S to 1 billion tuples. Join with such characteristics are
common in data warehouses and column-oriented architec-
tures.

Three key distributions are examined in our tests: uniform,
low skew and high skew. We only add skew to .S, following
the Zipf distribution. The skew tuples are evenly distributed
on each computing node and the skew factor is set to 1
for the low skew (top ten popular keys appear 14% of the
time) and 1.4 for the high skew dataset (top ten popular keys
appear 68% of the time). Again, highly skewed datasets are
very common in a variety of settings in data warehouses and
also in non-relational stores (e.g. see [20]).

C. Setup

We set the X10_NPLACES to the number of cores and
N_Thread to 1, namely one place for one single activity,
which avoids the overhead of context switching at runtime.
The parameter sample rate is set to 10%, and the threshold
is set to a reasonable number 1000 based on preliminary
results. In all experiments, we only count the number of
matches, but do not actually output join results. Moreover,
we record the mean value based on ten measurements and
we empty the file system cache between tests to minimize
the effects of caching by the operating system.
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Figure 5. Runtime comparison of the three different algorithms. The join
is implemented on 256 x 1B with different skew by using 192 cores.

D. Runtime

We examined the runtime of three algorithms: conven-
tional hash-based algorithm, PRPD [1] and our query-based
approach. We implement these tests using 16 nodes (192
hardware cores) of the cluster on the datasets with different
skews, and present the results in Figure 5. We can see
that each algorithm has its strengths and weaknesses: (1)
when the distribution is uniform, hash and PRPD perform
nearly the same and much better than our query-based
implementation, (2) with low skew, PRPD becomes the
faster with our approach being slightly slower, and (3) with
high skew, our approach outperforms the other two and the
hash-based implementation shows very poor performance.

In the meantime, we also observe that with the increase
of the data skew, the time cost of hash method increases
sharply while our scheme decreases sharply, which means
that our framework has total opposite properties compared
with the commonly used hash-based join framework. In the
meantime, PRPD is a hybrid method, still in the scope of
the conventional approaches, so it has reasonable robustness
against skew. Our method performs best under high skew
conditions, so our new join framework can be considered
as a supplement for the existing schemes. In fact, a system
could pick the correct implementation based on the skew or
the input so as to minimize runtime.

We have examined the time breakdown on each phase (not
shown in the figure) and found that the time cost of our push
query keys and return queried values phase is about three
times more than the S redistribution and build & probing
phases of the hash-based implementation respectively. This
has corroborated our expectation mentioned in § III-C.

E. Network Communication

The number of received tuples (or query keys in our
algorithm) for each place indicates both network load and
load balancing. As R is uniformly distributed, we only show
the part of transferred tuples (keys) of S in each algorithm.
We implement our test on 192 cores, and collect the received
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Figure 6. The average number of received tuples (or keys) for each place
of the three different algorithms.

tuples (keys) at each place by inserting counters. The results
of the average number of received tuples for each place in
each algorithm is shown in Figure 6.

We can see that the three algorithms receive the same
number of tuples when the dataset is uniform. This is
reasonable, since the partial redistribution of PRPD is
ineffective as there is no skew and the number of query
keys is equal to the number of total keys in our approach.
With the increase in skew, the received tuples in the hash-
based method does change. In contrast, PRPD and our
method show a significant decrease, as they are grouping
skewed results more effectively. In addition, our method
transfers much less data than PRPD. All of this shows that
our implementation can reduce the network communication
more efficiently than other approaches under skew.

F. Load Balancing

We analyze the load balancing of each algorithm based
on the metric: number of received tuples (keys) of S at each
place. We have three reasons to do so: (1) R is uniform
distributed that has no effect for the balance at each place,
and the broadcast part of R in PRPD does not weaken
the balancing as well, (2) the number can indicate the
communication and computing time cost, the more tuples
(keys) a place receives, the more time will be spent on data
transferring and join (lookup) operation at this place, and
(3) we have to push the values back and implement the
results lookups in our query-based algorithm, however, (a)
the number of returning values is the same as the received
keys, which has the same effect for load balancing, and (b)
the final lookups take only a very small part of the whole
runtime that can even be neglected.

As the place that receives the maximum number of tuples
dominates the final runtime, we just report results of the
maximum and average number of the metric, which is shown
in Table I. We can see that all three algorithm achieves
perfect load balancing when the dataset is uniform. With the
skew increase, the load balancing of hash-based algorithm



Table I
THE NUMBER OF RECEIVED TUPLES OR KEYS (IN MILLIONS)

0 1 14
Algo.\Skew Max. Avg. Max. Avg. Max. Avg,

hash-based 5.21 5.21 57.68 5.20 32423 5.21
PRPD 5.21 5.21 6.73 3.98 3.62 0.95
query-based 5.21 5.21 1.68 1.65 0.09 0.08
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Figure 7. The detailed time cost of query-based approach on different key
distributions by increasing number of cores.

becomes much worse. In the meantime, though PRPD
has much improvement for that condition, our query-based
approach still much better than PRPD, which nearly has not
been effected by the data skew.

G. Scalability

We test the scalability of our implementation by varying
the number of processing cores on all the three dataset. We
start our test with 4 nodes (48 cores), 8 nodes (96 cores) and
16 nodes (192 cores). The detailed time-cost of each phase
is shown in Figure 7.

We can see that the implementation generally scales well
with the number of cores. In detail, when the dataset is
uniformly distributed, all four phases (referred as phase 1
etc. according to § IV-B) scale well and the time-cost in
the second and third step dominates the whole performance.
When the distribution is skewed, we observe that phase 1 and
phase 2 still scale well while phase 3 is slightly effected by
increasing the number of cores, and the time-cost of phase
4 becomes extremely small. This is reasonable: (1) in phase
1 & phase 2, the operations are relying on the cardinalities
of R and S at each node, but not the skew. (2) in phase
3, tuples are evenly distributed, which leads to the number
of received query keys at each node not obviously changing
when increasing then number of cores. Take the tuples with
the same key k; for example, the h; (k1)-th node will always
receive one k1 from each node. It means that this node first
receives 48 k; and then 96 k1 when increasing the number of
cores to 96. In the meantime, this increase will be leveraged

by the decrease of the non-skewed query keys received at
this node. (3) in phase 4, the size of the hash tables at each
place built for S will decrease with the increment of the
cores and the skew. That is why the time is only in the
order of tens of ms when the skew is 1.4.

VI. CONCLUSIONS

In this paper, we have introduced a new framework for
parallel joins, the query-based distributed join, which specif-
ically targets joins with very high skew. We have presented
an implementation of the framework in the APGAS pro-
gramming model using the X10 system. Our experimental
results show that our implementation is scalable, faster and
results in less network communication compared to the state-
of-art PRPD algorithm [1], in the presence of high skew.

Future work lies in combining our method with ap-
proaches that partition data according to key skew, such as
PRPD, so as to efficiently execute joins with less skew. In
addition, we will investigate the effect of varying join hit-
rates on our framework and further investigate extensions to
handle non-uniform network throughput (e.g. joins across
racks). Finally, we intend to validate our approach on real-
world workloads that present very high skew, such as the
ones found in the Semantic Web field [20].
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