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Abstract

In this paper we contribute to bridging the gap between hu-
man reasoning as studied in Cognitive Science and common-
sense reasoning based on formal logics and formal theories.
In particular, the suppression task studied in Cognitive Sci-
ence provides an interesting challenge problem for human
reasoning based on logic. The work presented in the pa-
per is founded on the recent approach by Stenning and van
Lambalgen to model human reasoning with suppression by
means of logic programs with a specific three-valued com-
pletion semantics and a semantic fixpoint operator that yields
a least model, as well as abduction. Their approach has been
subsequently made more precise and technically accurate by
switching to three-valued Lukasiewicz logic. In this paper,
we extend this refined approach by abduction. We show that
the inclusion of abduction permits to adequately model ad-
ditional empiric results reported from Cognitive Science. As
a further extension, we discuss abduction with integrity con-
straints to model human reasoning. For the arising abductive
reasoning tasks we give complexity results. Finally, we out-
line several open research issues that emerge from the appli-
cation of logic to model human reasoning.

1 Introduction

In (McCarthy 1963) John McCarthy proposed a frame-
work for reasoning about actions, causality, and causal
laws, whose third postulate was that the formal descrip-
tions of situations should correspond as closely as possi-
ble to what people may reasonably be presumed to know
about them when deciding what to do. Human reasoning
has been intensely studied within Cognitive Science (e.g.
(Evans, Newstead, and Byrne 1993)) and there appears to
be a widespread belief within the Cognitive Science com-
munity that logic is inadequate for human reasoning (e.g.
(Byme 1989)). Thus, an Atrtificial Intelligence approach to
characterize commonsense reasoning using representations
based on logic or other formal theories faces the formidable
challenge of bridging the gap between human reasoning as
studied within Cognitive Science and commonsense reason-
ing based on formal logics and formal theories.

Recently, in (Stenning and van Lambalgen 2008) Keith
Stenning and Michiel van Lambalgen have proposed a two-
stage process to model human reasoning. Given a sentence
in natural language, the first step consists of reasoning to-
wards an appropriate logical representation, whereas in the

second step conclusions are drawn with respect to the mod-
els of the generated logical representations. They propose
to use logic programs, strong Kleene three-valued seman-
tics with strong equivalence (Kleene 1952), a certain variant
of completion semantics, a semantic fixpoint operator which
yields a least model as well as abduction. Furthermore, they
demonstrate the adequateness of their proposal by showing
how the various scenarios considered in Byrne’s suppression
task (Byrne 1989) are adequately modeled.

Unfortunately, the technical results of (Stenning and van
Lambalgen 2008) contain an error, which was corrected in
(Holldobler and Ramli 2009b; 2009c) by considering the
three-valued Lukasiewicz logic (Lukasiewicz 1920) instead
of Kleene logic. However, the approach in (Holldobler and
Ramli 2009b; 2009¢) does not include abduction and, con-
sequently, some scenarios of Byrne’s suppression task are
not yet covered. In this paper we close this gap by adding
abduction to the approach in (Holldobler and Ramli 2009b;
2009c).

The paper is organized as follows: In Section 2 we will
briefly present the suppression task as a challenge problem
for human reasoning based on logic. In Section 3 we re-
view the approach presented in (Stenning and van Lambal-
gen 2008) with the modifications discussed in (Holldobler
and Ramli 2009b; 2009c). We extend this approach by ab-
duction in Section 4. In Section 5 we demonstrate that the
extended approach covers all scenarios of Byrne’s suppres-
sion task and present further results. In the final Section 6
we discuss our findings and suggest some future research.

2 The Suppression Task

Ruth Byrne (Byrne 1989) has conducted a number of exper-
iments where subjects (not trained in logic) were asked to
draw various conclusions given certain sets of sentences. In
order to present the experiments in a compact form we will
make use of the abbreviations shown in Table 1. Further-
more, =X shall denote the negative fact corresponding to
the fact X, i.e. —e denotes that she does not have an essay
to write.

Table 2 summarizes the results reported in (Byrne 1989).
E.g., the third experiment (in comparison to the first one)
shows that the addition of the sentence C, to C,, e leads to
the suppression of [, although [ is still entailed by C,,, C., e



If she has an essay to write she will study late in the library.
If she has a textbook to read she will study late in the library.
If the library stays open she will study late in the library.
She has an essay to write.

She will study late in the library.

The library stays open.

She has textbooks to read.

®
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Table 1: Some abbreviations.

in case of a (naive) representation of the sentences in classi-
cal propositional logic.

The experiments have been repeated several times leading
to similar figures (see e.g. (Dieussaert et al. 2000)).

3 A Logic for Human Reasoning

As mentioned in Section 1 the first step of the approach by
Keith Stenning and Michiel van Lambalgen (Stenning and
van Lambalgen 2008) consists of reasoning towards an ap-
propriate logical representation of the sentences. As this step
is not under consideration in this paper, we simply repeat
their proposal without further discussion.

Keith Stenning and Michiel van Lambalgen consider
logic programs, where the atoms occurring in the body of
a clause can be either T (denoting the truth value true), L
(denoting the truth value false), or standard atoms. In par-
ticular, if A is an atom then A < T denotes a positive fact,
whereas A < | denotes a so-called negative fact. The latter
becomes clear only if we apply a completion semantics (see
below).

One of the main ideas in (Stenning and van Lambalgen
2008) is to represent conditionals by licences for condition-
als using abnormality predicates. E.g., C¢, e is represented
by the program

Pee = {l—eN-ab, e =T, ab— L}

Likewise, C., Cy, e and C, C,, e are represented by

Pete = {l —eN—aby, l —tN—aby, e — T,
G,bl — J_, abg — J_}
and
Peoe = {l —eAN—-aby, l —oA—-aby, e =T,
aby «— —o, aby — —e},
respectively.
These programs are completed using a weak form of com-
pletion which is identical with Clark’s completion (Clark

K Q 4 K Q 4 |
C.,e I 96% | C.,l e 5%
C’e,C’t,e l 96% C’e,C’t,l € 16%
C..Coe 1 38%|C.,Coll e 55%

=" T 46% | C,, -l e 69%
Ce, Ct, -e =l 4% Ce, Ct, =l -e 69%
Ce,Cy,me =l 63% | Ce,Cph,—ml —e 44%

Table 2: A brief summary of Ruth Byrne’s experiments,
where K denotes the given set of sentences, ) denotes the
query and A denotes the percentage of positive answers.

1978) except that undefined predicates stay undefined and
are not declared to be false (see (Holldobler and Ramli
2009b)). E.g., as the weak completion of the above men-
tioned programs we obtain:

wePee = {le—en-ab,e—T, ab— 1},
WePete = {l < (e AN=aby)V (tA-abg), e T,
ab1 — J_, ab2 ad J_},

W Peoe = {l = (e Amab1)V (oA—abs), e T,

aby < —o, aby < —e}.

Programs and their (weak) completions are evaluated by
three-valued interpretations. Such interpretations are rep-
resented by tuples of the form (IT,I+), where I denotes
the set of all atoms which are mapped to true, I denotes
the set of all atoms which are mapped to false, I " and I+
are disjoint, and all atoms which do neither occur in T nor
in I+ are mapped to undefined or unknown.

If we choose the three-valued Lukasiewicz semantics
(Lukasiewicz 1920) then logic programs enjoy the model in-
tersection property, i.e., for each program, the intersection of
all models is itself a model. Moreover, the model intersec-
tion property holds for weakly completed programs as well,
and each model for the weak completion of a program is also
a model for the program. See (Holldobler and Ramli 2009b)
for details. It should be noted that these properties do not
hold if we consider the strong Kleene semantics with com-
plete equivalence as done in (Stenning and van Lambalgen
2008).

The least model of a program is a model (I, I+) such
that there does not exist another model (J T, J+) with JT C
ITand Jt C I+, or JT C IT and J+ < I+, It can
be computed as the least fixed point of the following op-
erator introduced in (Stenning and van Lambalgen 2008):
Let I be an interpretation and P a program. Then, ®2'F =
(JT,J+), where

JT = {A] there exists A « body € P with
I(body) = true},

{A | there exists A < body € P and
for all A « body € P we find
I(body) = false}.

JL

One should observe the subtle difference in the first line of
the definition of J if compared to the so-called Fitting op-
erator usually associated with three-valued logic programs
(see (Fitting 1985)).

As shown in (Holldobler and Ramli 2009b; 2009¢) the
first six of Ruth Byrne’s experiments (the first column in
Table 2) are adequately modeled by considering the least
model of corresponding weakly completed programs under
Lukasiewicz semantics. For example, the least model of
we Peoe is ({e}, {ab2}) from which we conclude that it is
unknown whether she studies late in the library.

But what about the second column in Table 2? In order
to model these experiments we need to add abduction to the
framework presented so far.



4 Abduction

Let £ be a language, K C L a set of formulas called knowl-
edge base, A C L a set of formulas called abducibles and
= C 2% x L a logical consequence relation. Following
(Kakas, Kowalski, and Toni 1993), the triple (K, A, =) is
called an abductive framework. An observation O is a sub-
set of L; it is explained by £ (or & is an explanation for O)
iff & C A, KU E is satisfiable, and K U £ | L for each
L € O. An explanation £ for O is said to be minimal iff
there is no explanation &’ C & for O.

Here we consider abductive frameworks that are instanti-
ated in the following way: The knowledge base K is a logic
program P where L is the language underlying P. Let Rp
be the set of relation symbols occurring in P, let

RE ={AcRp| A« body € P}

be the set of defined relation symbols in P and let R% =

Rp \ Rg be the set of undefined relation symbols in P.
Then, the set of abducibles is

A={A—T|AcREIU{A— L|AcRY}

The consequence relation = is 7Y, where P =Y F
iff ' is mapped to true under the least model of the weak
completion of P using the three-valued Lukasiewicz seman-
tics. The observation O is usually a set containing a sin-
gle literal L, in which case we simply write O = L in-
stead of O = {L}. A formula F' € L follows sceptically
by abduction from P and O, in symbols P, O =5 F, iff
O can be explained and for all minimal explanations £ we
find PUE EmYe F. A formula F' € L follows credu-
lously by abduction from P and O, in symbols P, O = F,
iff there exists a minimal explanation £ for O such that
PUE EmwF,

5 Results

The Suppression Task Let us consider the experiments
presented in the second column of Table 2. First, we will
show that they can be adequately represented within the de-
veloped framework. To this end let

P. = {l—eA-ab, ab— L},

Pt = {l—eA-aby, aby — L, I —tA-abs,
abg — J_},

Peo = {l—eAN-aby, aby «— -0, | — o A —abs,
aby — —e}

be the appropriate representation for C, C, C; and C., C,,,
respectively, obtained in the first step of the approach by
Keith Stenning and Michiel van Lambalgen (Stenning and
van Lambalgen 2008).

1. Consider P, andlet O =1: A ={e «— T, e «— L},
ImweP, = (0,{ab}), {e « T} is the only minimal
explanation for [, and P, ! =5 e.

2. Consider Py andlet O =1: A={e«— T, e« L, t —
T, t «— L}, ImwePer = (B, {ab1, aba}), {e — T}
and {t < T} are the minimal explanations for /, and
Petal l;éi €.

3. Consider Py andletO =1: A={e«— T, e— L, 0
T, 0« L}, ImwcPe = (0,0), {e — T, 0 — T}is
the only minimal explanation for [, and P.,,! =5 e.

4. Consider P, andlet O = —l: A ={e — T, e« L},
ImweP, = (B,{ab}), {e «— L} is the only minimal
explanation for -/, and P., -l =5 —e.

5. Consider Pe; and let O = —l: A = {e «— T, e «
Lyt T, t« L} ImwcPe = (0,{ab1, aba}), {e «
1, t « 1} is the only minimal explanation for —l, and
Pet; _\l ):2 —e.

6. Consider P, and let O = —i: A = {e « T, e «
1,0« T, 0« L1}, ImwcPy = (0,0), {fe — L}
and {o «— L} are minimal explanations for —I, and

Peo, 0l 5 —e.

In other words, the formalization appears to be adequate
with respect to the findings reported in (Byrne 1989).

Variations In this paragraph we discuss some examples
which demonstrate that the various elements of the proposed
formalization are needed. In (Holldobler and Ramli 2009c;
2009b) it has already been shown that the strong three-
valued Kleene logic with complete equivalence is inade-
quate to model all of the experiments mentioned in the first
column of Table 2.

Reconsider the case of modus ponens with positive ob-
servation (case 1. above), but consider (P,, A, =3;.) instead
of (Pe, A, [EI¥e), where [=3 is the usual entailment re-
lation with respect to the three-valued Lukasiewicz logic.
One should observe that in such a logic least models may
not exist. In this case neither P, U {e «— T} s [ nor
P.U{e «— L} =5 [ because ab can be mapped to true.
Hence, the observation [ can not be explained at all (in con-
trast to (Byrne 1989)). The example demonstrates that weak
completion is needed.

Consider the case of modus ponens with negative obser-
vation (case 4. above), but consider now (P, A, |=5; ) in-
stead of (P, A, Emwe) where P =5, F iff F holds in
all models for the completion of P. The completion of P,
is {l & e A —ab, ab <~ L, e «— L}, which entails I,
i.e. the empty set is an explanation. Hence, we find that
Pe,l 5 —e (in contrast to (Byrne 1989)). The example
demonstrates that completion is insufficient.

Reconsider again the case of modus ponens with negative
observation (case 4. above), but weakly complete only the
program P, and not the explanation. In this case we find
that neither we P, nor we P U {e < T} nor we P U {e «—
1} nor weP. U{e « T, e « L} entails —l. Hence,
the observation [ cannot be explained (in contrast to (Byrne
1989)). The example demonstrates that explanations must
be (weakly) completed as well.

Reconsider the case of alternative arguments with posi-
tive observation (case 2. above), but now reason credulously
instead of sceptically. There are two minimal explanations,
viz. {e « T} as well as {e < _L}. Hence, Pl =5 e,
but P, ! =4 e. Credulous reasoning is inconsistent with
(Byrne 1989).



Extending Abduction by Integrity Constraints In this
paragraph, we consider the application of abduction to hu-
man reasoning, where abductive explanations are restricted
by integrity constraints (Kakas, Kowalski, and Toni 1993).
We construct variants of some of the suppression task sce-
narios by Byrne and show that abduction with integrity con-
straints yields plausible results, suggesting that correspond-
ing experiments should be made.

Here, an integrity constraint I1C' is a formula of the form
L — (m)A1 A .. A(—)A,. Integrity constraints are consid-
ered with two alternative semantics, the theoremhood view
and the consistency view (Kakas, Kowalski, and Toni 1993).
An explanation satisfies IC in the theoremhood view iff
EUP Emwe IC. An explanation satisfies IC' in the con-
sistency view iff there exists an interpretation I such that
I EwcE UPU{ICH.

We extend the four scenarios C.,Cy,l, C.,C,,I,
C.,Cy,—l, and C¢, C,, =l by Byrne with the following two
phrases:

She will not read a textbook in holidays. There are holidays.
The library is not open in holidays. There are holidays.

The first sentence of each of the two phrases is encoded as
a constraint, /ICy = 1L «— t Ahand IC, = L «— oA h,
respectively. The shared second sentence “There are hol-
idays” is translated just as a fact h <« T. We consider
the following extension of the programs shown in the para-
graph on the suppression task: Pes, = Pet U {h «— T} and
Peoh = Peo U{h — T}

1. Consider Pep, and let O = I: A = {e «— T, e «
L, t— T, t— L}, ImwePen, = ({h}, {ab1, aba}),
{e « T,t « L} isthe only explanation that satisfies IC;
in the theoremhood view; {e « T} is the only minimal
explanation for /C; under the consistency view

2. Consider Peop, and let O = I: A = {e «— T, e «
1,0« T, 0« L}, ImwcPeon = ({h},0), {e «—
T, o « T} is the only minimal explanation for [. How-
ever, this explanation does not satisfy IC, neither in the
consistency nor in the theoremhood view.

3. Consider Py, and let O = —l: A = {e « T, e «
L, t«— T,t«— L}, ImwcPe = ({h},{aby, aba}),
{e — 1, t « L1} is the only minimal explanation for
=, which satisfies IC; in the consistency as well as in the
theoremhood view.

4. Consider Peop, and let O = —I: A = {e «— T, e «
1,0 T,0« L}, ImwcPe = (0,0), {0~ L}isthe
minimal explanation that satisfies /C, in the consistency
view, {0 « L} also satisfies IC,, in the consistency view
with the model ({aby, aba, h},{e,l,0}) and {e — L}
with the model ({ab1, h}, {o,1}).

Consider the last case under the theoremhood view: Here,
{e < L} is not an explanation. This is interesting since one
reason that she is not in the library could be that she does not
have an essay to write. In this sense, the theoremhood view
eliminates meaningful explanations. This is not the case in
the consistency view.

Consistency: NP-complete
Relevance: NP

Necessity: CONP-complete
Skeptical Reasoning: DP-complete

Table 3: Complexity classes of considered abductive tasks.

Complexity Results In this paragraph we discuss the
complexity of four abductive tasks: (1.) consistency, i.e.
the question whether there exists a minimal explanation,
(2.) relevance, i.e. the question whether there exists a mini-
mal explanation containing a specific fact (3.) necessity, i.e.
whether all minimal explanations contain a specific fact and
(4.) the complexity of sceptical reasoning. Table 3 shows the
complexity classes of these problems.

We first take a close look at the consistency problem. Sup-
pose, we already have a set £ and we want to decide if it is
a minimal explanation for an observation O. It is easy to
check whether £ C A, and KU E ER ¥ L foreach L € O.
In order to compute the least model one can use the least
fixed point of <I>7S>”UL5, which can be computed in polynomial
time. The condition that IC U £ is satisfiable can be dropped
since there always exists a least Lukasiewicz model of a
weakly completed program. It remains to decide whether
an explanation £ is minimal. There are 2/ — 1 strict sub-
sets which have to be checked whether they are explanations
or nor. However, this exponential blowup can be avoided.
In classical logic, minimality can be decided in polynomial
time by iterating over all F' € £ and testing whether £\ {F'}
is an explanation or not. If there is no such explanation, then
£ is minimal. Otherwise, £ is not minimal. That this is cor-
rect follows from the fact that classical logic is monotonic
(see (Hermann and Pichler 2007, Theorem 5)). We say a
logic is monotonic iff F |= G implies F U F' = G, for
all sets of formulas F, F’ and formulas G. If we consider
the least model of a weakly completed program under the
Lukasiewicz semantics, then we do not have a monotonic
logic: Consider the empty program P and G = A < C.
Then ImweP = (0,0) = G. By adding A «— T to P,
we have Im weP U {A «— T} = ({A},0) |~ G. However,
in the considered abductive problems, we restrict ' to be a
subset of

{A-T|AcRYIU{A— L | AcRY)

Then, the following holds:

If € is an explanation, then any non-contradictory exten-
sion of £ is an explanation.

This result is surprising: Although the the consequence
operator =11 is not monotonic, abductive explanations are
monotonic. This means that one can safely extend an expla-
nation by further non-contradictory facts. The reasons why
we obtain this property are that we require that explanations
cannot be further explained and the observation is a set of lit-
erals. Moreover, with this relation between the least model
of the original program P and the extended program, we can
decide minimality as follows: An explanation £ is minimal
iff E\ {f} is not an explanation for all f € .



NP-membership of consistency can be shown follows:
Guess a minimal explanation €. To verify if Im wc PUE |=
L for all L € O holds, compute the least fixed point of
®2VL.. Since this operator is monotonic, we obtain the least
fixed point after polynomially many applications. After-
wards, we check whether £ \ {f} is an explanation for all
f € & to verify minimality. NP-hardness follows by a re-
duction from 3SAT. Consider the following transformation:
Let F =Cy A...ANC,, be a3SAT instance and X ... X,
the variables occurring in F'. Then, the abductive problem is
obtained as follows:

0 = {0}
P = {Yi—L;1,Y;— L2 Y; — L3 |
foreach clause C; = L; 1 V Lj 2 V L; 3}
U{O—Y1A...AY,}

Then the following holds: F’ is satisfiable iff there exists a
minimal explanation for O. The reason why this is correct
is that one can easily construct an explanation from a model
of F' and vice versa. 3SAT is known to be NP-hard and since
polynomial time reductions are transitive, we can conclude
that consistency is also NP-hard. It immediately follows
that consistency is NP-complete and inconsistency is CONP-
complete.

It is easy to see that the second considered problem, rel-
evance, is not harder than consistency: One has simply to
guess a minimal explanation containing a specific fact.

Necessity and inconsistency are equivalent w.r.t. polyno-
mial time reductions, which can be shown as follows: Let
(P, A, =) be an abductive framework and O an observation.
Suppose, we want to decide if f is necessary in every expla-
nation for O. Then, this problem is equivalent to the ques-
tion whether O is not explainable in (P, A\ {f}, Emve),
i.e. it is inconsistent. Suppose we want to decide whether
there does not exists a solution at all. Then, this prob-
lem is equivalent to the question whether ¢ is necessary in
(P,AU{q < T,q < L}) where q is a fresh atom. Since
inconsistency is CONP-complete, we obtain that necessity is
CONP-complete.

The fourth considered problem is skeptical reasoning.
Consider the class DP: A language L belongs to the class
DP, if there are two languages L1, Lo suchthat L = L1{NLo,
L belongs to NP and L2 belongs to CONP. Sceptical rea-
soning consists of two sub problems, where consistency is
already shown to be NP-complete. Consider the comple-
ment of the second problem, i.e. does there exists a minimal
explanation £ with P U £ MY F? It is clear that this
problem is in NP, since one have to simply guess the cor-
rect minimal explanations and minimality can be checked in
polynomial time. Hence, the original problem is in CONP.
CONP-hardness follows by a reduction from necessity: A
fact A — T (A « 1) is necessary iff for all minimal expla-
nations € we find that P U £ ERYe A (PUE EmWYe —A) .
DP-hardness follows immediately by the fact that both prob-
lems are hard. Hence, sceptical reasoning is DP-complete.

6 Conclusion

Logic appears to be adequate for human reasoning if weak
completion, the three-valued Lukasiewicz semantics, the se-
mantic operator @%“L, and abduction are used. Human rea-
soning is modeled by, firstly, reasoning towards an appro-
priate logic program P and, secondly, by reasoning with re-
spect to the least model of the weak completion of the P
(which is equal to the least fixed point of @%”L ) and, in case
of abduction, by taking a sceptical point of view. This ap-
proach matches data from studies in human reasoning and,
in particular, the data first reported in (Byrne 1989). How-
ever, much remains to be done.

There is a connectionist encoding of the approach (Holl-
dobler and Ramli 2009¢) which, unfortunately, does not yet
include abduction. On the other hand, various proposals to
handle abduction in a connectionist setting have been made
(e.g. (d’Avila Garcez et al. 2007)); these proposals are more
or less straightforward encodings of a sequential search in
the space of all possible explanations and they model only
credulous reasoning. How do humans search for explana-
tions? In which order are explanations generated by humans
if there are several? Do humans prefer minimal explana-
tions? Does attention play a role in the selection of explana-
tions? Do humans reason sceptically or credulously? How
does a connectionist realization of abductive reasoning em-
bedded into (Holldobler and Ramli 2009¢) looks like?

In a Lukasiewicz logic the semantic deduction theorem
does not hold. Is this adequate with respect to human rea-
soning? Likewise, in the three-valued Lukasiewicz logic an
implication is mapped to true if both, its precondition and
conclusion, are mapped to unknown. How do humans evalu-
ate implications whose precondition and conclusion mapped
to unknown?

In the current approach negative and positive facts are not
treated on the same level. Rather, by considering the weak
completion of a program negative facts are dominated by
positive information. How is negation treated in human rea-
soning?

In (Holldobler and Ramli 2009a) it was shown that the
semantic operator @%“L associated with a program P (see
Section 3) is a contraction if P is acyclic. In this case,
thanks to Banach’s contraction mapping theorem, <I>7S;JL ad-
mits a unique fixed point which can be computed by iterating
<I>%”L starting with an arbitrary initial interpretation. Do hu-
mans exhibit a behaviour which can be adequately modeled
by contractional semantic operators? If so, can we generate
appropriate level mappings (needed to show acyclicity of a
program) by studying the behavior of humans?

Last but not least, what is the relation between the
proposed approach and well-founded and/or stable and/or
circumscription-projection (Wernhard 2010) semantics?
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